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C H A P T E R 2
Stiffness Matrices, Spring
and Bar Elements

2.1 INTRODUCTION
The primary characteristics of a finite element are embodied in the element
stiffness matrix. For a structural finite element, the stiffness matrix contains the
geometric and material behavior information that indicates the resistance of
the element to deformation when subjected to loading. Such deformation may
include axial, bending, shear, and torsional effects. For finite elements used in
nonstructural analyses, such as fluid flow and heat transfer, the term stiffness
matrix is also used, since the matrix represents the resistance of the element to
change when subjected to external influences. 

This chapter develops the finite element characteristics of two relatively
simple, one-dimensional structural elements, a linearly elastic spring and an elas-
tic tension-compression member. These are selected as introductory elements be-
cause the behavior of each is relatively well-known from the commonly studied
engineering subjects of statics and strength of materials. Thus, the “bridge” to the
finite element method is not obscured by theories new to the engineering student.
Rather, we build on known engineering principles to introduce finite element
concepts. The linear spring and the tension-compression member (hereafter re-
ferred to as a bar element and also known in the finite element literature as a spar,
link, or truss element) are also used to introduce the concept of interpolation
functions. As mentioned briefly in Chapter 1, the basic premise of the finite ele-
ment method is to describe the continuous variation of the field variable (in this
chapter, physical displacement) in terms of discrete values at the finite element
nodes. In the interior of a finite element, as well as along the boundaries (applic-
able to two- and three-dimensional problems), the field variable is described via
interpolation functions (Chapter 6) that must satisfy prescribed conditions.

Finite element analysis is based, dependent on the type of problem, on sev-
eral mathematic/physical principles. In the present introduction to the method,
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we present several such principles applicable to finite element analysis. First, and
foremost, for spring and bar systems, we utilize the principle of static equilib-
rium but—and this is essential—we include deformation in the development;
that is, we are not dealing with rigid body mechanics. For extension of the finite
element method to more complicated elastic structural systems, we also state and
apply the first theorem of Castigliano [1] and the more widely used principle of
minimum potential energy [2]. Castigliano’s first theorem, in the form presented,
may be new to the reader. The first theorem is the counterpart of Castigliano’s
second theorem, which is more often encountered in the study of elementary
strength of materials [3]. Both theorems relate displacements and applied forces
to the equilibrium conditions of a mechanical system in terms of mechanical
energy. The use here of Castigliano’s first theorem is for the distinct purpose of
introducing the concept of minimum potential energy without resort to the higher
mathematic principles of the calculus of variations, which is beyond the mathe-
matical level intended for this text.

2.2 LINEAR SPRING AS A FINITE ELEMENT
A linear elastic spring is a mechanical device capable of supporting axial loading
only and constructed such that, over a reasonable operating range (meaning ex-
tension or compression beyond undeformed length), the elongation or contrac-
tion of the spring is directly proportional to the applied axial load. The constant
of proportionality between deformation and load is referred to as the spring con-
stant, spring rate, or spring stiffness [4], generally denoted as k, and has units
of force per unit length. Formulation of the linear spring as a finite element is
accomplished with reference to Figure 2.1a. As an elastic spring supports axial
loading only, we select an element coordinate system (also known as a local co-
ordinate system) as an x axis oriented along the length of the spring, as shown.
The element coordinate system is embedded in the element and chosen, by geo-
metric convenience, for simplicity in describing element behavior. The element
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Figure 2.1
(a) Linear spring element with nodes, nodal displacements, and nodal forces.
(b) Load-deflection curve.



Hutton: Fundamentals of 
Finite Element Analysis

2. Stiffness Matrices, 
Spring and Bar Elements

Text © The McGraw−Hill 
Companies, 2004

2.2 Linear Spring as a Finite Element 21

or local coordinate system is contrasted with the global coordinate system. The
global coordinate system is that system in which the behavior of a complete
structure is to be described. By complete structure is meant the assembly of
many finite elements (at this point, several springs) for which we desire to com-
pute response to loading conditions. In this chapter, we deal with cases in which
the local and global coordinate systems are essentially the same except for trans-
lation of origin. In two- and three-dimensional cases, however, the distinctions
are quite different and require mathematical rectification of element coordinate
systems to a common basis. The common basis is the global coordinate system.

Returning attention to Figure 2.1a, the ends of the spring are the nodes and
the nodal displacements are denoted by u1 and u2 and are shown in the positive
sense. If these nodal displacements are known, the total elongation or contraction
of the spring is known as is the net force in the spring. At this point in our devel-
opment, we require that forces be applied to the element only at the nodes (dis-
tributed forces are accommodated for other element types later), and these are
denoted as f1 and f2 and are also shown in the positive sense.

Assuming that both the nodal displacements are zero when the spring is un-
deformed, the net spring deformation is given by

� = u2 − u1 (2.1)

and the resultant axial force in the spring is

f = k� = k(u2 − u1) (2.2)

as is depicted in Figure 2.1b.
For equilibrium, f1 + f2 = 0 or f1 = − f2, and we can rewrite Equation 2.2

in terms of the applied nodal forces as

f1 = −k(u2 − u1) (2.3a)

f2 = k(u2 − u1) (2.3b)

which can be expressed in matrix form (see Appendix A for a review of matrix
algebra) as [

k −k

−k k

]{
u1

u2

}
=

{
f1

f2

}
(2.4)

or

[ke]{u} = { f } (2.5)

where

[ke] =
[

k −k

−k k

]
(2.6)

is defined as the element stiffness matrix in the element coordinate system (or
local system), {u} is the column matrix (vector) of nodal displacements, and { f}
is the column matrix (vector) of element nodal forces. (In subsequent chapters,
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the matrix notation is used extensively. A general matrix is designated by
brackets [ ] and a column matrix (vector) by braces { }.)

Equation 2.6 shows that the element stiffness matrix for the linear spring
element is a 2 × 2 matrix. This corresponds to the fact that the element exhibits
two nodal displacements (or degrees of freedom) and that the two displacements
are not independent (that is, the body is continuous and elastic). Furthermore, the
matrix is symmetric. A symmetric matrix has off-diagonal terms such that ki j =
kji. Symmetry of the stiffness matrix is indicative of the fact that the body is lin-
early elastic and each displacement is related to the other by the same physical
phenomenon. For example, if a force F (positive, tensile) is applied at node 2
with node 1 held fixed, the relative displacement of the two nodes is the same as
if the force is applied symmetrically (negative, tensile) at node 1 with node 2
fixed. (Counterexamples to symmetry are seen in heat transfer and fluid flow
analyses in Chapters 7 and 8.) As will be seen as more complicated structural
elements are developed, this is a general result: An element exhibiting N degrees
of freedom has a corresponding N × N, symmetric stiffness matrix.

