
© 2013, Trading Blox, LLC. All rights reserved.

Trading Blox Builder's
Guide

www.forex-warex.com

Trading Blox Builder's Guide
By Traders... For Traders

Trading Software for Mechanical Systems Traders

© 2013, Trading Blox, LLC. All rights reserved.

This user's guide and all it's contents are copyright
2003-2013, Trading Blox LLC

Trading Blox LLC
www.tradingblox.com
508 SE Osceola St
Stuart, FL 34996
978-222-3111

www.forex-warex.com

IContents

I

© 2013, Trading Blox, LLC. All rights reserved.

Table of Contents

Foreword 0

Part I Getting Started Tutorial 2

... 31 What Are Blox?

... 42 Creating a New System

.. 61. New System Blox

.. 102. Adding Parameters

.. 143. Adding Indicator

.. 174. Entering Code

.. 195. Building A System

.. 236. Creating A Suite

... 253 Improving a New System

.. 26Protective Position Pricing

.. 29Copy System Items

.. 37Protective Exit Orders

.. 44Entry Order Protection

.. 48Active Order Protection

.. 52Order Sizing

.. 58Trading Risk

.. 62Money Management

Part II Trading Blox Architecture 65

... 691 Working with Systems, Blox & Scripts

.. 69Working with Systems

.. 72Working with Blox

.. 75Working with Scripts

... 78Basic Scripts

... 792 Process Flow

... 803 Simulation Loop

... 814 Comprehensive Simulation Loop

Part III Blox Module Reference 86

... 871 Blox Types

.. 88Portfolio Manager

.. 89Entry

.. 90Exit

.. 91Money Manager

.. 92Risk Manager

.. 93Auxiliary

... 942 Blox Script Access

... 963 Blox Script Timing

... 984 Global Script Timing

... 1015 Script Section Type Details

... 1036 Scripts Common to Many Blox

www.forex-warex.com

Андрей
tr-software-download

Trading Blox Builder's GuideII

© 2013, Trading Blox, LLC. All rights reserved.

... 1047 Script Section Descriptions

.. 106Before Simulation

.. 107Before Test

.. 108Rank Instruments

.. 109Filter Portfolio

.. 110Before Trading Day

.. 111Before Instrument Day

.. 112Before Bar

.. 113Exit Orders

.. 114Entry Orders

.. 115Unit Size

.. 116Can Add Unit

.. 117Before Order Execution

.. 118Update Indicators

.. 119Can Fill Order

.. 120Exit Order Filled

.. 121Entry Order Filled

.. 122After Instrument Open

.. 123After Bar

.. 124Adjust Stops

.. 125Initialize Risk Management

.. 126Compute Instrument Risk

.. 127Compute Risk Adjustment

.. 128Adjust Instrument Risk

.. 130After Instrument Day

.. 131After Trading Day

.. 132After Test

.. 133After Simulation

Part IV Blox Basic Language Reference 135

... 1361 Basic Keywords

... 1372 Colors

... 1423 Constants Reference

... 1444 Data Groups and Types

.. 147Boolean

.. 149Floating

.. 149Instrument - BPV

.. 152Integer

.. 152Money

.. 153Percent

.. 155Price

.. 155Selector

.. 157Series

... 158Numeric Series

... 160String Series

.. 161String

... 1635 Data Scope Reference

... 1656 Data Script Comments

... 1667 Data Variable Names

... 1688 Data Variables

www.forex-warex.com

Андрей
tr-software-download

IIIContents

III

© 2013, Trading Blox, LLC. All rights reserved.

... 1719 FunctionReference

.. 171Custom Functions

... 172Custom User Functions

.. 176Date Time Functions

... 176ChartTime

... 179DateToJulian

... 180DayMonthYearToDate

... 181DayOfMonth

... 182DayOfWeek

... 183DayOfWeekName

... 184DaysInMonth

... 185Hour

... 186JulianToDate

... 187Minute

... 188Month

... 189MonthName

... 190SystemDate

... 191SystemTime

... 192TimeDiff

... 193WeekNumberISO

... 195Year

.. 196File & Disk Functions

... 197ClearLogWindow

... 198CloseLogWindow

... 198CopyFile

... 199CreateDirectory

... 199DeleteFile

... 200EditFile

... 200Extract

... 200FileExists

... 201FileSize

... 201MoveFile

... 201OpenFile

... 202OpenFileDialog

... 203OpenLogWindow

... 203SaveFileDialog

.. 205General

... 206BuildDividendFiles

... 207ColorRGB

... 211FileVersion

... 212FileVersionNumerical

... 212GetRegistryKey

... 214LicenseName

... 216LineNumber

... 217Message Box

... 221PlaySound

... 223Preference Items

... 224ProductVersion

... 225ProductVersionNumerical

... 225SetRegistryKey

.. 227Mathematical Functions

... 228AbsoluteValue

... 230ArcCosine

... 230ArcSine

www.forex-warex.com

Андрей
tr-software-download

Trading Blox Builder's GuideIV

© 2013, Trading Blox, LLC. All rights reserved.

... 231ArcTangent

... 231ArcTangentXY

... 231Average

... 232CAGR

... 233Ceiling

... 234Correlation

... 234CorrelationLog

... 235Cosine

... 235DegreesToRadians

... 236EMA

... 237Exponent

... 238Floor

... 239Hypotenuse

... 239IfThenElse

... 240IsUndefined

... 241Log

... 241Max

... 241Min

... 242RadiansToDegrees

... 242Random

... 243RandomDouble

... 243RandomSeed

... 244Round

... 245Sign

... 247Sine

... 247Square Root

... 247StandardDeviation

... 248StandardDeviationLog

... 248SumValues

... 249Tangent

.. 250String Functions

... 252ASCII

... 253ASCIIToCharacters

... 254FindString

... 255FormatString

... 261GetField

... 262GetFieldCount

... 263GetFieldNumber

... 264LowerCase

... 265LeftCharacters

... 266MiddleCharacters

... 267RemoveCommasBetweenQuotes

... 269RemoveNonDigits

... 270ReplaceString

... 271RightCharacters

... 272StringLength

... 273TrimLeftSpaces

... 274TrimRightSpaces

... 275TrimSpaces

... 276UpperCase

.. 277Type Conversion Functions

... 278AsFloating

... 279AsInteger

... 280AsSeries

www.forex-warex.com

Андрей
tr-software-download

Андрей
tr-software-download

VContents

V

© 2013, Trading Blox, LLC. All rights reserved.

... 281AsString

... 283IsFloating

... 284IsInteger

... 285IsString

... 28610 Indicator Reference

.. 286Basic Indicators

.. 289Creating Indicators

.. 292Calculated Indicators

.. 294Custom Indicators

.. 295Indicator Access

... 29711 Indicator Pack 1

.. 298Indicator Pack 1 Indicators

... 301Average Trend Channel

... 303Chaiken Money Flow

... 307Commodity Channel Index

... 310Kaufman Adaptive Moving Average

... 314Keltner Channel

... 319Trend Vigor

.. 321Indicator Pack 1 Series Functions

... 322EhlersZeroLagEma

... 324InstantaneousTrendLine

... 324MarketNoise

... 326MedianAbsoluteDeviation

... 328Momentum

... 330MRO

... 332Percentile

... 333PercentRank

... 335RateOfChange

... 337SpearmanCorrelation

... 338SpearmanCorrelationSync

... 339SpearmanLogCorrelation

... 340SpearmanLogCorrelationSync

... 341WMA - Weighted M-Avg.

... 343Z-Score

... 345ValueChart

... 34712 Operator Reference

.. 348Comparison

... 34913 Permanent Variables

.. 349Data Parameter Reference

.. 351Block Permanent Variables

.. 353Instrument Permanent Variables

... 35714 Series Functions

.. 358Average

.. 359Correlation

.. 360CorrelationLog

.. 362CorrelationLogSynch

.. 363CorrelationSynch

.. 363CrossOver

.. 365Data Series Indexing

.. 367GetReference

.. 368GetSeriesSize

.. 368Highest

www.forex-warex.com

Андрей
tr-software-download

Trading Blox Builder's GuideVI

© 2013, Trading Blox, LLC. All rights reserved.

.. 369HighestBar

.. 370Lowest

.. 371LowestBar

.. 372Median

.. 372RegressionEnd

.. 373RegressionSlope

.. 375RegressionValue

.. 375RSI

.. 376SetSeriesColorStyle

.. 381SetSeriesSize

.. 382SetSeriesValues

.. 385SortSeries

.. 387SortSeriesDual

.. 388StandardDeviation

.. 389StandardDeviationLog

.. 390Sum

.. 390SwingHigh

.. 391SwingHighBars

.. 392SwingLow

.. 393SwingLowBars

... 39515 Statement Reference

.. 396Assignment

.. 397DO

.. 399ERROR

.. 400FOR

.. 402IF

.. 404PRINT

.. 405WHILE

... 40616 Trouble Shooting Script Problems

.. 407Debugger

.. 409Auto-Keyword Changes

Part V Trading Objects Reference 413

... 4141 Alternate Objects

.. 415AlternateBroker Object

.. 416AlternateOrder Object

.. 417AlternateSystem Object

... 4182 Block

.. 420Group

.. 421Name

.. 422ScriptName

.. 423System

.. 424SystemIndex

... 4253 Broker

.. 429Entry Order Functions

... 431EnterLongOnOpen

... 432EnterShortOnOpen

... 433EnterLongOnStopOpen

... 434EnterLongAtLimitOpen

... 435EnterShortOnStopOpen

... 437EnterShortAtLimitOpen

... 439EnterLongOnStop

www.forex-warex.com

Андрей
tr-software-download

VIIContents

VII

© 2013, Trading Blox, LLC. All rights reserved.

... 440EnterShortOnStop

... 441EnterLongAtLimit

... 442EnterShortAtLimit

... 443EnterLongOnClose

... 444EnterShortOnClose

... 446EnterLongOnStopClose

... 447EnterShortOnStopClose

... 448EnterLongAtLimitClose

... 449EnterShortAtLimitClose

.. 450Exit Order Functions

... 452ExitAllUnitsOnOpen

... 453ExitUnitOnOpen

... 454ExitAllUnitsOnStopOpen

... 455ExitAllUnitsAtLimitOpen

... 456ExitUnitOnStopOpen

... 457ExitUnitAtLimitOpen

... 458ExitAllUnitsOnStop

... 459ExitUnitOnStop

... 460ExitAllUnitsAtLimit

... 461ExitUnitAtLimit

... 462ExitAllUnitsOnClose

... 463ExitUnitOnClose

... 464ExitAllUnitsOnStopClose

... 465ExitUnitOnStopClose

... 466ExitAllUnitsAtLimitClose

... 467ExitUnitAtLimitClose

.. 468Position Adjustment Functions

... 468AdjustPositionOnClose

... 469AdjustPositionOnOpen

... 470AdjustPositionOnStop

... 471AdjustPositionAtLimit

... 4724 Chart

.. 479AddBarLayer

.. 482AddBarSeries

.. 484AddContourLayer

.. 487AddLineLayer

.. 489AddLineSeries

.. 493AddScatter

.. 495Make

.. 497NewPie

.. 500NewXY

.. 502SetAxisTitle

.. 505SetBarGapShape

.. 509SetPlotArea

.. 512SetxAxisDates

.. 514SetxAxisLabels

... 5175 Email Manager

.. 518Email Connect

.. 519EmailConnectSSL

.. 521Email Send

.. 522EmailSendHTML

.. 524EmailDisconnect

... 5256 File Manager

www.forex-warex.com

Trading Blox Builder's GuideVIII

© 2013, Trading Blox, LLC. All rights reserved.

.. 528Close

.. 529CountLines

.. 530DefaultFolder

.. 531EndOfFile

.. 532OpenAppend

.. 533OpenRead

.. 535OpenWrite

.. 537PartialLine

.. 538ReadLine

.. 540WriteLine

.. 542WriteString

... 5447 Instrument

.. 548Data Properties

.. 553DataFunctions

... 553AddCommission

... 554Extract

... 554GetDateTimeIndex

... 555GetDayIndex

... 556PriceFormat

... 556RealPrice

... 557RoundTick

... 557RoundTickDown

... 557RoundTickUp

.. 558Correlation Functions

... 558ResetCloselyCorrelated

... 558ResetLooselyCorrelated

... 559AddCloselyCorrelated

... 559AddLooselyCorrelated

.. 560Correlation Properties

.. 562Group Properties

.. 564Historical Trade Properties

.. 566Instrument Loading

... 567LoadSymbol

... 569LoadByLongRank

... 570LoadByShortRank

... 570LoadExternalData

... 572LoadIPVFromFile

.. 575Position Functions

... 575SetUnitCustomValue

... 576SetExitStop

... 576SetExitLimit

.. 578Position Properties

.. 580Ranking Functions

... 581SetLongRankingValue

... 582SetShortRankingValue

.. 583Ranking Properties

.. 584Trade Control Properties

.. 585Trade Control Functions

... 586AllowLongTrades

... 587AllowShortTrades

... 588AllowAllTrades

... 589DenyLongTrades

... 590DenyShortTrades

... 591DenyAllTrades

www.forex-warex.com

Андрей
tr-software-download

IXContents

IX

© 2013, Trading Blox, LLC. All rights reserved.

... 5928 Order

.. 596OrderProperties

... 598blockName

... 599clearingIntent

... 600continueProcessing

... 601customValue

... 602entryRisk

... 603executionType

... 604fillPrice

... 605isBuy

... 606isEntry

... 607limitPrice

... 608noStopPrice

... 609orderPrice

... 610orderReportMessage

... 611orderType

... 612position

... 613quantity

... 614referenceID

... 615ruleLabel

... 616sortValue

... 617stopPrice

... 618symbol

... 619systemBlockName

... 620timeInForce

... 621unitNumber

.. 622OrderFunctions

... 623Reject

... 625SetClearingIntent

... 626SetCustomValue

... 628SetFillPrice

... 629SetLimitPrice

... 630SetOrderReportMessage

... 632SetQuantity

... 634SetRuleLabel

... 636SetSortValue

... 640SetStopPrice

... 642SetTimeInForce

... 6439 Script

.. 650Script Functions

... 651Execute

... 652GetSeriesValue

... 653SetReturnValue

... 654SetReturnValueList

.. 655Script Properties

... 656ParameterCount

... 657ParameterList

... 658ReturnValue

... 659ReturnValueList

... 660SeriesParameterCount

... 661StringParameterCount

... 662StringParameterList

... 663StringReturnValue

www.forex-warex.com

Trading Blox Builder's GuideX

© 2013, Trading Blox, LLC. All rights reserved.

... 66410 System

.. 665Global Suite System

.. 667System Functions

... 668Accessing System Portfolio Instruments

... 671RankInstruments

... 672SetAccountNumber

... 673SetAlternateOrder

.. 673System Properties

... 675orderExists

... 67711 Test

.. 678Equity Properties

.. 680General Properties

... 683OrderReportPath

... 685ResultsReportPath

... 687SummaryResultsPath

.. 688Test String Arrays

.. 689Miscellaneous Functions

... 691AbortSimulation

... 692AbortTest

... 693AddStatistic

... 695CapitalAddsDraws

... 696GetSteppedParameter

... 698SetAlternateSystem

... 700SetAutoPriming

... 701SetChartSimulationHtml

... 704SetChartTestHtml

... 707SetGeneratingOrders

... 708SetSilentTestRun

... 709UpdateOtherExpenses

.. 710Test Statistics

.. 713Trade Properties

Part VI Common Questions 717

... 7181 The Life of a Test

... 7192 How Stops Work

... 7213 Shortcut Keys

Index 723

www.forex-warex.com

Getting Started Tutorial

Part

I

www.forex-warex.com

Trading Blox Builder's Guide2

© 2013, Trading Blox, LLC. All rights reserved.

Part 1 – Getting Started Tutorial

Trading Blox Builder Guide
Program Version: 4.3.0
Help Version: Thursday, December 19, 2013

was created by Ole Kirk Christiansen, in Billund, Denmark as the name of his company’s small plastic
toy blocks. Lego blocks assembled together can create small buildings, or other imagined toys .

In order to understand the philosophy of Trading Blox Builder you need to go back to the days of your

allowed kids to create and assemble their own toys by connecting together parts called Lego Blocks.
A child using Lego Blocks could build their own toys very quickly.

Trading Blox Builder has the same goal for slightly older kids; kids like us who like to trade.

Trading Blox Builder enables you to create complete trading systems, even very sophisticated trading
systems, using basic building blocks we call Blox. With these Blox you can assemble a complete
trading system very quickly just like kids can build their own toys with Lego Blocks.

We didn't stop there. We didn't just want to make it easier to develop systems with Blox, we also
wanted to make it possible to test ideas, which you cannot test in most other environments. For this
reason, we modeled the real world as closely as possible and the simulation test results that Trading
Blox Builder creates does not take shortcuts.

This approach might seem harder to those who are used to some other products that have taken a
simplified approach, but it should be easy for anyone who understands real trading because in real-
world trading you already understand what is required in the way Trading Blox works.

www.forex-warex.com

Part 1 – Getting Started Tutorial 3

© 2013, Trading Blox, LLC. All rights reserved.

Section 1 – What Are Blox?

Blox Modules

Blox are system modules that encapsulate trading ideas. Most of the Blox are self-contained parts of a
trading system designed to be connected with other Blox as a component part of a trading system
method. Some Blox can access data outside of their module, and outside of their system when their
scope settings are set for external access.

The basic components of a trading idea are:

Parameters - used by indicators to determine their specific computation result, for example: the
number of days in a moving average. Not all Blox require parameters when the numerical basis
for internal calculations is coded into the scripted code.

Indicators - used by the rules as indicators of market conditions, moving averages, RSI, ADX,
etc. Many indicators are available within the Indicator section of a Blox. Those not available in
that area can be created by entering the source code required for an indicator calculation result.

Rules - used to determine when to enter or exit; how much to buy or sell, or how much risk is too
much, buy on moving average crossover, what instruments to allow and other ideas. A rule can
be as simple as Buy If RSI > 55 etc.

By encapsulating trading ideas into a stand-alone Blox module, a package is created that can easily
be linked to one or more systems that need the trading idea contained within the Blox. Blox are trading
objects, and while these objects only need to be created once, they can be many times by other
systems to simplify the creation of different system methods.

The simplest system can be created with one, or more Blox modules that do at least three
things:

1) Enter Orders that define the System Entries.

2) Enter Orders for open positions that define the System Exits.

3) Define the Order Size for Each signal's Entry Order.

Trading Blox Builder will let you define this behavior using one block that performs all three functions,
or three separate Blox that each take care of one of a primary functions. You don't need to worry
about that right now. Just remember, Blox are like Lego blocks, they were designed to be connected to
other Blox to build a trading system.

See Also:

Blox Script Timing, Blox Script Access

www.forex-warex.com

Trading Blox Builder's Guide4

© 2013, Trading Blox, LLC. All rights reserved.

Section 2 – Creating a New System

Overview:
To get you started with general understanding of how a system can be constructed in Trading Blox
this topic and the sub-topics below this topic will provide steps you can follow in the creation of a
simple always in the market moving average crossover system.

All the details that follow in this part of our tutorial area and in the following tutorial section are only
intended to provide training for how to work with some of Trading Blox features. For understanding
of what are some of the important features and options that successful trading methods need, those
insights are best found by spending time examining and working with the provided trading systems,
and by spending time reading some of the topics in our Trader's Roundtable Forum.

Tutorial System Creation:
For our tutorial we will use a Crossover System based upon two Exponential Moving Averages
(EMA) using the MACD as an oscillating indicator to create Buy and Sell signal orders that go in
Long or Short position direction.

Crossover will be determined by using the Moving Average Convergence-Divergence (MACD)
indicator. This indicator is a process that uses two Moving Average calculation results to create
Convergence-Divergence (MACD) indicator. This indicator is one of the simplest and most
effective momentum indicators available. The MACD turns two trend-following indicators, moving
averages, into a momentum oscillator by subtracting the longer moving average from the shorter
moving average. As a result, the MACD offers trend indication and momentum direction. In
operation the MACD indicator values will move above and below zero as MACD value averages
converge, cross and diverge.

In our new system we will use the "standard" MACD calculation to determine the difference
between an instrument's 26-day and 12-day exponential moving averages. This is the formula that
is used in many popular technical analysis programs, and quoted in most technical analysis books
on the subject. Of the two moving averages that make up MACD, the 12-day EMA is the faster and
the 26-day EMA is the slower in responding to market changes. Only the Close prices of the
instrument are used to form the moving averages.

For our signal trigger we will generate a Buy signal to go Long when the MACD is positive, and a
Sell signal to go Short when the MACD is negative.

Tutorial Steps & Topics:

Lesson: Topic Description:

1 New System Blox

2 Adding Parameters

3 Adding Indicator

4 Entering Code

5 Building A System

6 Creating A Suite

Notes:

During our discussion we will to use the term Price Bar, and Bar to refer to any type price
record in a data file. For daily data a price bar is a trade record for that date. For intraday

www.forex-warex.com

http://www.tradingblox.com/forum/

Part 1 – Getting Started Tutorial 5

© 2013, Trading Blox, LLC. All rights reserved.

data a price bar is dependent upon the number of minutes, i.e. 5-min, 10-min, 60-min, etc., of
trade transactions contained as a series of data records for a specific date. An Intraday data
record can be any one of the multiple price records of data aligned to the same trade date.
However, each intraday price bar will have a unique time stamp so that the system can
distinguish each intraday bar regardless of the time it was created.

Weekly price bars contain the week's range of prices printed by the market during that
calendar week. Its prices reflect the Open price as the first market price reported and the
Close price is the last price reported. A weekly High price is the highest price and the Low
price is the lowest price reported during that same week. Monthly price bars for the same
timing logic, but use the calendar month as its timing basis.

Weeks in most markets contain the trading data for each trade day of the week. Most often that
means there are 5-trade days in a week, unless there is an exchange holiday or a day when
the exchange closed for other reasons. Trading Blox can build weekly data price bars from the
daily data file loaded when Trading Blox's Preferences dialog shows the Process Weekly Data
option in the Data Options section of the Data Folders and Option menu item is enabled.

Take a few minutes to understand how Trading Blox Basic uses its language operators by
reviewing the tables on this page: Operator Reference

Links:

Operator Reference

www.forex-warex.com

Trading Blox Builder's Guide6

© 2013, Trading Blox, LLC. All rights reserved.

2.1 1. New System Blox

To get started select the Edit menu on the main screen, and then use your mouse to click on the Blox
item on the drop down menu to select. You can optionally use the F4 key on your keyboard, but some
laptops require the Function-Key to use the F-Keys. Either way the Trading Blox Editor will appear:

Trading Blox -- Blox Edtor will appear and show the Group Listing and available Blox modules on the
left. In the center the selected Blox module's script sections will appear, and below the script sections
will be the listings of the Block Permanent Variables, Instrument Permanent Variables types, then the,
module's user parameters, and at the bottom the user created indicators:

Our next step is to create a new Blox module:

www.forex-warex.com

Part 1 – Getting Started Tutorial 7

© 2013, Trading Blox, LLC. All rights reserved.

When the mouse is released a new dialog will appear that will allow you to name the new Blox and to
also decide on what type of Blox your will be creating, and whether you want to add the common script
sections for this blox type included in the Blox automatically when it appears:

Name this new Block the "Tutorial Entry Exit Lesson 1" by typing in the blox name in the Name
field.
Next check to see if the Entry and Exit option is the selected item in the Block Type section of the
dialog. If Entry and Exit is not selected, select it now so the correct type of blox is created.
Our last step is the enable the option to "Include Default Scripts" so we won't have to manually add
them later.
When you've completed these steps press OK so the module will appear in the Default Group
Listing.

Note:
You could have changed the Group name to something other than Default Group. For example, you
could have named a new group to be "My Work". When a Group name is entered in the Group field
and it doesn't exist in the Group List, Trading Blox will automatically create the Group name and then
place the Blox module into that Group section.

We now have a new block in the list, and ready to begin adding rules. When we created this tutorial
block we elected to add all the common default scripts. When we review the list of scripts we find
there are 13 names in the our list:

www.forex-warex.com

Trading Blox Builder's Guide8

© 2013, Trading Blox, LLC. All rights reserved.

When we created our block, we enabled the Default Script option so the often used scripts in this type
of module would be added and shown for this tutorial. Had we not used that option and if we needed a
script section, it could have been easily added by right-clicking on any of the script names in the
script list section and then selecting the "Add" menu item:

When then "Add" menu item is selected another dialog will appear with a drop down listing where all
the scripts that are available in Trading Blox can be selected and added to the current module, should
the selected script not exists:

www.forex-warex.com

Part 1 – Getting Started Tutorial 9

© 2013, Trading Blox, LLC. All rights reserved.

Is is also possible to add a Custom Script section, but that is an advanced topic that will be explained
in the Custom Script Topic section. New Custom scripts can be called using the Script.Execute
function. In addition scripts can be copied from one bloc to another block using copy and paste.
They can be deleted from a block if they are not being used, and they moved up or down for visual
clarity by using the Alt-Up-Arrow and Alt-DownArrow key sequence.

This completes this topic with the information we need to move on to the step in this tutorial.

www.forex-warex.com

Андрей
tr-software-download

Trading Blox Builder's Guide10

© 2013, Trading Blox, LLC. All rights reserved.

2.2 2. Adding Parameters

Our next step will be to add user menu parameters and scripted rules to the Entry Orders script
section. Scripts put in the Entry Orders script are called for every bar record in every instrument
selected in the system's portfolio. Scripts placed in the Entry Order Filled script are only executed
when an Entry Order has been filled.

Exit Order scripts are only executed when an instrument has an active position. Exit Order Filled
script are only called when an Exit Order is filled. Understanding how script are only executed when
necessary will help you understand how important it is to place rules into the script section for the
purpose that each script section is used, and when it is executed.

User menu parameters are editing fields on the main screen where a selected system shows it
parameters. These parameters expose text fields where you will be able to change the values entered
to see how the block module changes alter the results of the system. In our simple Moving Average
Convergence Divergence system we will need two parameters where we can set the calculation
lengths for the MACD's short and long moving averages that will comprise the a MACD indicator.

To create our first parameter right click on the Parameter list item to bring up the Items menu, or use
the Items menu once the Parameters list item is selected. In this menu, select the New menu item to
create a new Parameter.

This same menu access process can be used for all items such as Block Permanent Variables (BPV),
Instrument Permanent Variables (IPV), Parameters, and Indicators. This brings up a New Parameter
dialog Window where new parameters can be added, or existing parameters can be edited.

www.forex-warex.com

Part 1 – Getting Started Tutorial 11

© 2013, Trading Blox, LLC. All rights reserved.

Parameter Dialog Details:
Name for Code: Our first parameter will use the name: shortMovingAverageBars for
the parameters code name. This name is what we will use when we want to refer to this
parameter in a script. Notice how the name is fairly descriptive. By using compound words
that are descriptive, the scripted code becomes self documenting making it easier to
understand what its intended purpose. In this name we are using the word "Bars" to refer to
an instrument's price record. For daily data a bar is one daily data record. For weekly
records, bar refers to one week record. Parameter code names cannot contain any
characters other than alphabetical letters, numbers and an underscore " _ " character, and
the name must begin with an alphabetical character.

Name for Humans: This is the name users of the block will see. Name can have spaces and
special characters, as it is for display purposes only. We normally indicate the unit of
measure so it is clear to the user the basis for the parameter. In this case we indicate (Bars)
so the user will understand the count will be individual data records. For example, a value of
10-bars, for daily data will tell the block to use 10 days or 10 daily records. A weekly data file
will use 10-weekly records, and an intraday data file will use 10-intraday records.

Parameter Type: We need to let the system know what type of input we are expecting. In
this case the input (Bars) will be an integer value. For other parameters we might want to
input floating point, percent, or other types.

Default Value: Value enter will be the default value. It is also the value displayed when the
Blox module is first added to a system. Once added to the system and left in place, the user
can change the value and the system's suite file will remember the last value the trader
entered. For our block we will use a short moving average length or 20 bars.

Scope: Defines whether this value will be available to just this block, to the system, or to the
whole testing range of information. For our purposes, we will use the default value of Block.

www.forex-warex.com

Trading Blox Builder's Guide12

© 2013, Trading Blox, LLC. All rights reserved.

Used for Lookback: Check this box only when you use this parameter to reference
historical values of indicators, or price series records. If this parameter is used as a
parameter in an Indicator you do not need to check this box.

Stepping Enabled: Value stepping is controlled by this option. When it is enabled, the value
in the parameter can be stepped in an optimization test. In the image pair below the
Stepping option is shown how it changes the user's main screen parameter option. When the
Stepping option is enabled in the parameter editing dialog, a "Step" option is available with
the parameter item. When it is not enabled, there isn't a "Step" option available and a
stepped optimization will not be possible until the parameter's setting is changed.

Stepping Priority: This is used to control the order in which the parameter are stepped.

With the above understanding, create the longMovingAverageBars parameter, using 40 as its
default value and use the same option selection we used for the first parameter.

Once you are finished, press OK. Using the same process, create a .

We now see our two parameters in our Parameter List and in the second image how they will appear
when they are connected to a system file and that system file is connected to a Suite on the main
screen.

When there is a"Step" option associated with a parameter it indicates that parameter can be used in a
series of value changes for each step. For example in this next image the Short Moving Average value
will be stepped through 6-values starting from a value of 5 to an ending value of 30:

www.forex-warex.com

Part 1 – Getting Started Tutorial 13

© 2013, Trading Blox, LLC. All rights reserved.

When this system is run through a simulation test it will execute the system through its entire data
range listed in the Start and End date period entered. When all the step values have been tested
Trading Blox will generate a Performance report showing the results of each stepped value. This
tutorial won't step the parameters, but more will be available in other sections of this Help file.

This completes this topic with the information we need to move on to the step in this tutorial.

www.forex-warex.com

Trading Blox Builder's Guide14

© 2013, Trading Blox, LLC. All rights reserved.

2.3 3. Adding Indicator

Now we need to create the MACD indicator on which our system will be based. Right click on the
Indicators Item and select New. This will bring up the New Indicator dialog box.

Name for Code: Similar to parameters, this is the name you will use to access the value of the
indicator from the scripting language. We will call our indicator "macdIndicator".

Type: Select "MACD - MA Convergence/Divergence".

Value: In this case we use the Close price of each bar record to calculate each moving average.
You can select other values from the drop-down list to see how it affects the performance of your
system when you are ready to expirement.

Short MA Bars: Select the parameter we setup to hold the short moving average calculation length,
which was shortMovingAverageBars

Long MA Bars: Select the parameter we setup to hold the long moving average period length, which
was longMovingAverageBars

Plots: Check this box so the indicator will be plotted on the graph just below the price chart display.
 Enter the graph area display name, and select a color if you want a different color for the indicator
line. Also check the "Display Value" option so you will be able to see the value of the indicator at
each price bar location. Indicator value will be displayed in the data window section on the right
side of the graph and it will change as you move you mouse cursor across the chart area.

Offset Plot by One Day: Leave this option unchecked. If our system were trading on stops or limits
and the indicator displayed over the price bars, this option would show the value at which the next

www.forex-warex.com

Part 1 – Getting Started Tutorial 15

© 2013, Trading Blox, LLC. All rights reserved.

price bar crossed the the indicator line.

When you are finished creating our indicator, press OK.

We are going to add one more indicator so the display of the MACD below the price chart area will
have a zero reference line displayed on the same MACD Indicator area. This new indicator will be
named "ZeroLine" and it will the same zero value across the entire graph area.

Use the typed notations on the Edit Indicator dialog to create the indicator and then press OK when
you are done.

MACD Indicator Graph Example:
With both indicators created, and once the rest of the tutorial is completed and you are ready to run a
test, the chart in this next image will display how both indicators will appear in a chart area:

www.forex-warex.com

Trading Blox Builder's Guide16

© 2013, Trading Blox, LLC. All rights reserved.

This completes this topic with the information we need to move on to the step in this tutorial.

www.forex-warex.com

Part 1 – Getting Started Tutorial 17

© 2013, Trading Blox, LLC. All rights reserved.

2.4 4. Entering Code

In this lesson we are going to create the scripting rules that will use this indicator to generate the
orders for Long and Short trades. Earlier we mentioned that the Entry Orders script section would
execute for each data record in an instrument's file. This is the perfect place to put our entry rule
script because we want each price record to be reviewed without failure to ensure we don't miss a
signal and create trade that is too late, or goes missing.

Note:

Take a few minutes to understan how Trading Blox Basic uses its language operations by
reviewing the tables on this page:
Operator Reference

To place our script rules click on the Entry Orders script listing the script window on the center-left
side of the editing area.

When the script section appears it will show a blank editing area. Click any place in the editing
area so that section has the keyboards focus.

To create an entry signal we have two parts. The IF statement that determines whether to place the
trade, and the BROKER statement which places the order. We want to say something like, "If the
MACD is goes positive then enter LONG on the open. If the MACD goes negative then enter short on
the open.

This next example show how the above would look if we just need to only provide that information in
Blox Basic:

Example:

IF macdIndicator > 0 THEN
 ' When the MACD is above 0,
 ' we enter LONG.
 broker.EnterLongOnOpen
ENDIF

If macdIndicator < 0 THEN
 ' When the MACD is below 0,
 ' so enter SHORT.
 broker.EnterShortOnOpen
ENDIF

Notice how the use of comments, colored green and preceded by an apostrophe character " ' "
help tp make understanding your code rules easier now, and especially later when time has faded
some of the details mentioned earlier.

When our code runs we don't want to continue adding units every day when the MACD is positive.
To avoid that condition from happening we need to add a little more conditional logic so the rules will
know that once we are established in a position, we won't be creating any additional positions in the
same direction until that direction changes and the MACD changes again. This mean we need to put
one more piece of logic that requires "If the MACD is positive AND we are not LONG already, THEN
Buy on the open".

www.forex-warex.com

Trading Blox Builder's Guide18

© 2013, Trading Blox, LLC. All rights reserved.

Enter the code in this next example exactly as it appears in this next section into the Entry Orders
script section:

Example (don't type this line):

If macdIndicator > 0 AND instrument.position <> LONG THEN
 ' Two conditions must be met - MACD above 0 and
 ' we are not LONG, Then we enter LONG.
 broker.EnterLongOnOpen
ENDIF

If macdIndicator < 0 AND instrument.position <> SHORT THEN
 ' Two conditions must be met - MACD below 0 and
 ' we are not SHORT, Then we enter SHORT.
 broker.EnterShortOnOpen
ENDIF

Example - End (don't type this line):

What is shown in this last example is all there is to our entry logic. our entry logic. When we view
what we've typed it should look like what is shown in this next image:

Our block module now has the MACD as an indicator installed along with the parameters needed to
control and we also have the rules needed to generate orders entered into the Entry Orders script
section.

This closes this lesson and we are ready to assemble the modules we will need to create a system.
Press the OK button so Trading Blox returns us back in the main screen.

Links:

Operator Reference

This completes this topic with the information we need to move on to the step in this tutorial.

www.forex-warex.com

Part 1 – Getting Started Tutorial 19

© 2013, Trading Blox, LLC. All rights reserved.

2.5 5. Building A System

A Trading Blox system is a group of selected Blox modules that are available in the System Editor's
module list. Each trader who builds their own system structure selects the specific modules they need
to achieve the system's intended goal.

To get started with building our first system we must enter into the System Editor by selecting
System menu item under the main screen's Edit menu, or by pressing F3.

All we need to do now is create and name a new System, and then include our Entry Exit Blox in a
System. When this System Editor dialog appears we will create a new system list and save it:

Click on the "New" button on the lower left side of the System Editor, and enter the name "Tutorial

www.forex-warex.com

Trading Blox Builder's Guide20

© 2013, Trading Blox, LLC. All rights reserved.

System" into the New System dialog, and then click the OK button:

We now have a new system list named "Tutorial System" where we can add our new Entry Exit Blox.

Look in the block list on the right side of the screen and scroll the list until you find the Entry Exit
blox and see the "Tutorial Entry Exit Block" we created in the earlier lesson sections. When you
find our tutorial block, right-click on it so that is will appear in the system section list area.

Next locate the "Basic Money Manager" provided with Trading Blox. Click on it and then right-click
the it so that is it also placed into the system listing:

Our System Editor static section list of selected module is shown in the center of the screen and
should look like this:

www.forex-warex.com

Part 1 – Getting Started Tutorial 21

© 2013, Trading Blox, LLC. All rights reserved.

If by chance it doesn't look like the above, remove what is wrong by right-clicking on the wrong
items, locate the items mentioned earlier in this section, and then right-click on them so they appear
as this center system list detail shows.

Building System Information:
Each system is created by first naming a new system structure that will be used to keep the
required modules grouped.

Selecting modules is made possible by locating the a module in the System Editor's Blox Listing,
and then adding it to a system by right-clicking on its name.

Removing a module is made possible by right clicking on the module the trader wishes to remove.

There can only be one instance of the following modules assigned to a system. When the Blox
type you want to use in a system already has a Blox name displayed in the center system listing
and for that Blox type it must be removed before you will be able to assign the Blox you want to use:

Portfolio Manager
Money Manager
Risk Manager

Once a system is assembled with selected modules it must be saved so it can be available.

When a system is first assigned to a Suite for testing, all the Blox modules will show the default

www.forex-warex.com

Trading Blox Builder's Guide22

© 2013, Trading Blox, LLC. All rights reserved.

parameters given to the module's parameter. These values can be changed, and once changed
the Suite structure will remember the new values until they are changed again.

Removing and adding another module will loose the previous module's edited parameter settings,
and the new module will be loaded and display its default value until you change them.

Entry and Exit, and Auxiliary module can have multiple modules of that type listed.

This completes this topic with the information we need to move on to the step in this tutorial.

www.forex-warex.com

Part 1 – Getting Started Tutorial 23

© 2013, Trading Blox, LLC. All rights reserved.

2.6 6. Creating A Suite

All simulation suites are created on this main menu screen.

To create a new Suite name to match our Tutorial Entry Exit System, click on the "New" button at
bottom of the Suite listing in the upper right-hand area of the main screen:

A new simulation "Suite Name" dialog window will appear. Remove the name shown, and enter
"Tutorial Entry Exit Suite" and then press the "OK" button:

We now have a Suite structure which we can use to attach our new "Tutorial System" module. To
assign a system module to a Suite it must be found and then its option selection box must be
enabled.

www.forex-warex.com

Trading Blox Builder's Guide24

© 2013, Trading Blox, LLC. All rights reserved.

To attach a system module be sure the new simulation suite item in the Suite list has the focus by
clicking on it.

In the lower-left area of the main screen there locate the "Tutorial System" item and then enable its
check-box so that it will be attached to the "Tutorial Entry Exit Suite" simulation suite:

Your main screen should look close to what is displayed at the top of this lesson where the main
screen is shown.

Notice how our default values show up.

We can press Run Test to see how our system works!

Try stepping through many different values and combination of values to find the optimal robust set
for this system.

You can change the portfolio that is used in the portfolio manager, create your own portfolios, and
change the global parameter by clicking on the Global Parameters Tab.

This completes our "Creating a New System" lesson stage.

www.forex-warex.com

Part 1 – Getting Started Tutorial 25

© 2013, Trading Blox, LLC. All rights reserved.

Section 3 – Improving a New System

In our previous "Create a New System" section we assembled a basic entry and exit system using the
MACD indicator to create a signal of when to use a Long-Entry or Short-Entry order.

All orders generated with our simple Tutorial System were sized using a fixed quantity size of 1-
contract. We used a fixed quantity order sizing process because we didn't have any risk information
without simple entry order methods. There was not any risk information because there are no
protective exit prices on which to base how much risk a single contract position will have without
knowing a reasonable unfavorable price move distance on which to estimate the position loss as a
percentage of account value.

In some cases this meant that some orders created a small amount of risk and account leverage, and
some orders created a larger amount of risk with a large leverage ratio. Leverage increases the utility
of the value of an account, but it can be the reason why the account is depleted quickly and a trading
strategy fails.

In this second section of the tutorial will will introduce protective position pricing order and how they
are placed and applied. We will also give an overview of how risk is view and adjusted along with an
explanation of the three primary order sizing modules included with Trading Blox. As the lessons
expand understanding we will create a method for measure price volatility and show how three
different ways to size an entry order. Adding stops to our new system is the goal of this second
section and it will proceed to show how to modify our new system so it can trade with less risk.

Tutorial Steps & Topics:

Lesson: Topic Description:

1 Protective Position Pricing

2 Copy System Items

3 Protective Exit Orders

4 Entry Order Protection

5 Active Order Protection

6 Order Sizing

7

Links:

Operator Reference

www.forex-warex.com

Trading Blox Builder's Guide26

© 2013, Trading Blox, LLC. All rights reserved.

3.1 Protective Position Pricing

Active positions are not required to have a protective price order entered into the market to be
successful. However, positions without a protective price often have larger point losses than would
have happened had the position been protected with an active protection order.

When we created the MACD Entry and Exit system in our first tutorial lessons, we didn't use any
protective price orders to control how much a failed position would loose. That decision was
intentional so we could keep the process of creating a simple trading system uncomplicated. In this
lesson we are going to add protective orders as part of our order process and use that initial protective
price as a maximum risk amount for each order.

Price Protection Methods:
Determining how to protect a position is best determined by the trader's perception of results from
using various protective price calculation methods. For example consider these ideas for calculating a
protective price value:

Money Amount Offset
Percentage Offset
Volatility Range Offset

Protective prices are best placed close enough to the current market prices to prevent unreasonable
losses, but they must also not be placed too near them so the normal range market's price oscillations
interferes with the positions opportunity for larger gains. When prices interfere with the trends normal
movement the protective price will prematurely terminate the position leaving the opportunity that
position might have provided.

Money Amount Offset:
Protective price is determined by establishing fixed monetary amount and using that value to discover
how many points to offset the price. In most cases this protection method is used with a fixed quantity
size of 1. When more than one contract or share is required the fixed amount can be the risk amount
of each contract, or it can be the total risk when the quantity is greater than 1.

Example:

Fixed quantity position of 1 Long position share for a symbol priced at
$100.00 the offset protective price will be determined multiplying
$1,500 by $0.01 to discover the protective point offset of $15.00 and a
protective price of $85.00.

For a fixed quantity of 2-shares of a $100 market Long position will
divide the $1,500 by 2 to get $750 protection amount for each share.
With $750 multiplied by $0.01 the protective offset amount will be
$7.50 subtracted from $100 to get the protective price of $92.50 for
the total position quantity.

Futures use a monetary basis determined by their contract size and have
Big-point value that is used to find the protective price. For example
a Crude Oil contract priced at $100 will use a Big-Point value of
$1,000. A monetary amount offset of $1,500 divided by $1,000
determines the a contract protection offset must be placed 1.50 points
in price change. This 1.50 point offset for a Long position priced at
$100 will place the protection amount at $98.50.

Percentage Offset:
Price percentage offsets are frequently used with equity type trades, and they are calculated by

www.forex-warex.com

Part 1 – Getting Started Tutorial 27

© 2013, Trading Blox, LLC. All rights reserved.

applying a percentage rate to the purchase price of the share. A percentage can be applied for
portions instead of the total position quantity by creating various protective price orders for some of
the quantity of shares in the trade.

Example:

A Long position of 1 symbol-share will exit the position when a 10%
drop in price is printed in the exchange. Using our $100.00 share we
get a $10.00 price offset with out 10% price drop rate to establish a
protective price of $90.00.

Volatility Range Offset:
Future contract trades often use a measurement of recent market volatility to determine likely price
range that a position might experience. An advantage in using a volatility measure is how it gets the
trader away from using their wallet size for making critical decision. Instead a volatility approach
allows the trader to get an estimate of the likely price range the market is experiencing at the time of
entry to estimate where a protective price can be established without it being in place that would cause
the trade to terminate with a loss from having the protection to close to the market's current price
range.

Volatility estimation used for initial price protection placement use a the most recent period of history
to get an estimate of the most recent price range. Recent period lengths are often a user available
parameter where the number of bars to observe can be adjusted by the trader. With a period length
the range of each price bar is then observed There are various methods available that calculate the
range of of each price bar and then average that information to get an estimate of price point
movement that can be used in helping the trader establish a protective price.

Along with a volatility estimation of price ranges and method for adjusting the volatility average is
needed so the size can be can be increased or reduced by the user. Adjust volatility size usually
needs a decimal number to create a offset estimate that will work for all the markets in the portfolio.

Trading Blox provides users with a built-in function known as the Average True Range calculation.
This concept was published by J.Welles Wilder Jr. in his book "New Concepts in Technical Trading
Systems" Chapter III, Volatility Index. Wilder's Volatility Index measures a price bar range from its
high price to low price, but it also includes the previous price bar's close price if including that price
into the range would increase the point value of the range. In that same chapter uses the index in an
averaging calculation to estimate the price volatility.

Our lesson plan to add protective exit orders will use Avg.True-Range calculation and we will show how
to add it to our tutorial system. For now know that when it is applied along with the parameters
required to control its calculation and adjust its volatility application in an entry section consider this
type of code will be added as this section makes progress:

Example:

www.forex-warex.com

Trading Blox Builder's Guide28

© 2013, Trading Blox, LLC. All rights reserved.

' Create a protective offset point protective point sizeL
stopWidth = ATR_AdjustRate * AverageTrueRange

' NOTE:
' ATR_AdjustRate = AvgTrueRange Entry Adjust Protect Rate

' In each entry order section for a Long and Short position
' the application of points changes:

' Create an initial LONG Position protective price
longStopPrice = (instrument.close - stopWidth)

' Create an initial SHORT Position protective price
shortStopPrice = (instrument.close + stopWidth)

Example above shows the price adjusting points to create a Long Position protective price below the
current market prices, and also for creating a Short Position protective price above the current market
prices.

This completes this topic.

www.forex-warex.com

Part 1 – Getting Started Tutorial 29

© 2013, Trading Blox, LLC. All rights reserved.

3.2 Copy System Items

Before we modify our new system we will make a copy of the blox so we have the original and a
modified version we can compare.

To make a copy of the module we will first start with making a copy of the first tutorial's Suite. This
process allows us to create an exact copy of the original tutorial suite Global Parameter Settings along
with the a link to the first tutorial's system list we used. We will also make a copy of the system list so
we have the same modules as the first tutorial, which will gives us the opportunity learn how to change
the modules used in the system list.

When all the original system system items have been copied and changes to what we need we will
then add a protective entry prices into our original Entry Orders section for Long and Short new
position orders. As that section is completed we will add a code to the Exit Orders section so the
original orders are allowed to be active throughout the life of the trades.

Making A Suite Copy:
Creating a copy of an existing suite is the easiest way to retain the Global Parameter Settings you
have established for a previous suite's simulation controls. In Trading Blox the "New" button acts will
copy the selected suite highlighted. It will also retain the system names selected.

Click on the suite name you created in our first tutorial section. If your suite name is different than
what we used, that isn't a problem because it will achieve the same result.

Suite Copy Steps

When the "New" button is clicked the suite simulation dialog window will open and it will automatically
add the number 2 at the rightmost side of the name displayed. We are going to use the name with the
#2 suffix and will click the OK button now.

www.forex-warex.com

Trading Blox Builder's Guide30

© 2013, Trading Blox, LLC. All rights reserved.

When the new suite name appears in the Suite listing section there will be two suites that will be show
the same Tutorial System name is selecting the same system. We are going to make a copy of the
original Tutorial System so we can make changes to the Tutorial's Entry and Exit Orders sections, but
in actual trading there is often a good reason for a more than one suite to select the same system. A
good reason to have two suites select the same system is based in the suite's ability to remember the
Global Parameter and System Parameter settings based upon those previously used in each of the
suite names. Suites are where the user settings that affect the systems operation are preserved until
they are changed. If a system selection is changed, the parameters for that system will be lost, but
can easily be entered again. Suite's portfolio selection will also be lost when a selected system is
removed.

In Trading Blox Main Suite menu provides a complete range of methods for working with new or
existing suites:

Making A Suite Copy:
Your copy of our first tutorial suite name should be highlighted. If it isn't click on it to see the selected
system.

www.forex-warex.com

Part 1 – Getting Started Tutorial 31

© 2013, Trading Blox, LLC. All rights reserved.

In the System selection list your first tutorial system will be selected. If you used a different system
name that won't matter as long as the name you used is selected:

Click on the "Edit System" button at the bottom of the System name selection list so the System Editor
dialog opens:

www.forex-warex.com

Trading Blox Builder's Guide32

© 2013, Trading Blox, LLC. All rights reserved.

Our first tutorial system name should be highlighted. If it isn't, select it now and then press the "Copy"
button so the system copy dialog appears. When a selected system is being copied the Copy System
dialog will append a number 2 to the selected system name. We are going to accept the add 2 to the
system name, and click the "OK" button.

When the copy system dialog closes the new system name will be listed in the System Name list.

www.forex-warex.com

Part 1 – Getting Started Tutorial 33

© 2013, Trading Blox, LLC. All rights reserved.

Our new system list will need changes that we don't want in our original entry exit logic. This means
we will create a copy of the original tutorial entry exit blox so we can make changes and use the
modified module in our new system and suite.

Copy Tutorial Entry Exit Blox:
Blox copies any of the blox in Trading Blox are simple and fast.

To open the Blox Editor so that the editor will show our original entry exit blox highlighted, double-click
on the Entry or Exit name listing in copy of the Tutorial System 2 module list.

When the editor appears it will look something like this next image where the Tutorial Entry Exit
Lesson1 blox module is highlighted.

www.forex-warex.com

Trading Blox Builder's Guide34

© 2013, Trading Blox, LLC. All rights reserved.

If you used a different name, click on that blox name and when right-click on it using the right-mouse
button.

Menu shown in the image above will appear. Click on the Copy menu item so the Copy Trading Block
dialog will appear. It should appear with the same name, but with a 2 appended on the right side of the
name.

This name works for us. If you want another, make your changes and then click the "OK" button.

www.forex-warex.com

Part 1 – Getting Started Tutorial 35

© 2013, Trading Blox, LLC. All rights reserved.

www.forex-warex.com

Trading Blox Builder's Guide36

© 2013, Trading Blox, LLC. All rights reserved.

This completes this topic.

www.forex-warex.com

Part 1 – Getting Started Tutorial 37

© 2013, Trading Blox, LLC. All rights reserved.

3.3 Protective Exit Orders

This topic show how to add a protection exit price with a new order.

It will also show how to create a volatility measure that can be used to determine how to price a
protective exit for the price bar of market entry.

New Entry Order Protection:
New entry orders and active positions can have a protective price order to help the trader limit adverse
price move losses. New protective price orders are most often created during the new entry creation
using a Broker Object function that provides a place where a protective exit price can be provided. In
most cases new entry orders are created in the Entry Orders script section using a Broker function
with that contain "EnterLong..." or "EntryShort . . ." with the order's execution type text
appended to the Broker's function name.

Example:
 broker.EnterLongOnOpen(exitPrice)

Entry orders filled by the market and not closed because their protective price wasn't enabled, will
appear as an active position available for the next test bar.

Protective orders will have their protective price preserved in the instrument.unitExitStop
property. While the price is preserved there won't be a protective order for the next test bar unless the
system generates a new protective price. It can easily access the entry order's protective and use
that value, or it can analyze how the market has changed and use a new protective price.

When the test bar time ends, the system will need to generate a new protective price order when the
system is dependent upon position protection to achieve its performance goals. Maintaining protective
price orders is a simple process once the system is operational because of how each active position
is processed in the Exit Orders script section. Only active position will cause Trading Blox to execute
the Exit Orders script section and Long and Short trade direction orders can be contained within the
same script section.

Active positions required to have a protective order in place for each bar of the trade must generate a
new protective order after the close of the last trade bar. This is needed because all orders in Trading
Blox are considered "Day-Orders" which expire after the close price is printed by the exchange.

Protective Price Method:
Our example system will use a volatility based point spread for a new entry order in the Futures
market. Our approach will use the Average True Range calculation will generate a volatility estimate
from a period of recent prices. This volatility estimation is one more popular methods for estimating
the offset for a protective price. This calculation requires a period parameter to inform it how much
recent price history to include in it calculation. It in most cases also works better with a second
parameter that allows the trader to adjust the size of volatility points to a larger or smaller value to fit in
with the needs of a system.

To get started we will first add two parameters in the parameter section of our recently copied Entry
Exit block:
First parameter will be called atrLength to our parameter section. Our second parameter will be
named atrAdjustRate to handle the volatility point adjustment.

To create this parameter, open the Blox Editor by using the menu item Blox, or pressing F4 on
your keyboard:

www.forex-warex.com

Trading Blox Builder's Guide38

© 2013, Trading Blox, LLC. All rights reserved.

When the Blox Editor opens locate the new copy we made of our Tutorial Entry Exit Lesson 2
and select it so we are sure it is displayed as the active module in the Blox Editor:

Click on the word Parameters in the lower list area in the center section of the Blox Editor:

www.forex-warex.com

Part 1 – Getting Started Tutorial 39

© 2013, Trading Blox, LLC. All rights reserved.

When the parameter dialog appears, add the atrLength variable name in the "Name for Code"
textbox.

Next, in the "Name for Humans" textbox enter the description you want to see so you know the
parameter is to change the length of the Avg. TrueRange calculation period length.

www.forex-warex.com

Андрей
tr-software-download

Trading Blox Builder's Guide40

© 2013, Trading Blox, LLC. All rights reserved.

At the bottom of the dialog, enter a value that is greater than 1 or the value listed in the "Default
Value" textbox field. Value you enter into this field will be the default value displayed when this
module is first added to a system list. Once the module is displayed in the menu area the value
used by the trader can be changed to another value. When the default of any parameter will be
retained by the Suite information process so that it is available the next time the software is run.

Follow the process used for our first parameter addition so we can add our second
parameter,atrAdjustRate, to control the size of the protective offset points. This second
parameter will be a Floating Point type, and we will use a default value of 2.5 as the amount of
adjustment we will want when we add our module to a new system.

Our volatility estimation and adjustment parameters are now a part of our Tutorial System Entry Exit 2
module. Click the Blox Editor OK button so we can see how adding a parameter to a module will
appear when it appears in the parameter section of the main menu's system display area:

www.forex-warex.com

Part 1 – Getting Started Tutorial 41

© 2013, Trading Blox, LLC. All rights reserved.

When your screen appears as shown above you will be ready to add the ATR indicator to our Entry
Exit module.

Average True-Range Indicator:
Our process for adding a MACD indicator to the module in lesson 1 will be the same for this new
indicator. Indicator name and the selected calculation needed will be different, but the process will be
familiar.

Start with a Right-Click on the Indicators menu item in the lower canter-section of the Blox Editor.

A New Indicator dialog will appear where you can enter the name for the code, select the Average
True Range option, assign the period length parameter, atrLength, and enable its information in
the dialog's lower-right area so that after a test it can be seen below the price information chart.

www.forex-warex.com

Trading Blox Builder's Guide42

© 2013, Trading Blox, LLC. All rights reserved.

Understanding how an indicator is operating is an important towards understanding how a trading
system designed. Indicator calculation that are created by a built-in process don't allow any access to
how they were designed, but we can see the data they produce. Part of believing is seeing, and to
that end this indicator will appear in a sub-graph chart area after test where the symbol generated
trades using this system.

To make the protective exit process easier to see and understand when we display trade on the chart
this indicator will enable the features required to display in the chart area below the displayed prices.
Enabling a built-in indicator so that it display along with its instrument prices is very easy. Follow the
details shown in the lower-right area of the dialog and then press OK

We have the new parameters appearing on our main menu screen, and now we have the details
necessary to create a volatility measure for helping to determine how to price our protective exit
prices.

 It is also going to be visible below the Price Chart area so it can be referenced at this stage of our
tutorial. In this next image the new Average True Range (ATR) indicator and our previously created
MACD indicator are shown. Details show the ATR volatility values for each price bar, and the show
the relationship of how the MACD calculation move above and below the zero basis line.

www.forex-warex.com

Part 1 – Getting Started Tutorial 43

© 2013, Trading Blox, LLC. All rights reserved.

Tutorial Lesson 2 Avg. TrueRange & MACD Graph Example

We are now ready to create the programming details in our second Entry Exit module so that we can
apply a protective price order.

This completes this topic.

www.forex-warex.com

Trading Blox Builder's Guide44

© 2013, Trading Blox, LLC. All rights reserved.

3.4 Entry Order Protection

Our Average True Range (ATR) indicator is now operating and reporting a volatility measure for
each price in the data file after the calculation priming period has primed.

When we create orders they are always based upon the values of price bars that have an Open,
High, Low and Close price value that considers that price record ready to use. After the last
available price bar is provided Trading Blox can use that new information to what if had previously and
update the calculations of its indicators.

To apply the last bar's volatility measure, we will take the last ATR value and then adjust in a way that
should help us reduce losses during difficult trading time, and allow a position to stay in place during
favorable market periods. In this next section we will program our module to use this new ATR
information to generate a point estimation of how much of a distance we should use to place our
protective exit prices. Our offset distance will be controlled by a new Instrument Permanent
Variable (IPV) we will add to our module so that the process can be seen in more clear terms.

Add a Working Variable:
Open the Blox Editor and click on the Entry Orders script section and select the New menu item
to create a new Block Permanent Variable (BPV) Floating Point type variable:

When the new BPV dialog appears fill in the details as shown:

www.forex-warex.com

Part 1 – Getting Started Tutorial 45

© 2013, Trading Blox, LLC. All rights reserved.

Our new BPV is created for a stand alone calculation so that the results of the calculation can easily
be seen when needed. For example, in the beginning of your experience you might want to see how
the value in this BPV changes with each instrument when Trading Blox Debugger mode is active.

For this lesson a BPV variable was chosen because this is just a temporary working variable. A local
variable could have been declared and used, but a BPV variables execute a little faster, and their
values can seen from other script sections when needed. It was also chosen to create a variable that
improves readability, which often helps to improve understanding. BPV variables are intended to not
retain a specific value that is only correct for one instrument. Instead they are intended to be used a
working variable or a blox specific that can be used with any instrument. In this case the working
value in the BPV is only good until it is passed to the Broker Object EnterOnOpen function, and is
updated before it is used with another instrument.

A value specific to an instrument would be an actual unit entry price, or a unit exit price. These types
of values would be placed in an Instrument Permanent Variable (IPV) because they only are valid
for a specific instrument at a specific time.

Adding Volatility Results:
All the parameters, variables and indicator details we need to add a protective price to our entry orders
are in place. To make them work we just need to add two additional lines of programming code, and
modify our two Broker functions so the orders are generated with a protective price for the price bar
of entry.

Code Changes:

' Calculate Current Protective Offset Points <- Add
exitPoints = avgTrueRange * atrAdjustRate <- Add

www.forex-warex.com

Trading Blox Builder's Guide46

© 2013, Trading Blox, LLC. All rights reserved.

 ' Generate a LONG Entry with a Protective Exit below prices <- Modify
 broker.EnterLongOnOpen(instrument.close - exitPoints) <- Modify

 ' Generate a SHORT Entry with a Protective Exit above prices <- Modify
 broker.EnterShortOnOpen(instrument.close + exitPoints) <- Modify

Use the above code details to modify your new Entry Exit module's Entry Orders script area so that
your Entry Orders script section looks like this next image:

When you get your source code to match the changes suggested, orders generated with this module
will contain an exit price that will provide an Exit Order for the price bar where your Entry Order was
enabled.

As our code is currently written the protective exit order will not be active after the bar of entry, but that
can be changed by adding additional instruction into the Exit Orders script section. We will also add
script rules to the Exit Orders script section to enable the position to carry the protective price forward
for each price bar on which the position is active.

Understanding Chart Display Details:
Image notations point out how the indicators influence the trade action. It also shows how our last
change of adding a protective price sits below the current market price and how that protective value
establishes the risk this order assumes on entry.

www.forex-warex.com

Part 1 – Getting Started Tutorial 47

© 2013, Trading Blox, LLC. All rights reserved.

Click Image

At this stage of the tutorial we are showing the plot values of the instruments below the chart so their
values can be seen. With then in a parallel visual display it is easy to relate how the indicator values
relate to what is shown in the price area of the chart. It should also be possible with the aid of the
cross-hair cursor data display on the right side of the chart area to see the actual values of everything
displayed on the chart.

With the actual indicator and price values available it should be easy to understand how the rules are
creating the timing and price values shown for each trade listed in the trade's table below the chart.

All the orders generated with out new system now show an entry date protective initial stop price. This
stop price protection is only available on the bar of entry because all orders in Trading Blox are "Day"
orders. In our next tutorial topic we'll create the script so that the initial protective prices are available
for the active orders after the bar of entry.

Links:

Operator Reference

This completes this topic.

www.forex-warex.com

Trading Blox Builder's Guide48

© 2013, Trading Blox, LLC. All rights reserved.

3.5 Active Order Protection

In our previous lesson we learned how to add a protective price order to our entry order. Our
protective exit order would only go active if our entry order was filled by the market. Protective entry
orders are designed to limit unfavorable price moves of a new position to the distance in points
between the entry fill-price and the protective price, and they only protect if the market's price goes
over the protective price using an On-Stop execution to close the position.

An On_Stop order execution is a buy or sell order that requires the order's On_Stop price to be
touched or penetrated. When an On_Stop price is enabled the order becomes a market order to be
filled as soon as possible. On_Stop prices are not guaranteed to be filled at the exact execution
price. When a fill price differs from the On_Stop price the difference is considered slippage. How
much slippage happens is based upon the volatility of the market, size of the order, and the volume of
trades available after prices have triggered the On_Stop-trigger.

All Trading Blox orders are "Day" orders.

Definition:
Any order to buy or sell a share or a contract that automatically expires if the market does not
enable the order on the day it was placed. This means the order is only valid for one day. If
the order's execution type is not enabled by the market in the trading session on the day in
which it was placed, the order is automatically canceled at the end of the trading session.

At the end of the entry session the protective exit order will be canceled when its protective On_Stop
price is not enabled. This means the trading system will need to create a new protective order for
each of next trading sessions in which the position is open. This might seem like a problem, but in
trading it is the preferred method for most system traders. It is preferred because orders that are not
automatically canceled, must be manually canceled by the trader. When they are not canceled they
are able to create unwanted positions, and too often in the wrong direction.

Trading Blox only creates "Day" orders, and the software makes it easy to keep protective price
orders in place for as long as the position is open, but it does require rules be in the system rules to
create an updated protective exit order.

Open Position Exit Orders:
Whenever an instrument has an active position the Exit Orders' script section executes so as to
enable the trading system to place orders for a protective price to exit, remove a position quantity,
reduce units, or to close a position. Systems will occasionally place all of the above listed orders when
the design of the system requires various methods for managing the position.

Exit Orders Script Section:
Trading Blox Exit Orders script section will only executes when an instrument has an open position,
so it is always available when a trade is active, and it is out of way when it isn't needed. When more
than one module has script section that other modules contain, all the script sections in all of the
modules that contain scripted code will execute when script using the same name in other scripts is
being executed.

By always executing script sections that have scripted system rules, the timing of when each of the
scripts in each of the modules is executed can make a significant difference in how the system
performs. Script with the same name will always execute in the order of how each of the modules are
displayed in the System Editor center display of system modules.

Trading Blox provides many Broker Exit Order Functions. Prices applied to these exit functions are
determined by the script code created specifically for this purpose. In the next section we are going

www.forex-warex.com

Part 1 – Getting Started Tutorial 49

© 2013, Trading Blox, LLC. All rights reserved.

to limit this next step to only keeping the original protective price order active during the trade so the
process can be kept simple and easy to understand.

Open our second Tutorial System and then click on the Exit Orders script section. When it appears,
type the following into the editor area on the left and save your work:

Exit Orders Script Code:

' Enable Entry Protection Exit Order for life of position
broker.ExitAllUnitsOnStop(instrument.unitExitStop)

This simple broker statement shown above is all that it takes to keep the original entry order protective
price active throughout the life of the trade. It keeps the original protective price active because it is
referencing the price value of the trade record so that it can be used with each new protective order.
It gets the position's previous entry protective price from the property: instrument.unitExitStop
and it uses that value as the price when the Broker object function ExitAllUnitsOnStop creates a
new protective order. This Broker function will work with Long or Short position because the function
knows which instrument is trading as well as the direction of its active trade.

Trading Blox stores a lot of other information with its instrument and it is worth taking the time to review
how much information is readily available. Click on this link to browse through the Data Properties
table where each property is listed with a brief example of what it contains.

Adding Protective Stop Indicator:
With the code in place above we now have a position that will be protected using the original protective
price we used when the entry order was filled. When Trading Blox displays trade information it won't
show where the new protective price orders are located in relation to the price unless we add that
ability to the trading system, which is very simple. However, instead of adding a protective price
indicator to our tutorial system, we are going to use one that is already available by adding the Plot
Stop Price block module to our tutorial system.

Go into the System Editor (F3), and be sure our tutorial system module is visible in the System
Listing windows in the center of the System Editor. Now locate the Auxiliary module shown in this
image. Once found, Right-Click on the module and it will appear in the bottom window where our other
tutorial modules are listed.

This module is a simple indicator that will place a red-dot above prices on short positions, and below
prices on long positions indicating the the position's protective exit price.

Here is the code used in the Plot Stop Price indicator block. It will only plot the value of the current
unitExitStop[1] when this instrument has an active position.

Plot Stop Price Indicator Code - ADJUST STOP Script Section:

www.forex-warex.com

Trading Blox Builder's Guide50

© 2013, Trading Blox, LLC. All rights reserved.

' Plots the current stop price for unit one when
' position is active
If instrument.position <> OUT THEN
 ' Assign Positions Protective Price to Indicator
 currentStopPrice = instrument.unitExitStop[1]
ENDIF ' i.position <> OUT

This module knows when a position is active because it is referencing the instrument's position
property. This a position property can have any of these values:

 1 for Long Positions

 0 for Flat or No Active Positions

-1 for Short Positions

In the example above the variable currentStopPrice is an IPV Auto-Indexing Series.

Take a few minutes to examine how this module is created so you'll have some reference on which to
create a protective price indicator into your own system, and many other types of position indicators.
Also note that the option in the lower right corner of the dialog has enabled the "Offset Plot Ahead One
Bar." This option forces the indicator to place is chart information in the area where the next bar will
display. This done so the current protective price indicator mark will be placed at the price location
where the price of the next bar will trigger the protective order action when the price touches the
protective price.

By placing the information ahead one bar for this type of indicator, the information on the screen
becomes a little easier to understand that the price touched the protective exit price on the same bar
the position was closed.

In operation the Plot Stop Price indicator will appear like this for a Short Position:

www.forex-warex.com

Part 1 – Getting Started Tutorial 51

© 2013, Trading Blox, LLC. All rights reserved.

Plot Stop Price Indicator Example

In our chart example the protective price doesn't change throughout the life of the trade. This isn't
always the best way to protect a trade because it doesn't provide any progressive price action that can
preserve gains that favorable price moves may have provided. We are also terminating the position
when the price touches our protective price, so alternate protective logic methods that would terminate
only when the close price touched or crossed the protective are not explored.

Keep in mind that one of the major issue in trading system design is the lack of finding and applying
alternate ideas to see if what we currently have now can be improved by changing some of the
methods or logic being used. As you spend time with the various supplied systems that are installed
when Trading Blox is installed, notice the various methods for handling entry, exits and protective price
methods. Also spend some time searching for various ideas in the Trader's Roundtable forum's Blox
MarketPlace and Trading Blox Support sections.

Links:

Data Properties, Operator Reference, Position Properties, Script Section Type Details

This completes this topic.

www.forex-warex.com

http://www.tradingblox.com/forum/
http://www.tradingblox.com/forum/viewforum.php?f=61&sid=35275aee35ab1b18f183775f26bc00b2
http://www.tradingblox.com/forum/viewforum.php?f=61&sid=35275aee35ab1b18f183775f26bc00b2
http://www.tradingblox.com/forum/viewforum.php?f=58&sid=35275aee35ab1b18f183775f26bc00b2

Trading Blox Builder's Guide52

© 2013, Trading Blox, LLC. All rights reserved.

3.6 Order Sizing

Orders for the next trading day will appear in the New Orders Report section of the Positions and
Order Report web page that appears when the Generate Orders button is used.

All entry orders will need to contain a quantity of future contracts, or shares prior to them being given
to a broker for placement. Trading Blox applies order quantities using Money Management modules.
These blox modules contain the sizing logic needed to attach a quantity to an entry orders. Quantity
calculation methods can vary to fit the trader's idea of how a position should be sized. When Trading
Blox is installed it provides three of the more popular methods, and it will support the use of custom
sizing methods.

This section will cover some of the methods that can be used for determining order quantity. Each
order generated and given a quantity is seen as a unit. Positions can have multiple units each with the
same or different amount of contracts or shares. Multiple units can be removed from a position one at
a time, or all at once. Units can also be reduced in size, but when the quantity being removed from a
unit is equal to quantity of the unit, the unit is closed. When more is being reduced from a unit and
there are more units in the position, the remainder not yet removed is taken from another unit.

Determining Entry Order Quantities:
We are only going explore three different methods, but there are many more methods in use. To
grasp what other methods are in use, review some of the discussions in the Trader's Roundtable
forum. A lot of knowledge about order sizing and various aspects of money management, and many
other aspects of trading is available in our forum. Trading Blox license holders get free full read and
write access to the forum, so be sure to sign up for access if you don't already have it.