Next consider solution of the system of equations represented by Equa-
tion 2.4. In general, the nodal forces are prescribed and the objective is to solve
for the unknown nodal displacements. Formally, the solution is represented by

{
u1

u2

}
= [ke]−1

{
f1

f2

}
(2.7)

where [ke]−1 is the inverse of the element stiffness matrix. However, this inverse
matrix does not exist, since the determinant of the element stiffness matrix is
identically zero. Therefore, the element stiffness matrix is singular, and this also
proves to be a general result in most cases. The physical significance of the
singular nature of the element stiffness matrix is found by reexamination of
Figure 2.1a, which shows that no displacement constraint whatever has been im-
posed on motion of the spring element; that is, the spring is not connected to any
physical object that would prevent or limit motion of either node. With no con-
straint, it is not possible to solve for the nodal displacements individually.
Instead, only the difference in nodal displacements can be determined, as this
difference represents the elongation or contraction of the spring element owing
to elastic effects. As discussed in more detail in the general formulation of inter-
polation functions (Chapter 6) and structural dynamics (Chapter 10), a properly
formulated finite element must allow for constant value of the field variable. In
the example at hand, this means rigid body motion. We can see the rigid body
motion capability in terms of a single spring (element) and in the context of sev-
eral connected elements. For a single, unconstrained element, if arbitrary forces
are applied at each node, the spring not only deforms axially but also undergoes
acceleration according to Newton’s second law. Hence, there exists not only
deformation but overall motion. If, in a connected system of spring elements, the
overall system response is such that nodes 1 and 2 of a particular element dis-
place the same amount, there is no elastic deformation of the spring and therefore
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no elastic force in the spring. This physical situation must be included in the
element formulation. The capability is indicated mathematically by singularity
of the element stiffness matrix. As the stiffness matrix is formulated on the basis
of deformation of the element, we cannot expect to compute nodal displacements
if there is no deformation of the element.

Equation 2.7 indicates the mathematical operation of inverting the stiffness
matrix to obtain solutions. In the context of an individual element, the singular
nature of an element stiffness matrix precludes this operation, as the inverse of a
singular matrix does not exist. As is illustrated profusely in the remainder of the
text, the general solution of a finite element problem, in a global, as opposed to
element, context, involves the solution of equations of the form of Equation 2.5. For
realistic finite element models, which are of huge dimension in terms of the matrix
order (N × N) involved, computing the inverse of the stiffness matrix is a very in-
efficient, time-consuming operation, which should not be undertaken except for the
very simplest of systems. Other, more-efficient solution techniques are available,
and these are discussed subsequently. (Many of the end-of-chapter problems
included in this text are of small order and can be efficiently solved via matrix in-
version using “spreadsheet” software functions or software such as MATLAB.)

2.2.1 System Assembly in Global Coordinates

Derivation of the element stiffness matrix for a spring element was based on
equilibrium conditions. The same procedure can be applied to a connected sys-
tem of spring elements by writing the equilibrium equation for each node. How-
ever, rather than drawing free-body diagrams of each node and formally writing
the equilibrium equations, the nodal equilibrium equations can be obtained more
efficiently by considering the effect of each element separately and adding the
element force contribution to each nodal equation. The process is described as
“assembly,” as we take individual stiffness components and “put them together”
to obtain the system equations. To illustrate, via a simple example, the assembly
of element characteristics into global (or system) equations, we next consider the
system of two linear spring elements connected as shown in Figure 2.2.

For generality, it is assumed that the springs have different spring constants
k1 and k2. The nodes are numbered 1, 2, and 3 as shown, with the springs sharing
node 2 as the physical connection. Note that these are global node numbers. The
global nodal displacements are identified as U1, U2, and U3, where the upper case
is used to indicate that the quantities represented are global or system displace-
ments as opposed to individual element displacements. Similarly, applied nodal

1 2

U1

k1 k2
F1 F2 3 F3

U2 U3

1 2

Figure 2.2 System of two springs with node numbers,
element numbers, nodal displacements, and nodal forces.
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Figure 2.3 Free-body diagrams of elements and nodes for the
two-element system of Figure 2.2.

forces are F1, F2, and F3. Assuming the system of two spring elements to be
in equilibrium, we examine free-body diagrams of the springs individually (Fig-
ure 2.3a and 2.3b) and express the equilibrium conditions for each spring, using
Equation 2.4, as [

k1 −k1

−k1 k1

] {
u (1)

1

u (1)
2

}
=

{
f (1)

1

f (1)
2

}
(2.8a)

[
k2 −k2

−k2 k2

] {
u (2)

1

u (2)
2

}
=

{
f (2)

2

f (2)
3

}
(2.8b)

where the superscript is element number.
To begin “assembling” the equilibrium equations describing the behavior

of the system of two springs, the displacement compatibility conditions, which
relate element displacements to system displacements, are written as

u(1)

1 = U1 u(1)

2 = U2 u (2)

1 = U2 u(2)

2 = U3 (2.9)

The compatibility conditions state the physical fact that the springs are con-
nected at node 2, remain connected at node 2 after deformation, and hence, must
have the same nodal displacement at node 2. Thus, element-to-element displace-
ment continuity is enforced at nodal connections. Substituting Equations 2.9 into
Equations 2.8, we obtain[

k1 −k1

−k1 k1

]{
U1

U2

}
=

{
f (1)

1

f (1)
2

}
(2.10a)

and [
k2 −k2

−k2 k2

]{
U2

U3

}
=

{
f (2)

2

f (2)
3

}
(2.10b)

Here, we use the notation f ( j)
i to represent the force exerted on element j at

node i.
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Equation 2.10 is the equilibrium equations for each spring element expressed
in terms of the specified global displacements. In this form, the equations clearly
show that the elements are physically connected at node 2 and have the same dis-
placement U2 at that node. These equations are not yet amenable to direct combi-
nation, as the displacement vectors are not the same. We expand both matrix
equations to 3 × 3 as follows (while formally expressing the facts that element 1
is not connected to node 3 and element 2 is not connected to node 1):

[ k1 −k1 0
−k1 k1 0

0 0 0

]{ U1

U2

0

}
=




f (1)
1

f (1)
2

0


 (2.11)

[ 0 0 0
0 k2 −k2

0 −k2 k2

]{ 0
U2

U3

}
=




0
f (2)

2

f (2)
3


 (2.12)

The addition of Equations 2.11 and 2.12 yields

[ k1 −k1 0
−k1 k1 + k2 −k2

0 −k2 k2

]{ U1

U2

U3

}
=




f (1)
1

f (1)
2 + f (2)

2

f (2)
3


 (2.13)

Next, we refer to the free-body diagrams of each of the three nodes depicted in
Figure 2.3c, 2.3d, and 2.3e. The equilibrium conditions for nodes 1, 2, and 3
show that

f (1)
1 = F1 f (1)

2 + f (2)
2 = F2 f (2)

3 = F3 (2.14)

respectively. Substituting into Equation 2.13, we obtain the final result:[
k1 −k1 0

−k1 k1 + k2 −k2

0 −k2 k2

]{
U1

U2

U3

}
=

{
F1

F2

F3

}
(2.15)

which is of the form [K ]{U} = {F}, similar to Equation 2.5. However, Equa-
tion 2.15 represents the equations governing the system composed of two con-
nected spring elements. By direct consideration of the equilibrium conditions,
we obtain the system stiffness matrix [K ] (note use of upper case) as

[K ] =
[

k1 −k1 0
−k1 k1 + k2 −k2

0 −k2 k2

]
(2.16)

Note that the system stiffness matrix is (1) symmetric, as is the case with all lin-
ear systems referred to orthogonal coordinate systems; (2) singular, since no
constraints are applied to prevent rigid body motion of the system; and (3) the
system matrix is simply a superposition of the individual element stiffness
matrices with proper assignment of element nodal displacements and associated
stiffness coefficients to system nodal displacements. The superposition proce-
dure is formalized in the context of frame structures in the following paragraphs.
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Consider the two element system depicted in Figure 2.2 given that

Node 1 is attached to a fixed support, yielding the displacement constraint U1 = 0.

k1 = 50 lb./in., k2 = 75 lb./in., F2 = F3 = 75 lb.

for these conditions determine nodal displacements U2 and U3.