Money managers can be built into an entry and exit blox, or added as an additional blox that appears
in the System Editors Static section in the middle of the System Editor's display. How a money
manager is added to the system, isn't important, but not having one included in the system will cause
all the orders to show no quantity, and no system performance.

In this section we are only going to show the process of how the size of an order to enter the market
using two different sizing options in three different blox modules. Two of three modules use a similar
sizing calculation, but one uses an internal volatility estimator to create a single contract risk for orders
that don't use any entry bar protective price.

Order quantity provides the multiplier in terms of its quantity that is used to calculate the gain or loss
between the entry price and the exit price. When only 1-share or contract is in a unit, the multiplier is
one. When two are in the unit, the multiplier is two. However many shares or contracts are in a unit,
that is the number by which the results between the entry price and the exit price are multiplied.
Those same results are the value assigned to the trade record and used to adjust the account equity
being used to calculate the performance of the system.

Let's look at three of the money manager modules that are installed when Trading Blox is installed. As
we go through each, the complexity of how they provide size will increase. We will also see how they
can control risk when a risk based method is part of the process for determining position size.

Basic Money Manager:
In its simplest form a fixed size of one or more contracts, or shares is entered into the quantity area of
the order of parameter field. For our tutorial we will only size the contracts

In a trade where there is an entry price difference, the difference is expressed as the point spread
between the two prices. Whatever the spread value, it only represents the price difference for a single
share or contact. Spread values are determined by finding the difference between the current Close
price and the protective price. That difference is the risk estimate that is used to inform the sizing

www.forex-warex.com

http://www.tradingblox.com/forum/

Part 1 – Getting Started Tutorial 53

© 2013, Trading Blox, LLC. All rights reserved.

logic that is using risk based sizing calculations how to value the risk estimate so it can determine how
many contracts or shares to assign to a unit.

When the quantity value is being determined by the Basic Money Manager, and its parameter is set to
a value of one, then the price point difference represent the potential loss of the unit. With a quantity
value greater than one, the price difference between Close price and the protective price will be
multiplied by the value entered into the Basic Money Manager's parameter.

Our first Trading Blox Basic Money Manager can apply a fixed quantity to each unit order. This is the
most simple form of adding quantity to an order.

Fixed quantity sizing is often used because it is simple. User picks a quantity, enters that number into
the parameter and that is the basis for determining the multiple of the price point difference valuations.
 While that approach is simple, it doesn't provide the trader with the ability to fix trade size to a
percentage or risk, or any other idea that the trader might think will be helpful in controlling risk and in
improving the utility of the account's value. However during the development of a trading idea, a fixed
quantity size keeps the focus on the new system idea while supplying a reliable quantity during early
system testing making the checking of trade results simple.

Basic Money Manager Code:

' ===
' UNIT SIZE SCRIPT - START
' ===
' Set the order quantity to the user value entered in the
' parameter field:
order.SetQuantity(sizeOfUnit)
' ===
' UNIT SIZE SCRIPT - END
' ===

Fixed Fractional Money Manager:
This order sizing method is favored by professional because it allows the trader to determine the
percentage of risk each position is allowed to use. Percentage in this case is determined by the "Risk
Per Trade (%) value entered into the Blox parameter field. A value of 1% is the rate used to determine
how much of the account's equity can be made available to the order.

Let's take an example account that has a value of $100,000 and then take the 1% rate shown in the
Blox image to determine how much risk equity can be allocated to an order. In this case we find
$1,000 dollars is the maximum amount we can risk.

To determine size we need to know how much risk a single contract or share will create between an
entry and its protective exit price so we can use the value of the risk to determine how many contracts
or shares to use as an order quantity. For our simple example let us also say a single contract will be
creating a risk of $450 because that is the point difference value between our entry price and the
order's protective exit price.

www.forex-warex.com

Trading Blox Builder's Guide54

© 2013, Trading Blox, LLC. All rights reserved.

In this example with a risk allocation is $1,000, and a single contract risk of $450, we can allow the
order to have a quantity of of two contracts. Here is the math:

Here are the calculation details for Fixed Fractional Sizing:

Account Equity = $100,000
Risk per Trade = 1%
Contract Price Risk = $450
Allowed Order Risk = (100,000 x 0.01) = $1,000
Max Order Quantity = (1,000 / 450) = 2.22 contracts
Order Quantity Allowed = 2 contracts

Fixed Fractional Code:

' ===
' UNIT SIZE SCRIPT - START
' ===
' Risk Equity Allocation is determined by multiplying
' the current equity available on the bar the order
' is generated by the Risk Rate parameter percentage
' Parameter entered as a Percentage. A decimal value of the
' percentage is used as the multiplier -- 1% = 0.01

riskEquity = system.tradingEquity * riskPerTrade

' When an order is generated with a protective exit price
' the difference between the Close price on the bar where
' order is generated is used as the basis price from which
' the protective exit price is compared. Entry-Risk is the
' point-difference between the bar's Close and order's
' protective-exit price.

' Dollar risk is determined my converting the point difference
' to a monetary value by multiplying the points by the
' instrument's Big-Point value entered into the Future's
' Dictionary for a Future's order, or by using the monetary
' value difference between the Close and Protective Price when
' Stock, Funds, etc. are being used

dollarRisk = order.entryRisk * instrument.bigPointValue

' If the order does not contain a protective exit price,
' there won't be a risk amount in the order. Risk amount is
' is needed to determine the value of the risk. With out a
' risk amount, the calculation for determining the order's
' single contract risk value will be zero. When dollar-risk
' is zero, the order will be rejected.

' When dollar risk is greater than zero, the second part of
' this next conditional statement will calculate a quantity.

www.forex-warex.com

Part 1 – Getting Started Tutorial 55

© 2013, Trading Blox, LLC. All rights reserved.

If dollarRisk <= 0 THEN
 ' Set the Order to zero
 order.SetQuantity(0)
ELSE
 ' Use the Integer value that results from the division of
 ' the Dollar-Risk for a single contract or share into the
 ' Risk-Equity allocated by the Risk-Per_Trade user value
 order.SetQuantity(riskEquity / dollarRisk)
ENDIF

' When the order quantity is zero or less, reject the order
' and place the order's rejection reason in the Filter.Log

' Instrument.roundLot is the smallest quantity that can be allowed
' to be used for the sizing of an order.

If order.quantity < instrument.roundLot THEN
 ' Place a rejection reason record in the Trading Blox Filter Log.
 order.Reject("Quantity: " + AsString(riskEquity/dollarRisk, 2) _
 + " < Minimum-Round Lot: " _
 + AsString(instrument.roundLot, 2) _
 + " Risk Eqt: " + AsString(riskEquity,2) _
 + " Order-Risk: " + AsString(dollarRisk, 2))
ENDIF
' ===
' UNIT SIZE SCRIPT - END
' ===

Note:
Contracts and Shares must be rounded down to an integer value.

Fixed Fractional Sizing requires a monetary value of risk in order to determine the risk of a single
contract. When a system isn't using any protective pricing the Fixed Fractional Money Manager will
assume the risk of the order is infinite. An infinite risk will force the math to round down to zero, and
the order will not be given any quantity value.

Multi-Money Manager:
This order sizing Blox is a hybrid module that incorporates the two above methods, plus it adds an
additional method that will estimate the possible risk amount of a contract or a share by using the
Average True-Range volatility indicator adjusted result.

This module is useful during system development and as an all-around sizing module because it gives
the trader the option of fixed quantity sizing to flush out the logic and calculation using a consistent
order size. It can also be used during development when it might be important to see the performance
differences of the three methods in a stepped method simulation.

www.forex-warex.com

Trading Blox Builder's Guide56

© 2013, Trading Blox, LLC. All rights reserved.

Using this sizing module must start with the selection of the method intended. Fixed Order Qty. and
Fixed Fractional Risk Rate or Volatility Adjusted method. Fixed Fractional and Volatility
Adjusted use almost the same logic as is shown above, but the exception difference is in how the
Volatility Adjusted will substitute, or provide a risk estimate when no risk estimate is provided.

Volatility Adjust Risk uses the Average True-Range indicator calculation to estimate the True-Range
over the previous specified bars. It also has a companion parameter that will allow the user to expand
or contract the estimated volatility value which is used as the order's estimate of risk.

Volatility Adjusted Risk Calculation Code:

' ~~
' Risk-Equity is the product of Trading-Equity times Fixed Fraction % value.
riskEquity = system.tradingEquity * riskPerTrade

' Dollar-Risk is the product of AvgTrueRange * Instrument Point Value
dollarRisk = averageTrueRange * instrument.bigPointValue

' Set the trade size.
If dollarRisk <= 0 THEN
 ' Set Order Quantity to zero
 order.SetQuantity(0)
ELSE
 ' Order Quantity is the integer value dividing Risk-Eqty-Amt by Dollar-Risk
 order.SetQuantity(riskEquity / dollarRisk)
ENDIF
' ~~
' Reject order when quantity is less than 1.
If order.quantity < instrument.roundLot THEN
 ' Reject order - send message to Filter Log Report
 order.Reject("Order Quantity less than 1")
ENDIF

' ~~

Fixed Fractional Sizing uses the order's point spread between the close of the bar on which the order
is generated to the protective price that will be active when the order is filled. This approach when
when done carefully can be a close approximation of what each contract or share might experience
should the trade fail and be filled at the position's protective price. It also uses the current value of the
account to determine risk allocation. By using the current value of the account the risk allocation
preserves the risk equity intended as the account value changes. In simple terms, a percentage
allocation process allows the trader to use a fixed leverage rate that is consistent regardless of account
value. This doesn't happen with fixed order sizing because when the account amount is low, a fixed
quantity will create a larger risk level than the same size will create as the account's value increases.

www.forex-warex.com

Part 1 – Getting Started Tutorial 57

© 2013, Trading Blox, LLC. All rights reserved.

Volatility Adjusted Risk estimates its Risk-Equity in the same way as Fixed Fraction Sizing, but the risk
estimate is determined by using the point volatility results of the Average True-Range calculation for
the period of bars listed in the parameter field. In most cases this volatility result must be adjusted to
reflect the method of how the system will exit a failed position if risk-control is an important aspect for
the trader.

Adjustments to the Volatility risk-point results can be amplified or reduced by changing the value of the
"Volatility Risk Rate" parameter. In most cases for long-term trend trading the value in this parameter
will need to be higher if the system's performance is showing excess draw-down percentages that are
greater than expected or what would have been the result if a carefully created protective price method
had been active for the system.

When the Volatility risk-points are too low, orders will size with more quantity than they should have
been given because the risk-points were too small. This means that even though the Fixed Fractional
Rate being applied is allocating equity amount of that rate, under estimation of risk that increases size
in reality will increase the risk-rate being created when the size is too large.

This sizing module is an important module to use to get a feel for how it works and also because it is a
flexible process module. Flexibility can provide a comparison of how the system would perform using
various methods in a stepped simulation.

Links:

Operator Reference, Trader's Roundtable

This completes this topic.

www.forex-warex.com

http://www.tradingblox.com/forum/

Trading Blox Builder's Guide58

© 2013, Trading Blox, LLC. All rights reserved.

3.7 Trading Risk

This topic is a brief presentation of how fixed and adjustable quantity sizing affects the system's risk
profile. As order sizing methods change so does the risk effect and trading system performance
change.

In this section we are only going to use the tutorial entry exit system we developed earlier as the
method for how we will show the risk and performance differences between fixed and risk rate sizing.

To demonstrate fixed quantity we will use the Basic Money Manager and set the quantity parameter to
1 contract or share, and we will test the trading system from the beginning of 2000 to the current data
download date.

At the end of test Trading Blox will generate a graph profile of how the system performed:

Basic Money Manager Fixed Order Size Graph

www.forex-warex.com

Part 1 – Getting Started Tutorial 59

© 2013, Trading Blox, LLC. All rights reserved.

During testing this custom graph created to show the static nature of how the order size of the Basic
Money Manager consistently applies the same quantity regardless of how much growth appears in the
equity profile graph:

Basic Money Manager Fixed Order Size Graph

Our first tutorial system doesn't include a protective exit price as part of its trading logic. When no
protective price is available to generate a position's estimate of loss when trading, the software
assumes the risk of loss is infinite and thus shows the Total Risk profiles as being 100% when ever
there is a position is active.

In the standard Performance Results Summary report when the Total Risk Profile option is enabled in
the Preference section, the reporting will display an estimate of how much risk that system is creating
at all the trade days over the period of dates selected. Position risk is determined by the system's
calculation of risk for each of the position active on each date, which is them summarized at the end
of each trading record:

Basic Money Manager No Protective Exit Price Total Risk Profile

In the above graph the system is exposing the entire account whenever there is an active position.

When a fixed quantity sizing method is used each order creates a varied risk load on the system's
account. In this next graph generated when the orders were sized that created the equity profile
shown above, the variations in each orders risk is so varied it would be hard to estimate and limit the
system's open risk.

www.forex-warex.com

Trading Blox Builder's Guide60

© 2013, Trading Blox, LLC. All rights reserved.

Basic Money Manager 100k Risk Graph Order = 1

When order risk become so varied it is then hard to limit how many positions can be active so as to
limit the entry risk exposure to a preferred risk level.

Adding Protective Exit Pricing:
When the protective prices are used with entry orders, the Total Risk Profile of the system drops down
to where it might be expected. This next graph shows an example of what we might expect when we
add our protective prices to the orders at entry, and then keep them in place over the duration of each
position:

Basic Money Manager Size = 1 with Protective Exit Orders

Total Risk profile has now moved away from finding all the active positions carrying an infinite amount
of risk, to a profile of how the probable risk of the system would report if the active positions exited by
their protective prices. Total risk is an estimate of the probable loss that would happen and the amount
is based upon the position's quantity times to trade's loss amount if it were to exit at its protective price.

Risk Based Sizing
Risk based sizing determine the entry order quantity based upon how much risk is allowed. Risk
allowed is calculated by multiplying the system's equity amount by user's fixed percentage rate. This
means that a for an account valued at 100,000, a 1% risk rate will allow risk a allocation of 1,000.
With a risk allocation of 1,000 and an example entry risk of 500, the risk allocation will allow a quantity
of two contracts to be assigned to the entry order.

www.forex-warex.com

Part 1 – Getting Started Tutorial 61

© 2013, Trading Blox, LLC. All rights reserved.

When the entry risk amount is greater than the allocated amount, a quantity size that is less than the
minimum round-lot size will result. Quantities less than the round-lot specified for the instrument will
cause an entry order to be rejected. Fixed rate sizing is a method for limiting how much risk a
position is allow to apply to a system, it also allow the system to create a fixed leverage rate as the
account value changes.

In the graph above the red spikes show the risk rate of the orders that were rejected. Rejections are
more frequent at the beginning when the account value is low, or when there is a period where high
volatility is dominating the markets. As the account equity grew, the rejections became less frequent,
but the period around 2008 showed a lot of market instability which is a reflection of volatility.

Observations of the green area shows the average risk rate shown is less than the user's parameter
risk rate of 1%. If is less because it often happens the division by the entry risk amount into the
allocated amount won't always be an even number. When the results has a decimal amount, the value
is rounded down to the next integer value which creates an average risk rate that is less than the user's
established risk rate of 1%.

Links:

Operator Reference

This completes this topic.

www.forex-warex.com

Trading Blox Builder's Guide62

© 2013, Trading Blox, LLC. All rights reserved.

3.8 Money Management

Account risk of each position is best served when position risk is managed to limit the total risk any a
position can assume. It is also important to allow enough risk to enable a reasonable order quantity be
allowed to help grow the account's balance at a safe rate that doesn't cause draw down periods to risk
an account to the point where the trading stops because of insufficient funds, or insufficient
confidence. Risk rate boundaries are different for each of us because our beliefs and expectations
are all different. However, each of us can discover our thresholds with system historical testing and
personal reflection. Ideally the amount of risk each of us allows isn't so large that a position's failure
becomes a significant event during a prolonged draw down cycle. Large losses during difficult trading
periods will quickly consume an account to the point where there is too little money, or too little
courage to keep trading.

Finding this balancing point for each of us is the critical goal for all traders because draw-down
periods are going to appear at some point, and long draw-down periods are hard on the account and
the trader. Meaning the total level of risk a trader exposes to their system's account must be kept low
enough that hard times don't don't drain the account or destroy the belief in the system, but still provide
a practical level of controlled risk of the account's value.

Total Account Risk:
Total account risk is the sum total of each active position's risk. How many active positions to allow at
the same time determines the percentage of account risk. A major portion of how much risk a position
contributes to the total risk exposure is influenced by how far prices can be allowed to move against a
trade before that trade is terminated. Order risk is determined by measuring the current close price to
the On-Stop Exit price to determine the amount of risk points. A single contract or share risk points
converted to a currency value is the basis for determining how much risk a position will be allowed to
assume when the order is given a quantity size. In simple terms risk is based upon the cost applied to
a single contract or share when prices move against a trade's position. This adverse point difference
is converted to a monetary value so that risk as amount of loss for a single contract can be used to
estimate how many contracts or shares can be assigned as a quantity for a new order. Determining
how much money to allow a position is determined by the system's allowed risk rate for sizing orders.

When an order is created and sized to have only 1-contract, the risk of the position is the risk of that
single contract. When an order is sized with more contracts the number of contracts times the risk
amount of a single contract determines the position risk. Contracts that use risk based sizing are
designed to limit total entry position risk to the system's position allowed risk sizing rate. Multiple
positions sized and constrained to the system's risk rate can be summed to determine the account's
total risk rate.

When an order is generated with a risk amount for a single contract that is larger than allowed, the
fixed quantity method of sizing will allow the order to reach the brokerage because there is no risk
filtering logic in that order sizing module. While this might sound risky, fixed quantity sizing is the best
way to check on how the software handled the transactions. By understanding the transactions the
cost of slippage, and commissions, when allowed during a test, can be seen in how the position is
settled at position termination.

When a system wants to have better risk control, the process of sizing should use logic that will limit
the position allocation amount to the trader's risk rate so an order with excessive single share or
contract risk levels are rejected, and those with small levels of risk will be allowed to have more than a
single contract or share. In Trading Blox the "Fixed Fractional Money Manager" and "Multi-Money
Manager" blox modules have risk filtering logic and allow the user to establish the risk rate for each
new order.

www.forex-warex.com

Part 1 – Getting Started Tutorial 63

© 2013, Trading Blox, LLC. All rights reserved.

Under Construction!

This completes this topic.

www.forex-warex.com

Trading Blox Architecture

Part

II

www.forex-warex.com

Part 2 – Trading Blox Architecture 65

© 2013, Trading Blox, LLC. All rights reserved.

Part 2 – Trading Blox Architecture

Now that we've built a simple system lets look a little deeper into the architecture of Trading Blox.

Trading Blox has many different parts. This can be a bit overwhelming for a new user. Fortunately, if
you examine each of the pieces one by one they are not hard to comprehend.

If you followed the previous examples, you've already used each of the following components:

Suites
A test suite is a collection of specific settings for a particular set of systems. Let's say you were
testing a Dual Moving Average system with an RSI system and you had a certain portfolio and certain
parameter settings that you liked. Your settings for these two systems including the system allocations
for the Dual MA and RSI system are stored in the current Test Suite. To save these settings you can
create a new Test Suite, calling it something like "Dual MA and RSI".

Suppose you wanted to work on a new system without disturbing your existing settings. You could
create a new Test Suite for working on the new system. Later by simply switching to the "Dual MA and
RSI" suite you can get back the exact same settings.

Suites can always be seen in the upper left of the Trading Blox Builder screen. You can create new
suites or delete unused ones. You can also lock your suite when you are satisfied with it to keep from
accidentally changing your settings. You must lock a suite in order to generate orders.

Systems
A system is a collection of formulas and rules that define enties and exits for a set of markets. In
Trading Blox Builder, systems are a collection of smaller components called Blox. If you own the Turtle
version of Trading Blox Builder, you can use the built in systems that are provided. If you own the Pro
version, you can assemble your own systems using the build-in Blox or ones that you download or
purchase from others. If you own Trading Blox Builder Builder, you can create your own Blox.

Trading Blox Systems consist of the following components:

System Component Corresponding Block Type

What to Trade Portfolio Manager

When to Trade Entry Blox

Whether to Trade Risk Manager

www.forex-warex.com

Trading Blox Builder's Guide66

© 2013, Trading Blox, LLC. All rights reserved.

How Much to Trade Money Manager

When to get out Exit Blox

Blox Modules

Blox are system modules that encapsulate trading ideas. Most of the Blox are self-contained parts of a
trading system designed to be connected with other Blox as a component part of a trading system
method. Some Blox can access data outside of their module, and outside of their system when their
scope settings are set for external access.

The basic components of a trading idea are:

Parameters - used by indicators to determine their specific computation result, for example: the
number of days in a moving average. Not all Blox require parameters when the numerical basis
for internal calculations is coded into the scripted code.

Indicators - used by the rules as indicators of market conditions, moving averages, RSI, ADX,
etc. Many indicators are available within the Indicator section of a Blox. Those not available in
that area can be created by entering the source code required for an indicator calculation result.

Rules - used to determine when to enter or exit; how much to buy or sell, or how much risk is too
much, buy on moving average crossover, what instruments to allow and other ideas. A rule can
be as simple as Buy If RSI > 55 etc.

By encapsulating trading ideas into a stand-alone Blox module, a package is created that can easily
be linked to one or more systems that need the trading idea contained within the Blox. Blox are trading
objects, and while these objects only need to be created once, they can be many times by other
systems to simplify the creation of different system methods.

Blox can also be used in multiple systems at once. This is one of the most powerful features of
Trading Blox Builder Builder.

Scripts
 Just like a director and actors in a movie use scripts to coordinate action, Trading Blox Builder uses
scripts to coordinate trading and to implement a system's rules. Scripts are more powerful than simple
rules and they can even be used to implement sophisticated risk and portfolio management algorithms.

Trading Blox Builder defines script types which are run at specific times during the simulation which
correspond with specific times during the test and trading day. Some scripts have a specific function
(such as adjusting stops for the day) while others are simply place holders for tasks that need to be
performed regularly like end of day calculations, keeping track of risk, etc.

Trading Blox Builder is quite smart about when it executes scripts in system. For instance, the "Entry
Order Filled" script in an Entry Block only gets run when a trade is entered because an entry order's
conditions were satisfied by the market. This is one of the reasons that Trading Blox Builder is so fast.

For more information on the Scripts available in Trading Blox Builder, see the Script Reference
section.

Trading Objects
Since Trading Blox Builder simulates real trading as closely as possible to enable you to implement

www.forex-warex.com

Part 2 – Trading Blox Architecture 67

© 2013, Trading Blox, LLC. All rights reserved.

trading systems that are as realistic as possible, we use concepts called Trading Objects in our scripts
with correspond with the real world trading things (or objects) like brokers, instruments, etc.

The most important Trading Objects in Trading Blox Builder are the "Instrument" and "Broker" objects.

Scripts use the instrument object to get information about the current stock or futures market (i.e.
instrument). So a script might access the current stock's close using the following code fragment:

instrument.close

This shows a "property" of the "Instrument" trading object called "close". Properties are used to
access data associated with a trading object.

A script might also tell the broker to enter a stop order using a code fragment like this:

broker.EnterLongOnStop(entryPrice, protectStopPrice)

this tells the broker to enter a Buy Stop to initiate a long position at the price represented by
"entryPrice" with an exit stop to be entered at the price represented by "protectStop" in the
event that the entry stop is filled.

"EnterLongOnStop" is an example of a "function" of the "Broker" trading object. Functions change
the way a simulation behaves or change the state of test data. Functions affect the outcome of a test
directly.

For more information on the Trading Objects used in Trading Blox Builder, see the Trading Object
Referennce section towards the end of this manual.

Variables
The last example used two Script constructs known by programmers the world over as "variables".

Variables are simply a name which represents a value or series of values. If you have used a
spreadsheet then you have used variables. For example, in a spreadsheet column B row 4 might be
the total sales for the month. In Excel you could name this cell to something like "monthlySales" then in
other cells you could refer to that variable (cell) as either B4 or "monthlySales".

In Blox Basic you can create variables which have names and can hold values just like a spreadsheet
cell can.

So the name "entryPrice" in the above script fragment is a place holder for the value which
corresponds with the entry price, while the name "protectStopPrice" is a place holder for the
value which corresponds with the stop price which should be used to exit the position.

For more information on using Variables in Trading Blox Builder, see the Variables Reference
section.

Parameters
Parameters are a special type of variable which can be stepped using the Trading Blox Builder
parameter stepping features. You should define a parameter instead of using a fixed constant value in
the trading rules for a system.

Parameters are also often used to define indicators.

Indicators
Indicators are another special type of variable which can be displayed on the trade chart.Trading Blox

www.forex-warex.com

Trading Blox Builder's Guide68

© 2013, Trading Blox, LLC. All rights reserved.

Builder includes most of the common indicators, Moving Averages, MACD, ATR, RSI, ADX, etc. Many
trading systems are built using indicators.

Units
The concept of units is used throughout this manual. Units refer to concurrent positions taken in the
same instrument as part of the same trade. When you enter a position direction for the first time, for
example you enter long when you were previously short or out, this new position is the first unit. If you
then enter long again, that would be the second unit. In this way you can pyramid your positions, by
entering multiple units at different prices and different quantities. You can also exit these positions
separately, or all at once.

www.forex-warex.com

Part 2 – Trading Blox Architecture 69

© 2013, Trading Blox, LLC. All rights reserved.

Section 1 – Working with Systems, Blox & Scripts

Trading Blox are the individual components of a system, so building a system is creating and/or
combining Blox together.

When you define a system to contain certain Blox, the functionality contained in those Blox is what
defines what the system will do. Each Block has a particular purpose. A system can have multiple Blox
of some types (like Entry and Exit) and only one Block of certain other types (Portfolio Manager, Risk
Manager, and Money Manager).

This section will show you how to create systems from Blox and Scripts.

1.1 Working with Systems

You can use the systems that come with Trading Blox, you can get systems from other people and
import them, or if you have the Pro or Builder versions of Trading Blox Builder, you can create your
own. This section of the manual describes how to create your own systems by assembling Blox. You
should also be familiar with this section if you want to modify an included system, or a system you have
purchased from another source.

What is a system?
Systems are a collection of Blox. There are five Block types that we use, and each has a particular
purpose in a trading methodology. As described earlier, the basic components of a trading system are:

System Component Corresponding Block Type

What to Trade Portfolio Manager

When to Trade Entry Blox

Whether to Trade Risk Manager

How Much to Trade Money Manager

When to get out Exit Blox

The System Editor
Selecting "Edit Systems" from the System Menu will bring up the System Editor window:

www.forex-warex.com

Trading Blox Builder's Guide70

© 2013, Trading Blox, LLC. All rights reserved.

New System
You can create new systems and delete systems using the system editor.

You build systems by selecting a system on the left, and adding Blox from the available blox list on the
right.

Some of the lists accept multiple Blox and some lists can accept only one Block. The Portfolio Manager,
the Risk Manager, and the Money Manager can accept only one Block per system. The Entry Block
and Exit Block can accept multiple Blox per system. The reason for this is that you may want to have
multiple entry/exit ideas executing at the same time.

Copy System
Select the system to copy, press the copy system button, and enter a new name.

Rename System
Select the system to rename, press the rename system button, and enter a new name.

Delete Systems
Caution: If you delete a systems, you cannot recover the system other than to recreate it. The good
news is that since a system is only a collection of Blox, recreating the system is as simple as creating a
new system and dragging the required Blox into the system. It is still good practice to back up your
systems on a regular basis. The systems are stored in a folder called "Systems" in your Trading Blox
folder.

If a System contains a Block of type that can only have one Block, you must remove the Block before

www.forex-warex.com

Part 2 – Trading Blox Architecture 71

© 2013, Trading Blox, LLC. All rights reserved.

adding a new one. A system can have multiple Entry and Exit Blocks.

To delete a Block from the system, select the System, select the Block within the System, and click
"Remove Block from System" You will only be deleting this block from the selected system. You will not
be deleting this block from your list of available blocks.

The Blox required for a system to be able to trade are Entry Signals, Exit Signals, and Money
Management. The Entry and Exit Block need to call the Broker object to enter and exit trades, and the
Money Manager Block needs to set the trade quantity for each trade. You can use the Basic Money
Manager to get started quickly.

After you have modified a System (changed, added, or deleted the Blox contained in the System) click
the OK button to save and exit, or click Cancel to cancel all changes. To edit a Block or view the code,
double click on the block name. This will bring you directly to the editor with that Block selected.

Preview
This button will open a printable listing of the system, included blox, scripts, parameters, indicators, etc.

Export and Encrypt System
This button will export the system and attached blox to a special encrypted file. It will be put in the Export
folder, which will be opened. You can then send this file to another Trading Blox user. They will be able
to use and test with the system, change parameters, etc, but will not be able to view or edit the system
or blox.

To use one of these exported systems, put the .tbz file in your Import folder before starting up Trading
Blox.

Note: Be sure that the name of the System and the name of all Blox in the system are unique. We
recommend that you use your name, or some other unique identifier, in the blox and system names. In
this way, they will not conflict with other blox or systems that may already be in an environment prior to
importing the encrypted system.

Import System
If someone sends you an encrypted system, a .tbz file, you place that in your Import folder. When you
startup Trading Blox, this system will be listed and available for testing, but you will not be able to view or
edit the system or the blox.

Add
Use this button, or a right click, to add a block to a system.

Remove
Use this button, or right click, to remove a block from a system.

Edit
Use this button to edit a block in the Blox Editor.

Edit Block
Select a block, and click on this button to edit the block in the Blox Editor. Same function as the Edit
button in the middle.

Delete Block
Select a block, and click on this button to delete the block from the system and delete the file as well.
Blox cannot be delete if they are in a system. Use with caution as blox cannot be recovered once
deleted.

www.forex-warex.com

Trading Blox Builder's Guide72

© 2013, Trading Blox, LLC. All rights reserved.

References
Select a block, and click on this button to see a list of system references. All the systems the block is in
will be listed.

Global Suite Systems
If the system name is the same as a suite, it will be a global suite system. This system allows blox to be
attached directly to the suite, and have access to data from all systems. The global suite system scripts
run after all the system scripts of same name run.

Scripts available for use in a global suite system:
Before Simulation, Before Test, After Trading Day (access to final test equity), After Test, After
Simulation. These scripts have no system object context.
Entry Order Filled, Exit Order Filled, Can Add Unit, Can Fill Order -- note that these order scripts run for
all orders placed or filled regardless of originating block or system. The scripts also have access to the
system, instrument, and order object from the block in which the order was placed or filled.

1.2 Working with Blox

You can create, delete, and edit Blox from the Blox menu. If you edit a Block, that will change the
behavior of all the systems that use that Block. This is a very powerful feature since you can have
multiple systems that use a particular style Money Manager. And when you update or improve that
Money Manager it will improve all the systems that use that Block.

Each Block is entirely independent. The reason for this is so you can mix and match Blox in other
systems, and trade or sell them to others. You can create a Risk Manager Block, and drag and drop it
into any one of your systems to see what sort of difference it makes. You can also share or sell these
Blox with others without any modifications required.

Each Block is made up of multiple Scripts. These Scripts contain the actual code that tells Trading Blox
what to do. Each Script can have its own local variables, procedures, and functions. Local variables are
only available to that Script. In addition, local variables are undefined at the beginning of a script, and
should be reset to some known value at the top of the script before being used.

In addition to local variables, there are Block variables available to scripts in a Block. These include:
Block Global's, Instrument Global's, Parameters, and Indicators.
The Scope determines if these variables, parameters and indicators are available only to the Block,
System, or Test. Simulation scope is Test Scope but retains values throughout the simulation.

www.forex-warex.com

Part 2 – Trading Blox Architecture 73

© 2013, Trading Blox, LLC. All rights reserved.

You can view, create, or edit Blox by clicking on the Blox menu item from the Edit menu:

This will bring up the Blox Editor:

www.forex-warex.com

Trading Blox Builder's Guide74

© 2013, Trading Blox, LLC. All rights reserved.

For the new and experienced user alike, it is prudent to make a copy of a built-in blox before you edit
them. This serves several purposes:

A new installation or update/upgrade (new version, etc.) will replace all Blox and Systems that came
with the product, replacing your editing if the names are the same.
It is always good to have a backup in case you want to return to the original.

Select a block on the left and right click to select copy or new.

If you click "New" this dialog comes up:

The types are explained in the following sections.

If you click "Copy" will copy the Block and bring up a dialog for the new name and new group.

www.forex-warex.com

Андрей
tr-software-download

Part 2 – Trading Blox Architecture 75

© 2013, Trading Blox, LLC. All rights reserved.

Once you have your new Block, you can edit the different scripts by clicking on them. You can copy
code from other systems by using Control - c and Control - v. Starting from scratch as a beginner if
you have no programming experience can seem daunting. We suggest you look at other simple Blox
(such as the MACD or Dual Moving Average) to get a feel for the syntax.

Scripts and block items such as parameters variables, and indicators can be copied, pasted, deleted, or
moved up and down. Right click on an item to see the menu selection.

You can add new scripts to a block, such as adding a Can Fill Orders script to an Entry Block. You can
also add new custom scripts which can act as custom functions.

1.3 Working with Scripts

The following is a chart showing the most basic Blox and associated scripts. Each script is called only
under certain circumstances. For each script a mark shows whether the script is called every day, for
each instrument, or for each position. For more detail, see the Simulation Loop.

Block Type Script Type Day Instrumen
t

Position Called When

Entry

Entry Orders start of day

Exit

Exit Orders start of day

Money Manager

Unit Size called by broker only when an order is filled

You can build most systems using only these Block Types and this limited very set of scripts. After you
have some experience with Trading Blox Builder you may want to experiment with some of the
Intermediate Scripts.

Scripts are created and edited in the Block Editor. You access the Block Editor by clicking on the Blox
menu item in the Edit menu:

www.forex-warex.com

Trading Blox Builder's Guide76

© 2013, Trading Blox, LLC. All rights reserved.

This will bring up the Block Editor:

The Blox and Groups area lists all the Trading Blox available. The Script area shows all the scripts
currently in the selected block. If there is code associated with a particular Block's script, that script will
be drawn in Black text and Blod. If a script is empty it will be dark gray. If you are examining a new
system you can easily tell which scripts have been used by the Blox in that system by looking at the
color of the scripts in the list.

The Blox Items area shows all the variables, parameters and indicators used by a particular block. For
more information on Block Permanent Variables, and Instrument Permanent Variables, see the
Variables Reference section. For more information on Parameters and Indicators see their respective
reference sections: Parameter Reference and Indicator Reference.

You can create a new variable, parameter, or indicator by selecting the appropriate type and selecting

www.forex-warex.com

Part 2 – Trading Blox Architecture 77

© 2013, Trading Blox, LLC. All rights reserved.

new from the menu or right click, or by double-clicking on the type itself in the list.