■ Solution
Substituting the specified values into Equation 2.15 yields


 50 −50 0

−50 125 −75
0 −75 75







0
U2

U3


 =




F1

75
75




and we note that, owing to the constraint of zero displacement at node 1, nodal force F1

becomes an unknown reaction force. Formally, the first algebraic equation represented in
this matrix equation becomes

−50U2 = F1

and this is known as a constraint equation, as it represents the equilibrium condition
of a node at which the displacement is constrained. The second and third equations
become

[
125 −75
−75 75

]{
U2

U3

}
=

{
75
75

}

which can be solved to obtain U2 = 3 in. and U3 = 4 in. Note that the matrix equations
governing the unknown displacements are obtained by simply striking out the first row
and column of the 3 × 3 matrix system, since the constrained displacement is zero.
Hence, the constraint does not affect the values of the active displacements (we use the
term active to refer to displacements that are unknown and must be computed). Substitu-
tion of the calculated values of U2 and U3 into the constraint equation yields the value
F1 = −150 lb., which value is clearly in equilibrium with the applied nodal forces of
75 lb. each. We also illustrate element equilibrium by writing the equations for each
element as

[
50 −50

−50 50

]{
0
3

}
=

{
f (1)

1

f (1)
2

}
=

{ −150
150

}
lb. for element 1

[
75 −75

−75 75

]{
3
4

}
=

{
f (2)

2

f (2)
3

}
=

{ −75
75

}
lb. for element 2

Example 2.1 illustrates the general procedure for solution of finite element mod-
els: Formulate the system equilibrium equations, apply the specified constraint
conditions, solve the reduced set of equations for the “active” displacements, and
substitute the computed displacements into the constraint equations to obtain the
unknown reactions. While not directly applicable for the spring element, for

EXAMPLE 2.1
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(a)

W

2k

W

k

W

3k

(b)

3k

U1

U2

1

2k 2

U3

U4

k 3

1

2

3

4

Figure 2.4 Example 2.2: elastic
spring supporting weights.

more general finite element formulations, the computed displacements are also
substituted into the strain relations to obtain element strains, and the strains are,
in turn, substituted into the applicable stress-strain equations to obtain element
stress values.

Figure 2.4a depicts a system of three linearly elastic springs supporting three equal
weights W suspended in a vertical plane. Treating the springs as finite elements, deter-
mine the vertical displacement of each weight.

■ Solution
To treat this as a finite element problem, we assign node and element numbers as shown
in Figure 2.4b and ignore, for the moment, that displacement U1 is known to be zero by
the fixed support constraint. Per Equation 2.6, the stiffness matrix of each element is
(preprocessing)

[
k (1)

] =
[

3k −3k
−3k 3k

]

[
k (2)

] =
[

2k −2k
−2k 2k

]

[
k (3)

] =
[

k −k
−k k

]

EXAMPLE 2.2
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The element-to-global displacement relations are

u (1)
1 = U1 u (1)

2 = u (2)
1 = U2 u (2)

2 = u (3)
1 = U3 u (3)

2 = U4

Proceeding as in the previous example, we then write the individual element equations as



3k −3k 0 0
−3k 3k 0 0

0 0 0 0
0 0 0 0







U1

U2

U3

U4




=




f (1)
1

f (1)
2

0
0




(1)




0 0 0 0
0 2k −2k 0
0 −2k 2k 0
0 0 0 0







U1

U2

U3

U4




=




0
f (2)

1

f (2)
2

0




(2)




0 0 0 0
0 0 0 0
0 0 k −k
0 0 −k k







U1

U2

U3

U4




=




0
0

f (3)
1

f (3)
2




(3)

Adding Equations 1–3, we obtain

k




3 −3 0 0
−3 5 −2 0
0 −2 3 −1
0 0 −1 1







U1

U2

U3

U4




=




F1

W
W
W




(4)

where we utilize the fact that the sum of the element forces at each node must equal the
applied force at that node and, at node 1, the force is an unknown reaction.

Applying the displacement constraint U1 = 0 (this is also preprocessing), we obtain

−3kU2 = F1 (5)

as the constraint equation and the matrix equation

k


 5 −2 0

−2 3 −1
0 −1 1







U2

U3

U4


 =




W
W
W


 (6)

for the active displacements. Again note that Equation 6 is obtained by eliminating the
constraint equation from 4 corresponding to the prescribed zero displacement.

Simultaneous solution (the solution step) of the algebraic equations represented by
Equation 6 yields the displacements as

U2 = W

k
U3 = 2W

k
U4 = 3W

k

and Equation 5 gives the reaction force as

F1 = −3W

(This is postprocessing.)
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k 3k 2k

�

F2 � �F

F4 � 2F1

2

3

2

3 4

1

Figure 2.5 Example 2.3: Three-element system with specified
nonzero displacement at node 3.

Note that the solution is exactly that which would be obtained by the usual statics
equations. Also note the general procedure as follows:

Formulate the individual element stiffness matrices.

Write the element to global displacement relations.

Assemble the global equilibrium equation in matrix form.

Reduce the matrix equations according to specified constraints.

Solve the system of equations for the unknown nodal displacements (primary
variables).

Solve for the reaction forces (secondary variable) by back-substitution.

Figure 2.5 depicts a system of three linear spring elements connected as shown. The node
and element numbers are as indicated. Node 1 is fixed to prevent motion, and node 3 is
given a specified displacement � as shown. Forces F2 = −F and F4 = 2F are applied at
nodes 2 and 4. Determine the displacement of each node and the force required at node 3
for the specified conditions. 

■ Solution
This example includes a nonhomogeneous boundary condition. In previous examples, the
boundary conditions were represented by zero displacements. In this example, we have
both a zero (homogeneous) and a specified nonzero (nonhomogeneous) displacement
condition. The algebraic treatment must be different as follows. The system equilibrium
equations are expressed in matrix form (Problem 2.6) as 




k −k 0 0
−k 4k −3k 0
0 −3k 5k −2k
0 0 −2k 2k







U1

U2

U3

U4




=




F1

F2

F3

F4




=




F1

−F
F3

2F




Substituting the specified conditions U1 = 0 and U3 = � results in the system of
equations




k −k 0 0
−k 4k −3k 0
0 −3k 5k −2k
0 0 −2k 2k







0
U2

�

U4




=




F1

−F
F3

2F




EXAMPLE 2.3
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Since U1 = 0, we remove the first row and column to obtain

 4k −3k 0

−3k 5k −2k
0 −2k 2k







U2

�

U4


 =




−F
F3

2F




as the system of equations governing displacements U2 and U4 and the unknown nodal
force F3. This last set of equations clearly shows that we cannot simply strike out the row
and column corresponding to the nonzero specified displacement � because it appears in
the equations governing the active displacements. To illustrate a general procedure, we
rewrite the last matrix equation as


 5k −3k −2k

−3k 4k 0
−2k 0 2k







�

U2

U4


 =




F3

−F
2F




Next, we formally partition the stiffness matrix and write

 5k −3k −2k

−3k 4k 0
−2k 0 2k







�

U2

U4


 =

[
[K��] [K�U ]
[KU �] [KUU ]

]{ {�}
{U}

}
=

{ {F�}
{FU }

}

with

[K��] = [5k]

[K�U ] = [−3k −2k]

[KU �] = [K�U ]T =
[ −3k

−2k

]

[KUU ] =
[

4k 0
0 2k

]

{�} = {�}

{U } =
{

U2

U4

}

{F�} = {F3}

{FU } =
{ −F

2F

}

From the second “row” of the partitioned matrix equations, we have

[KU �]{�} + [KUU ]{U } = {FU }
and this can be solved for the unknown displacements to obtain

{U } = [KUU ]−1({F } − [KU �]{�})
provided that [KUU ]−1 exists. Since the constraints have been applied correctly, this
inverse does exist and is given by

[KUU ]−1 =




1

4k
0

0
1

2k



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Substituting, we obtain the unknown displacements as

{U} =
{

U2

U4

}
=




1

4k
0

0
1

2k




{−F + 3k�

2F + 2k�

}
=




− F

4k
+ 3�

4

F

k
+ �




The required force at node 3 is obtained by substitution of the displacement into the upper
partition to obtain

F3 = − 5

4
F + 3

4
k�

Finally, the reaction force at node 1 is

F1 = −kU2 = F

4
− 3

4
k�

As a check on the results, we substitute the computed and prescribed displacements into
the individual element equations to insure that equilibrium is satisfied.

Element 1 [
k −k

−k k

]{
0

U2

}
=

{−kU2

kU2

}
=




f (1)
1

f (1)
2




which shows that the nodal forces on element 1 are equal and opposite as required for
equilibrium.

Element 2
[

3k −3k
−3k 3k

]{
U2

U3

}
=

[
3k −3k

−3k 3k

]


− F

4k
+ 3

4
�

�




=




−3F

4k
− 3

4
k�

3F

4k
+ 3

4
k�




=
{

f (2)
2

f (2)
3

}

which also verifies equilibrium.

Element 3
[

2k −2k
−2k 2k

]{
U3

U4

}
=

[
2k −2k

−2k 2k

] {
�

F

k
+ �

}
=

{ −2F
2F

}
=

{
f (3)

3

f (3)
4

}

Therefore element 3 is in equilibrium as well.

2.3 ELASTIC BAR, SPAR/LINK/TRUSS ELEMENT
While the linear elastic spring serves to introduce the concept of the stiffness ma-
trix, the usefulness of such an element in finite element analysis is rather limited.
Certainly, springs are used in machinery in many cases and the availability of a
finite element representation of a linear spring is quite useful in such cases. The
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spring element is also often used to represent the elastic nature of supports for
more complicated systems. A more generally applicable, yet similar, element is
an elastic bar subjected to axial forces only. This element, which we simply call
a bar element, is particularly useful in the analysis of both two- and three-
dimensional frame or truss structures. Formulation of the finite element charac-
teristics of an elastic bar element is based on the following assumptions:

1. The bar is geometrically straight.
2. The material obeys Hooke’s law.
3. Forces are applied only at the ends of the bar.
4. The bar supports axial loading only; bending, torsion, and shear are not

transmitted to the element via the nature of its connections to other
elements.

The last assumption, while quite restrictive, is not impractical; this condition is
satisfied if the bar is connected to other structural members via pins (2-D) or ball-
and-socket joints (3-D). Assumptions 1 and 4, in combination, show that this is
inherently a one-dimensional element, meaning that the elastic displacement of
any point along the bar can be expressed in terms of a single independent vari-
able. As will be seen, however, the bar element can be used in modeling both
two- and three-dimensional structures. The reader will recognize this element
as the familiar two-force member of elementary statics, meaning, for equilib-
rium, the forces exerted on the ends of the element must be colinear, equal in
magnitude, and opposite in sense.

Figure 2.6 depicts an elastic bar of length L to which is affixed a uniaxial
coordinate system x with its origin arbitrarily placed at the left end. This is the
element coordinate system or reference frame. Denoting axial displacement at
any position along the length of the bar as u(x), we define nodes 1 and 2 at each
end as shown and introduce the nodal displacements u1 = u(x = 0) and
u2 = u(x = L ) . Thus, we have the continuous field variable u(x), which is to be
expressed (approximately) in terms of two nodal variables u1 and u2. To accom-
plish this discretization, we assume the existence of interpolation functions
N1(x ) and N2(x ) (also known as shape or blending functions) such that 

u(x ) = N1(x )u1 + N2(x )u2 (2.17)

21

u1 u2

x
x u(x)

L

Figure 2.6 A bar (or truss) element with element
coordinate system and nodal displacement
notation.
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(It must be emphasized that, although an equality is indicated by Equation 2.17,
the relation, for finite elements in general, is an approximation. For the bar ele-
ment, the relation, in fact, is exact.) To determine the interpolation functions, we
require that the boundary values of u(x ) (the nodal displacements) be identically
satisfied by the discretization such that

u(x = 0) = u1 u(x = L ) = u2 (2.18)

Equations 2.17 and 2.18 lead to the following boundary (nodal) conditions:

N1(0) = 1 N2(0) = 0 (2.19)

N1(L ) = 0 N2(L ) = 1 (2.20)

which must be satisfied by the interpolation functions. It is required that the dis-
placement expression, Equation 2.17, satisfy the end (nodal) conditions identi-
cally, since the nodes will be the connection points between elements and the
displacement continuity conditions are enforced at those connections. As we
have two conditions that must be satisfied by each of two one-dimensional func-
tions, the simplest forms for the interpolation functions are polynomial forms:

N1(x ) = a0 + a1x (2.21)

N2(x ) = b0 + b1x (2.22)

where the polynomial coefficients are to be determined via satisfaction of the
boundary (nodal) conditions. We note here that any number of mathematical
forms of the interpolation functions could be assumed while satisfying the
required conditions. The reasons for the linear form is explained in detail in
Chapter 6. 

Application of conditions represented by Equation 2.19 yields a0 = 1,
b0 = 0 while Equation 2.20 results in a1 = −(1/L ) and b1 = x/L . Therefore,
the interpolation functions are

N1(x ) = 1 − x/L (2.23)

N2(x ) = x/L (2.24)

and the continuous displacement function is represented by the discretization

u(x ) = (1 − x/L )u1 + (x/L )u2 (2.25)

As will be found most convenient subsequently, Equation 2.25 can be expressed
in matrix form as 

u(x ) = [N1(x ) N2(x )]
{ u1

u2

}
= [N ] {u} (2.26)

where [N ] is the row matrix of interpolation functions and {u} is the column
matrix (vector) of nodal displacements.