To change the values associated with a variable, parameter, or indicator you can double-click that item
directly or select edit from the menu.

The order of items in the list determines their order in the User Interface that gets generated as well as
the order of processing for calculated indicators. To change a script's or item's position, select that item
and then use the Move Up or Move Down menu item.

www.forex-warex.com

Trading Blox Builder's Guide78

© 2013, Trading Blox, LLC. All rights reserved.

Basic Scripts

The following table shows an intermediate view of the scripts available to the most common Block Types:

Block Type Script Type Day Instrument Position Called When

Entry

Before Simulation start of
simulation

Before Test start of test

Before Trading
Day

start of day

Entry Orders start of day

After Trading Day end of day

After Instrument
Day

end of day

After Test end of test

After Simulation end of
simulation

Exit

Before Simulation start of
simulation

Before Test start of test

Before Trading
Day

start of day

Exit Orders start of day

Adjust Stops end of day

After Trading Day end of day

After Instrument
Day

end of day

After Test end of test

After Simulation end of
simulation

Money
Manager

Unit Size called by broker when placing new order

You can build very complex systems using only these Block Types and this limited set of scripts.

After you have explored these scripts and their use in building new Trading Blox, you can explore the
full set of scripts described in the Script Reference.

www.forex-warex.com

Part 2 – Trading Blox Architecture 79

© 2013, Trading Blox, LLC. All rights reserved.

Section 2 – Process Flow

It helps to think of Trading Blox in terms of a process flow where the individual Trading Blox are part of
a larger process which determines which markets to enter and when to exit positions, the system.

Starting with the entire portfolio of available markets, the Portfolio Manager Block filters those markets
to determine which ones are available for trading on a given day, the Entry Blox create entry orders
when the systems entry conditions have been met. Once an entry order has been created, the Risk
Manager Block determines whether or not a particular order should be taken by assessing its affect on
overall risk. If the Risk Manager Block determines the trade should be taken, the Money Manager
Block looks at entry risk and other market factors to determine the size of the order (i.e. number of
shares or contracts).

Orders that result in fills based on the subsequent market pricing will result in simulated positions. For
each market that has a position on a given day, Trading Blox calls the Exit Blox to create potential exit
orders. The Risk Manager Block is also given a chance to reduce position size or change stops each
day in response to overall market risk.

www.forex-warex.com

Trading Blox Builder's Guide80

© 2013, Trading Blox, LLC. All rights reserved.

Section 3 – Simulation Loop

A Trading Blox Builder simulation emulates actual trading as closely as possible. In order to create
positions, you must enter orders with the broker object. Trading Blox Builder will determine if those
orders would have been filled based on the data for the instruments for those orders.

One thing to remember is that Trading Blox Builder helps keep you out of trouble by only allowing
access to data you would really have for making trading decisions. For example, before the markets
open when entering orders, the instrument' s current data is for the previous trading day. This is what
happens in real life, you don't have access to today's data until the end of the day.

This has implications for the current dates of the instrument and test objects.

Each day before trading begins the test object date is set to the current date while the instrument's
date is still set to the previous trading day's date. For example, on a Monday the test date might be
2006-04-10 while the instrument's date might be 2006-04-07 (the previous Friday).

The comprehensive simulation loop is described in the script reference section.

www.forex-warex.com

Part 2 – Trading Blox Architecture 81

© 2013, Trading Blox, LLC. All rights reserved.

Section 4 – Comprehensive Simulation Loop

If you find yourself asking, "When do scripts get executed?" the following rather complicated section
shows exactly the algorithm used by Trading Blox Builder during a simulation. This is what we refer to
as the "Simulation Loop".

When running a test, Trading Blox Builder will call scripts according to the algorithm defined below.

One thing to remember is that Trading Blox Builder helps keep you out of trouble by only allowing
access to data you would really have for making trading decisions. For example, before the markets
open when entering orders, the instrument' s current data is for the previous trading day. This is what
happens in real life, you don't have access to today's data until the end of the day.

This has implications for the current dates of the instrument and test objects.

Each day before trading begins the test object date is set to the current date while the instrument's
date is still set to the previous trading day's date. For example, on a Monday the test date might be
2006-04-10 while the instrument's date might be 2006-04-07 (the previous Friday).

After all the orders for the day have been entered and just before Trading Blox Builder starts to
process orders to see if they have been filled, Trading Blox Builder moves the instrument's date to
match the current date if there is data in the instrument for this day.

The test runs from the first real trading day after the start date of the test (test.currentDay = 1) to the
end date of the test, for all weekdays.

Scripts specific to instruments like entry and exit are not run for an instrument on holidays or other
days without data

Scripts that are not instrument specific, or require input from all instruments, run on all weekdays

Lines listed in red describe actions that Trading Blox Builder performs that either affect or rely on
actions performed by scripts.

Multiple scripts of the same type, in different blox, will run in Alphabetical Order based on the block
name (case sensitive) always. So if there are 10 blox each with a Before Trading Day script, the
scripts will run in alphabetical order according to the block name.

Simulation Loop

for (each block in all systems)
 call Before Simulation script
next (block)

for (each test (parameter step) in the simulation)

 setup parameters and reset variables to default

 for (each block in all systems)
 call Before Test script
 next (block)

 for (each day in the test)

www.forex-warex.com

Trading Blox Builder's Guide82

© 2013, Trading Blox, LLC. All rights reserved.

 Set test.currentdate = test date and test.currenttime = first testing time
 Set instrument.date and instrument.time = the date/time of the bar prior to the test date/time

 call Before Trading Day script for the Global Suite System, if available.

 for (each system)

 for (each instrument in the portfolio that is primed)
 call Rank Instruments script

 Sort the instruments by long and short ranking

 for (each instrument in the portfolio that is primed)
 call Filter Portfolio script

 for (each block in system)
 call Before Trading Day script
 for (each instrument in the portfolio that is primed)
 call Before Instrument Day

 next (system)

 Intra-day loop start

 for (each system)
call Before Bar script

 next (system)

 for (each system place all the orders with the broker)
 for (each instrument in the portfolio that is primed and has trade data on the trading date/
time)
 for (each entry/exit block in system)
 call Exit Orders script only if there is a position
 call Entry Orders script every time
 call Unit Size script when order is created by broker object
 call Can Add Unit script to check if trade is allowed
 next (system)

 call Before Order Execution script for the Global Suite System, if available.
 for (each system)

call Before Order Execution script
 next (system)

 Set instrument.date = test date and instrument.time = test.time for all instruments in system
portfolio
 After this point there is full access to instrument data for test date/time

 for (each system process the orders and fill based on actual market activity)
 for (each instrument in the portfolio that is primed and has trade data on the trading date/
time)
 call Update Indicators scripts

 for (each on-open exit order that has been created by the broker object)
 if order is filled based on price bar data
 call Can Fill Order to see if the order can be filled

www.forex-warex.com

Part 2 – Trading Blox Architecture 83

© 2013, Trading Blox, LLC. All rights reserved.

 if filled call Exit Order Filled

 Insert Actual Broker Positions for "Open" execution type if required

 for (each on-open entry order that has been created by the broker object.)
 if order is filled based on price bar data
 call Can Fill Order to see if the order can be filled
 if filled call Entry Order Filled

 for (each Entry Block in the system)
 for (each instrument in the portfolio that is primed and has trade data on the trading date)
 call After Instrument Open script if present

 for (each stop or limit exit order that has been created by the broker object)
 if order is filled based on price bar data
 call Can Fill Order to see if the order can be filled
 if filled call Exit Order Filled

 Insert Actual Broker Positions for "Bar" execution type if required

 for (each stop or limit entry order that has been created by the broker object.)
 if order is filled based on price bar data
 call Can Fill Order to see if the order can be filled
 if filled call Entry Order Filled

 for (each on-close exit order that has been created by the broker object)
 if order is filled based on price bar data
 call Can Fill Order to see if the order can be filled
 if filled call Exit Order Filled

 Insert Actual Broker Positions for "Close" execution type if required

 for (each on-close entry order that has been created by the broker object.)
 if order is filled based on price bar data
 call Can Fill Order to see if the order can be filled
 if filled call Entry Order Filled

 Update Equity and Risk Statistics for system

 next (system fill process)

 for (each system)
call After Bar script

 next (system)

 Intra-day loop end -- increment date/time by test.timeIncrement and loop until day is finished

 for (each system do after daily trading)

 for (each instrument in the portfolio with an open position)
 for (each block in system)
 call Adjust Stops

 call Initialize Risk Management

www.forex-warex.com

Trading Blox Builder's Guide84

© 2013, Trading Blox, LLC. All rights reserved.

 for (each instrument in the portfolio with an open position)
 call Compute Instrument Risk

 call Compute Risk Adjustments

 for (each instrument in the portfolio with an open position)
 call Adjust Instrument Risk

 Update Equity and Risk Statistics for system again

 for (each block in the system)
 for (each instrument in the portfolio that is primed)
 call After Instrument Day
 call After Trading Day

 next (system)

 call After Trading Day for the Global Suite System

 Update Equity and Risk Statistics for test
 Compute end-of-day, month, and year statistics as appropriate for all systems and test

 next (day in test)

 Closeout open positions on the close of the last day if not generating orders

 for (each block in all systems)
 call After Test script

 if generating orders
 Generate Orders

next (test in simulation)

for (each block in all systems)
 call After Simulation script

www.forex-warex.com

Blox Module Reference

Part

III

www.forex-warex.com

Trading Blox Builder's Guide86

© 2013, Trading Blox, LLC. All rights reserved.

Part 3 – Blox Module Reference

Blox Modules

Blox are system modules that encapsulate trading ideas. Most of the Blox are self-contained parts of
a trading system designed to be connected with other Blox as a component part of a trading system
method. Some Blox can access data outside of their module, and outside of their system when their
scope settings are set for external access.

The basic components of a trading idea are:

Parameters - used by indicators to determine their specific computation result, for example: the
number of days in a moving average. Not all Blox require parameters when the numerical basis
for internal calculations is coded into the scripted code.

Indicators - used by the rules as indicators of market conditions, moving averages, RSI, ADX,
etc. Many indicators are available within the Indicator section of a Blox. Those not available in
that area can be created by entering the source code required for an indicator calculation result.

Rules - used to determine when to enter or exit; how much to buy or sell, or how much risk is
too much, buy on moving average crossover, what instruments to allow and other ideas. A rule
can be as simple as Buy If RSI > 55 etc.

By encapsulating trading ideas into a stand-alone Blox module, a package is created that can easily
be linked to one or more systems that need the trading idea contained within the Blox. Blox are
trading objects, and while these objects only need to be created once, they can be many times by
other systems to simplify the creation of different system methods.

Trading Blox:
Trading Blox Builder includes the following Blox:

Script Name: Description:

Entry responsible for creating entry orders

Exit responsible for creating orders to exit existing positions

Portfolio Manager used to filter the instruments available to the system

Money Manager used to set the size of a trade for position sizing

Risk Manager used for filtering entry trades based on risk thresholds,
adjusting stops, and reducing or exiting positions if
necessary to reduce overall portfolio risk

Auxiliary used to create custom indicators and statistics

www.forex-warex.com

Part 3 – Blox Module Reference 87

© 2013, Trading Blox, LLC. All rights reserved.

Section 1 – Blox Types

Enter topic text here.

www.forex-warex.com

Trading Blox Builder's Guide88

© 2013, Trading Blox, LLC. All rights reserved.

1.1 Portfolio Manager

The Portfolio Manager is used to filter the instruments available to the system. This is analogous to a
screen for stock trading. The purpose of the Portfolio Manager block is to indicate to the system which
instruments are to traded on a particular day. If you want all instruments included, then don't use a
Portfolio Manager block. You can also use this to set whether an instrument is allowed to trade just
long, just short, or both. The built-in Trade Direction Portfolio Manager does just this.

First the Rank Instruments script is called once for each instrument. This allows you to use the
Ranking Functions of the instrument Trading Object (i.e. instrument.SetLongRankingValue
 and instrument.SetShortRankingValue) to set the value which will be used by Trading Blox
to rank the various instruments.

Then Trading Blox sorts and ranks each instrument based on the ranking value provided by the Rank
Instruments script. The long ranking value is sorted highest to lowest, while the short ranking value is
sorted lowest to highest. The respective rank is put in the Ranking Properties.

Finally Filter Portfolio is called once for each instrument so you can use appropriate Instrument Trade
Control Functions like instrument.AllowAllTrades or instrument.DenyAllTrades as
necessary based on the current instrument rank.

Note that if there is no scripting code in the Filter Portfolio script, then the ranking will not take place.
Some code in the Filter Portfolio script is required in order for the ranking to take place, and the rank
to be determined and defined.

See Also
Ranking Properties
Ranking Functions
Trade Control Properties
Trade Control Functions

www.forex-warex.com

Part 3 – Blox Module Reference 89

© 2013, Trading Blox, LLC. All rights reserved.

1.2 Entry

The Entry Block is responsible for creating entry orders or orders to enter a new position.

NOTE: Scripts shown as instrument scripts are not run on holidays or other days where there is no
instrument data.

www.forex-warex.com

Trading Blox Builder's Guide90

© 2013, Trading Blox, LLC. All rights reserved.

1.3 Exit

The Exit Block is responsible for creating orders to exit existing positions. It runs only when the
instrument has a position of LONG or SHORT.

www.forex-warex.com

Part 3 – Blox Module Reference 91

© 2013, Trading Blox, LLC. All rights reserved.

1.4 Money Manager

The Money Manager Block is used to set the size of a trade for position sizing. It includes the Unit
Size script.

Note that the Unit Size script can be Added to any block if an integrated money manager is desired.

www.forex-warex.com

Trading Blox Builder's Guide92

© 2013, Trading Blox, LLC. All rights reserved.

1.5 Risk Manager

A Risk Manager block is used for filtering entry trades based on risk thresholds, adjusting stops, and
reducing or exiting positions if necessary to reduce overall portfolio risk. It includes the following
scripts:

Block Type Script Type Day Instrument Position Called
When

Risk Manager

Before Test start of test

Initialize Risk
Management

end of day

Compute Instrument Risk end of day

Compute Risk Adjustment end of day

Adjust Instrument Risk end of day

Can Add Unit called by broker when for entry orders

Can Fill Order called as order is about to be filled

NOTE: As indicated above, the instrument-specific scripts associated with the Risk Manager loop over
instruments with existing positions. They do not loop over instruments that are out of the market.

The Can Add Unit and Can Fill Orders scripts can be added to any block. In this way multiple blocks
can process these scripts to determine if an order can be placed or filled.

www.forex-warex.com

Part 3 – Blox Module Reference 93

© 2013, Trading Blox, LLC. All rights reserved.

1.6 Auxiliary

Auxiliary Blox can be used to create custom indicators or statistics. An Auxiliary block might have the
Update Indicators script, or perhaps other scripts like the Can Add scripts or Before/After trading
scripts.

www.forex-warex.com

Trading Blox Builder's Guide94

© 2013, Trading Blox, LLC. All rights reserved.

Section 2 – Blox Script Access

When a new block module is created there is an option to include additional default scripts in addition
to the required script sections that are required in the Block-Type selected:

This next table provides the matrix of the required block modules, and the script names of added
default scripts. Adding more scripts to a module is easy and often is required. However, if you add a
defining block script to a module it is likely to have additional affects not intended if the added script is
a defining script for the Portfolio Manager, Money Manager and Risk Manager.

Legend: Description:

www.forex-warex.com

Part 3 – Blox Module Reference 95

© 2013, Trading Blox, LLC. All rights reserved.

Cells where this is displayed locate the script names that define the type of
module.

Script name section added when the "Include Default Scripts" option is
enabled.

Can Fill Order scripts only execute when either an entry has been filled in
the market, and when an exit order has closed an active position, or any of
the position's unit segments.

Custom script execute when their names are called using the Script Object's
Execute function

Intraday script section executes for each intraday record.

www.forex-warex.com

Trading Blox Builder's Guide96

© 2013, Trading Blox, LLC. All rights reserved.

Section 3 – Blox Script Timing

Table on the left shows all the
Trading Blox module scripts.

Each column descriptions shows
the details of how often each script
is executed for each of the script
names.

Only script sections with Trading
Blox Basic statements will execute.
Script that are blank are not
executed.

Order number listed to the left of
each script name is a relative
indication of the order in which the
scripts might execute most often.

Scripts with a value other than a
blank cell, or a Y have exceptions
to when they will execute.

Each exception is describe in the
legend at the bottom of the table.

Legend: Execution Description:

E-1 Unit Size and Can Add Unit scripts will only execute after a Broker Object
function call that generates an order to enter the market with a new position or a
new unit. Only new entry orders pass through these script sections. See
order.isEntry

E-2 Entry Order Filled scripts only execute after the Can Fill Order script section
completed its execution and allowed the order to continue, and when an entry
order has filled in the market. See order.continueProcessing

EX-1 Can Fill Order scripts only execute when either an entry has been filled in the
market, or when an exit order has closed an active position or any of a
position's unit segments.

X-1 Exit Orders only execute when there is an active instrument position, and it
only executes when the instrument with the active position is sequenced into
context.

X-2 Exit Order Filled scripts only execute after the Can Fill Order script section
has completed its execution and allowed the order to continue, and when an

www.forex-warex.com

Part 3 – Blox Module Reference 97

© 2013, Trading Blox, LLC. All rights reserved.

active position or any of its units have been closed.

X-3 Adjust Stops scripts executes when there is an open position ahead of the risk
scripts so that risk information used can be collected and changes can be
implemented.

Custom
Scripts

<Custom-name-scripts> only execute when called. They can be called from
any another script, standard or custom, and when they complete their execution
they return to line in the script from which they were called.

Links:

order.continueProcessing, order.isEntry, System Object

See Also:

Script Section Type Details, Global Script Timing Table

www.forex-warex.com

Trading Blox Builder's Guide98

© 2013, Trading Blox, LLC. All rights reserved.

Section 4 – Global Script Timing

Trading Blox Suites support simultaneous testing of multiple systems so the overall strategy can include
multiple trading methods on the same or different classes of portfolios with the same or different
instruments. Suites with one or more Systems will each contain a collection of Blox modules. Each
block in a system has a purpose, like Portfolio Management, Entry and Exit signals, Money
Management, Risk Management, and Auxiliary blox used to support a special indicator, custom
function, reporting method or any other idea useful to a system's operation.

Within each blox are one of more script section, and some scripts can have some of the same script
names as other modules in the system. Scripts are executed in a controlled sequence across all the
systems. Scripts within a system with the same name are executed in the order in which they are
listed in the System Editor blox list in the Script Section Type Details topic. Script types in the others
systems in a suite will execute the same script names in the order in which the system was added to
the suite.

Suites can also contain a Global System Scripts (GSS) when the name of the system is an identical
match to the Suite's name. Global System won't be allowed to execute all the scripts that any of the
blox scripts can execute. Instead, a Global System will only execute the scripts that are useful for
managing or adjusting the operation of the standard scripts in the suite. Table shown below list the
types of scripts that can be used with a Global System.

Parameters for each system in a suite are displayed in a separate system name tab. Each selected
tab only shows the parameters for the selected system. Parameters for Global Systems are display at
the bottom of the Global Settings tab just after the Equity Manager parameters.

Script Sequencing:
System index values determine the order in which the same name scripts in each system are
executed. For example, the Before Test script in the system indexed at 1 will always execute ahead of
the Before Test of the system indexed at 2. This logic will hold for the remaining systems in the suite
until there are no more system index values.

Suites that include GSS system modules will align execution with their matching system script names.
GSS scripts will either execute ahead or after the system scripts according to the execution placement
shown in the following table. Knowing which GSS script names execute ahead or after the system
scripts is necessary to understand how they can be used to gather or send information to or between
systems.

www.forex-warex.com

Part 3 – Blox Module Reference 99

© 2013, Trading Blox, LLC. All rights reserved.

Global & System Script Execution Timing

All the system in suite can access other systems using the test.SetAlternateSystem function. When a
module's script has access to another system it can access information in that systems to obtain and
provide information.

Links:

System Object, Test Miscellaneous

See Also:

Blox Script Access, Blox Script Timing, Script Section Type Details

www.forex-warex.com

Trading Blox Builder's Guide100

© 2013, Trading Blox, LLC. All rights reserved.

www.forex-warex.com

Part 3 – Blox Module Reference 101

© 2013, Trading Blox, LLC. All rights reserved.

Section 5 – Script Section Type Details

Trading Blox assigns the blox Module-Type name based upon the name of some scripts contained in
the blox. Type-Classifying scripts are used because those script names are recommended for
supporting how various methods are placed to support how the system operates. Some script names
are only executed when position is active, or when a broker object statement is executed.

System Blox
Type:

Blox
Allowed:

Type Class Scripts (at least one

required):

Portfolio
Manager

1 Rank Instruments
Filter Portfolio

Entry No Limit Entry Orders

Exit No Limit Exit Orders

Money
Manager

1 Unit Size

Risk Manager 1 Initialize Risk Manager
Compute Instrument Risk
Compute Risk Adjustments
Adjust Instrument Risk

Auxiliary No Limit Any Script Not Listed Above

Some modules can contain some of the same scripts as other
modules in the system. Scripts with the same name will be execute at
the same time but the order in which they execute will be based upon
the order in which the blox is listed in the System Editor blox listing.

In the Blox Type sections shown on the left some of the modules
shown in the sections have some of the same type script sections.
When these scripts are executed their name position in the type
section window will determine the order in which these same type
name scripts are executed.

For example, in the Exit section shown in the image on the left, there
are two blox names listed. Chandelier Exit, a progressive protective
exit price module, and Turtle Entry Exit R-Labels, the Turtle Entry Exit
standard Exit Order section for protecting and exiting positions.
When this system execute, the order of Exit Orders in each of the
two blox modules shown will happen so the Chandelier Exit Exit
Orders script section will execute ahead of the Turtle Entry Exit Exit
Orders section.

To change the order in which a script section with the same names is
executed, the name of the blox modules must be changed so as to
change how its ascending alphabetically sorted position appears in
the type section.

Modules in all of the script section in which more than module of that
type are allowed to be placed within a system will follow the same
alphabetical blox name order.

www.forex-warex.com

Trading Blox Builder's Guide102

© 2013, Trading Blox, LLC. All rights reserved.

www.forex-warex.com

Part 3 – Blox Module Reference 103

© 2013, Trading Blox, LLC. All rights reserved.

Section 6 – Scripts Common to Many Blox

Block Type Script Type Bar Day Instrume
nt

Positio
n

Called When

Entry

Before Simulation start of simulation

Before Test start of test

Before Trading
Day

start of day

Before Instrument
Day

before each instrument
day

Before Bar before each intraday bar

After Instrument
Open

after open

Before Order
Execution

before the orders are
executed in the market
and filled or killed

After Bar after each intraday bar

After Instrument
Day

after each instrument day

Adjust Stops for each position

After Trading Day end of day

After Test end of test

After Simulation end of simulation

NOTE: Scripts shown as instrument scripts above are not run on holidays or other days where there is
no instrument data. Scripts that are instrument independent are run every weekday regardless of
holidays.

www.forex-warex.com

Trading Blox Builder's Guide104

© 2013, Trading Blox, LLC. All rights reserved.

Section 7 – Script Section Descriptions

All the Trading Blox script sections are listed in this table. Each script section provides execution that
is timed to provide access to data at a specific phase of the Simulation Loop processing. Some
script sections are only executed under specific circumstances and when called by other scripts or
functions.

For example, Exit Orders, and Adjust Stops are only executed when there the
instrument.position property shows a Long or a Short position is active. Before Instrument
Day and After Instrument Day scripts are only executed when there is a data record available for the
date being processed. See Blox Script Timing for more information about script timing.

Trading Blox Script Sections:

Script Name: Description:

Before Simulation

Before Test

Rank Instruments

Filter Portfolio

Before Trading Day

Before Instrument Day

Before Bar

Exit Orders

Entry Orders

Unit Size

Can Add Unit

Before Order Execution

Update Indicators

Can Fill order

Exit Order Filled

Entry Order Filled

After Instrument Open

After Bar

Adjust Stops

Initialize Risk Management

Compute Instrument Risk

Compute Risk Adjustment

Adjust Instrument Risk

After Instrument Day

After Trading Day

After Test

After Simulation

www.forex-warex.com

Part 3 – Blox Module Reference 105

© 2013, Trading Blox, LLC. All rights reserved.

For further information on a specific block type or block script click on block type or script type in the
lists below. Some of the scripts are Scripts Common to Many Blocks. A general description of each
of these Common Scripts follows, however in some cases the descriptions in the Blox Reference
section for each block type will have information specific to that block type if applicable.

www.forex-warex.com

Trading Blox Builder's Guide106

© 2013, Trading Blox, LLC. All rights reserved.

7.1 Before Simulation

The Before Simulation Script is run once for a simulation, even a simulation that includes many
different parameter stepping tests. This script is often used to load external data which will be used for
every test in a multi-parameter-step simulation:

The following is an example of a Before Simulation script:

VARIABLES: instrumentCount TYPE: Integer
VARIABLES: externalFileName TYPE: String

' Get the instrument count.
instrumentCount = system.totalInstruments

' Loop initializing each instrument.
FOR index = 1 TO instrumentCount STEP 1

 ' Set the portfolio instrument.
 portfolioInstrument.LoadSymbol(index)

 ' Get the symbol for the instrument.
 externalFileName = portfolioInstrument.symbol + "_ExternalData.csv"

 ' Print out the file name.
 PRINT "Loading External File: ", externalFileName

 ' Load the external data.
 IF NOT portfolioInstrument.LoadExternalData(externalFileName
 "BetaDate", "Beta1", "Beta2") THEN
 PRINT "Could not Load External Data for ", externalFileName
 ENDIF
NEXT

This example script loads external data by looking over the system's portfolio and then loading external
files using the instrument's symbol.

This script does not have access to the test parameters, since it does not represent any one test. It is
run before the first test is initialized.

www.forex-warex.com

Part 3 – Blox Module Reference 107

© 2013, Trading Blox, LLC. All rights reserved.

7.2 Before Test

The Before Test Script is called once at the beginning of each test in a simulation. It can be used to
initialize variables used during the simulation.

This script has access to the current parameter settings for the test.

www.forex-warex.com

Trading Blox Builder's Guide108

© 2013, Trading Blox, LLC. All rights reserved.

7.3 Rank Instruments

The Rank Instruments script is used to set the long and short ranking value using the Ranking
Functions of the Instrument Trading Object. If your strategy requires a screen or 'trade only the top x
strongest' or some other type of logic that requires ranking the instruments, this is where you set the
value to be used in the sort.

Ranking Values and Instrument Ranks
There are separate long and short ranking values. Ranking values are used by Trading Blox Builder to
determine the relative ranking of each instrument. After the Rank Instruments script has been called
for each instrument in the current Portfolio, Trading Blox Builder sorts the instruments highest to lowest
using the long ranking value and then lowest to highest using the short ranking value. It then sets the
rank for each instrument based on its position after being sorted by the ranking value.

For long ranking values, the highest values will result in the lowest rank. So an instrument with a rank
of 1 represents the instrument with the highest long ranking value for that day.

For short ranking values, the lowest values will result in the lowest rank. So an instrument with a rank of
1 represents the instrument with the lowest short ranking value for that day.

This approach lets you use a single measure for both long and short trades. For example, a strength
measure would result in higher strength instrument's rated lower for long trades and lower strength
instrument's rated lower for short trades.

Example code for the Rank Instruments script:
' Set the long ranking value for this instrument
instrument.SetLongRankingValue(rsi)

www.forex-warex.com

Part 3 – Blox Module Reference 109

© 2013, Trading Blox, LLC. All rights reserved.

7.4 Filter Portfolio

This script allows you to indicate whether an instrument should be included for testing or not using the
Trade Control Functions functions of the instrument trading object. Note that if there is no scripting
code in the Filter Portfolio script, then the ranking will not take place. Some code in the Filter Portfolio
script is required in order for the ranking to take place, and the rank to be determined and defined.

You can check the longRank or shortRank in relation to a fixed rankThreshold type parameter (ie x
number of instrument).

You can also check the rank vs. the total number of instruments in the portfolio to trade only the top x
% of the instruments. This value is the system.totalInstruments property.

You can also check the rank vs. the total number of trading instruments. This value is the
system.tradingInstruments property.

Once this script is finished, it sets the system.canTradeInstruments to the total number of trading
instruments that can trade today based on this script logic.

Example
' If this instrument is in the top rankings...
IF instrument.longRank <= rankThreshold THEN

 instrument.AllowLongTrades
ENDIF

www.forex-warex.com

Trading Blox Builder's Guide110

© 2013, Trading Blox, LLC. All rights reserved.

7.5 Before Trading Day

The Before Trading Day Script is called once at the beginning of each trading day in a simulation. It
can be used to used to reset Block Permanent variables values each day or for debugging. This script
does not have access to Instrument properties or Instrument Permanent variables.

www.forex-warex.com

Андрей
tr-software-download

Part 3 – Blox Module Reference 111

© 2013, Trading Blox, LLC. All rights reserved.

7.6 Before Instrument Day

This script is called once per day for each trade record in its instrument file, before the entry and exit
orders are placed into the market. It runs for all instruments and has instrument and IPV and Indicator
access.

Use instrument.tradesOnTradeBar property when you need to know if the instrument
has a trade record for this date.

www.forex-warex.com

Trading Blox Builder's Guide112

© 2013, Trading Blox, LLC. All rights reserved.

7.7 Before Bar

www.forex-warex.com

Part 3 – Blox Module Reference 113

© 2013, Trading Blox, LLC. All rights reserved.

7.8 Exit Orders

The Exit Orders script is called once each day for each instrument that has a position. The Exit
Orders script is responsible for creating orders to exit existing positions.

The RSI Trend Exit block uses the following code in the Exit Orders script.

' ---
' Exit Position if RSI crosses Threshold
' ---

IF instrument.position = LONG AND
 relativeStrengthIndex <= exitThreshold THEN

 ' Exit the position.
 broker.ExitAllUnitsOnOpen
ENDIF

IF instrument.position = SHORT AND
 relativeStrengthIndex >= (100 - exitThreshold) THEN

 ' Exit the position.
 broker.ExitAllUnitsOnOpen
ENDIF

' ---
' Enter stop if "holdstops" is true
' ---

IF holdStops THEN

 broker.ExitAllUnitsOnStop(instrument.unitExitStop)
ENDIF

This sample script has two common features. First, a check against the open position because of the
differing logic for LONG and SHORT positions.

Second, the placing of stop orders using the instrument.unitExitStop price. You will need
logic like this if you wish to have stops which are in effect for the duration of a trade. Trading Blox
Builder requires that you place new orders for stops each day.

www.forex-warex.com

Trading Blox Builder's Guide114

© 2013, Trading Blox, LLC. All rights reserved.

7.9 Entry Orders

Called each day for each instrument at the beginning of the day. The Entry Orders script is the
recommended place for creating orders to enter new positions.

The following example Entry Orders script was taken from the Creating a New System tutorial at the
beginning of this manual:

IF (macdIndicator > 0) AND (instrument.position <> LONG) THEN

 ' Two conditions must be met - MACD above 0 and we are not long.
 ' If both are met, we enter long.
 broker.enterLongOnOpen
ENDIF

IF (macdIndicator < 0) AND (instrument.position <> SHORT) THEN

 ' If we are not short and the MACD is below 0, enter short.
 broker.enterShortOnOpen
ENDIF

This script has the broker object enter new long and short positions depending if the macdIndicator
is positive or negative.

The script has a common feature of checking for existing positions before entering orders, the check
for:

instrument.position <> LONG

and

instrument.position <> SHORT

which is part of the IF statement.

Unless you wish to add to a position and thereby create additional units for your position, you should
check if there is already a position before entering orders.

www.forex-warex.com

Part 3 – Blox Module Reference 115

© 2013, Trading Blox, LLC. All rights reserved.

7.10 Unit Size

This is script is only called when a Broker Entry Function is executed. During the execution of an
Entry-Function the Broker object will call the Unit Size script so that the logic in the attached Money
Manager module can process the Entry information.

How the order information is handled in the UNIT SIZE script can vary because different systems
require different order sizing methods. At its simplest form of Unit Sizing a quantity of contracts or
shares are added to the order's quantity property. Fixed Fractional Sizing, Account Fixed Allocation,
or any other method used to determine sizing will usually have a qualifying process in the logic to
determine if the allocation or risk expense will allow a quantity that is larger than the
instrument.roundlot value. When the quantity calculation falls below this minimum instrument
quantity for establishing an order, the order.Reject("Reason") function is executed. When
orders are rejected their instrument.symbol, instrument.date and reason for the rejection
are placed into the Trading Blox Filter.Log file. In addition the order.continueProcessing
property will be changed from it default value of TRUE to FALSE.

Orders completing their processing in UNIT SIZE are then processed in the CAN ADD UNIT script
section so that orders that are not rejected can be managed by that script section so as to determine
if the order can be sent to the brokerage for processing. Order can be filtered, adjusted and rejected
in the CAN ADD UNIT script. Order rejections in this script are handled and reported in the same
way as they are rejected in the UNIT SIZE script.

For more information on UNIT SIZE scripts review the information shown in Order Sizing.

Note:
order.continueProcessing and order.processingMessage properties will be set when
the order.SetQuantity function is called. When a quantity is set, the equity, volume,
Portfolio Manager, and Risk Manager filters are called and checked. If any of these fail, then the
status will be available at this time.

Links:

Broker, Data Properties, Entry Order Functions, Order Object, Order Sizing

See Also:

www.forex-warex.com

Trading Blox Builder's Guide116

© 2013, Trading Blox, LLC. All rights reserved.

7.11 Can Add Unit

Called by Trading Blox Builder as the result of a call to the broker statement. This script can be used to
determine if the order will be placed or not. The Can Add Unit script can be used to implement risk
limits. For example, the Turtle System's Correlation Limiter uses the Can Add Unit script to limit the
number of units which can be taken based on market correlation.

The Can Add Unit script is only called for entry orders created by calls to the Broker object in
scripting. It is not called for entries due to Actual Broker Positions.

The entire order object is available. It contains information about this potential order to be placed. See
the Order object for available properties and functions.

If multiple Can Add scripts are in a system, the order will be rejected if ANY Can Add script rejects the
order.

The following is an example of a Can Add Unit script:

 IF instrument.closelyCorrelatedLongUnits >=
maxCloselyCorrelatedUnits OR

 instrument.looselyCorrelatedLongUnits >=
maxLooselyCorrelatedUnits THEN

 order.Reject("Too Many correlated units")
 ENDIF

www.forex-warex.com

Part 3 – Blox Module Reference 117

© 2013, Trading Blox, LLC. All rights reserved.