Having expressed the displacement field in terms of the nodal variables, the
task remains to determine the relation between the nodal displacements and
applied forces to obtain the stiffness matrix for the bar element. Recall from
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elementary strength of materials that the deflection � of an elastic bar of length L
and uniform cross-sectional area A when subjected to axial load P is given by

� = PL

AE
(2.27)

where E is the modulus of elasticity of the material. Using Equation 2.27, we
obtain the equivalent spring constant of an elastic bar as 

k = P

�
= AE

L
(2.28)

and could, by analogy with the linear elastic spring, immediately write the stiff-
ness matrix as Equation 2.6. While the result is exactly correct, we take a more
general approach to illustrate the procedures to be used with more complicated
element formulations.

Ultimately, we wish to compute the nodal displacements given some loading
condition on the element. To obtain the necessary equilibrium equations relating
the displacements to applied forces, we proceed from displacement to strain,
strain to stress, and stress to loading, as follows. In uniaxial loading, as in the bar
element, we need consider only the normal strain component, defined as

εx = du

dx
(2.29)

which, when applied to Equation 2.25, gives

εx = u2 − u1

L
(2.30)

which shows that the spar element is a constant strain element. This is in accord
with strength of materials theory: The element has constant cross-sectional area
and is subjected to constant forces at the end points, so the strain does not vary
along the length. The axial stress, by Hooke’s law, is then

�x = Eεx = E
u2 − u1

L
(2.31)

and the associated axial force is

P = �x A = AE

L
(u2 − u1) (2.32)

Taking care to observe the correct algebraic sign convention, Equation 2.32 is
now used to relate the applied nodal forces f1 and f2 to the nodal displacements
u1 and u2. Observing that, if Equation 2.32 has a positive sign, the element is in
tension and nodal force f2 must be in the positive coordinate direction while
nodal force f1 must be equal and opposite for equilibrium; therefore,

f1 = − AE

L
(u2 − u1) (2.33)

f2 = AE

L
(u2 − u1) (2.34)
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Equations 2.33 and 2.34 are expressed in matrix form as

AE

L

[
1 −1

−1 1

]{
u1

u2

}
=

{
f1

f2

}
(2.35)

Comparison of Equation 2.35 to Equation 2.4 shows that the stiffness matrix for
the bar element is given by

[ke] = AE

L

[
1 −1

−1 1

]
(2.36)

As is the case with the linear spring, we observe that the element stiffness matrix
for the bar element is symmetric, singular, and of order 2 × 2 in correspondence
with two nodal displacements or degrees of freedom. It must be emphasized that
the stiffness matrix given by Equation 2.36 is expressed in the element coordi-
nate system, which in this case is one-dimensional. Application of this element
formulation to analysis of two- and three-dimensional structures is considered in
the next chapter.

Figure 2.7a depicts a tapered elastic bar subjected to an applied tensile load P at one end
and attached to a fixed support at the other end. The cross-sectional area varies linearly
from A0 at the fixed support at x = 0 to A0/2 at x = L . Calculate the displacement of the
end of the bar (a) by modeling the bar as a single element having cross-sectional area
equal to the area of the actual bar at its midpoint along the length, (b) using two bar
elements of equal length and similarly evaluating the area at the midpoint of each, and
(c) using integration to obtain the exact solution.

■ Solution
(a) For a single element, the cross-sectional area is 3A0/4 and the element “spring

constant” is

k = AE

L
= 3A0 E

4L

and the element equations are

3A0 E

4L

[
1 −1

−1 −1

] {
U1

U2

}
=

{
F1

P

}

The element and nodal displacements are as shown in Figure 2.7b. Applying the
constraint condition U1 = 0, we find

U2 = 4PL

3A0 E
= 1.333

PL

A0 E

as the displacement at x = L .
(b) Two elements of equal length L/2 with associated nodal displacements are

depicted in Figure 2.7c. For element 1, A1 = 7A0/8 so

k1 = A1E

L 1
= 7A0 E

8(L/2)
= 7A0 E

4L

EXAMPLE 2.4
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x

L

P

(a)

x
2L

A(x) � Ao(1 � )

(b)

4
3

A � Ao

1

2

(c)

8
5

Ao

8
7

Ao

(d)

x

P

�(x)

(e)

0
0

0.2

0.4

0.6
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�
�
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Exact
One element
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�
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o

Exact
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(f)

Figure 2.7
(a) Tapered axial bar, (b) one-element model, (c) two-element model, (d) free-body diagram
for an exact solution, (e) displacement solutions, (f) stress solutions.
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while for element 2, we have

A1 = 5A0

8
and k2 = A2 E

L 2
= 5A0 E

8(L/2)
= 5A0 E

4L

Since no load is applied at the center of the bar, the equilibrium equations for the
system of two elements is


 k1 −k1 0

−k1 k1 + k2 −k2

0 −k2 k2







U1

U2

U3


 =




F1

0
P




Applying the constraint condition U1 = 0 results in[
k1 + k2 −k2

−k2 k2

]{
U2

U3

}
=

{
0
P

}

Adding the two equations gives 

U2 = P

k1
= 4PL

7A0 E

and substituting this result into the first equation results in

U3 = k1 + k2

k2
= 48PL

35A0 E
= 1.371

PL

A0 E

(c) To obtain the exact solution, we refer to Figure 2.7d, which is a free-body diagram of
a section of the bar between an arbitrary position x and the end x = L. For equilibrium,

�x A = P and since A = A(x ) = A0

(
1 − x

2L

)

the axial stress variation along the length of the bar is described by

�x = P

A0

(
1 − x

2L

)

Therefore, the axial strain is 

εx = �x

E
= P

EA0

(
1 − x

2L

)

Since the bar is fixed at x = 0, the displacement at x = L is given by

� =
L∫

0

εx dx = P

EA0

L∫

0

dx(
1 − x

2L

)

= 2PL

EA0
[−ln(2L − x )]

∣∣L

0
= 2PL

EA0
[ln(2L ) − ln L ] = 2PL

EA0
ln 2 = 1.386

PL

A0 E
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Comparison of the results of parts b and c reveals that the two element solution
exhibits an error of only about 1 percent in comparison to the exact solution from
strength of materials theory. Figure 2.7e shows the displacement variation along the
length for the three solutions. It is extremely important to note, however, that the
computed axial stress for the finite element solutions varies significantly from that of
the exact solution. The axial stress for the two-element solution is shown in Fig-
ure 2.7f, along with the calculated stress from the exact solution. Note particularly
the discontinuity of calculated stress values for the two elements at the connecting
node. This is typical of the derived, or secondary, variables, such as stress and strain,
as computed in the finite element method. As more and more smaller elements are
used in the model, the values of such discontinuities decrease, indicating solution
convergence. In structural analyses, the finite element user is most often more inter-
ested in stresses than displacements, hence it is essential that convergence of the
secondary variables be monitored.