7.12 Before Order Execution

www.forex-warex.com

Trading Blox Builder's Guide118

© 2013, Trading Blox, LLC. All rights reserved.

7.13 Update Indicators

The Update Indicators script is run for each instrument, as it is moved from one bar to the next. For
daily data this means at the beginning of the instrument day (not the test day) and for intraday data
this means at the beginning of the instrument date/time (not the test date/time).

If you update your custom indicators here the values will be available to use in all other scripts and
blox, like the Adjust Stops script, the After Instrument Day script, and of course the Entry Orders and
Exit Orders scripts.

www.forex-warex.com

Part 3 – Blox Module Reference 119

© 2013, Trading Blox, LLC. All rights reserved.

7.14 Can Fill Order

Called as part of the fill process, the Can Fill Order script let's you determine by examining the trade
day's price data, whether this order would be filled or not. This only gets called if Trading Blox has
determined that this order should be filled based on a bar's price data. You can call order.Reject to
override this determination. In addition, you can override the fill price, quantity, and stop in certain
circumstances.

The entire order object is available properties and functions. See the Order object for more
information.

If multiple Can Fill scripts are in a system, the order will be rejected if ANY Can Fill script rejects the
order.

NOTE: The following order types CANNOT be canceled:

Exit Orders placed by Trading Blox Builder to exit all open positions at the end of the test

Entries or Exits placed for Actual Broker Positions

Exit Orders placed automatically as a result of a reversal - i.e. the position is long and a new

short entry order triggers

Example
The following is a Can Fill Order script that checks for max margin.

IF order.IsEntry THEN

IF instrument.IsFuture THEN
newMarginValue = order.quantity * instrument.margin

ENDIF

IF instrument.IsStock THEN
newMarginValue = order.Quantity * instrument.close *

instrument.conversionRate * instrument.stockSplitRatio
ENDIF

IF test.totalMargin + newMarginValue > test.totalEquity THEN
order.Reject("Over the margin limit")

ENDIF
ENDIF

www.forex-warex.com

Trading Blox Builder's Guide120

© 2013, Trading Blox, LLC. All rights reserved.

7.15 Exit Order Filled

The Exit Order Filled script is called each time an exit order is filled. This script lets you perform any
calculations or take actions that depend on the fill price or fill dates for an order.

This script has full access to the Order object properties.

All scripts of this type in a System will be called each time an exit order is filled. To check if the current
block is the same as the block originating the order, use the following:

IF block.name = order.blockName THEN

www.forex-warex.com

Part 3 – Blox Module Reference 121

© 2013, Trading Blox, LLC. All rights reserved.

7.16 Entry Order Filled

The Entry Order Filled script is called each time an entry order is filled. This script lets you perform
any calculations or take actions that depend on the fill price or fill dates for an order.

The Turtle System uses this script to adjust stops for existing positions based on the slippage of an
actual fill.

This script has full access to the Order object properties.

All scripts of this type in a System will be called each time an entry order is filled. To check if the
current block is the same as the block originating the order, use the following:

IF block.name = order.blockName THEN

www.forex-warex.com

Trading Blox Builder's Guide122

© 2013, Trading Blox, LLC. All rights reserved.

7.17 After Instrument Open

WARNING: The After Instrument Open script is an advanced script that is not recommended for most
users. It is present to enable experienced system developers to write systems that have special order
processing logic based on the relationships between the open, highs and lows.

Since this script is called after the current bar is set for each instrument (see Comprehensive
Simulation Loop), the entire bar's price data is available. For this reason, it is possible to write systems
with postdictive errors using this script.

If you want to create orders which are based on a bar's open, we recommend using the
tradeDayOpen instrument property in the Entry Orders script.

www.forex-warex.com

Part 3 – Blox Module Reference 123

© 2013, Trading Blox, LLC. All rights reserved.

7.18 After Bar

www.forex-warex.com

Trading Blox Builder's Guide124

© 2013, Trading Blox, LLC. All rights reserved.

7.19 Adjust Stops

www.forex-warex.com

Part 3 – Blox Module Reference 125

© 2013, Trading Blox, LLC. All rights reserved.

7.20 Initialize Risk Management

Called once each day at the end of the day before the other Risk Manager scripts. The Initialize Risk
Management script can be used to initialize portfolio-level risk settings each day.

The Total Risk Limiter block uses this script to initialize its totalRisk variable each day:

totalRisk = 0

www.forex-warex.com

Trading Blox Builder's Guide126

© 2013, Trading Blox, LLC. All rights reserved.

7.21 Compute Instrument Risk

Called once for each instrument which has an existing position after the Initialize Risk Management
script has been called, the Compute Instrument Risk script can be used to compute per-instrument
risk and to total the risk at the portfolio level.

The Total Risk Limiter block uses this script to add up the risk for each instrument:

' Add the instrument risk to the total risk.
totalRisk = totalRisk + instrument.currentPositionRisk

www.forex-warex.com

Part 3 – Blox Module Reference 127

© 2013, Trading Blox, LLC. All rights reserved.

7.22 Compute Risk Adjustment

Called once each day after the Compute Instrument Risk script has been called for each instrument.
The Compute Risk Adjustment script can be used to calculate portfolio-level adjustments which can
be applied on a per-instrument basis in the Adjust Instrument Risk script which follows.

The Total Risk Limiter block uses this script to determine the amount that stops need to be moved or
positions need to be reduced.

VARIABLES: riskPercent TYPE: Percent

IF system.tradingEquity > 0 THEN

 ' Compute the current risk.
 riskPercent = totalRisk / system.tradingEquity

 ' If the risk is above our threshold...
 IF riskPercent > maximumRiskThreshold THEN

 reductionPercent = (riskPercent - maximumRiskThreshold) /
riskPercent

 ELSE

 reductionPercent = 0.0

 ENDIF

ELSE

 reductionPercent = 0.0

ENDIF

In this block, the maximumRiskThreshold is a parameter which defines the maximum percentage
risk for all open positions.

The reductionPercent will be used in the Adjust Instrument Risk script to reduce the position size or
move the stops.

www.forex-warex.com

Trading Blox Builder's Guide128

© 2013, Trading Blox, LLC. All rights reserved.

7.23 Adjust Instrument Risk

Called once for each instrument which has an existing position, the Adjust Instrument Risk script can
be used to adjust stops and reduce or exit positions based on portfolio-level risk as computed in the
Compute Risk Adjustment script.

The Total Risk Limiter block uses this script to move stops or reduce positions based on the
reductionPercent computed in the Compute Risk Adjustment script:

VARIABLES: quantity, reductionQuantity TYPE: Integer
VARIABLES: risk TYPE: Floating
VARIABLES: newStop TYPE: Price

' If we need to reduce risk
IF reductionPercent > 0.0 THEN

 IF reductionAlgorithm = REDUCE_POSITIONS THEN

 ' Reduce the position by this amount.
 broker.AdjustPositionOnOpen(1.0 - reductionPercent)

 ENDIF

 IF reductionAlgorithm = MOVE_STOPS THEN

 IF instrument.position = LONG THEN

 ' Adjust the stops for each unit.
 FOR index = 1 to instrument.currentPositionUnits

 ' Determine the current risk.
 risk = instrument.close -
 instrument.unitExitStop[index]

 ' Determine the stop that corresponds with
 ' the reduced risk.
 newStop = instrument.close -
 ((1 - reductionPercent) * risk)

 ' Set the new stop.
 instrument.SetExitStop(index, newStop)
 broker.ExitUnitOnStop(index, newStop)
 NEXT

 ENDIF ' Long

 IF instrument.position = SHORT THEN

 ' Adjust the stops for each unit.
 FOR index = 1 to instrument.currentPositionUnits

 ' Determine the current risk.
 risk = instrument.unitExitStop[index] -

www.forex-warex.com

Part 3 – Blox Module Reference 129

© 2013, Trading Blox, LLC. All rights reserved.

 instrument.close

 ' Determine the stop that corresponds with
 ' the reduced risk.
 newStop = instrument.close +
 ((1 - reductionPercent) * risk)

 ' Set the new stop.
 instrument.SetExitStop(index, newStop)
 broker.ExitUnitOnStop(index, newStop)
 NEXT

 ENDIF ' Short

 ENDIF ' Algorithm Move Stops

ENDIF ' There is a reduction required

www.forex-warex.com

Trading Blox Builder's Guide130

© 2013, Trading Blox, LLC. All rights reserved.

7.24 After Instrument Day

The After Instrument Day script is called once each day per instrument. This script can be used to
calculate instrument-specific variables or custom indicators at the end of each day.

www.forex-warex.com

Part 3 – Blox Module Reference 131

© 2013, Trading Blox, LLC. All rights reserved.

7.25 After Trading Day

The After Trading Day script is called once each day. This script can be used to reset values at the
end of each day. This script does not have access to instrument properties or Instrument Permanent
variables.

www.forex-warex.com

Trading Blox Builder's Guide132

© 2013, Trading Blox, LLC. All rights reserved.

7.26 After Test

The After Test script is called once at the end of each test in a simulation. It is often used to PRINT
values or to write to files at the end of a test.

www.forex-warex.com

Part 3 – Blox Module Reference 133

© 2013, Trading Blox, LLC. All rights reserved.

7.27 After Simulation

The After Simulation Script is called once at the end of an entire simulation. It is often used to PRINT
values or to write to files at the end of a test.

www.forex-warex.com

Blox Basic Language Reference

Part

IV

www.forex-warex.com

Part 4 – Blox Basic Language Reference 135

© 2013, Trading Blox, LLC. All rights reserved.

Part 4 – Blox Basic Language Reference

Blox Basic is a full-featured scripting language that lets you control a historical trading simulation
using powerful language constructs.

The following sections are included in the Blox Basic Reference:

Reference Areas: Descriptions:

Comments Methods available to annotate your scripts so they will be understandable
later.

Debugger A powerful tool to verifying your scripts are doing what you intended, and
a way to understand what must be changed when they are not working
well.

Function
Reference

A comprehensive list of all the functions built into Blox Basic

Operator
Reference

Shows the types of operators and expressions you can write in a Blox
Basic script

Statement
Reference

shows the types of statements you can write in Blox Basic

www.forex-warex.com

Trading Blox Builder's Guide136

© 2013, Trading Blox, LLC. All rights reserved.

Section 1 – Basic Keywords

Trading Blox Basic's language is based upon the use of Objects. Object are data structures that
provide property values, and methods for changing values. It also provides Sub-Routine and
Functions for modifying information in various ways.

When viewing a Basic reference you will find that Properties use a lower case character as its first
letter name reference.

Object Methods show their first letter as a upper case character for naming its method.

Sub-Routine and Functions are used without any prefix reference, and all will have a upper case first
character in their name.

Functions that return a value must be assigned to a variable, or used as a value in Print, or data
building process.

Sub-Routines create or change something, but don't return a value and be used as a stand-alone
statement.

Basic KeyWords Listing:

A complete list of all of
the Trading Blox Basic
Keywords can be
found in the file
named:
pbdll_keywords.d
at

This file is a simple
text file that will open
in any text editor like
Windows NotePad.
File is located in the
Trading Blox
installation location
shown in the image on
the right. This
example is just a
sample that has
Trading Blox installed
on the "D" drive. In
most cases the drive
location will be on the
"C" drive.

File is created
automatically by
Trading Blox so it is
always available with
all recent versions of
Trading Blox.

Trading Blox sub-directory example as seen in Windows

www.forex-warex.com

Part 4 – Blox Basic Language Reference 137

© 2013, Trading Blox, LLC. All rights reserved.

Section 2 – Colors

Selecting, applying and changing colors used on a chart, or graph is under the users control methods
described in the section below. Chart area colors can be changed so displays of indicators, bars,
trade details can be customized to meet changes to color backgrounds and grids. All plotted items
can be colored by the user, and some chart display items can change for each bar on the chart.

Plotting Instrument Permanent Variables (IPV) Series on Charts:
Instrument Permanent Variables designated as an IPV Series-Type, have the option of being
plotted on a chart.

Plotting Block Permanent Variables (BPV) Series Custom Graphs:
Block Permanent Variables that use the selection of System, Test, or Simulation Scope feature can
be plotted on a Summary Custom Graph that appears in the Trading Blox Summary Test
Results report.

Changing Colors:
Colors can be assigned and changed using the variable declaration and editing dialogs, or they
can be changed by using the ColorRGB and SetSeriesColorStyle functions.

Coloring the plotting series for both of these series is handled by accepting the color displayed in
the Plotting area on the right-side of the Variable Selection and Editing dialog, or by clicking on the
the Colored button control.

When the Colored-button is clicked a matrix table of common colors will display where any of the
colors can be selected by clicking on the colored square. An option to use a color not shown is
available by clicking on the "More Colors..." button at the bottom of the color-table. When that
button is clicked a "Custom Color Selection Dialog" appears where almost any color can be
selected or created. New colors can be assigned to the white colored areas so they are made
available later. Summary Custom Charts require the reporting option being used show it has
enabled the Custom Graph option for the simulation method being used.

Colors assigned using the series dialog options typically use the same color across the entire
plotted area. When the need to vary the color of plotting item in an IPV series, the
SetSeriesColorStyle function can be applied anytime using scripting references during
testing.

Selecting Trade Chart Preference Colors:
These preset Preferences can be used in scripting, and they can also be adjusted by users.

Trade chart Preference Default Colors:

Color Property Name: Default Color Number:

ColorBackground 14745599

ColorUpBar 37632

ColorDownBar 213

ColorUpCandle 37632

ColorDownCandle 213

ColorCrossHair 12632256

www.forex-warex.com

Trading Blox Builder's Guide138

© 2013, Trading Blox, LLC. All rights reserved.

ColorGrid 16443110

ColorLongTrade 37632

ColorShortTrade 213

ColorTradeEntry 16764057

ColorTradeExit 16751001

ColorTradeStop 14527197

ColorCustom1 0

ColorCustom2 139

ColorCustom3 16711680

ColorCustom4 16777215

User Series Array Color Control:

BEFORE TEST Script
' ~~
 ' B , G , R
ColorItem[1] = ColorRGB(0, 0,255) ' Red
ColorItem[2] = ColorRGB(255, 0, 0) ' Blue
ColorItem[3] = ColorRGB(0,255, 0) ' Green
ColorItem[4] = ColorRGB(0, 0, 0) ' Black
ColorItem[5] = ColorRGB(155,133, 49) ' Aqua
ColorItem[6] = ColorRGB(0, 0,192) ' Dark Red
ColorItem[7] = ColorRGB(212,141, 84) ' Light Blue
ColorItem[8] = ColorRGB(9,108,227) ' Orange
ColorItem[9] = ColorRGB(123,117,235) ' Pink
ColorItem[10] = ColorRGB(38, 162, 94) ' Dark Green
ColorItem[11] = ColorRGB(122, 73, 95) ' Purple
ColorItem[12] = ColorRGB(151, 72, 6) ' Brown
ColorItem[13] = ColorRGB(0,255,255) ' Yellow

' ~~

To use above series, consider this approach shown in AddLineSeries example:
Multi-Line Chart Example:

 ' Assign each system net rate change to a specific color
 plotColor = ColorItem[systemIndex]

 ' Place this system's test-date total equity percentage net change
 ' value in the chart space using the new color
 chart.AddLineSeries(AsSeries(systemEquity), elementCount, _
 alternateSystem.name, plotColor)

Trading Blox Color Selection Dialog:
All BPV Series will provide access to the Trading Blox Color Selection Dialog when the BPV
series uses a System, Test or Simulation Scope setting with a BPV numeric series.

www.forex-warex.com

Part 4 – Blox Basic Language Reference 139

© 2013, Trading Blox, LLC. All rights reserved.

To display the color selection dialog, follow the click steps in this next image:

When the "More Colors..." button is clicked the dialog in this next image will appear:

www.forex-warex.com

Trading Blox Builder's Guide140

© 2013, Trading Blox, LLC. All rights reserved.

Just about any color's RGB value can be discovered using this dialog. However, if the chart
image where this color is to be used will appear in a report generated with a HTML Browser
process that is used to create Trading Blox reports, picking a color from the Basic Color Matrix
Table will keep the colors used within the Safe-Color range that are easily reproduced using a
HTML process.

Applying the RGB, (Red, Green, Blue) values to Trading Blox's ColorRGB function, place the color
numbers using Blue, Green and Red as the first, second and third parameter locations

Script Color Assignment Examples:
' Blue Green Red
PlotColor1 = ColorRGB(255, 0, 0) ' Plot Blue Color
PlotColor2 = ColorRGB(0, 255, 0) ' Plot Green Color
PlotColor3 = ColorRGB(0, 0, 255) ' Plot Red Color

' Trade Color Preference Settings Color Numbers values
PlotColor1 = ColorCustom1 ' Use Preference ColorCustom1 Value
PlotColor2 = ColorCustom2 ' Use Preference ColorCustom2 Value
PlotColor3 = ColorCustom3 ' Use Preference ColorCustom3 Value

Free Color RGB Identification Software:
ColorPic - Free Download (External Web Site Link)

www.forex-warex.com

http://www.iconico.com/colorpic/

Part 4 – Blox Basic Language Reference 141

© 2013, Trading Blox, LLC. All rights reserved.

Link will open the default browser to the web page where this free program ColorPic software will
provide the color number of any pixel displayed on computer screen.

Links:

AddLineSeries, ColorRGB, SetSeriesColorStyle, Preference Items

www.forex-warex.com

Trading Blox Builder's Guide142

© 2013, Trading Blox, LLC. All rights reserved.

Section 3 – Constants Reference

Trading Blox Builder contains several built-in constants that can be used in scripts:

Constant Name: Constant Value:

PI 3.141592653589
79321

TRUE 1

FALSE 0

LONG 1

SHORT -1

OUT 0

SUNDAY 0

MONDAY 1

TUESDAY 2

WEDNESDAY 3

THURSDAY 4

FRIDAY 5

SATURDAY 6

UNDEFINED n/a

Using constants help to make your code easier to understand.

The UNDEFINED can be assigned to plotting series, so that the particular series value does not plot.

Contrast this code:
IF instrument.position = 1 THEN
 ' Do some Long stuff here.
ENDIF

with this code:
IF instrument.position = LONG THEN
 ' Do some Long stuff here.
ENDIF

In the following code, is it obvious what day we are referring to:
IF DayOfWeek(instrument.date) = 1 THEN
 ' Do our weekly tasks here.
ENDIF

www.forex-warex.com

Part 4 – Blox Basic Language Reference 143

© 2013, Trading Blox, LLC. All rights reserved.

How about in this code:
IF DayOfWeek(instrument.date) = MONDAY THEN
 ' Do our weekly tasks here.
ENDIF

www.forex-warex.com

Trading Blox Builder's Guide144

© 2013, Trading Blox, LLC. All rights reserved.

Section 4 – Data Groups and Types

Trading Blox Basic supports four variable Groups:

Groups: Use:

Block Permanent
(BPV)

Block Permanent Variables are common to all the script section, and are
accessible anywhere in the block module when the variables Scope is set to
Block. They can be accessible anywhere in the System, Test, or Simulation
if one of those wider Scope ranges is selected.

Various BPV Variable Types can be selected (see table below). None
except the Instrument Type is connected to a specific instrument as
Instrument Permanent variables are designed. Instead, they can accept a
value from an instrument, but the value will be accessible to all the other
instruments as the Instrument loop processes each symbol in a portfolio.

When deciding on which kind of variable to use, consider if the value in the
variable can be common to all instruments. If it can, the a BPV will be a
good choice. If it needs to be specific to a specific instrument, then select
an IPV.

Instrument Permanent
 (IPV)

Instrument Permanent variables are designed to add information to the
property information available to each portfolio symbol. In a sense they
create an additional property that can easily be assigned and accessed
through simple scripting statements.

IPV group supports a variety of variable types (see table below), and they
follow the same rules instruments observe in the various scripts were they
are given context automatically, or are required to be brought into context
through a manual process.

Select an IPV as a group choice when the information to be contained
within the variable will only pertain to that specific instrument. For example,
if you want to set a value for a signal for that instrument alone, then an IPV
is a good choice. However, if the value in a variable pertains to all of the
instruments, then a BPV is the better choice.

Parameters Parameter variables become visible in the user's menu area. They provide
methods for changing the length of a calculation, the value to be applied in a
calculation, controls that can influence which areas of a module are allowed
to function, and they can be stepped in an attempt to discover how their
variation in value influences how a system performs.

Parameters are accessible in all script sections.

Local Local variables are created in a specific script section. Their scope is
isolated to the script section in which they are declared, and are accessible
anywhere in that same script section.

When naming a Local variable ensure the same name being declared has
not been used elsewhere in the script, or in the System, Test, or Simulation
when those scope are employed in the Suite of modules.

In simple terms, only use local variable names that are unique and are only
needed in that script section.

www.forex-warex.com

Part 4 – Blox Basic Language Reference 145

© 2013, Trading Blox, LLC. All rights reserved.

Local variables are not cleared when the script section is executed. This
means to clear the value in a Local variable that can affect a statement
before the script section has assigned it a value, the variable in most cases
should be cleared.

Within these groups there are six standard variable types. One of which is a special Instrument type
that can be created as a BPV and used to access an instrument. Not all of the variable types are
available in all of the groups. To know which is available where, review the table here and review the
links associated with of the variable types and groups.

Variables available by Group and Type:

TYPE Available: Description:

Boolean P This parameter variable type can only be True or False. When True the
value is equal to 1, and it is zero when False.

Floating B, I, P Decimal numbers like 1.24 or 3.14159 which are not whole numbers

Instrument
- BPV

B Direct access to instruments is only available in the scripts that allow the
instrument object context. To access an instrument in a script where it
doesn't have context it is necessary to use this BPV type so an instrument
can be moved into context and made accessible.

Integer B, I, P Whole numbers like 1, 200, 582, -5

Money
S

Variables which hold money. Internally Money variables are stored in the
same way as a floating point variables. Money variables are printed
differently and show in the debugger with different formatting.

Percent P Default value entered must be as a decimal where 0.10. When this
parameter appears on the main screen page it will be displayed as 10%. In
calculations it will be applied as a decimal where 10% is applied as 0.10.

Price B, I Variables which hold price information. Internally Price variables are stored
in the same way as a floating point variables. Price variables are printed
according the current instrument's formatting and show in the debugger
using that format. Price variables are also unadjusted for any negative value
adjustment that may be present because of a negative price series in the
instrument's data.

Selector P This is a special type of parameter because it can be assigned a list of
words that will act as value to allow the user to modify how the scripts
operate. When the list is created, the first word phrase entered will be
assigned the value of zero. Second word phrase will be assigned the value
of 2, and each remaining word phrase will be assigned the next available
integer value until all have been assigned a value.

In operation, the use will select one of the option displayed in a drop-down
list of word phrases, or they can select the Step All option enabled when it is
enabled.

Series B, I All series or arrays store numbers and text value in a series elements. Each
element contains the value it was assigned until it is cleared. Each element
in a series is accessible, or index, by using its referenced location.

In simple terms, a series is a list or an array of elements that contain the
values of Floating numbers or String Alpha-Numeric characters.

www.forex-warex.com

Андрей
tr-software-download

Trading Blox Builder's Guide146

© 2013, Trading Blox, LLC. All rights reserved.

Auto-Indexed series are accessed are reference by the specifying the
offset value from the current bar to where that element will be located. For
example, to access yesterday's series element, use a value of 1 as the
offset amount.

Manually sized series are access an element by its count position within the
series.

Smallest value of a series is 1, and 1 is always the position location of first
element in the series. Use above information to determine if it is accessed
by offset reference, or direct location reference.

String B, I, P Characters, or combinations of characters like "Hello", "A", and
"November Soybeans."

Legend:

B = BPV
I = IPV
P = Parameter
S = Script

Note:
All Parameters, except String Parameters, can be assigned a default value.
All parameters, except String types, can step their values, and can be assigned a stepping priority value to arrange their
sequence in how they are to stepped during a test simulation.
Integer Parameters can be enable during program data priming Look-back amount calculations to prevent out of range
errors..

Notes:
Variables declared using the VARIABLES statement in any of the script section are local to that
script except when used in a Custom Script Function. Local means that script defined variables
are only accessible during the script in which they are defined. This also means you cannot
define a variable in an Entry script and then believe you can use it in the Exit script. When you
need cross script access to common variables use an IPV, or a BPV declared variable.

When script declared variables are used in a Custom Script Function, the values in the Custom
Script Function will be exposed to the values in the script that called the Custom Script Function.
This ability makes Custom Script Function flexible to use and to gain access to various script
section, but it can cause errors when the name of a script declared variable is the same as a
variable in the script that is calling the Custom Script Function.

Declaring Local variables can be handle in ways similar to what is shown in the examples that follow:

Syntax:

VARIABLES: varname1 [TYPE: type], varname2 [TYPE: type] ...

varname Name of the variable.
type Type of the variable - see table below.

Various examples to illustrate how to use a VARIABLES statement:

VARIABLES: someValue TYPE: Integer
' SomeValue was defined and can be only integer

someValue = 10 ' SomeValue is integer and contains 10
someValue = 3.15 ' SomeValue is integer and contains 3

www.forex-warex.com

Part 4 – Blox Basic Language Reference 147

© 2013, Trading Blox, LLC. All rights reserved.

VARIABLES: a TYPE: Floating
' Single VARIABLES statement

VARIABLES: a, b, c TYPE: Integer
' Three variables in single VARIABLE statement

VARIABLES: str1 TYPE: String, int1 TYPE: Integer
' Multiple variables of different types

The variable someValue should be declared with a TYPE of a Price when value displays need price
formatting:

someValue = instrument.close
someValue = instrument.high - averageTrueRange
someValue = instrument.low * 1.2
someValue = longMovingAverage (where longMovingAverage is a moving average indicator)

The variable someValue should be a Floating TYPE in the following situations:

someValue = instrument.close - instrument.close[1]
someValue = instrument.high - instrument.low
someValue = averageTrueRange

4.1 Boolean

TYPE: Description:

Boolean This parameter variable type can only be True or False. When True the
value is equal to 1, and it is zero when False.

Notes:
A Boolean variable is restricted to a binary state. This means it can only be one of two values. In
numerical terms it is either a 1 or a 0. Two Trading Blox constants are available as variable terms
to denote each of the binary state values allowed a Boolean.

Only a parameter can be declare as a Boolean type variable, but an Integer is often used to denote
a True or False condition, so an Integer can be used as a scripting value to accept the value of a
Boolean parameter, or provide a binary state process.

When a parameter is declared as a Boolean, the user will see a parameter on the Main screen
displayed with selection list option that allows the user to select either True or False. If the user
checked the "Stepping Enabled" option for the Boolean parameter, the Boolean parameter variable
will still only have two options, but Trading Blox display a third option "Step True to False" that will
enable Trading Blox to automatically step the value between True and False during a test.

Dialog Example:

www.forex-warex.com

Trading Blox Builder's Guide148

© 2013, Trading Blox, LLC. All rights reserved.

Boolean Parameter Dialog Example

Parameter Menu Example:

Boolean Parameter Menu Selection Example

Script Example:

' See Dialog Parameter Name
If TrueOrFalse = True Then
 ' When True, Do Stuff Here
Else
 ' When False, Do Stuff Here
EndIf

Links:

Constants Reference

See Also:

Data Group and Types

www.forex-warex.com

Part 4 – Blox Basic Language Reference 149

© 2013, Trading Blox, LLC. All rights reserved.

4.2 Floating

TYPE: Description:

Floating Decimal numbers like 1.24 or 3.14159 which are not whole numbers

Example:

' Floating TYPE example
VARIABLES: NumberIs TYPE: Floating

' Calculate two numbers
NumberIs = 3.364 * 1.108

' Send number results to Log Window
PRINT "NumberIs = ", NumberIs

Returns:

' Log window shows
NumberIs = 3.727312000

Links:

PRINT

See Also:

Data Group and Types

4.3 Instrument - BPV

TYPE: Description:

Instrument - BPV Direct access to instruments is only available in the scripts that allow the
instrument object context. To access an instrument in a script where it
doesn't have context it is necessary to use this BPV type so an instrument
can be moved into context and made accessible.

Notes:
Data instrument access to its properties and functions is automatic when the instrument has
context, and when the symbol is active in a script where instruments have context. Context means
the information is automatically made available when that script section is executing and the
portfolio looping brings that instrument into the script.

When other script sections are executing, Trading Blox doesn't loop instruments, but instead will on
execute scripts without instrument context once for each bar being tested. To access an
instrument the script will need to bring the instrument into context in order to gain access to its
properties and functions. To bring an instrument into context, use a BPV Type Instrument variable
as the structure where the instruments data can be copied so it can be accessed.

This table is a current list of the script section that automatically bring instruments into context
automatically, and the scripts sections where scripting code will be required to gain access to an

www.forex-warex.com

Trading Blox Builder's Guide150

© 2013, Trading Blox, LLC. All rights reserved.

instrument:

Script Instrument Access

 Automatic Access: Manual Access:

Rank Instruments
Filter Portfolio
Before Instrument Day
Exit Orders
Entry Orders
Unit Size
Can Add Unit
After Instrument Open
Update Indicators
Can Fill Order
Entry Order Filled
Can Fill Order
Exit Order Filled
Adjust Stops
Adjust Instrument Risk
After Instrument Day

Before Simulation
Before Test
Before Trading Day
Before Bar
Before Order
Execution
After Bar
Initialize Risk
Management
Compute Risk
Adjustments
After Trading Day
After Test
After Simulation

When access to instrument information isn't automatic it can be loaded into the BPV Instrument
Variable Type using the LoadSymbol function. This next example shows how all of the instruments in
the portfolio can be loaded and accessed:

Example:

' ~~~
' Example of how to bring instruments into context
' ~~~
' When Portfolio has selected instruments,...
If System.TotalInstruments > 0 Then
 ' Loop through all the instruments in the portfolio
 For x = 1 to System.TotalInstruments Step 1
 ' Load instrument at portfolio's index position of ' x '
 ' and place the information into the BPV instrument ' Mkt '
 ' When function executes, it will assign a 1 if the
 ' instrument accee is successful, or a 0 when access fails
 iLoadOK = Mkt.LoadSymbol(x)

 ' if iLoadOK is TRUE (greater than 1)
 If iLoadOK Then
 ' Display the instruments symbol in the Log Window
 Print "Mkt.Symbol ", Mkt.Symbol
 EndIf
 Next ' x
EndIf ' System.TotalInstruments > 0

Returns:

Mkt.Symbol CL2

In the above example a generic name of 'Mkt' was assigned to the BPV instrument. When an
instrument access needs to be available through out a simulation, a unique name can be given to a

www.forex-warex.com

Part 4 – Blox Basic Language Reference 151

© 2013, Trading Blox, LLC. All rights reserved.

BPV instrument so it cancalled using that unique name and thus be available without having to bring it
into context with a loading script. Consider this simple Grain market example:

Example:

' ~~~
' Load three grain instruments into grain named BPV Instruments.
' ~~~
' Load Corn into BPV Instrument Corn
If Corn.LoadSymbol("C2") = TRUE THEN Print "Corn Market Loaded"

' Load Soybeans into BPV Instrument Soybeans
If Soybeans.LoadSymbol("S2") = TRUE THEN Print "Soybean Market Loaded"

' Load Wheat into BPV Instrument Wheat
If Wheat.LoadSymbol("W") = TRUE THEN Print "Wheat Market Loaded"

Returns:

Corn Market Loaded
Soybean Market Loaded
Wheat Market Loaded

In the above example each of the grain markets can be called in any of the script sections without
having to load them where they are not normally in the context of that script. Calling them in any of the
scripts would look something like this:

Example:

' Script line using BPV Instrument Corn placed in each of
' Blox script sections so that each could report what it
' found accessible.
Print Block.ScriptName, Corn.Symbol, Corn.Date, Corn.Close

Returns:

' Details shown are text copies of some of the
' data records generated by the above when it
' was placed in each of the script section in
' the blox
Before Test C2 2007-12-27 508.250000000
Update Indicators C2 2007-12-27 508.250000000
Before Trading Day C2 2007-12-27 508.250000000
Before Instrument Day C2 2007-12-27 508.250000000
Update Indicators C2 2007-12-28 505.500000000
After Instrument Day C2 2007-12-28 505.500000000
After Trading Day C2 2007-12-28 505.500000000
Before Trading Day C2 2007-12-28 505.500000000
Update Indicators C2 2007-12-31 509.000000000
After Instrument Day C2 2007-12-31 509.000000000
After Trading Day C2 2007-12-31 509.000000000
After Test C2 2007-12-31 509.000000000
After Simulation C2 2007-12-31 509.000000000

www.forex-warex.com

Trading Blox Builder's Guide152

© 2013, Trading Blox, LLC. All rights reserved.

Links:

 LoadSymbol, Print, TotalInstruments

See Also:

Data Group and Types, Block

4.4 Integer

TYPE: Description:

Integer Whole numbers like 1, 200, 582, -5

Example:

' Integer TYPE example
VARIABLES: NumberIs TYPE: Integer

' Calculate two numbers
NumberIs = 3.364 * 1.108

' Send number results to Log Window
PRINT "NumberIs = ", NumberIs

Returns:

' Log window shows
NumberIs = 3

Links:

PRINT

See Also:

Data Group and Types

4.5 Money

TYPE: Description:

Money Variables which hold money. Internally Money variables are stored in the
same way as a floating point variables. Money variables are printed
differently and show in the debugger with different formatting.

Example:

www.forex-warex.com

Part 4 – Blox Basic Language Reference 153

© 2013, Trading Blox, LLC. All rights reserved.

' Money TYPE example
VARIABLES: NumberIs TYPE: Money

' Calculate two numbers
NumberIs = 3.364 * 1.108

' Send number results to Log Window
PRINT "NumberIs = ", NumberIs

Returns:

' Log window shows
NumberIs = 3.727312000

Links:

See Also:

Data Group and Types

4.6 Percent

TYPE: Description:

Percent Default value entered must be as a decimal where 0.10. When this
parameter appears on the main screen page it will be displayed as 10%. In
calculations it will be applied as a decimal where 10% is applied as 0.10.

Notes:
Percentage Screen display values show the default value entered into the parameter dialog's
Default Value field, unless the Blox is attached to a Suite and the user has changed the Main
screen displayed value. When entering a value into the dialog's Default Value field use the decimal
equivalent for the percentage display required.

When changing the value of the Main screen's displayed percentage display, a percentage number
should be used. For example, if you enter a 20 into the Main screen parameter display, it will
display 20%, and it will be equivalent to 0.20 decimal when applied as as a script value. If you
enter a value of 0.20 it will be displayed as 0.20% and be equivalent to 0.02 decimal in a code
statement.

Dialog Example:

www.forex-warex.com

Trading Blox Builder's Guide154

© 2013, Trading Blox, LLC. All rights reserved.

Parameter Menu Example:

Example:

Variables: AmountIs, NumberIs Type: Floating

' Assign a value
AmountIs = 1000

' Using the Dialog variable name above,...
NumberIs = AmountIs * PercentValue

' Send number results to Log Window
PRINT "NumberIs = ", NumberIs

Returns:

NumberIs = 100.000000000

www.forex-warex.com

Part 4 – Blox Basic Language Reference 155

© 2013, Trading Blox, LLC. All rights reserved.

Links:

Constants Reference

See Also:

Data Group and Types

4.7 Price

TYPE: Description:

Price Variables which hold price information. Internally Price variables are
stored in the same way as a floating point variables. Price variables are
printed according the current instrument's formatting and show in the
debugger using that format. Price variables are also unadjusted for any
negative value adjustment that may be present because of a negative price
series in the instrument's data.

Example:

' Price TYPE example
VARIABLES: NumberIs TYPE: Price

' Calculate two numbers
NumberIs = 3.364 * 1.108

' Send number results to Log Window
PRINT "NumberIs = ", NumberIs

Returns:

' Log window shows
NumberIs = 3.727312000

Links:

PRINT

See Also:

Data Group and Types

4.8 Selector

TYPE: Description:

Selector This is a special type of parameter because it can be assigned a list of
words that will act as value to allow the user to modify how the scripts
operate. When the list is created, the first word phrase entered will be
assigned the value of zero. Second word phrase will be assigned the value
of 2, and each remaining word phrase will be assigned the next available

www.forex-warex.com

Trading Blox Builder's Guide156

© 2013, Trading Blox, LLC. All rights reserved.

integer value until all have been assigned a value.

In operation, the use will select one of the option displayed in a drop-down
list of word phrases, or they can select the Step All option enabled when it
is enabled.

Notes:
Selector parameter provides multiple options for controlling various sections in a Blox to be
operational, or disabled.

Each option text is created by the user and each of the options are available in the parameter
section of the Main screen. Text can be any name that begins with a character, but that option
text-name can only exist once in the Blox, but it can exist in other Blox as long the scope is set to
Blox.

Dialog Example:

Parameter Menu Example:

Example:

www.forex-warex.com

Part 4 – Blox Basic Language Reference 157

© 2013, Trading Blox, LLC. All rights reserved.

' Condition Statement Follows Menu's Selected option
If SelectedItem = OPTION_1 Then
 ' Do Option_1 Stuff...
Else
 If SelectedItem = OPTION_2 Then
 ' Do Option_2 Stuff...
 Else
 If SelectedItem = OPTION_3 Then
 ' Do Option_3 Stuff...
 EndIf
 EndIf
EndIf

Links:

See Also:

Data Group and Types

4.9 Series

BPV and IPV variables support numeric and text based series arrays.

Series can declared to Auto-Index or Manually index, and the location to access and assign
information is determined by the user selected option.

Index
Method

Series Type Description:

Auto-Index
(Default)

BPV

Auto-Index option controls the size of the series, and increments each
element to align with the test position. Series element position index
value, and the number of elements in the series is the value of the
test.currentDay property.

BPV Series values can be plotted and displayed in a Custom Chart
when the BPV series is set to a Scope of System, Test, or simulation.
When the scope is not set to Block, the Plotting section of the dialog will
appear where the graphing options can be accessed.

IPV

Auto-Index option controls the size of the series, and increments each
element to align with the instrument's test position. Series element
position index value, and the number of elements in the series is the
value returned by instrument.bar property of each instrument.

Auto-Index series Plot and Display options allow the data from the
series to be displayed on the price chart where the instrument's price
information is displayed.

Manual-
Index

BPV &
IPV

Manual indexing series size can be determined when the series is
created, and they can be changed in the script with the
SetSeriesSize series function.

www.forex-warex.com

Trading Blox Builder's Guide158

© 2013, Trading Blox, LLC. All rights reserved.

Minimum series size and index value is 1, and Maximum series size
and index value is the size, or the number of elements in the series.
Index size can be retrieved using the GetSeriesSize series function.

Script index values must always be in the range starting at 1 and can
be up to size of the series.

Manual series can assign the same value to all the elements in the
series at the same time using SetSeriesValues series function.

Manual series can be sorted in an ascending or descending direction
using the SortSeries series function. When sorting String values in
a series require the understanding of how character values are ordered
when sorted.

BPV Numeric BPV series can also be declared in the script window:
 Variables: < series-name > TYPE: Series

When using script to declaring a series it must be sized using the
SetSeriesSize series function before it can be index for value
assignment.

IPV

GetSeriesSize
SetSeriesSize
SetSeriesValues
SortSeries
SortSeriesDual

Links:

instrument.bar, test.currentDay
GetSeriesSize, SetSeriesSize, SetSeriesValues, SortSeries, SortSeriesDual

See Also:

Data Group and Types, Instrument Data Access Properties, Test Object General
Properties

Numeric Series

TYPE: Description:

Number Series All series, or arrays store numbers and text values in a series of individual
variable elements. Each element stores the value it was assigned until it is
cleared, or given a different value. Each element in a series is accessible
by using its referenced location. Usually this referencing is to assign the
location to an integer value that acts as a location reference, or an index to
that elements location.

www.forex-warex.com

Part 4 – Blox Basic Language Reference 159

© 2013, Trading Blox, LLC. All rights reserved.

In simple terms a series is a list of elements that contain the values of
Floating numbers in numeric arrays, or a series of String Alpha-Numeric
characters in the elements in a String array.

Auto-Indexed series are accessed are reference by the specifying the
offset value from the current bar to where that element will be located. For
example, to access yesterday's series element, use a value of 1 as the
offset amount.

Manually sized series are access an element by its count position within the
series.

Smallest value of a series is 1, and 1 is always the position location of first
element in the series. Use above information to determine if it is accessed
by offset reference, or direct location reference.

Dialog Example:

Series data types can be Auto-Indexed, or they can be manually indexed. If there needs to be a
series element for a named series to match the count of an instrument's data records, then use the
default setting of Auto-Index.

A series that doesn't need to align to the instrument's data records, but might contain less or more
information, use the manual index option and control the indexing and the sizing of the series with
your program's source code.

Links:

See Also:

Data Group and Types

www.forex-warex.com

Trading Blox Builder's Guide160

© 2013, Trading Blox, LLC. All rights reserved.

String Series

TYPE: Description:

String Series All series, or arrays store numbers and text values in a series of individual
variable elements. Each element stores the value it was assigned until it is
cleared, or given a different value. Each element in a series is accessible
by using its referenced location. Usually this referencing is to assign the
location to an integer value that acts as a location reference, or an index to
that elements location.

In simple terms a series is a list of elements that contain the values of
Floating numbers in numeric arrays, or a series of String Alpha-Numeric
characters in the elements in a String array.

Auto-Indexed series are accessed are reference by the specifying the
offset value from the current bar to where that element will be located. For
example, to access yesterday's series element, use a value of 1 as the
offset amount.

Manually sized series are access an element by its count position within
the series.

Smallest value of a series is 1, and 1 is always the position location of first
element in the series. Use above information to determine if it is accessed
by offset reference, or direct location reference.

Dialog Example:

www.forex-warex.com

Part 4 – Blox Basic Language Reference 161

© 2013, Trading Blox, LLC. All rights reserved.

Series data types can be Auto-Indexed, or they can be manually indexed. If there needs to be a
series element for a named series to match the count of an instrument's data records, then use the
default setting of Auto-Index.

A series that doesn't need to align to the instrument's data records, but might contain less or more
information, use the manual index option and control the indexing and the sizing of the series with
your program's source code.

Links:

See Also:

Data Group and Types

4.10 String

String variables, which have a maximum character length of 512 are used to store text characters so
they can be accessed later in the module's operation.

TYPE: Description:

String Any keyboard character, or combinations of characters like "Hello", "A",
and "November Soybeans."

A String character, or word can be assigned to a String variable, or passed
to a function that requires a String assignment. When passed to a variable,
or to a parameter position the character group must be contained within a
pair of apostrophe characters:

Example:

' String TYPE Example
VARIABLES: TextItemIs TYPE: String

' Assign text to string variable
TextItemIs = "November Soybeans."

' Send String results to Log Window
PRINT "TextItemIs = ", TextItemIs

Returns:

' Log window shows
TextItemIs = November Soybeans.

Links:

PRINT

See Also:

Data Group and Types

www.forex-warex.com

Trading Blox Builder's Guide162

© 2013, Trading Blox, LLC. All rights reserved.

www.forex-warex.com

Part 4 – Blox Basic Language Reference 163

© 2013, Trading Blox, LLC. All rights reserved.

Section 5 – Data Scope Reference

Variables, indicators and parameters can have different scopes. Scope in programming determines
the range, or reach from which a data item can be referenced. In Trading Blox different types of
variables can have different levels of scope. Scope is established by selecting the various scope
references provided in the Scope's drop-down list, which is always set to Block unless the programmer
changes the scope assignment. When scope is set to Block, that is most narrow or limited reach that
the data in that data element is allowed. Local variables, those declared using the keywords Variables
& Type entered into the script section code space, and not used in a custom function, are scoped the
script section in which they are declared. Local variables declared and scoped within a custom
function can also be accessible to the variables in the script section that called the custom function.

Setting the variable scope to something other than to Block scope allows the variable to be used in
other blox in the system. However, the other blox needs to have a variable with the same name, and it
should be defined as external.

Only IPV and BPV can be defined as External.

IPV -- Instrument Permanent Variables:

Block You can only use this variable in the scripts that are in the block.

System You can use this variable in any block in the System by declaring the variable
as External in the other blocks.

Simulation Same as System scoped except the value is not reset for every test (parameter
run).

Notes:
To use a System or Simulation scoped IPV in another block, define an external IPV of the same
name in the other block.

BPV -- Block Permanent Variables:

www.forex-warex.com

Trading Blox Builder's Guide164

© 2013, Trading Blox, LLC. All rights reserved.

Block You can only use this variable in the scripts that are in the block.

System You can use this variable in any block in the System.

Test You can use this variable in any block in the Test.

Simulation Same as Test scoped except the value is not reset for every test (parameter
run).

Notes:
To use a System, Test, or Simulation scoped BPV in another block, define an external BPV of
the same name in the other block.

Parameters:

Block You can only use this parameter in the scripts that are in the block.

System You can use this parameter in any block in the System

Simulation You can use this parameter in any block in the Test.

Indicators:

Block You can only use this indicator in the scripts that are in the block.

System You can use this indicator in any block in the System.

Notes:
To use a System scoped Indicator in another block, define an external IPV Series of the same
name in the other block.

All variables, parameters and indicators are reset between every test run during a multi-stepped
parameter test, and it happens just before the Before Test script. An exception to this data refreshing
is allowed when the variable is set to the Simulation scope reference.

IPV and BPV variables are reset to their default value, the parameters are set to the next stepped
value, and all indicators are recomputed.

Setting IPV or BPV variables using Simulation scope will prevent the values from being reset to the
default value. This can be useful when keeping track of a value over the course of many stepped tests,
or when loading external data in the Before Simulation script.

Because all values are reset just before the Before Test script, the Before Simulation script has no
access to indicators or parameters, as they are not set yet. Any IPV or BPV that are set or loaded in
the Before Simulation script will be reset to their default value unless they are defined as Simulation
scope.

www.forex-warex.com

Part 4 – Blox Basic Language Reference 165

© 2013, Trading Blox, LLC. All rights reserved.

Section 6 – Data Script Comments

Comments are sections of code that are intended for human reading, and are ignored by Blox Basic
script interpreter.

Comments help you document as your are creating it, and provide an aid in understanding the code
later on. Comments are also useful for others to understand your intentions when you created your
code.

Blox Basic comments start with the ' character and continues until the end of the line. The Trading Blox
Builder interpreter ignores any characters or code that follows a ' character.

Example:

' ~~
' The Amazing Code to Add Two Variables Together!!!
' Copyright 2005 By TradingBlox LLC. All Rights Reserved.
' Steal this code at your own peril!
' ~~

' Add a and b
SumAB = (a + b)

' That was great!

www.forex-warex.com

Trading Blox Builder's Guide166

© 2013, Trading Blox, LLC. All rights reserved.

Section 7 – Data Variable Names

Variable names must begin with a letter and must be no longer than 64 characters and can only
contain the following characters:

_ The underscore character
A-Z or a-z Any letters
0-9 Any combination of digits

The following are all valid variable names:

aVariable
aVariable2000
a_variable
a_variable_2000

Variable names that begin with a numeric characters are NOT valid:
2000variable
12_variable

This list of words should not be used as variable names, as they are reserved by the program for
specific purposes.

All words in this list are case insensitive - neither the variable "UNITSIZE" nor "unitsize" can be
used..

abs
AbsoluteValue
acos
and
ArcCosine
ArcSine
ArcTangent
ArcTangentXY
asc
ascii
asciiToCharacters
asFloating
asin
asInteger
asString
atan
atan2
beep
block
broker
CanAddUnit
chr
clearscreen
cos
cosine
dayOfMonth
DegreesToRadians
degtorad
do

long
loop
lowerCase
ltrim
max
mid
middleCharacters
min
mod
monthNumber
newPosition
next
not
or
orde
r
out
pi
print
RadiansToDegrees
random
right
rightCharacters
rtrim
short
sin
sine
sqr
sqr

www.forex-warex.com

Part 4 – Blox Basic Language Reference 167

© 2013, Trading Blox, LLC. All rights reserved.

else
endfunction
endif
endsub
endwhile
entryPrice
exp
exponent
false
findString
findString
for
function
goto
hypot
hypot
hypotenuse
if
instrument
isFloating
isInteger
isString
lcase
left
leftCharacters
len
log
log10

squareRoot
step
stringLength
sub
system
tan
tangent
test
then
to
toJulian
totalRisk
trim
trimLeftSpaces
trimRightCharacters
trimRightSpaces
trimSpaces
true
type
type
ucase
unitSize
until
upperCase
variables
variables
while
xor

www.forex-warex.com

Trading Blox Builder's Guide168

© 2013, Trading Blox, LLC. All rights reserved.

Section 8 – Data Variables

What is a variable?
Variables are simply a name which represents a value or series of values. If you have used a
spreadsheet then you have used variables. For example, in a spreadsheet column B row 4 might be
the total sales for the month. In Excel you could name this cell to something like "monthlySales" then in
other cells you could refer to that variable (cell) as either B4 or "monthlySales".

In Blox Basic you can create variables which have names and can hold values just like a spreadsheet
cell can.

Why would you do this? Suppose you want to compute the stop price for a buy and it will be 3 ATR
less than the long moving average. You could use the expression:

longMovingAverage - (3 * averageTrueRange)

everywhere you needed to use the stop like:
broker.EnterLongOnOpen(longMovingAverage - (3 * averageTrueRange))

Or you could simply define a variable and set its value using that expression:
VARIABLES: stopPrice TYPE: Price

' Compute the stop.
stopPrice = longMovingAverage - (3 * averageTrueRange)

' Enter the order to buy
broker.EnterLongOnOpen(stopPrice)

The method provides several benefits. First, it is easier to understand. Second, when you read the
code later, you can easily see where the stop price is being calculated.

Variables are essential for dealing with user input, calculations, simplifying code, and output in a
program. For instance, to print out the multiplication tables up to 10 x 10 manually:

PRINT "1 x 1 = 1"
PRINT "1 x 2 = 2"
PRINT "1 x 3 = 3"
PRINT "1 x 4 = 4"

It would take a long time! Using variables and a simple program you can do this more quickly:
columnOne = 1
columnTwo = 1

DO
 PRINT columnOne, " x ", columnTwo, " = ", columnOne * columnTwo

 columnTwo = columnTwo + 1

 IF columnTwo = 11 THEN
 columnOne = columnOne + 1
 columnTwo = 1
 ENDIF

LOOP UNTIL columnOne = 11

www.forex-warex.com

Part 4 – Blox Basic Language Reference 169

© 2013, Trading Blox, LLC. All rights reserved.

As you can see using variables can make life easier for repetitive tasks.

How do I make a variable?
Trading Blox Builder provides several ways of "declaring" variables.

1) Use the VARIABLES statement

2) Create an Instrument Permanent Variable

3) Create a Block Permanent Variable

How do I know which kind of variable to create?
Each of these types of variables have different lifetimes and qualities:

1) Variables declared with the VARIABLES statement only maintain their value in and during the
script in which they are declared. They are undefined at the start of the script. These variables
are temporary and not permanent. So you cannot assume the variable will hold its value from one
instrument to the next, or one day to the next.

2) Variables you create as an Instrument Permanent Variable retain their value from one script to
the next but their value is specific to the current instrument. In other words, each instrument has its
own copy of the variable. For instance, an Instrument Permanent Variable named channelWidth
could be 20 for Gold and 10 for Corn. Instrument Permanent Variables get their name because
they are instrument-specific and permanent (i.e. they maintain their value across script
invocations).

3) Block Permanent Variables are not instrument-specific, there is only one variable for the entire
block. For example, if you increment a Block Permanent Variable named totalUnits each time
a new position is added and you put on three units in three different instruments/markets the value
of totalUnits will be 3 in every script that accesses it.

Variable Data Types:
When you use one of these methods to declare a variable, you must choose a "type". The variable's
type determines what kind of information that variable can contain. A variable can be one of the
following.

Variable Type
Names:

Descriptions:

Floating numbers like 1.24 or 3.14159 which are not whole numbers

Instrument An instrument which can be accessed like the global 'instrument' trading
object.

Integer whole numbers like 1, 200, 582, -5

Money Variables which hold money. Internally Money variables are stored in the
same way as a floating point variables. Money variables are printed
differently and show in the debugger with different formatting.

Price Variables which hold price information. Internally Price variables are stored
in the same way as a floating point variables.

Price variables are printed according the current instrument's formatting and
show in the debugger using that format.

Price variables are also unadjusted for any negative value adjustment that

www.forex-warex.com

Trading Blox Builder's Guide170

© 2013, Trading Blox, LLC. All rights reserved.

may be present because of a negative price series in the instrument's data.

Series A list, or an array of Floating numbers or characters (only Block Permanent
and Instrument Permanent variables support number and character sereis).

String Series A list or array of strings.

String characters or combinations of characters like "Hello", "A", and "November
Soybeans"

After a variable is declared, it cannot change its type. If you make it a string it must stay a string.
Values of one type can be converted to another type using the conversion functions.

Links:

Type Conversion Functions

www.forex-warex.com

Part 4 – Blox Basic Language Reference 171

© 2013, Trading Blox, LLC. All rights reserved.

Section 9 – FunctionReference

Trading Blox Builder includes many built-in functions which can be used in scripts. These functions
are similar to the functions used in spreadsheet formulas. Trading Blox Builder includes the following
function types:

Function Section: Function Type:

Date date functions

File file functions

General general functions

Mathematical math functions

String string functions

Type Conversion type conversion functions

Each function section contains a table showing the names of the functions topics in that section.

9.1 Custom Functions

Please See: Script Object

www.forex-warex.com

Trading Blox Builder's Guide172

© 2013, Trading Blox, LLC. All rights reserved.

Custom User Functions

Creating & Calling User Functions

User Created Functions expand the extensibility of the Trading Blox Basic language and facilitate a
user’s ability to create a unique functions or methods. This is made possible by using Trading Blox's
Script Object that are explained later in this page.

All user functions can have any combination of numeric (Integer, or Floating), String, series,
or no parameters. They can return a numeric, string, series, or no value. They work just like inherent
Trading Blox Functions, but user functions must be loaded or present in one of the Blox in the system
being tested. If the user functions are not loaded into the system an error will result.

Any other Blox script can call a user created function. These user created scripts are not processed
like other standard Blox script sections. Normal Blox scripts are executed automatically in a
predetermined location in the sequence controlled by data processing loop. Instead user functions are
only processed when the Blox containing the user function calling code request them.

This ability to call methods that perform specific operations by providing numeric or string data as
parameters removes the need for ordering the sequence in which a Blox section is processed. User
Functions also make the process of re-using code modules easier because they can be created as a
generic script section that will be available to any Blox. User Functions called by a standard Blox script
will be able to have access the same data that the Blox section calling the user function has at the time
the user function is called.

A good practice is to create an Auxiliary block with all the custom functions, and include in a Global
Suite System. In this way, all the custom functions will be available to all systems in the suite.

Creating User Functions
User Functions are created in the Blox Editor by using the Script menu New Custom menu item. Start
by creating an Auxiliary Block with no default scripts, and add custom functions as needed. The name
of the script will be used to call the script using the script.execute function.

Script sections can be removed or added using the Blox Editor script menu item by selecting the Delete
option when the script section you want removed is highlighted. With all the script sections you don't
want removed, click on the Scripts Menu item and then select New Custom. This selection brings up
a dialog where you can enter the name of your new User Function. The name you give to the user
functions will be displayed as a script section in the same way that Trading Blox regular script sections
show names.

Calling User Functions
Once you've created the script section, it will open a coding area where you can code the script you
want. This script code window will be no different than any of the other script coding windows.

Start by entering the code you will need to achieve the user function's goal. With your code entered,
and assuming there is no parsing errors being reported at the bottom of the code window, you can then
call this script from anywhere in the system by using the following process:

lResult = Script.Execute("User_Function_Name", [parameterlist...])

[parameterlist...] This is where you pass values to your new function.

www.forex-warex.com

Part 4 – Blox Basic Language Reference 173

© 2013, Trading Blox, LLC. All rights reserved.

To obtain the value passed back from your user function to the variable lResult, you can use Blox
Basic's PRINT function, or use the value contained in the lResult variable in another calculation
Print lResult

 Any_Var = lResult

When you execute a user function on the right side of an equals sign '=', the user function will assign
the function's result to the variable on the left side of the equal sign. In this case the value contained in
lResult will be placed in the variable Any_Var.

You can call a User Function to print directly to a PRINT statement:

 Print Script.Execute("User_Function_Name", [parameterlist...])

In this method the function's result will print directly to TBB's default Print Output.csv file and Log
Window.

When you writing the code for a User Function script, you will need to assign the user function's
calculation results to a script's return property. Placing one of the following methods in the user
function code will assign the output value you select in the user function so that it is returned to the
calling Blox:

Script.SetReturnValue(Any_Num or Any_String) ' Sets the string or
number return value.

If the SetReturnValue function is called more than once, the last call will
determine the return value.

You can call a User Function without assigning a value to capture its return result. To do it that way, the
calling statement would look like this:

Script.Execute("User_Function_Name", [parameterlist...])

In this case you would need to use one of the following properties to access the user function's results
in the calling Blox section where you call the user function:

lResult = Script.ReturnValue ' Use for INTEGER OR FLOAT Returns
Or
Any_Text = Script.StringReturnValue ' Use for STRING Return

Script Methods & Properties
In Trading Blox Builder's standard Blox scripts, the code within the Blox is self contained for the most
part. Access to information used within a Blox is determined by location that Blox is called within the
code processing loop. For the most part, data is passed to each Blox through the use of BPV, or IPV
variables that have obtained data elsewhere, and in the case of BPV variables a Blox can assign values
to BPV and variables declared within the Blox.

Data can also be assigned and obtained from BPV series created using the functions:
Any_Name.LoadSymbol
Or
Another_Name.LoadExternalData

Parameter values are primarily passed to a user function using the the following properties:

www.forex-warex.com

Trading Blox Builder's Guide174

© 2013, Trading Blox, LLC. All rights reserved.

' Variable Containers of Passed Values to User Created Functions
Script.ParameterList[] ' Use For Integer & FLOAT values
Script.StringParameterList[] ' Use For String values

' Quantity Count of Passed Parameter Variables in User Function
Script.ParameterCount ' Count of Integer & FLOAT Variables
Script.StringParameterCount ' Count of String Variables

' Return Variable Container Of Last User Function Result
Script.ReturnValue ' Use For Integer Or FLOAT Returns
Script.StringReturnValue ' Use For String Return

User scripts have access to any data that the calling Blox has access to at the time the user function is
called. This means that if all the data you need to use in the user function is contained of the IPV or
BPV variables available to the calling Blox, then you might not need to pass any new information to the
user function.

 ' Subroutine Processes for Setting a Specific Parameter Value in Active
Function
 Script.SetParameter(parameter_number, _
 value) ' Use For Integer & FLOAT
Parameters
 Script.SetStringParameter(parameter number, _
 String value) ' Use For String Parameters

 ' These are Subrountine Processes for Setting the User Function's
RETURN value
 Script.SetReturnValue(value) ' Use For a Integer & FLOAT
RETURN
 Script.SetStringReturnValue(String value)' Use For a String RETURN

 ' This is Subroutine Calling Process to Execute a User Created Function
 Script.Execute(scriptName, [parameterlist...])

NOTE:
 ' Each Parameter List TYPE IS parsed into each OF the following
variable
 ' containers based upon the LEFT TO RIGHT sequence IN which the
parameter
 ' value IS listed when it IS called, AND also the TYPE OF variable
being
 ' passed:
 Script.ParameterList[] ' Use For Integer Or FLOAT parameters
 Or
 Script.StringParameterList[] ' Use For String parameters

To pass in a Series, use the GetReference function

script.Execute("MyCustomFunction", 10, "hello", 20, "world",
GetReference(instrument.averageTrueRange))

www.forex-warex.com

Part 4 – Blox Basic Language Reference 175

© 2013, Trading Blox, LLC. All rights reserved.

To then access values from the series, use the GetSeriesValue function:

PRINT script.GetSeriesValue(1, index)

www.forex-warex.com

Trading Blox Builder's Guide176

© 2013, Trading Blox, LLC. All rights reserved.

9.2 Date Time Functions

For the following functions, "date" must be in the format of YYYYMMDD. This can include variables or
properties such as test.currentDate or instrument.date. To set dates into variables, use the
Integer type.

Time is in the format HHMM and is also an integer.

Function Name: Description:

ChartTime Creates a Chart object compatible date and a time value..

DateToJulian Returns the number of days since 1900 for a given date. It is useful for
calculating the number of days between two dates.

DayMonthYearToDat
e

Returns the date based on the day, month, year

DayOfMonth Returns the day of the month

DayOfWeek Returns the day of the week for the date

DayOfWeekName Returns the name of the day of the week for the day of the week index

DaysInMonth Returns the number of calendar days in a month

Hour Returns the hour for the specified time

JulianToDate Returns the date for a Julian number

Minute Returns the minute for the specified time

Month Returns the month for the specified date

MonthName Returns the name of the month, for the given month index

SystemDate Keyword returns the current system (computer) date in a YYYYMMDD
format. Displays as YYYY-MM-DD, but can be compared to other
integer dates such as instrument.date and test.currentDate

SystemTime Keyword returns the current system (computer) time

TimeDiff Returns the difference between two times, in time format

WeekNumberISO Returns an International Organization for Standardization (ISO)
compatible week number for any date since 1900

Year Returns the year for the specified date

ChartTime

Creates a Chart object compatible date and a time value.

Syntax:

ChartTime(YYYYMMDD, HHMM)

Parameter: Description:

YYYYMMDD Any valid numeric date in the YYYYMMDD format. Date must be a number without

www.forex-warex.com

Part 4 – Blox Basic Language Reference 177

© 2013, Trading Blox, LLC. All rights reserved.

any delimiting characters.

HHMM Any valid 24-hour HHMM formatted time value with no delimited characters between
the hour and minute section of the time number.

Use a zero value when no time value is needed.

Returns:

Date and time values are converted to the number of seconds that have elapsed since 01-01-0001
00:00:00 to the time when executed. This date and time format is the date & time format used by
the chart object.

Example:

' --
' test.currentDate without a time value
PRINT "test.currentDate ", test.currentDate
PRINT "ChartTime ", ChartTime(test.currentDate, 0)

Returns:
test.currentDate , 2010-07-12
ChartTime , 63414536400.000000000

' --
' YYYYMMDD date in seconds, without a time value
PRINT "ChartTime ", ChartTime(test.currentDate, test.currentTime)

Returns:
ChartTime 20130126, 63494755200.000000000

' --
' YYYYMMDD date in seconds, without a time value
PRINT "ChartTime 20130126 ", ChartTime(20130126, 0)

Returns:
ChartTime 20130126, 63494755200.000000000

' --
' YYYYMMDD date in seconds, without a time value
PRINT "ChartTime ", ChartTime(test.currentDate, test.currentTime)

Returns:
ChartTime 20130126, 63494755200.000000000

' --
' AFTER TRADING DAY SCRIPT ASSIGNS TEST DATES TO BPV Auto-Index SERIES

' Store Test Dates & ChartTime seconds in two numeric series
TestDateArray = test.currentDate
' Converted Test Dates to ChartTime seconds
DateTimeArray = ChartTime(test.currentDate, 0)

www.forex-warex.com

Trading Blox Builder's Guide178

© 2013, Trading Blox, LLC. All rights reserved.

' AFTER TEST Print Test Dates as elapsed seconds, and YYYYMMDD dates
PRINT "DateTimeArray[3] ", DateTimeArray[3], TestDateArray[3]
PRINT "DateTimeArray[2] ", DateTimeArray[2], TestDateArray[2]
PRINT "DateTimeArray[1] ", DateTimeArray[1], TestDateArray[1]
PRINT "DateTimeArray[0] ", DateTimeArray[0], TestDateArray[0]

Returns:
DateTimeArray[3] ,63414230400.000000000,20100709.000000000,
DateTimeArray[2] ,63414316800.000000000,20100710.000000000,
DateTimeArray[1] ,63414403200.000000000,20100711.000000000,
DateTimeArray[0] ,63414489600.000000000,20100712.000000000,

Notes:

SystemDate is a compatible date format, but it will return the same date value for a series, but might be useful as a label.
SystemTime() function is not a compatible format for ChartTime.

Links:

PRINT, General Properties

See Also:

SetxAxisDates

www.forex-warex.com

Part 4 – Blox Basic Language Reference 179

© 2013, Trading Blox, LLC. All rights reserved.

DateToJulian

Returns the number of days since 1900 for a given date. It is useful for calculating the number of days
between two dates.

Syntax:

value = DateToJulian(expression)

Parameter: Description:

expression Any expression that resolves to a date in the format YYYYMMDD

Returns:

Number of days since 1900 for the given date

Example:

daysBetween = DateToJulian(instrument.tradeExitDate) _
 - DateToJulian(instrument.date)

Links:

See Also:

Date Time Functions

www.forex-warex.com

Trading Blox Builder's Guide180

© 2013, Trading Blox, LLC. All rights reserved.

DayMonthYearToDate

Returns the date based on the day, month, year

Syntax:

theDate = DayMonthYearToDate(d, m, y)

Parameter: Description:

d, m, y The day number, month number, and year number

Returns:

A date in the YYYYMMDD based on the dmy input

Example:

PRINT DayMonthYearToDate(21, 5, 1990)

' PRINTS 19902105

Links:

See Also:

Date Time Functions

www.forex-warex.com

Part 4 – Blox Basic Language Reference 181

© 2013, Trading Blox, LLC. All rights reserved.

DayOfMonth

Returns the day of the month

Syntax:

value = DayOfMonth(expression)

Parameter: Description:

expression Any expression that resolves to a date in the format YYYYMMDD

Returns:

Day of the month (1 to 31) for the given date

Example:

day = DayOfMonth(20021215) ' returns 15

Links:

See Also:

Date Time Functions

www.forex-warex.com

Trading Blox Builder's Guide182

© 2013, Trading Blox, LLC. All rights reserved.

DayOfWeek

Returns the day of the week for the date. There are built in Constants to compare against:

SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY

Syntax:

value = DayOfWeek(expression)

Parameter: Description:

expression Any expression that resolves to a date in the format YYYYMMDD

Returns:

Day of the week for the given date

Example:

IF DayOfWeek(test.currentDate) = MONDAY THEN
 ' Do the weekly updating here.
ENDIF

Links:

Constants

See Also:

Date Time Functions

www.forex-warex.com

Part 4 – Blox Basic Language Reference 183

© 2013, Trading Blox, LLC. All rights reserved.

DayOfWeekName

Returns the name of the day of the week for the day of the week index.

Syntax:

value = DayOfWeekName(expression)

Parameter: Description:

expression Any expression that resolves to an integer between 0 and 6

Returns:

Name of the day of the week for the given day of week number

Example:

PRINT DayOfWeekName(DayOfWeek(test.currentDate))

Links:

See Also:

Date Time Functions

www.forex-warex.com

Trading Blox Builder's Guide184

© 2013, Trading Blox, LLC. All rights reserved.

DaysInMonth

Returns the number of calendar days in a month.

Syntax:

numDays = DaysInMonth(m, y)

Parameter: Description:

m, y The month number, and year number

Returns:

Number of days in the specified month.

Example:

PRINT DaysInMonth(5, 1990)

' PRINTS 31

Links:

See Also:

Date Time Functions

www.forex-warex.com

Part 4 – Blox Basic Language Reference 185

© 2013, Trading Blox, LLC. All rights reserved.

Hour

Returns the hour for the specified time.

Syntax:

value = Hour(expression)

Parameter: Description:

expression Any expression that resolves to a time HHMM format

Returns:

Hour of the given time.

Example:

theHour = Hour(1055) ' returns 10

Links:

See Also:

Date Time Functions

www.forex-warex.com

Trading Blox Builder's Guide186

© 2013, Trading Blox, LLC. All rights reserved.

JulianToDate

Returns the date for a julian number. The reverse of the DateToJulian function.

Syntax:

date = JulianToDate(expression)

Parameter: Description:

expression any expression that resolves to a valid julian number

Returns:

date in YYYYMMDD format

Example:

theDate = JulianToDate(DateToJulian(instrument.date) + 5)

Links:

See Also:

Date Time Functions

www.forex-warex.com

Part 4 – Blox Basic Language Reference 187

© 2013, Trading Blox, LLC. All rights reserved.

Minute

Returns the minute for the specified time.

Syntax:

value = Minute(expression)

Parameter: Description:

expression Any expression that resolves to a time HHMM format.

Returns:

Minute of the given time.

Example:

theMinute = Minute(1055) ' returns 55

Links:

See Also:

Date Time Functions

www.forex-warex.com

Trading Blox Builder's Guide188

© 2013, Trading Blox, LLC. All rights reserved.

Month

Returns the month for the specified date.

Syntax:

value = Month(expression)

Parameter: Description:

expression Any expression that resolves to a date in the format YYYYMMDD

Returns:

Month for the given date

Example:

tradeMonth = Month(20021215) ' returns 12

Links:

See Also:

Date Time Functions

www.forex-warex.com

Part 4 – Blox Basic Language Reference 189

© 2013, Trading Blox, LLC. All rights reserved.

MonthName

Returns the name of the month, for the given month index

Syntax:

value = MonthName(expression)

Parameter: Description:

expression Any expression that resolves to an integer between 1 and 12

Returns:

Name of the month

Example:

PRINT MonthName(Month(test.currentDate))
' Prints January for a date like 20100101

Links:

See Also:

Date Time Functions

www.forex-warex.com

Trading Blox Builder's Guide190

© 2013, Trading Blox, LLC. All rights reserved.