2.4 STRAIN ENERGY, CASTIGLIANO’S 
FIRST THEOREM

When external forces are applied to a body, the mechanical work done by those
forces is converted, in general, into a combination of kinetic and potential ener-
gies. In the case of an elastic body constrained to prevent motion, all the work
is stored in the body as elastic potential energy, which is also commonly
referred to as strain energy. Here, strain energy is denoted Ue and mechanical
work W. From elementary statics, the mechanical work performed by a force �F
as its point of application moves along a path from position 1 to position 2 is
defined as

W =
2∫

1

�F · d�r (2.37)

where

d�r = dx�i + dy �j + dz�k (2.38)

is a differential vector along the path of motion. In Cartesian coordinates, work
is given by

W =
x2∫

x1

Fx dx +
y2∫

y1

Fy dy +
z2∫

z1

Fz dz (2.39)

where Fx , Fy , and Fz are the Cartesian components of the force vector.
For linearly elastic deformations, deflection is directly proportional to ap-

plied force as, for example, depicted in Figure 2.8 for a linear spring. The slope
of the force-deflection line is the spring constant such that F = k�. Therefore,
the work required to deform such a spring by an arbitrary amount �0 from its
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Fo
rc

e,
F

Deflection, �

1
k

Figure 2.8 Force-deflection
relation for a linear elastic
spring.

free length is

W =
�0∫

0

F d� =
�0∫

0

k� d� = 1

2
k�2

0 = Ue (2.40)

and we observe that the work and resulting elastic potential energy are quadratic
functions of displacement and have the units of force-length. This is a general
result for linearly elastic systems, as will be seen in many examples throughout
this text.

Utilizing Equation 2.28, the strain energy for an axially loaded elastic bar
fixed at one end can immediately be written as

Ue = 1

2
k�2 = 1

2

AE

L
�2 (2.41)

However, for a more general purpose, this result is converted to a different form
(applicable to a bar element only) as follows:

Ue = 1

2
k�2 = 1

2

AE

L

(
PL

AE

)2

= 1

2

(
P

A

)(
P

AE

)
AL = 1

2
�εV (2.42)

where V is the total volume of deformed material and the quantity 1
2 �ε is strain

energy per unit volume, also known as strain energy density. In Equation 2.42,
stress and strain values are those corresponding to the final value of applied
force. The factor 1

2 arises from the linear relation between stress and strain as the
load is applied from zero to the final value P. In general, for uniaxial loading, the
strain energy per unit volume ue is defined by

ue =
ε∫

0

� dε (2.43)

which is extended to more general states of stress in subsequent chapters. We note
that Equation 2.43 represents the area under the elastic stress-strain diagram.
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Presently, we will use the work-strain energy relation to obtain the govern-
ing equations for the bar element using the following theorem.

Castigliano’s First Theorem [1]

For an elastic system in equilibrium, the partial derivative of total strain energy
with respect to deflection at a point is equal to the applied force in the direction
of the deflection at that point.

Consider an elastic body subjected to N forces Fj for which the total strain
energy is expressed as

Ue = W =
N∑

j=1

�j∫
0

Fj d�j (2.44)

where �j is the deflection at the point of application of force Fj in the direction of
the line of action of the force. If all points of load application are fixed except
one, say, i, and that point is made to deflect an infinitesimal amount ��i by an
incremental infinitesimal force �Fi , the change in strain energy is

�Ue = �W = Fi��i +
��i∫
0

�Fi d�i (2.45)

where it is assumed that the original force Fi is constant during the infinitesimal
change. The integral term in Equation 2.45 involves the product of infinitesimal
quantities and can be neglected to obtain

�Ue

��i
= Fi (2.46)

which in the limit as ��i approaches zero becomes

∂U

∂�i
= Fi (2.47)

The first theorem of Castigliano is a powerful tool for finite element formu-
lation, as is now illustrated for the bar element. Combining Equations 2.30, 2.31,
and 2.43, total strain energy for the bar element is given by

Ue = 1

2
�x εx V = 1

2
E

(
u2 − u1

L

)2

AL (2.48)

Applying Castigliano’s theorem with respect to each displacement yields

∂Ue

∂u1
= AE

L
(u1 − u2) = f1 (2.49)

∂Ue

∂u2
= AE

L
(u2 − u1) = f2 (2.50)

which are observed to be identical to Equations 2.33 and 2.34.
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The first theorem of Castigliano is also applicable to rotational displace-
ments. In the case of rotation, the partial derivative of strain energy with respect
to a rotational displacement is equal to the moment/torque applied at the point of
concern in the sense of the rotation. The following example illustrates the appli-
cation in terms of a simple torsional member.

A solid circular shaft of radius R and length L is subjected to constant torque T. The shaft
is fixed at one end, as shown in Figure 2.9. Formulate the elastic strain energy in terms of
the angle of twist � at x = L and show that Castigliano’s first theorem gives the correct
expression for the applied torque.

■ Solution
From strength of materials theory, the shear stress at any cross section along the length of
the member is given by

� = Tr

J
where r is radial distance from the axis of the member and J is polar moment of inertia of
the cross section. For elastic behavior, we have

� = �

G
= Tr

JG

where G is the shear modulus of the material, and the strain energy is then

Ue = 1

2

∫
V

�� dV = 1

2

L∫
0


∫

A

(
Tr

J

)(
Tr

JG

)
dA


dx

= T 2

2J 2G

L∫
0

∫
A

r2 dA dx = T 2 L

2JG

where we have used the definition of the polar moment of inertia

J =
∫

A

r 2 d A

L T

R

Figure 2.9 Example 2.5:
Circular cylinder subjected to
torsion.

EXAMPLE 2.5
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Again invoking the strength of materials results, the angle of twist at the end of the mem-
ber is known to be

� = TL

JG

so the strain energy can be written as

Ue = 1

2

L

JG

(
JG�

L

)2

= JG

2L
�2

Per Castangliano’s first theorem,

∂Ue

∂�
= T = JG�

L

which is exactly the relation shown by strength of materials theory. The reader may think
that we used circular reasoning in this example, since we utilized many previously known
results. However, the formulation of strain energy must be based on known stress and
strain relationships, and the application of Castigliano’s theorem is, indeed, a different
concept.

For linearly elastic systems, formulation of the strain energy function in
terms of displacements is relatively straightforward. As stated previously, the
strain energy for an elastic system is a quadratic function of displacements. The
quadratic nature is simplistically explained by the facts that, in elastic deforma-
tion, stress is proportional to force (or moment or torque), stress is proportional
to strain, and strain is proportional to displacement (or rotation). And, since the
elastic strain energy is equal to the mechanical work expended, a quadratic func-
tion results. Therefore, application of Castigliano’s first theorem results in linear
algebraic equations that relate displacements to applied forces. This statement
follows from the fact that a derivative of a quadratic term is linear. The coeffi-
cients of the displacements in the resulting equations are the components of the
stiffness matrix of the system for which the strain energy function is written.
Such an energy-based approach is the simplest, most-straightforward method for
establishing the stiffness matrix of many structural finite elements.

(a) Apply Castigliano’s first theorem to the system of four spring elements depicted in
Figure 2.10 to obtain the system stiffness matrix. The vertical members at nodes 2
and 3 are to be considered rigid.

(b) Solve for the displacements and the reaction force at node 1 if 

k1 = 4 N/mm k2 = 6 N/mm k3 = 3 N/mm

F2 = − 30 N F3 = 0 F4 = 50 N

EXAMPLE 2.6
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F2 F4

k2

k2

k1 k31

2 3
4

Figure 2.10 Example 2.6: Four spring elements.

■ Solution
(a) The total strain energy of the system of four springs is expressed in terms of the

nodal displacements and spring constants as

Ue = 1

2
k1(U2 − U1)2 + 2

[
1

2
k2(U3 − U2)2

]
+ 1

2
k3(U4 − U3)2

Applying Castigliano’s theorem, using each nodal displacement in turn,

∂Ue

∂U1
= F1 = k1(U2 − U1)(−1) = k1(U1 − U2)

∂Ue

∂U2
= F2 = k1(U2 − U1) + 2k2(U3 − U2)(−1) = −k1U1 + (k1 + 2k2)U2 − 2k2U3

∂Ue

∂U3
= F3 = 2k2(U3 − U2) + k3(U4 − U3)(−1) = −2k2U2 + (2k2 + k3)U3 − k3U4

∂Ue

∂U4
= F4 = k3(U4 − U3) = −k3U3 + k3U4

which can be written in matrix form as




k1 −k1 0 0
−k1 k1 + 2k2 −2k2 0

0 −2k2 2k2 + k3 −k3

0 0 −k3 k3







U1

U2

U3

U4




=




F1

F2

F3

F4




and the system stiffness matrix is thus obtained via Castigliano’s theorem.
(b) Substituting the specified numerical values, the system equations become




4 −4 0 0
−4 16 −12 0
0 −12 15 −3
0 0 −3 3







0
U2

U3

U4




=




F1

−30
0
50




Eliminating the constraint equation, the active displacements are governed by

 16 −12 0

−12 15 −3
0 −3 3







U2

U3

U4


 =




−30
0
50




which we solve by manipulating the equations to convert the coefficient matrix (the
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stiffness matrix) to upper-triangular form; that is, all terms below the main
diagonal become zero.

Step 1. Multiply the first equation (row) by 12, multiply the second equation (row) by
16, add the two and replace the second equation with the resulting equation
to obtain


 16 −12 0

0 96 −48
0 −3 3







U2

U3

U4


 =




−30
−360

50




Step 2. Multiply the third equation by 32, add it to the second equation, and replace
the third equation with the result. This gives the triangularized form desired:


 16 −12 0

0 96 −48
0 0 48







U2

U3

U4


 =




−30
−360
1240




In this form, the equations can now be solved from the “bottom to the top,” and it will be
found that, at each step, there is only one unknown. In this case, the sequence is

U4 = 1240

48
= 25.83 mm

U3 = 1

96
[−360 + 48(25.83)] = 9.17 mm

U2 = 1

16
[−30 + 12(9.17)] = 5.0 mm

The reaction force at node 1 is obtained from the constraint equation

F1 = −4U2 = −4(5.0) = −20 N

and we observe system equilibrium since the external forces sum to zero as required.

2.5 MINIMUM POTENTIAL ENERGY
The first theorem of Castigliano is but a forerunner to the general principle of
minimum potential energy. There are many ways to state this principle, and it has
been proven rigorously [2]. Here, we state the principle without proof but expect
the reader to compare the results with the first theorem of Castigliano. The prin-
ciple of minimum potential energy is stated as follows:

Of all displacement states of a body or structure, subjected to external loading,
that satisfy the geometric boundary conditions (imposed displacements), the dis-
placement state that also satisfies the equilibrium equations is such that the total
potential energy is a minimum for stable equilibrium.
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We emphasize that the total potential energy must be considered in applica-
tion of this principle. The total potential energy includes the stored elastic poten-
tial energy (the strain energy) as well as the potential energy of applied loads. As
is customary, we use the symbol � for total potential energy and divide the total
potential energy into two parts, that portion associated with strain energy Ue and
the portion associated with external forces UF. The total potential energy is

� = Ue + UF (2.51)

where it is to be noted that the term external forces also includes moments and
torques.

In this text, we will deal only with elastic systems subjected to conservative
forces. A conservative force is defined as one that does mechanical work
independent of the path of motion and such that the work is reversible or recov-
erable. The most common example of a nonconservative force is the force of
sliding friction. As the friction force always acts to oppose motion, the work
done by friction forces is always negative and results in energy loss. This loss
shows itself physically as generated heat. On the other hand, the mechanical
work done by a conservative force, Equation 2.37, is reversed, and therefore
recovered, if the force is released. Therefore, the mechanical work of a conserv-
ative force is considered to be a loss in potential energy; that is,

UF = −W (2.52)

where W is the mechanical work defined by the scalar product integral of Equa-
tion 2.37. The total potential energy is then given by

� = Ue − W (2.53)

As we show in the following examples and applications to solid mechanics
in Chapter 9, the strain energy term Ue is a quadratic function of system dis-
placements and the work term W is a linear function of displacements. Rigor-
ously, the minimization of total potential energy is a problem in the calculus of
variations [5]. We do not suppose that the intended audience of this text is
familiar with the calculus of variations. Rather, we simply impose the minimiza-
tion principle of calculus of multiple variable functions. If we have a total poten-
tial energy expression that is a function of, say, N displacements Ui , i = 1, . . . , N;
that is,

� = �(U1, U2, . . . , UN ) (2.54)

then the total potential energy will be minimized if 

∂�

∂Ui
= 0 i = 1, . . . , N (2.55)

Equation 2.55 will be shown to represent N algebraic equations, which form the
finite element approximation to the solution of the differential equation(s) gov-
erning the response of a structural system.
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Repeat the solution to Example 2.6 using the principle of minimum potential energy.

■ Solution
Per the previous example solution, the elastic strain energy is

Ue = 1

2
k1(U2 − U1)2 + 2

[
1

2
k2(U3 − U2)2

]
+ 1

2
k3(U4 − U3)2

and the potential energy of applied forces is

UF = −W = −F1U1 − F2U2 − F3U3 − F4U4

Hence, the total potential energy is expressed as

� = 1

2
k1(U2 − U1)2 + 2

[
1

2
k2(U3 − U2)2

]

+ 1

2
k3(U4 − U3)2 − F1U1 − F2U2 − F3U3 − F4U4

In this example, the principle of minimum potential energy requires that

∂�

∂Ui
= 0 i = 1, 4

giving in sequence i = 1, 4, the algebraic equations

∂�

∂U1
= k1(U2 − U1)(−1) − F1 = k1(U1 − U2) − F1 = 0

∂�

∂U2
= k1(U2 − U1) + 2k2(U3 − U2)(−1) − F2

= −k1U1 + (k1 + 2k2)U2 − 2k2U3 − F2 = 0

∂�

∂U3
= 2k2(U3 − U2) + k3(U4 − U3)(−1) − F3

= −2k2U2 + (2k2 + k3)U3 − k3U4 − F3 = 0

∂�

∂U4
= k3(U4 − U3) − F4 = −k3U3 + k3U4 − F4 = 0

which, when written in matrix form, are



k1 −k1 0 0
−k1 k1 + 2k2 −2k2 0

0 −2k2 2k2 + k3 −k3

0 0 −k3 k3







U1

U2

U3

U4




=




F1

F2

F3

F4




and can be seen to be identical to the previous result. Consequently, we do not resolve the
system numerically, as the results are known.