SystemDate

Keyword returns the current system (computer) date in a YYYYMMDD format. Displays as YYYY-MM-
DD, but can be compared to other integer dates such as instrument.date and test.currentDate.

Current Simulation's computer date. In YYYYMMDD format.

Syntax:

Print "SystemDate ", SystemDate

Parameter: Description:

<none>

Returns:

SystemDate, 2013-01-25

Example:

SystemDate replaces CurrentDate

Links:

See Also:

Date Time Functions

www.forex-warex.com

Part 4 – Blox Basic Language Reference 191

© 2013, Trading Blox, LLC. All rights reserved.

SystemTime

Keyword returns the current system (computer) time.

Current simulation time. In HHMM format.

There are three return formats depending on the parameter passed into the function. If no parameter
is passed in, then type 1 is assumed.

Type 1 returns the time in your local format.
Type 2 returns the time in an HHMM format, so it can be compared to instrument.time and
test.currentTime.
Type 3 returns the number of seconds since the start of the current day. Useful for timing application
processes.

SystemTime 8:46:36 AM
SystemTime(1) 8:46:36 AM
SystemTime(2) 846
SystemTime(3) 31596

NOTE:
SystemTime replaces CurrentTime

Syntax:

Print "SystemTime() ", SystemTime()

Parameter: Description:

Returns:

SystemTime(), 1:28:03 PM

Example:

Print "SystemTime() ", SystemTime()

Links:

See Also:

Date Time Functions

www.forex-warex.com

Trading Blox Builder's Guide192

© 2013, Trading Blox, LLC. All rights reserved.

TimeDiff

Returns the difference between two times, in time format.

Syntax:

value = TimeDiff(expression1, expression2)

Parameter: Description:

expression1,
expression2

Any expression that resolves to a time HHMM format.

Returns:

Difference between the two times, in HHMM format

Example:

thedifference = TimeDiff(1055, 945)
' Return 0110

Links:

See Also:

Date Time Functions

www.forex-warex.com

Part 4 – Blox Basic Language Reference 193

© 2013, Trading Blox, LLC. All rights reserved.

WeekNumberISO

Returns an International Organization for Standardization (ISO) compatible week number for any date
since 1900.

Each week can have a number between 1 and 53 depending upon the year. Week 1 of each year
begins on the first week of a new calendar year where the first Thursday in January occurs. This
means that any week where 1-January falls on a Monday, Tuesday, Wednesday or a Thursday, that
week is Week 1. When 1 January falls on a Friday, Saturday, or a Sunday, that week is either week
52 or week 53.

Syntax:

WeekNumber = WeekNumberISO(Expression)

Parameter: Description:

Expression Any expression that resolves to a date in the format YYYYMMDD.

Returns:

The week number for any date since 1900

Example:

' ---------------------------
' WeekNumber - ISO Compatible
' ---------------------------
' ISO says to find the first Thursday of each year and then back
' off to that Week's Monday to determine the first date in a year
' when Week #1 occurs.
'
' This code uses that same logic to find the first Thursday and then
' goes back to identify that week's Monday.
'
' When the first date of a year doesn't fall into Week #1, it says
' to use information from the previous year to determine if the first
' date of the year falls into Week #52 or Week #53. This code also
' uses that logic to fill that requirement.
' ~~~

 Variables: WeekNumber TYPE: INTEGER
 Variables: Day_Offset TYPE: INTEGER
 Variables: DayName TYPE: STRING

 Day_Offset = 0

 WeekNumber = WeekNumberISO(Instrument.Date[Day_Offset])

 ' ``

 ' ``
 ' Print the Results to the Output.CSV File
 ' ``

www.forex-warex.com

Trading Blox Builder's Guide194

© 2013, Trading Blox, LLC. All rights reserved.

 If Instrument.CurrentBar = 1 Then
 ' Send Results to the PRINT LOG
 Print "Date: ", _
 " DOW-Name ", _
 " Week_# "
 EndIf

 DayName = DayOfWeekName(DayOfWeek(Instrument.Date[Day_Offset]))

 ' Send Results to the PRINT LOG
 Print Instrument.Date[Day_Offset], _
 DayName, _
 WeekNumber
' ~~~

Links:

See Also:

Date Time Functions

www.forex-warex.com

Part 4 – Blox Basic Language Reference 195

© 2013, Trading Blox, LLC. All rights reserved.

Year

Returns the year for the specified date.

Syntax:

value = Year(expression)

Parameter: Description:

expression Any expression that resolves to a date in the format YYYYMMDD

Returns:

Year for the given date

Example:

tradeYear = Year(20021215) ' returns 2002

Links:

See Also:

Date Time Functions

www.forex-warex.com

Trading Blox Builder's Guide196

© 2013, Trading Blox, LLC. All rights reserved.

9.3 File & Disk Functions

These functions allow file manipulation at the disk level. You can open a file, move a file, copy a file, or
delete a file.

Functions: Description:

ClearLogWindow Clear all text from main screen's Log Window area.

CloseLogWindow Close the main screen's Log Window area.

CopyFile Copies the referenced file.

CreateDirectory Creates a directory

DeleteFile Deletes the referenced file.

EditFile Edits the referenced file.

Extract Extracts all indicators and IPV Series variable by date time and by
instrument to a file.

FileExists Confirms the existence of the referenced file or directory folder.

FileSize Returns the referenced file size.

MoveFile Moves the referenced file from its current location to the referenced
destination location.

OpenFile Open the referenced file and displays it on the screen.

OpenFileDialog Displays the Windows Open File Dialog.

OpenLogWindow Open the main screen's Log Window area.

SaveFileDialog Displays the Windows Save File Dialog.

www.forex-warex.com

Part 4 – Blox Basic Language Reference 197

© 2013, Trading Blox, LLC. All rights reserved.

ClearLogWindow

Syntax:

Parameter: Description:

Example:

Returns:

Links:

See Also:

www.forex-warex.com

Trading Blox Builder's Guide198

© 2013, Trading Blox, LLC. All rights reserved.

CloseLogWindow

Syntax:

Parameter: Description:

Example:

Returns:

Links:

See Also:

CopyFile

Copies a file.

Syntax

 OpenFile(fileName)

Parameters

fileName the file to open, copy, delete, or move

returns n/a

Examples

CopyFile("c:\correlation.htm", "c:\corr2.htm")
DeleteFile("c:\correlation.htm")
MoveFile("c:\corr2.htm", "c:\corr3.htm")
OpenFile("c:\corr3.htm")

www.forex-warex.com

Part 4 – Blox Basic Language Reference 199

© 2013, Trading Blox, LLC. All rights reserved.

CreateDirectory

When a needed directory folder is needed this function can create it.

Syntax:

success = CreateDirectory(directoryName)

Parameter: Description:

directoryName Create a folder using the name specified

returns True if the directory was created; False if the directory creation failed.

Example:

' Create a new directory folder named 'MyOrders'
If CreateDirectory(fileManager.DefaultFolder + "MyOrders\") THEN
 PRINT "Directory Created"
ELSE
 PRINT "Directory already exists."
ENDIF

Links:

File Manager

See Also:

DeleteFile

Deletes a file.

Syntax

 OpenFile(fileName)

Parameters

fileName the file to open, copy, delete, or move

returns n/a

Examples

CopyFile("c:\correlation.htm", "c:\corr2.htm")
DeleteFile("c:\correlation.htm")
MoveFile("c:\corr2.htm", "c:\corr3.htm")
OpenFile("c:\corr3.htm")

www.forex-warex.com

Trading Blox Builder's Guide200

© 2013, Trading Blox, LLC. All rights reserved.

EditFile

Opens a file for editing. Usually if a .csv file is opened it will open in Excel, if Edited, it will open in Nopepad.

Syntax

 EditFile(fileName)

Parameters

fileName the file to open, edit, copy, delete, or move

returns n/a

Examples

CopyFile("c:\correlation.htm", "c:\corr2.htm")
DeleteFile("c:\correlation.htm")
MoveFile("c:\corr2.htm", "c:\corr3.htm")
OpenFile("c:\corr3.htm") ' Will open in IE (or other browser) as

defined by windows.
EditFile("c:\corr3.htm") ' Will open in html editor as defined by

windows.
OpenFile("c:\Test.csv") ' Will open in Excel, as defined by windows.
EditFile("c:\Test.csv") ' Will open in Notepad, as defined by

windows.

Extract

Extract(fileName, startDate, endDate)

Extracts all indicators and IPV Series variable by date time and by instrument to a file.

FileExists

FileExists returns true if the file or folder exists, and false if it does not.

Syntax

 exists = FileExists(path)

Parameters

path the full path of the file or
folder

returns true if the file or folder exists

Examples

IF FileExists(fileManager.DefaultFolder + "test.txt") THEN

www.forex-warex.com

Part 4 – Blox Basic Language Reference 201

© 2013, Trading Blox, LLC. All rights reserved.

PRINT "File Exists"
ELSE
PRINT "File does not exist."

ENDIF

FileSize

Update soon.

MoveFile

Moves a file.

Syntax

 OpenFile(fileName)

Parameters

fileName the file to open, copy, delete, or move

returns n/a

Examples

CopyFile("c:\correlation.htm", "c:\corr2.htm")
DeleteFile("c:\correlation.htm")
MoveFile("c:\corr2.htm", "c:\corr3.htm")
OpenFile("c:\corr3.htm")

OpenFile

Opens a file.

Syntax

 OpenFile(fileName)

Parameters

fileName the file to open, copy, delete, or move

returns n/a

Examples

CopyFile("c:\correlation.htm", "c:\corr2.htm")
DeleteFile("c:\correlation.htm")
MoveFile("c:\corr2.htm", "c:\corr3.htm")
OpenFile("c:\corr3.htm")

www.forex-warex.com

Trading Blox Builder's Guide202

© 2013, Trading Blox, LLC. All rights reserved.

OpenFileDialog

OpenFileDialog returns the string of the path the user has selected using the open file dialog.

Syntax

 completeFilePath = OpenFileDialog([filter extension], [file Name],
[start path])

Parameters

filter extension extensions to filter, like
.exe, .txt or .csv

file Name the file name to suggest

start path the path to set the dialog to
start with

return value returns a string containing the
complete path the user selected

The filter extensions are a paired string separated by a |. So "Text Files|*.txt" would display Text Files
and show only files ending with .txt.
For multiple extensions for the same display name use a semi colon as in the example below.
"Text Files|*.txt;*.csv"

You can set multiple filters such as:
"Text Files|*.txt|CSV Files|*.csv"

Examples

PRINT OpenFileDialog("Text Files|*.txt;*.csv", "orders.txt",
fileManager.DefaultFolder)

PRINT SaveFileDialog("Text Files|*.txt;*.csv", "orders.txt",
fileManager.DefaultFolder)

www.forex-warex.com

Part 4 – Blox Basic Language Reference 203

© 2013, Trading Blox, LLC. All rights reserved.

OpenLogWindow

Syntax:

Parameter: Description:

Example:

Returns:

Links:

See Also:

SaveFileDialog

SaveFileDialog returns the string of the path the user has selected using the save file dialog.

Syntax

 completeFilePath = SaveFileDialog([filter extension], [file Name],
[start path])

Parameters

filter extension extensions to filter, like
.exe, .txt or .csv

file Name the file name to suggest

start path the path to set the dialog to
start with

return value returns a string containing the
complete path the user selected

The filter extensions are a paired string separated by a |. So "Text Files|*.txt" would display Text Files
and show only files ending with .txt.
For multiple extensions for the same display name use a semi colon as in the example below.
"Text Files|*.txt;*.csv"

www.forex-warex.com

Trading Blox Builder's Guide204

© 2013, Trading Blox, LLC. All rights reserved.

You can set multiple filters such as:
"Text Files|*.txt|CSV Files|*.csv"

Examples

PRINT OpenFileDialog("Text Files|*.txt;*.csv", "orders.txt",
fileManager.DefaultFolder)

PRINT SaveFileDialog("Text Files|*.txt;*.csv", "orders.txt",
fileManager.DefaultFolder)

www.forex-warex.com

Part 4 – Blox Basic Language Reference 205

© 2013, Trading Blox, LLC. All rights reserved.

9.4 General

These are general program functions intended as optional references in a block module.

Function: Description:

BuildDividendFiles This special function will kick off the Build Dividend Files process.
The test then needs to be aborted and run again with this new data.

ColorRGB Function assigns its return color value to another variable, or it can
be used as value in a color parameter field.

FileVersion Returns the file version such as 3.4.1.12

FileVersionNumerical Returns the numerical such as 03040112

GetRegistryKey Gets a value from the registry

LicenseName Returns the Trading Blox License Name currently in use. Used in
encrypted systems to lock a system to a particular Trading Blox
user.

LineNumber Returns the current line number of the script, for PRINT debugging
purposes.

MessageBox Presents a message box

PlaySound Plays a sound

PreferenceItems

ProductVersion Returns the product version such as 3.4

ProductVersionNumeri
cal

Returns the numerical such as 03040000

SetRegistryKey Sets a value into the registry

www.forex-warex.com

Trading Blox Builder's Guide206

© 2013, Trading Blox, LLC. All rights reserved.

BuildDividendFiles

Function creates dividend files using the CSI Data Service Unfair Advantage Stock subscription
service.

Syntax:

BuildDividendFiles

Parameter: Description:

< none> Process builds files that are not made available for test
simulation during dividend file creation. This means the first
pass is used to create the files, and the second pass will make
the files available for testing.

If the Main Menu screen open Log window reports errors, the
Stock subscription has expired, or Trading Blox preference
setting for the location of the Unfair Advantage software
installation needs to be changed.

Example:

' Begin Dividend File Creation using CSI Stock Subscription
BuildDividendFiles

Results:

Links:

See Also:

www.forex-warex.com

Part 4 – Blox Basic Language Reference 207

© 2013, Trading Blox, LLC. All rights reserved.

ColorRGB

Function assigns its return color value to another variable, or it can be used as value in a color
parameter field.

Use to change the color of any function that has a color parameter.

Function requires values in all three of its parameter fields.

Syntax:

' Create a color based upon the values of the three parameters
ColorValue = ColorRGB(BlueValue, GreenValue, RedValue

Parameter: Description:

BlueValue
GreenValue
RedValue

All three parameter fields and their values can be any integer
that begins at 0 and ends at 255. Each value entered into each
of these three parameters determines the color-number this
function creates. Number created is then the value needed to
duplicate that color in a chart, or other process where a color
value is needed.

Examples:

' Assign ColorRGB value to another variable
' Generate Blue Color Number
ColorValue1 = ColorRGB(255, 0, 0)
' Generate Green Color Number
ColorValue2 = ColorRGB(0, 255, 0)
' Generate Red C0lor Number
ColorValue3 = ColorRGB(0, 0, 255)

OR
' Assign ColorRGB values to chart object function
' Use Blue Color value for data series Line1
chart.AddLineSeries(AsSeries(Line1), 100, "Line1", ColorRGB(255, 0, 0))
' Use Green Color value for data series Line1
chart.AddLineSeries(AsSeries(Line2), 100, "Line2", ColorRGB(0, 255, 0))
' Use Red Color value for data series Line1
chart.AddLineSeries(AsSeries(Line3), 100, "Line3", ColorRGB(0, 0, 255))

OR
' Assign ColorRGB values to SerSeriesColorStyle function
' Use Blue Color value for PlotLine1 series Line1
SetSeriesColorStyle(PlotLine1, ColorRGB(255, 0, 0))
' Use Green Color value for PlotLine2 series Line1
SetSeriesColorStyle(PlotLine2, ColorRGB(0, 255, 0))
' Use Red Color value for PlotLine3 series Line1
SetSeriesColorStyle(PlotLine3, ColorRGB(0, 0, 255))

OR

www.forex-warex.com

Trading Blox Builder's Guide208

© 2013, Trading Blox, LLC. All rights reserved.

' Consider a Random number color assignment
' BLUE GREEN RED
plotColor = ColorRGB(Random(255), Random(255), Random(255))

Trading Blox Color Selection Dialog:
All BPV Series will provide access to the Trading Blox Color Selection Dialog when the BPV
series uses a System, Test or Simulation Scope setting with a BPV numeric series.

To display the color selection dialog, follow the click steps in this next image:

When the "More Colors..." button is clicked the dialog in this next image will appear:

www.forex-warex.com

Part 4 – Blox Basic Language Reference 209

© 2013, Trading Blox, LLC. All rights reserved.

Just about any color's RGB value can be discovered using this dialog. However, if the chart
image where this color is to be used will appear in a report generated with a HTML Browser
process that is used to create Trading Blox reports, picking a color from the Basic Color Matrix
Table will keep the colors used within the Safe-Color range that are easily reproduced using a
HTML process.

Applying the RGB, (Red, Green, Blue) values to Trading Blox's ColorRGB function, place the color
numbers using Blue, Green and Red as the first, second and third parameter locations

Script Color Assignment Examples:
' Blue Green Red
PlotColor1 = ColorRGB(255, 0, 0) ' Plot Blue Color
PlotColor2 = ColorRGB(0, 255, 0) ' Plot Green Color
PlotColor3 = ColorRGB(0, 0, 255) ' Plot Red Color

' Trade Color Preference Settings Color Numbers values
PlotColor1 = ColorCustom1 ' Use Preference ColorCustom1 Value
PlotColor2 = ColorCustom2 ' Use Preference ColorCustom2 Value
PlotColor3 = ColorCustom3 ' Use Preference ColorCustom3 Value

Links:

AddLineSeries, Colors, SetSeriesColorStyle

www.forex-warex.com

Trading Blox Builder's Guide210

© 2013, Trading Blox, LLC. All rights reserved.

www.forex-warex.com

Part 4 – Blox Basic Language Reference 211

© 2013, Trading Blox, LLC. All rights reserved.

FileVersion

Syntax:

Parameter: Description:

Example:

Results:

Links:

See Also:

www.forex-warex.com

Андрей
tr-software-download

Trading Blox Builder's Guide212

© 2013, Trading Blox, LLC. All rights reserved.

FileVersionNumerical

Syntax:

Parameter: Description:

Example:

Results:

Links:

See Also:

GetRegistryKey

Use this function to get a registry key value, that was set with the SetRegistryKey function

Syntax

 keyValue = GetRegistryKey(keyName, [subKeyName])

Parameters

keyName the name of the key, used by SetRegistryKey

subKeyName the name of the subKey

Examples

SetRegistryKey("HelloWorld", "What a wonderful day.")
PRINT GetRegistryKey("HelloWorld")

SetRegistryKey("Count", 0)

count = GetRegistryKey("Count")
count = count + 1
SetRegistryKey("Count", count)
PRINT GetRegistryKey("Count")

www.forex-warex.com

Part 4 – Blox Basic Language Reference 213

© 2013, Trading Blox, LLC. All rights reserved.

www.forex-warex.com

Trading Blox Builder's Guide214

© 2013, Trading Blox, LLC. All rights reserved.

Syntax:

Parameter: Description:

Example:

Results:

Links:

See Also:

LicenseName

Returns the Trading Blox License Name currently in use. Used in encrypted systems to lock a system to
a particular Trading Blox user.

www.forex-warex.com

Part 4 – Blox Basic Language Reference 215

© 2013, Trading Blox, LLC. All rights reserved.

Syntax:

Parameter: Description:

Example:

Results:

Links:

See Also:

www.forex-warex.com

Trading Blox Builder's Guide216

© 2013, Trading Blox, LLC. All rights reserved.

LineNumber

Use this function for debugging purposes using along with the PRINT function to get the line number
of the script section where this function is placed.

Syntax:

Print LineNumber

Parameter: Description:

none

Returns:

Returns the current line number of the script where this function is placed.

Example:

Links:

Block Object

See Also:

www.forex-warex.com

Part 4 – Blox Basic Language Reference 217

© 2013, Trading Blox, LLC. All rights reserved.

Message Box

MessageBox function presents the user with a message box and stops processing of the test.

Syntax:

 returnValue = MessageBox(message, [Button Options], [Icon and Sound])

Parameter: Description:

message String message to display

[Button
Options]

Optional decimal number from the type1 list

[Icon and
Sound]

Optional decimal number from the type2 list

returnValue Decimal number from the return value list

Dialog Options:

Button Options: Icon and Sound Options: Button Return Values:

 0 -- OK
 1 -- OK/Cancel
 2 -- Abort/Retry/Ignore
 3 -- Yes/No/Cancel
 4 -- Yes/No
 5 -- Retry/Cancel
 6 -- Cancel/Try Again/
Continue

 16 -- Icon X, Critical Stop Sound
 32 -- Icon Question, Ding Sound
 48 -- Icon Exclamation, Exclamation

Sound
 64 -- Icon Information, Error Sound
 80 -- No Icon, Ding Sound
128 -- No Icon, No Sound

 1 -- OK
 2 -- Cancel
 3 -- Abort
 4 -- Retry
 5 -- Ignore
 6 -- Yes
 7 -- No
10 -- Try Again
11 -- Continue

Example:

' Create Message Box Parameter Details:
sMsg = "Button# " + AsString(iButton, 0) _
 + " Icon/Sound# " + AsString(iIconSound, 0)

' Ask User if it is OK to continue Processing Data
iResult = MessageBox(sMsg, iButton , iIconSound)

Dialog Examples:

www.forex-warex.com

Trading Blox Builder's Guide218

© 2013, Trading Blox, LLC. All rights reserved.

Button - OK & Icon X, Critical Stop Sound Button - OK/Cancel & Icon Question, Ding
Sound

 Button -Abort/Retry/Ignore & Icon Question, Ding
Sound

Button -Yes/No & Icon Question, Ding
Sound

Button -Yes/No/Cancel & Icon Exclamation,
Exclamation Sound

Button -Retry/Cancel & Icon Information,
ERROR Sound

Button -Cancel/Try Again/Continue & Icon X, Critical
Stop Sound

Button -OK & Icon X, No Icon, Ding
Sound

www.forex-warex.com

Part 4 – Blox Basic Language Reference 219

© 2013, Trading Blox, LLC. All rights reserved.

Button -OK & Icon X, No Icon, No Sound

Example:

' Ask User if it is OK to continue Processing Data
result = MessageBox("Is it OK to process data for " + instrument.date, 3, 32)

' If the message box indicates the "No" button was pressed,...
If result = 7 THEN
 ' Send User Warning Message Trading Blox is Aborting Test
 test.AbortSimulation("Your Finished!")
ELSE
 ' Send to Print Output & Log Window Processing Success
 PRINT "Processing trades for ", instrument.symbol, _
 + " on ", instrument.date
ENDIF

Example:

 ' ~~
 ' 0 -- OK
 ' 1 -- OK/Cancel
 ' 2 -- Abort/Retry/Ignore
 ' 3 -- Yes/No/Cancel
 ' 4 -- Yes/No
 ' 5 -- Retry/Cancel
 ' 6 -- Cancel/Try Again/Continue

 ' Assign Button Option:
 iButton = iButtonOption ' iButtonOption is Integer Type Parameter
 ' ~~
 ' Button -OK & Icon X, No Icon, No Sound
 ' 16 -- Icon X, Critical Stop Sound
 ' 32 -- Icon Question, Ding Sound
 ' 48 -- Icon Exclamation, Exclamation Sound
 ' 64 -- Icon Information, ERROR Sound
 ' 80 -- No Icon, Ding Sound
 ' 120 -- No Icon, No Sound

www.forex-warex.com

Trading Blox Builder's Guide220

© 2013, Trading Blox, LLC. All rights reserved.

 ' BPV Number Series - Manual Index
 SoundOption[1] = 16 ' Critical Stop
 SoundOption[2] = 32 ' Question Mark
 SoundOption[3] = 48 ' Exclamation Sound
 SoundOption[4] = 64 ' ERROR Sound
 SoundOption[5] = 80 ' No Icon Ding
 SoundOption[6] =128 ' No Icon Sound ?

 ' Assign Selection Sound option - iSoundOption is a Selector Type Parameter
 iIconSound = SoundOption[iIconSoundOption + 1]
 ' ~~
 ' 1 -- OK
 ' 2 -- Cancel
 ' 3 -- Abort
 ' 4 -- Retry
 ' 5 -- Ignore
 ' 6 -- Yes
 ' 7 -- No
 ' 10 -- Try Again
 ' 11 -- Continue
 ' BPV String Series - Manual Index
 ReturnMeaning[1] = "1 -- OK"
 ReturnMeaning[2] = "2 -- Cancel"
 ReturnMeaning[3] = "3 -- Abort"
 ReturnMeaning[4] = "4 -- Retry"
 ReturnMeaning[5] = "5 -- Ignore"
 ReturnMeaning[6] = "6 -- Yes"
 ReturnMeaning[7] = "7 -- No"
 ReturnMeaning[8] = "8 -- Error"
 ReturnMeaning[9] = "9 -- Error"
 ReturnMeaning[10] = "10 -- Try Again"
 ReturnMeaning[11] = "11 -- Continue"
 ReturnMeaning[12] = "12 -- Error"

 ' ~~
 ' Create Message Box Parameter Details:
 sMsg = "Button# " + AsString(iButton, 0) _
 + " Icon/Sound# " + AsString(iIconSound, 0)

 ' Ask User if it is OK to continue Processing Data
 iResult = MessageBox(sMsg, iButton , iIconSound)

 ' Display Message Box Return Value
 PRINT "Message Box Returned: " + ReturnMeaning[iResult]
 ' ~~

Button Returns:

Message Box Returned: 1 -- OK
Message Box Returned: 2 -- Cancel
Message Box Returned: 4 -- Retry
Message Box Returned: 4 -- Retry

www.forex-warex.com

Part 4 – Blox Basic Language Reference 221

© 2013, Trading Blox, LLC. All rights reserved.

Message Box Returned: 7 -- No
Message Box Returned: 6 -- Yes
Message Box Returned: 2 -- Cancel
Message Box Returned: 10 -- Try Again

Links:

AbortSimulation, General

See Also:

PlaySound

Plays a sound file from the Sounds folder.

The Sounds folder is located in the main Trading Blox folder.

Example:

PlaySound("Test Done.wav")

www.forex-warex.com

Trading Blox Builder's Guide222

© 2013, Trading Blox, LLC. All rights reserved.

Syntax:

Parameter: Description:

Example:

Results:

Links:

See Also:

www.forex-warex.com

Part 4 – Blox Basic Language Reference 223

© 2013, Trading Blox, LLC. All rights reserved.

Preference Items

Preferences:
NumberOfExtraDataFields
LoadVolume
LoadUnadjustedClose
ProcessDailyBars
ProcessWeeklyBars
ProcessMonthlyBars
ProcessWeekends
RaiseNegativeDataSeries
YearsOfPrimingData

Colors set in preferences that can be used in scripting:
ColorBackground
ColorUpBar
ColorDownBar
ColorUpCandle
ColorDownCandle
ColorCrossHair
ColorGrid
ColorLongTrade
ColorShortTrade
ColorTradeEntry
ColorTradeExit
ColorTradeStop
ColorCustom1
ColorCustom2
ColorCustom3
ColorCustom4

www.forex-warex.com

Trading Blox Builder's Guide224

© 2013, Trading Blox, LLC. All rights reserved.

ProductVersion

Syntax:

Parameter: Description:

Example:

Results:

Links:

See Also:

www.forex-warex.com

Part 4 – Blox Basic Language Reference 225

© 2013, Trading Blox, LLC. All rights reserved.

ProductVersionNumerical

Syntax:

Parameter: Description:

Example:

Results:

Links:

See Also:

SetRegistryKey

Use this function to set a registry key.

Syntax

 SetRegistryKey(keyName, keyValue, [subKeyName])

Parameters

keyName the name of the key, used by SetRegistryKey

keyValue the string value of the key. numbers will be
converted to strings

subKeyName the name of the subKey

Examples

SetRegistryKey("HelloWorld", "What a wonderful day.")
PRINT GetRegistryKey("HelloWorld")

SetRegistryKey("Count", 0)

count = GetRegistryKey("Count")

www.forex-warex.com

Trading Blox Builder's Guide226

© 2013, Trading Blox, LLC. All rights reserved.

count = count + 1
SetRegistryKey("Count", count)
PRINT GetRegistryKey("Count")

www.forex-warex.com

Part 4 – Blox Basic Language Reference 227

© 2013, Trading Blox, LLC. All rights reserved.

Syntax:

Parameter: Description:

Example:

Results:

Links:

See Also:

9.5 Mathematical Functions

Table description will be added soon. Until then, click on function link to see description in
the function's topic page.

Function: Description:

AbsoluteValue

ArcCosine

ArcSine

ArcTangent

ArcTangentXY

Average

CAGR

Ceiling

Correlation

CorrelationLog

Cosine

DegreesToRadian
s

EMA

www.forex-warex.com

Trading Blox Builder's Guide228

© 2013, Trading Blox, LLC. All rights reserved.

Exponent

Floor

Hypotenuse

IfThenElse

IsUndefined

Log

Max

Min

RadiansToDegree
s

Random

RandomDouble

RandomSeed

Round

Sign

Sine

Square Root

StandardDeviation

StandardDeviation
Log

SumValues

Tangent

AbsoluteValue

Returns the absolute value of a number.

Short form: "abs".

Syntax

value = AbsoluteValue(expression)

iParameters

expression any expression

returns the absolute value of expression

Examples

value = AbsoluteValue(5.6) ' Returns 5.6

www.forex-warex.com

Part 4 – Blox Basic Language Reference 229

© 2013, Trading Blox, LLC. All rights reserved.

value = AbsoluteValue(-5.6) ' Returns 5.6
value = AbsoluteValue("Hello") ' Returns 0.

www.forex-warex.com

Trading Blox Builder's Guide230

© 2013, Trading Blox, LLC. All rights reserved.

ArcCosine

Returns the arc cosine of an angle specified in radians. The range of the result is 0 to PI radians. To convert
angle from radians to degrees use RadiansToDegrees function.

Short form: "acos".

Syntax

value = ArcCosine(expression)

iParameters

expression any expression that resolves to a valid
cosine range -1 to 1

returns the arc cosine of expression

Examples

value = ArcCosine(0) ' Returns 1.570795327
value = ArcCosine(0.5) ' Returns 1.047197551
value = RadiansToDegrees(ArcCosine(0.5)) ' Returns 60

ArcSine

Returns the arc sine of an angle specified in radians. The range of the result is 0 to PI radians. To convert
angle from radians to degrees use RadiansToDegrees function.

Short form: "asin".

Syntax

value = ArcSine(expression)

iParameters

expression any expression that resolves to an angle in
radians

returns the arc sine of expression

Examples

value = ArcSine(PI) ' Returns 5.6.
value = ArcSine(PI / 2) ' Returns 5.6.

www.forex-warex.com

Part 4 – Blox Basic Language Reference 231

© 2013, Trading Blox, LLC. All rights reserved.

ArcTangent

Returns the arc tangent of an angle specified in radians. The range of the result is 0 to PI radians. To
convert angle from radians to degrees use RadiansToDegrees function.

Short form: "atan".

Syntax

value = ArcTangent(expression)

iParameters

expression any expression that resolves to an angle in
radians

returns the arc tangent of expression

Examples

value = ArcTangent(PI) ' Returns 5.6.
value = ArcTangent(PI / 2) ' Returns 5.6.

ArcTangentXY

Returns the arc tangent of an angle specified in radians by the number X / Y. Returns result in radians.
The range of the result is -PI to PI radians. The ArcTangentXY function uses the signs of both
parameters to determine the quadrant of the return value. To convert angle from radians to degrees use
RadiansToDegrees function.

Short form: "atan2".

Syntax

value = ArcTangentXY(X, Y)

iParameters

x any expression

y any expression

returns the arc tangent of x / y

Example

value = ArcTangentXY(PI, 2) ' Returns 5.6.

Average

See series function Average.

www.forex-warex.com

Trading Blox Builder's Guide232

© 2013, Trading Blox, LLC. All rights reserved.

CAGR

The CAGR function will return the Compounded Annual Growth Rate as computed internally by Trading
Blox.

Syntax

CAGR(days, starting value, ending value)

Trading Blox uses the following formula to compute CAGR

CAGR = (ending value / starting value) ^ (1 / (days / 365.25)) - 1

www.forex-warex.com

Part 4 – Blox Basic Language Reference 233

© 2013, Trading Blox, LLC. All rights reserved.

Ceiling

Ceiling reduces a decimal value to an integer as follows:
Values greater than zero return the next integer away from zero.
Values less than zero return the next integer towards zero.

Syntax:

Ceiling(AnyValue)

Parameter: Description:

AnyValue Any numeric value, Or any expression that results in a numeric
value.

Example:

' ~~
' BPV Manual Series Test Values
' ~~
dVal[1] = -1.50
dVal[2] = -1.00
dVal[3] = -0.50
dVal[4] = 0.00
dVal[5] = 0.50
dVal[6] = 1.00
dVal[7] = 1.50

' ~~
PRINT "Ceiling Function"
PRINT "----------------"

FOR Ndx = 1 TO 7
 ' Ceiling Calculation
 PRINT "Ceiling(" + AsString(dVal[Ndx], 2) + ") = ", Ceiling(dVal[Ndx])
Next ' Ndx
' ~~

Results:
 Ceiling Function:

 Ceiling(-1.50) = -1
 Ceiling(-1.00) = -1
 Ceiling(-0.50) = 0
 Ceiling(0.00) = 0
 Ceiling(0.50) = 1
 Ceiling(1.00) = 1
 Ceiling(1.50) = 2

Links:

AsString, FOR

See Also:

www.forex-warex.com

Trading Blox Builder's Guide234

© 2013, Trading Blox, LLC. All rights reserved.

AsInteger, Floor

Correlation

See series function Correlation.

CorrelationLog

See series function CorrelationLog.

www.forex-warex.com

Part 4 – Blox Basic Language Reference 235

© 2013, Trading Blox, LLC. All rights reserved.

Cosine

Returns the arc sine of an angle specified in radians. The range of the result is 0 to PI radians. To convert
angle from radians to degrees use RadiansToDegrees function.

Short form: "cos".

Syntax

value = Cosine(expression)

iParameters

expression any expression that resolves to an angle in
radians

returns the cosine of expression

Examples

value = Cosine(PI) ' Returns 1.0.
value = Cosine(PI / 2) ' Returns 0.0 approximately.

DegreesToRadians

Returns the angle in radians corresponding with an angle specified in degrees. The range of the result is 0
to PI radians. To convert angle from radians to degrees use RadiansToDegrees function.

Short form: "degtorad".

Syntax

value = DegreesToRadians(expression)

iParameters

expression any expression that resolves to an angle in
degrees

returns the radians corresponding with expression

Examples

value = DegreesToRadians(180) ' Returns 5.6.
value = DegreesToRadians(PI / 2) ' Returns 5.6.

www.forex-warex.com

Trading Blox Builder's Guide236

© 2013, Trading Blox, LLC. All rights reserved.