EXAMPLE 2.7



Hutton: Fundamentals of 
Finite Element Analysis

2. Stiffness Matrices, 
Spring and Bar Elements

Text © The McGraw−Hill 
Companies, 2004

References 47

We now reexamine the energy equation of the Example 2.7 to develop a more-
general form, which will be of significant value in more complicated systems to
be discussed in later chapters. The system or global displacement vector is

{U} =




U1

U2

U3

U4


 (2.56)

and, as derived, the global stiffness matrix is 

[K ] =




k1 −k1 0 0
−k1 k1 + 2k2 −2k2 0

0 −2k2 2k2 + k3 −k3

0 0 −k3 k3


 (2.57)

If we form the matrix triple product

1

2
{U }T [K ]{U } = 1

2
[ U1 U2 U3 U4 ]

×




k1 −k1 0 0
−k1 k1 + 2k2 −2k2 0

0 −2k2 2k2 + k3 −k3

0 0 −k3 k3







U1

U2

U3

U4


 (2.58)

and carry out the matrix operations, we find that the expression is identical to the
strain energy of the system. As will be shown, the matrix triple product of Equa-
tion 2.58 represents the strain energy of any elastic system. If the strain energy
can be expressed in the form of this triple product, the stiffness matrix will have
been obtained, since the displacements are readily identifiable.

2.6 SUMMARY
Two linear mechanical elements, the idealized elastic spring and an elastic tension-
compression member (bar) have been used to introduce the basic concepts involved in
formulating the equations governing a finite element. The element equations are obtained
by both a straightforward equilibrium approach and a strain energy method using the first
theorem of Castigliano. The principle of minimum potential also is introduced. The next
chapter shows how the one-dimensional bar element can be used to demonstrate the finite
element model assembly procedures in the context of some simple two- and three-
dimensional structures.

REFERENCES
1. Budynas, R. Advanced Strength and Applied Stress Analysis. 2d ed. New York:

McGraw-Hill, 1998.
2. Love, A. E. H. A Treatise on the Mathematical Theory of Elasticity. New York:

Dover Publications, 1944.



Hutton: Fundamentals of 
Finite Element Analysis

2. Stiffness Matrices, 
Spring and Bar Elements

Text © The McGraw−Hill 
Companies, 2004

48 CHAPTER 2 Stiffness Matrices, Spring and Bar Elements

3. Beer, F. P., E. R. Johnston, and J. T. DeWolf. Mechanics of Materials. 3d ed.
New York: McGraw-Hill, 2002.

4. Shigley, J., and R. Mischke. Mechanical Engineering Design. New York:
McGraw-Hill, 2001.

5. Forray, M. J. Variational Calculus in Science and Engineering. New York:
McGraw-Hill, 1968.

PROBLEMS
2.1–2.3 For each assembly of springs shown in the accompanying figures

(Figures P2.1–P2.3), determine the global stiffness matrix using the system
assembly procedure of Section 2.2.

Figure P2.1

Figure P2.2

Figure P2.3

2.4 For the spring assembly of Figure P2.4, determine force F3 required to displace
node 2 an amount � = 0.75 in. to the right. Also compute displacement of
node 3. Given

k1 = 50 lb./in. and k2 = 25 lb./in.

Figure P2.4

2.5 In the spring assembly of Figure P2.5, forces F2 and F4 are to be applied such
that the resultant force in element 2 is zero and node 4 displaces an amount

F3

k1 k2

1 2 3

�

k1 k2 k3

1 2 4
…

3

kN�2 kN�1

N � 1 N

k3

k3

k1 k2

1 2 3
4

k1 k2 k3

1 2 43
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� = 1 in. Determine (a) the required values of forces F2 and F4, (b) displacement
of node 2, and (c) the reaction force at node 1.

Figure P2.5

2.6 Verify the global stiffness matrix of Example 2.3 using (a) direct assembly and
(b) Castigliano’s first theorem.

2.7 Two trolleys are connected by the arrangement of springs shown in Figure P2.7.
(a) Determine the complete set of equilibrium equations for the system in the
form [K ]{U } = {F }. (b) If k = 50 lb./in., F1 = 20 lb., and F2 = 15 lb., compute
the displacement of each trolley and the force in each spring.

Figure P2.7

2.8 Use Castigliano’s first theorem to obtain the matrix equilibrium equations for the
system of springs shown in Figure P2.8.

Figure P2.8

2.9 In Problem 2.8, let k1 = k2 = k3 = k4 = 10 N/mm, F2 = 20 N, F3 = 25 N,
F4 = 40 N and solve for (a) the nodal displacements, (b) the reaction forces at
nodes 1 and 5, and (c) the force in each spring.

2.10 A steel rod subjected to compression is modeled by two bar elements, as shown
in Figure P2.10. Determine the nodal displacements and the axial stress in each
element. What other concerns should be examined?

Figure P2.10

1 2 3

12 kN
0.5 m 0.5 m

E � 207 GPa        A � 500 mm2

k1 k2
1 2 3 k3

4 k4
5

F2 F3 F4

F2

F1

k
2k

2k

k

k1 � k3 � 30 lb./in. k2 � 40 lb./in.

F4

k1 k2

1 2 3

k3

4

F2 �
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2.11 Figure P2.11 depicts an assembly of two bar elements made of different
materials. Determine the nodal displacements, element stresses, and the
reaction force.

Figure P2.11

2.12 Obtain a four-element solution for the tapered bar of Example 2.4. Plot element
stresses versus the exact solution. Use the following numerical values:

E = 10 × 106 lb./in.2 A0 = 4 in.2 L = 20 in. P = 4000 lb.

2.13 A weight W is suspended in a vertical plane by a linear spring having spring
constant k. Show that the equilibrium position corresponds to minimum total
potential energy.

2.14 For a bar element, it is proposed to discretize the displacement function as

u(x ) = N1(x )u1 + N2(x )u2

with interpolation functions

N1(x ) = cos
	x

2L

N2(x ) = sin
	x

2L

Are these valid interpolation functions? (Hint: Consider strain and stress
variations.)

2.15 The torsional element shown in Figure P2.15 has a solid circular cross section
and behaves elastically. The nodal displacements are rotations �1 and �2 and the
associated nodal loads are applied torques T1 and T2. Use the potential energy
principle to derive the element equations in matrix form.

Figure P2.15

�2, T2

�1, T1

L

R

A1 � 4 in.2

E1 � 15 
 106 lb./in.2

L1 � 20 in.

A2 � 2.25 in.2

E2 � 10 
 106 lb./in.2

L2 � 20 in.

1 2
3

20,000 lb.

A1, E1, L1 A2, E2, L2