EMA

Returns the Exponential Moving Average, based on the last value of the series, the new value, and the
number of days in the moving average.

Syntax

value= EMA(lastValueOfSeries, movingAverageDays, newValue)

Parameters

lastValueOfSeries the previous value in the series

movingAverageDays the number of days in the moving average

newValue the new value

returns the current EMA value

Examples

A calculated indicator could be defined as follows. This would be the moving average of today's close minus
yesterday's close, where the name of this calculated indicator is "closeChangeMovingAverage," and the
number of days in the moving average is "daysInMovingAverage."

EMA(closeChangeMovingAverage[1], daysInMovingAverage,
instrument.close - instrument.close[1])

Or more simply, the 10 day exponential moving average of the close would be defined as follows, where
closeEMA is a series variable.

closeEMA = EMA(closeEMA[1], 10, instrument.close)

www.forex-warex.com

Part 4 – Blox Basic Language Reference 237

© 2013, Trading Blox, LLC. All rights reserved.

Exponent

Returns e (2.71828182845904, the base of natural logarithms) raised to a power.

See also the power operator ̂if you want to raise 10 to some number.

Short form: "exp".

Syntax

value = Exp(expression)

Parameters

expression any expression that defines the power

returns e raised to specified power

Examples

value = Exp(0) ' Returns 1
value = Exp(1) ' Returns 2.718282
value = Exp(2) ' Returns 7.389056

www.forex-warex.com

Trading Blox Builder's Guide238

© 2013, Trading Blox, LLC. All rights reserved.

Floor

Floor reduces a decimal value to an integer as follows:
Values greater than zero return the next integer towards zero.
Values less than zero return the next integer away from zero.

Syntax:

Floor(AnyValue)

Parameter: Description:

AnyValue Any numeric value, Or any expression that results in a numeric value.

Example:

' ~~
' BPV Manual Series Test Values
' ~~
dVal[1] = -1.50
dVal[2] = -1.00
dVal[3] = -0.50
dVal[4] = 0.00
dVal[5] = 0.50
dVal[6] = 1.00
dVal[7] = 1.50

' ~~
PRINT "Floor Function:"
PRINT "---------------"

FOR Ndx = 1 TO 7
 ' Floor Calculations
 PRINT "Floor(" + AsString(dVal[Ndx], 2) + ") = ", Floor(dVal[Ndx])
Next ' Ndx
' ~~

Results:
 Floor Function:

 Floor(-1.50) = -2
 Floor(-1.00) = -1
 Floor(-0.50) = -1
 Floor(0.00) = 0
 Floor(0.50) = 0
 Floor(1.00) = 1
 Floor(1.50) = 1

Links:

AsString, FOR, PRINT

See Also:

www.forex-warex.com

Part 4 – Blox Basic Language Reference 239

© 2013, Trading Blox, LLC. All rights reserved.

AsInteger, Ceiling

Hypotenuse

Calculates the length of the hypotenuse of a right triangle, given the length of the two sides sideOne and
sideTwo .

Short form: "hypot".

Syntax

value = Hypotenuse(sideOne, sideTwo)

Parameters

sideOne any expression used to define the length of the
first side

sideTwo any expression used to define the length of the
second side

returns the length of the hypotenuse

Examples

value = Hypotenuse(3, 4) ' Returns 5
value = Hypotenuse(9, 16) ' Returns 25

IfThenElse

Returns the second parameter value if the first parameter value is true. Returns the third parameter value if
the first parameter value is false. This function is analogous to the Microsoft Excel IF function.

Syntax

value = IfThenElse(condition, trueValue, falseValue)

Parameters

condition a condition that evaluates to true or false

trueValue the value returned if condition is TRUE

falseValue the value returned if condition is FALSE

returns trueValue if condition is TRUE otherwise
falseValue

Examples

value = IfThenElse(1 = 2, 3, 4) ' Returns 4
value = IfThenElse(2 = 2, 3, 4) ' Returns 3

www.forex-warex.com

Trading Blox Builder's Guide240

© 2013, Trading Blox, LLC. All rights reserved.

This function is useful in calculated indicators, where you can only enter an expression.

Example of calculated indicator which will return the true low of the day. This could be part of a true
range calculation:

IfThenElse(instrument.close[1] < instrument.low, instrument.close[1],
instrument.low)

IsUndefined

Returns true if the variable is undefined. The only variables that are set as undefined are series and
indicators prior to priming.

Syntax

booleanValue = IsUndefined(variable)

Parameters

variable the variable to evaluate

returns true if the variable is undefined

Examples

notDefined = IsUndefined(instrument.averageTrueRange)

www.forex-warex.com

Part 4 – Blox Basic Language Reference 241

© 2013, Trading Blox, LLC. All rights reserved.

Log

Returns the logarithm of a number.

Syntax

value = Log(number [, base])

Parameters

number any expression

base the base of the logarithm, if omitted it will return
the natural logarithm (assumes base e)

returns the log value

Examples

value = Log(1) ' Returns 0
value = Log(16, 2) ' Returns 4
value = Log(100, 10) ' Returns 2

Max

Returns the highest value in a list of values. This function takes an unlimited number of arguments but
requires at least one argument. See also Highest.

Syntax

 value = Max(expression, expression, expression, ...)

Parameters

expression1 any numeric expression

expression2 any numeric expression

expression3 any numeric expression

returns the highest value of the list of expressions

Examples

value = Max(5, 6, 8) ' Returns 8
value = Max(2 + 1, 5) ' Returns 5

Min

Returns the lowest value in a list of values. This function takes an unlimited number of arguments but
requires at least one argument. See also Lowest.

Syntax

 value = Min(expression1, expression2, expression3, ...)

www.forex-warex.com

Trading Blox Builder's Guide242

© 2013, Trading Blox, LLC. All rights reserved.

Parameters

expression1 any numeric expression

expression2 any numeric expression

expression3 any numeric expression

returns the lowest value of the list of expressions

Examples

value = Min(5, 6, 8) ' Returns 5
value = Min(2 + 1, 5) ' Returns 3

Min or Max can be used in place of an IF loop in certain cases. Instead of:

IF (var1 <= var2) THEN
 var3 = var1
ELSE
 var3 = var2
ENDIF

You could just use this:

var3 = Min(var1, var2)

RadiansToDegrees

Returns the angle in degrees corresponding with an angle specified in radians. The range of the result
is 0 to 360 degrees. To convert angle from degrees to radians use DegreesToRadians function.

Short form: "radtodeg".

Syntax

value = RadiansToDegrees(expression)

Parameters

expression any expression

returns the angle in degrees corresponding with the
angle specified in radians

Examples

value = RadiansToDegrees(PI) ' Returns 360
value = RadiansToDegrees(PI / 2) ' Returns 180

Random

Returns a random integer given a range of integers.

If just the range is passed in, the random value returned will be between 1 and the range. If both the

www.forex-warex.com

Part 4 – Blox Basic Language Reference 243

© 2013, Trading Blox, LLC. All rights reserved.

lowerValue and the optional upperValue is passed in, the random value returned will be between the
lowerValue and the upperValue. The maximum value that can be passed to this function is 2147483647.

Syntax

value = Random(range [or lowerValue], [upperValue])

iParameters

range or lowerValue range or lower value of range

upperValue optional upper value of range

returns the random value

Examples

PRINT Random(10) ' Returns a random number from 1
to 10

PRINT Random(10, 20) ' Returns a random number from 10 to 20

RandomDouble

Returns a random double between 0 and 1.

Syntax

value = RandomDouble()

Examples

PRINT RandomDouble() ' Returns a random double between 0 and
1

RandomSeed

Seeds the random number generator with the optional seed value, or the time if seed value is excluded, so
that the sequence of random numbers is different every time a test is run. If you don't use this function the
Random function will return the same sequence of random numbers for every simulation run. This is good
for debugging a problem, but not usually a desired outcome.

Note: Best to use in the Before Simulation script, so it is run just once at the start of the test.

Syntax

value = RandomSeed([seedValue])

iParameters

seedValue optional seedValue

returns the seed value

Examples

www.forex-warex.com

Trading Blox Builder's Guide244

© 2013, Trading Blox, LLC. All rights reserved.

' Seeds the random number generator with the time. Returns the value
used.

seedValue = RandomSeed

' Seeds the random number generator with the current parameter test

RandomSeed(test.currentParameterTest)

Round

Returns the rounded value.

Syntax

 value = Round(expression1, decimals)

Parameters

expression1 any numeric expression

decimals number of decimals to round

returns the lowest value of the list of expressions

Examples

value = Round(5.123456, 2) ' Returns 5.12
value = Round(1.25 + 1.5, 1) ' Returns 2.8
value = Round(12345, -2) ' Returns 12300

www.forex-warex.com

Part 4 – Blox Basic Language Reference 245

© 2013, Trading Blox, LLC. All rights reserved.

Sign

Returns a value of 1 when the sign of a value is Positive, and a value of -1 when the sign of a value is
negative.

Syntax:

Sign(AnyValue)

Parameter: Description:

AnyValue Any numeric value, Or numeric expression that results in a
numeric value.

Examples:

' ~~
' Simple Print Statement Examples
' ~~
PRINT Sign(13) ' Returns 1 - Indicating Sign is Positive
PRINT Sign(-13) ' Returns -1 - Indicating Sign is Negative
PRINT Sign(2 * 2) ' Returns 1 - Indicating Sign is Positive
PRINT Sign(-2 * 2) ' Returns -1 - Indicating Sign is Negative

Or
' ~~
' Control Sign of a Number
' ~~
' Test this number
AnyNumber = 13
' Show Number
PRINT "AnyNumber ", AnyNumber ' Returns 13

' Get Sign of AnyNumber
NumberSign = Sign(AnyNumber)
' Show Number
PRINT "NumberSign ", NumberSign ' Returns 1

' Get Absolute Value of AnyNumber
AnyNumber = AnyNumber * NumberSign
PRINT "AnyNumber ", AnyNumber ' Returns 13

' Test this number
AnyNumber = -2 * 2
PRINT "AnyNumber ", AnyNumber ' Returns -4
' Assign Result of Sign Function
NumberSign = Sign(AnyNumber)
PRINT "NumberSign ", NumberSign ' Returns -1

' Use Sign Result to Absolute Value
AnyNumber = AnyNumber * NumberSign
PRINT "AnyNumber ", AnyNumber ' Returns 4

www.forex-warex.com

Trading Blox Builder's Guide246

© 2013, Trading Blox, LLC. All rights reserved.

' ~~
' Show Sign of Last Calculation
' ~~
If Sign(AnyNumber) = TRUE THEN
 PRINT "Sign(AnyNumber) is Positive"
ELSE
 PRINT "Sign(AnyNumber) is Negative"
ENDIF

Returns:
 Sign(AnyNumber) is Positive

Links:

If THEN ELSE ENDIF, PRINT

www.forex-warex.com

Part 4 – Blox Basic Language Reference 247

© 2013, Trading Blox, LLC. All rights reserved.

Sine

Returns the sine of an angle specified in radians. The range of the result is 0 to PI radians. To convert angle
from radians to degrees use RadiansToDegrees function.

Short form: "sin".

Syntax

value = Sine(expression)

Parameters

expression any expression that resolves to an angle in
radians

returns the sine of the angle specified in radians

Examples

value = Sine(PI) ' Returns 0.0 approximately
value = Sine(PI / 2) ' Returns 1.0
value = Sine(DegreesToRadians(30)) ' Returns 0.5

Square Root

Returns the square root of the specified number. If expression is a negative number, SquareRoot returns
square root of its absolute value.

Short form: "sqr".

Syntax

 value = SquareRoot(expression)

Parameters

expression any numeric expression

returns the square root of the specified number

Examples

value = SquareRoot(4) ' Returns 2
value = SquareRoot(-4) ' Returns 2
value = SquareRoot(2) ' Returns 1.414.

StandardDeviation

See series function StandardDeviation.

www.forex-warex.com

Trading Blox Builder's Guide248

© 2013, Trading Blox, LLC. All rights reserved.

StandardDeviationLog

See series function StandardDeviationLog.

SumValues

Returns the sum of a list of values. This function takes an unlimited number of arguments but requires at
least one argument.

Syntax

 value = SumValues(expression1, expression2, expression3, ...)

Parameters

expression1 any numeric expression

expression2 any numeric expression

expression3 any numeric expression

returns the sum of the list of expressions

Examples

value = SumValues(5, 6, 8) ' Returns 19
value = SumValues(2 + 1, 5) ' Returns 8

www.forex-warex.com

Part 4 – Blox Basic Language Reference 249

© 2013, Trading Blox, LLC. All rights reserved.

Tangent

Returns the tangent of an angle specified in radians.

Short form: "tan".

Syntax

value = Tangent(expression)

Parameters

expression any expression that resolves to an angle in
radians

returns the tangent of the specified angle

Examples

value = Tangent(PI) ' Returns 0.0 approximately
value = Tangent(PI / 4) ' Returns 1.0

www.forex-warex.com

Trading Blox Builder's Guide250

© 2013, Trading Blox, LLC. All rights reserved.

9.6 String Functions

Trading Blox includes several different built-in functions to manipulate strings.

Parameter: Description:

ASCII & Asc Returns the ASCII character code corresponding to the first
letter in a string.

ASCIIToCharacters & Chr Converts its parameters from integers to corresponding ASCII
characters and returns the string composed of these
characters.

FindString & Instr Returns the position of the first occurrence of one string within
another.

FormatString Formats the number or string using the format string.

GetField This function will parse a comma delimited string and return the
nth field.

GetFieldCount This function returns the number of comma delimited values in
a text string.

GetFieldNumber This function returns the field number of a string.

LowerCase & LCase Converts any Upper-Case text characters to Lower-Case.

LeftCharacters & Left Returns a specified number of characters from the left-side of
a string.

MiddleCharacters & Mid Returns a specified number of characters to copy from the
middle of a string.

RemoveCommasBetweenQuote
s

Removes the commas that are between quotes from an
imported file record string.

RemoveNonDigits Removes any characters that are not numbers from the string.

ReplaceString Replaces text found in the search string with the text provided
as a replacement text.

RightCharacters & Right Returns a specified number of characters from the right side of
a string.

StringLength & Len Returns the number of characters in the a string text expression

TrimLeftSpaces & LTrim Returns a copy of the input string without the leading space
characters.

TrimRightSpaces & RTrim Returns a copy of the input string without the trailing space
characters.

TrimSpaces & Trim Returns a copy of the input string without the leading and
trailing spaces.

UpperCase & UCase Returns Lower-Case text characters to Upper-Case in a string
expression.

Note:

Note that to concatenate strings, the Plus (+) sign is used as follows:

www.forex-warex.com

Part 4 – Blox Basic Language Reference 251

© 2013, Trading Blox, LLC. All rights reserved.

Example:
string1 = "Hello"
string2 = "World"
resultString = string1 + string2

PRINT resultString '

Results:

Prints "HelloWorld"

See Also:

Data Groups and Types

www.forex-warex.com

Trading Blox Builder's Guide252

© 2013, Trading Blox, LLC. All rights reserved.

ASCII

Returns the ASCII character code corresponding to the first letter in a string.

Syntax:

value = ASCII(expression)
OR

value = Asc(expression) ' Short Keyword form usage: "Asc".

Parameter: Description:

expression expression, if it is not a string it will be converted to a string

value ASCII character code

Example:

value = ASCII("A") ' Returns 65
value = ASCII("a") ' Returns 97
value = ASCII("1") ' Returns 49
value = ASC(1) ' Returns 49

Results:
 See above comments.

Links:

See Also:

Data Groups and Types

www.forex-warex.com

Part 4 – Blox Basic Language Reference 253

© 2013, Trading Blox, LLC. All rights reserved.

ASCIIToCharacters

Converts its parameters from integers to corresponding ASCII characters and returns the string
composed of these characters.

Syntax:

value = ASCIIToCharacters(expression)
OR

value = Chr(expression) ' Short form usage: "Chr"

Parameter: Description:

expression Any ASCII character value, or a list of comma separated
ASCII values

value String which corresponds with the numeric ASCII codes.

Example:

value = ASCIIToCharacters(65) ' Returns "A"
value = ASCIIToCharacters(97) ' Returns "a"
value = Chr("65") ' Returns "A"
value = Chr(72, 97, 116) ' Returns "Hat"

Results:
 See example comments.

Links:

ASCII

See Also:

Data Groups and Types

www.forex-warex.com

Trading Blox Builder's Guide254

© 2013, Trading Blox, LLC. All rights reserved.

FindString

Returns the position of the first occurrence of one string within another.

Function returns -1 if the string is not found. The search is case-sensitive.

Syntax:

value = FindString(searchString, targetString)
OR

value = Instr(searchString, targetString) ' Short form usage:
"Instr"

Parameter: Description:

searchString String being searched.

targetString String which is being looked for in the search string.

value Position of found targetString, or -1 when not found. First
searchString character is in position 1, not 0.

Example:

value = FindString("Hello", "o") ' Returns 5
value = FindString("Hello", "e") ' Returns 2
value = Instr("Hello", "A") ' Returns -1

Results:
 See example comments.

Links:

See Also:

Data Groups and Types

www.forex-warex.com

Part 4 – Blox Basic Language Reference 255

© 2013, Trading Blox, LLC. All rights reserved.

FormatString

Formats the number or string using the format string.

Syntax:

formattedString = FormatString(stringToFormat, value1, [value2], [value3])

Parameter: Description:

stringToFormat

String to be formatted "%[flags] [width] [.precision]"

Use %i when formatting integers, %f when formatting floats, and %s when
formatting strings.

value1 Integer, Floating or String.

[value2] Optional: Integer, Floating or String.

[value3] Optional: Floating only.

formattedString the formatted string

Additional Arguments:

Depending on the format string, the function may expect a sequence of additional
arguments, each containing one value to be inserted instead of each %-tag specified in the
format parameter, if any. There should be the same number of these arguments as the
number of %-tags that expect a value.

%[flags][width][.precision][length]specifier

Where specifier is the most significant one and defines the type and the interpretation of the value of
the corresponding argument:

specifie
r

Output Example

c Character a

d or i Signed decimal integer 392

e Scientific notation (mantise/exponent) using e character
3.9265e

+2

E Scientific notation (mantise/exponent) using E character
3.9265E

+2

f Decimal floating point 392.65

g Use the shorter of %e or %f 392.65

G Use the shorter of %E or %f 392.65

o Signed octal 610

s String of characters sample

u Unsigned decimal integer 7235

www.forex-warex.com

Trading Blox Builder's Guide256

© 2013, Trading Blox, LLC. All rights reserved.

x Unsigned hexadecimal integer 7fa

X Unsigned hexadecimal integer (capital letters) 7FA

p Pointer address
B800:000

0

n Nothing printed. The argument must be a pointer to a signed int, where
the number of characters written so far is stored.

% A % followed by another % character will write % to the string.

The tag can also contain flags, width, .precision and modifiers sub-specifiers, which are

optional and follow these specifications:

flags description

-
Left-justify within the given field width; Right justification is the default (see
width sub-specifier).

+
Forces to preceed the result with a plus or minus sign (+ or -) even for
positive numbers. By default, only negative numbers are preceded with a -
sign.

(space) If no sign is going to be written, a blank space is inserted before the value.

#

Used with o, x or X specifiers the value is preceeded with 0, 0x or 0X
respectively for values different than zero.
Used with e, E and f, it forces the written output to contain a decimal point
even if no digits would follow. By default, if no digits follow, no decimal
point is written.
Used with g or G the result is the same as with e or E but trailing zeros are
not removed.

0
Left-pads the number with zeroes (0) instead of spaces, where padding is
specified (see width sub-specifier).

width description

(number)
Minimum number of characters to be printed. If the value to be printed is
shorter than this number, the result is padded with blank spaces. The value is
not truncated even if the result is larger.

*
The width is not specified in the format string, but as an additional integer
value argument preceding the argument that has to be formatted.

www.forex-warex.com

Part 4 – Blox Basic Language Reference 257

© 2013, Trading Blox, LLC. All rights reserved.

.precisio
n

description

.number

For integer specifiers (d, i, o, u, x, X): precision specifies the
minimum number of digits to be written. If the value to be written is shorter
than this number, the result is padded with leading zeros. The value is not
truncated even if the result is longer. A precision of 0 means that no
character is written for the value 0.
For e, E and f specifiers: this is the number of digits to be printed after the
decimal point.
For g and G specifiers: This is the maximum number of significant digits to be
printed.
For s: this is the maximum number of characters to be printed. By default all
characters are printed until the ending null character is encountered.
For c type: it has no effect.
When no precision is specified, the default is 1. If the period is specified
without an explicit value for precision, 0 is assumed.

.*
The precision is not specified in the format string, but as an additional
integer value argument preceding the argument that has to be formatted.

length description

h
The argument is interpreted as a short int or unsigned short int (only
applies to integer specifiers: i, d, o, u, x and X).

l
The argument is interpreted as a long int or unsigned long int for integer
specifiers (i, d, o, u, x and X), and as a wide character or wide
character string for specifiers c and s.

L
The argument is interpreted as a long double (only applies to floating point
specifiers: e, E, f, g and G).

Use %i when formatting integers, %f when formatting floats, and %s when formatting strings.

Example:

PRINT FormatString("I am %i years old.", 5)

PRINT FormatString("The price of an %s is $%.2f today.", "apple", 100.123456)

PRINT FormatString("I'd like to say %s to %s.", "hello", "Sam")

www.forex-warex.com

Trading Blox Builder's Guide258

© 2013, Trading Blox, LLC. All rights reserved.

Results:
I am 5 years old.
The price of an apple is $100.12 today.
I'd like to say hello to Sam.

The following will create a string variable with tabSize spaces:

Example:

Variables: myPaddingString Type: String

Variables: tabSize Type: Integer
tabSize = 6
myPaddingString = FormatString("% *s", tabSize, "")

Print "myPaddingString = ", myPaddingString + ":"
Print "myPaddingString length = ", len(myPaddingString)

Results:
myPaddingString = :
myPaddingString length = 6

The following will print the string "1234" padded within 10 leading spaces:

Example:

PRINT "|", FormatString("% 10s", "1234") + "|"

Results:
| 1234|

These numbers will be right justified in columns:

Example:

PRINT "|", _
 + FormatString("% 10s", AsString(5.12)) _
 + FormatString("% 10s", AsString(500)) _
 + "|"

Results:
| 5.120000000 500|

You can also replace the hard coded padding with an integer variable like this:

Example:

www.forex-warex.com

Part 4 – Blox Basic Language Reference 259

© 2013, Trading Blox, LLC. All rights reserved.

VARIABLES: tabSize TYPE: integer
tabSize = 10

PRINT "|", _
 + FormatString("% *s", tabSize, AsString(5)) _
 + FormatString("% *s", tabSize, AsString(5.123))_
 + "|"

PRINT "|", _
 + FormatString("% *s", tabSize, AsString(5.12)) _
 + FormatString("% *s", tabSize, AsString(500))_
 + "|"

Results:
| 55.123000000|
| 5.120000000 500|

The following will do the above, but limit the decimals to 2 places:

Example:

VARIABLES: tabSize Type: INTEGER
VARIABLES: floatValue1, floatValue2 TYPE: FLOATING

tabSize = 10
floatValue1 = 5
floatValue2 = 5.123

PRINT "|", _
 + FormatString("% *.2f", tabSize, floatValue1) _
 + FormatString("% *.2f", tabSize, floatValue2) _
 + "|"

Results:
| 5.00 5.12|

The following will do the dynamic padding, and also dynamic number of decimals:

Example:

VARIABLES: tabSize, decimals TYPE: INTEGER
VARIABLES: floatValue1, floatValue2 TYPE: FLOATING

tabSize = 20
decimals = 2

floatValue1 = Random(1000) / Random(10)
floatValue2 = Random(100) / Random(10)

PRINT "|", _
 + FormatString("% *.*f", tabSize, decimals, floatValue1) _
 + FormatString("% *.*f", tabSize, decimals, floatValue2) _
 + "|"

www.forex-warex.com

Trading Blox Builder's Guide260

© 2013, Trading Blox, LLC. All rights reserved.

Results:
| 106.83 10.00|

Links:

See Also:

Data Groups and Types

www.forex-warex.com

Part 4 – Blox Basic Language Reference 261

© 2013, Trading Blox, LLC. All rights reserved.

GetField

This function will parse a comma delimited string and return the nth field.

Returns a string, which will be converted to a number if necessary.

This function is often used in conjunction with the file manager's ReadLine function to read comma
delimited files.

Syntax:

returnString = GetField(stringValue, fieldIndex)

Parameter: Description:

stringValue comma delimited string

fieldIndex number of the field to extract

returnString string value of the extracted field

Note:

The GetField function replaced both the GetStringField and the GetNumberField functions from prior versions.
This new function will return a string or a number as necessary.

Example:

stringValue = "S,10,20,30,40"

returnString = GetField(stringValue, 1) ' Returns "S"

returnValue = GetField(stringValue, 3) ' Returns the number 20

Results:
 See example comments.

Links:

ReadLine, RemoveCommasBetweenQuotes, RemoveNonDigits.

See Also:

Data Groups and Types

www.forex-warex.com

Trading Blox Builder's Guide262

© 2013, Trading Blox, LLC. All rights reserved.

GetFieldCount

This function returns the number of comma delimited values in a text string.

Often used for looping over the fields, using the GetField function.

Syntax:

count = GetFieldCount(stringValue)

Parameter: Description:

stringValue Comma delimited string

count Number of comma delimited values

Example:

stringValue = "S,10,20,30,40"

count = GetFieldCount(stringValue) ' Returns 5

Results:
 See example comments.

Links:

GetField

See Also:

Data Groups and Types

www.forex-warex.com

Part 4 – Blox Basic Language Reference 263

© 2013, Trading Blox, LLC. All rights reserved.

GetFieldNumber

This function returns the field number of a string.

The reverse of the GetField process

Syntax:

fieldNumber = GetFieldNumber(csvString, stringToFind)

Parameter: Description:

csvString Comma delimited string

stringToFind String to find in the csvString

fieldNumber field number

Example:

csvString = "S,Hi,There,Blox"

fieldNumber = GetFieldNumber(csvString, "There") ' Returns 3

Results:
 See example comments.

Links:

GetField

See Also:

Data Groups and Types

www.forex-warex.com

Trading Blox Builder's Guide264

© 2013, Trading Blox, LLC. All rights reserved.

LowerCase

Converts any Upper-Case text characters to Lower-Case.

Syntax:

value = LowerCase(inputString) ' Short form: "LCase"

Parameter: Description:

inputString String to lower case.

value Lower-Case version of the input string.

Example:

value = LowerCase("Hello") ' Returns "hello"
value = LowerCase("HELLO") ' Returns "hello"

Results:
 See example comments.

Links:

UCase

See Also:

Data Groups and Types

www.forex-warex.com

Part 4 – Blox Basic Language Reference 265

© 2013, Trading Blox, LLC. All rights reserved.

LeftCharacters

Returns a specified number of characters from the left side of a string. If length is less than 1, the
empty string is returned.

If length is greater than or equal to the number of characters in string, the entire string is returned.

Syntax:

value = LeftCharacters(inputString, length)
OR

value = Left(inputString, length) ' Short form usage: "Left"

Parameter: Description:

inputString String from which to extract the left-side characters.

length Number of characters on the right side of text to extract.

value Extracted characters.

Example:

value = LeftCharacters("Hello", 3) ' Returns "Hel"
value = Left("Hello", 2) ' Returns "He"
value = Left("Hello", 40) ' Returns "Hello"

Results:
 See example comments.

Links:

MiddleCharacters, RightCharacters

See Also:

Data Groups and Types

www.forex-warex.com

Trading Blox Builder's Guide266

© 2013, Trading Blox, LLC. All rights reserved.

MiddleCharacters

Returns a specified number of characters from the middle of a string.

Syntax:

value = MiddleCharacters(inputString, start, length)
OR

value = Mid(inputString, start, length) ' Short form usage:
"Mid"

Parameter: Description:

inputString String from which to copy the characters

start Starting character position from which to start the character
copying
First character in the text is considered character 1.

length Number of characters to copy.

value Copied characters.

Example:

value = MiddleCharacters("Hello", 2, 3) ' Returns "ell"
value = MiddleCharacters("Hello", 3, 2) ' Returns "ll"

Results:
 See example comments.

Links:

LeftCharacters, RightCharacters

See Also:

Data Groups and Types

www.forex-warex.com

Part 4 – Blox Basic Language Reference 267

© 2013, Trading Blox, LLC. All rights reserved.

RemoveCommasBetweenQuotes

Removes the commas that are between quotes from an imported file record string.

Often output from other systems and/or applications will put quotes around numbers with commas, in
comma delimited files, so the number stays together in the same field. When that happens this
function is what is needed to correct that problem. In use this happens when importing data from a
file where the numbers might been copied from a report and were formatted with comma so make
reading their value easier. Not removing the comma from a comma separated list of values will cause
the number with the comma to be view as two different values, instead of a single larger value.

For example, a comma separated string value read in from a file could have fields that are encased in
quotes, and within that they may have additional commas. In order to use the GetField function on
this string, it is necessary to remove the commas from between the quotes so the field count returned
from GetFieldCount is correct. This function will also remove the quotes, since they are not required
anymore.

The GetField function will read each value as a string, and convert numbers to numbers if
necessary.

See also the RemoveNonDigits function to remove $ signs and other non digits from number strings.

Syntax:

RemoveCommasBetweenQuotes(inputString)

Parameter: Description:

inputString String from which commas are to be removed.

This is example uses a simple method to emulates the contents of what a file record might contain
within some of its numeric fields.

Example:

VARIABLES: stringRecord Type: String

' Fabricate what a file record might appear.
stringRecord = "10,20,30," + Chr(34) + "40,000" + Chr(34) + ",50,60"

' Show file record and how each of the fields will be interpreted.
PRINT "Orginal string from file:", stringRecord
PRINT "Field 4 is:", GetField(stringRecord, 4), _
 + " Field 5 is:", GetField(stringRecord, 5)
PRINT
' Remove the comma from the field with a formatting comma.
stringRecord = RemoveCommasBetweenQuotes(stringRecord)

' Show how removed comma record appears and how the field
' problem has been avoided.
PRINT "New converted string: ", stringRecord
PRINT "Field 4 is:", GetField(stringRecord, 4), _
 + " Field 5 is:", GetField(stringRecord, 5)

www.forex-warex.com

Trading Blox Builder's Guide268

© 2013, Trading Blox, LLC. All rights reserved.

Results:
Orginal string from file: 10,20,30,"40,000",50,60
Field 4 is: "40 Field 5 is: 000"

New converted string: 10,20,30,40000,50,60
Field 4 is: 40000 Field 5 is: 50

Links:

Chr, GetField, GetFieldCount, RemoveNonDigits

See Also:

Data Groups and Types

www.forex-warex.com

Part 4 – Blox Basic Language Reference 269

© 2013, Trading Blox, LLC. All rights reserved.

RemoveNonDigits

Removes any characters that are not numbers from the string.

Useful to remove $ signs and other currency symbols from number strings.

Syntax:

RemoveNonDigits(inputString)

Parameter: Description:

inputString String from which to remove the non-number digits

Example:

stringValue = "$40000"
RemoveNonDigits(stringValue)

Results:
stringValue is now without a "$" is now like this: "40000"

Links:

RemoveCommasBetweenQuotes, GetField.

See Also:

Data Groups and Types

www.forex-warex.com

Trading Blox Builder's Guide270

© 2013, Trading Blox, LLC. All rights reserved.

ReplaceString

Replaces text found in the search string with the text provided as a replacement text.

Useful to replace colons with commas, as an example, in the correlation matrix so you can use the
GetField function.

Syntax:

newString = ReplaceString(inputString, stringToReplace, stringToReplaceWith)

Parameter: Description:

inputString String where replacement will be found and replaced.

stringToReplace Target text to find in the search string.

stringToReplaceWith Replacement text that will be inserted into the place where the
target string is removed.

Example:

PRINT ReplaceString("Hello World", "Hello", "Goobye")

Results:

Links:

See Also:

Data Groups and Types

www.forex-warex.com

Part 4 – Blox Basic Language Reference 271

© 2013, Trading Blox, LLC. All rights reserved.

RightCharacters

Returns a specified number of characters from the right side of a string.

When character count is less than 1, the empty string is returned.

Should the length value be for a character count that is greater than, or equal to the number of
characters in string, the entire character contents of the string is returned.

Syntax:

value = RightCharacters(inputString)
OR

value = Right(inputString) ' Short form usage: "Right"

Parameter: Description:

inputString String from which to extract the right-side characters.

length Number of characters on the right side of text to extract.

value Extracted characters.

Example:

value = Right("Hello", 3) ' Returns "llo"
value = Right("Hello", 2) ' Returns "lo"
value = RightCharacters("Hello", 5) ' Returns "Hello"

Results:
 See example comments.

Links:

LeftCharacters, MiddleCharacters

See Also:

Data Groups and Types

www.forex-warex.com

Trading Blox Builder's Guide272

© 2013, Trading Blox, LLC. All rights reserved.

StringLength

Returns the number of characters in the a string text expression.

Syntax:

value = StringLength(inputString)
OR

value = Len(inputString) ' Short form usage: "Len"

Parameter: Description:

inputString String being measured for its text character count.

value Number of characters, including spaces in the string.

Example:

VARIABLES: inputString TYPE: STRING

inputString = "Hello"
value = StringLength(inputString) ' Returns 5

inputString = "Goodbye"
value = Len(inputString) ' Returns 7

value = StringLength("Hello") ' Returns 5
value = Len("Goodbye") ' Returns 7

Results:
See example comments.

Links:

See Also:

Data Groups and Types

www.forex-warex.com

Part 4 – Blox Basic Language Reference 273

© 2013, Trading Blox, LLC. All rights reserved.

TrimLeftSpaces

Returns a copy of the input string without the leading space characters.

Syntax:

value = TrimLeftSpaces(inputString)

OR
value = LTrim(inputString) ' Short form usage: "LTrim".

Parameter: Description:

inputString String expression that needs the spaces on the left to be
trimmed.

value Same string expression minus the leading Space characters.

Example:

value = TrimLeftSpaces(" Hello ") ' Returns "Hello "
value = LTrim(" Hello ") ' Returns "Hello "

Results:
 See example comments.

Links:

TrimRightSpaces, TrimSpaces

See Also:

Data Groups and Types

www.forex-warex.com

Trading Blox Builder's Guide274

© 2013, Trading Blox, LLC. All rights reserved.

TrimRightSpaces

Returns a copy of the input string without the trailing space characters.

Syntax:

value = TrimRightSpaces(inputString)

OR
value = RTrim(inputString) ' Short form usage: "RTrim".

Parameter: Description:

inputString String expression that needs the spaces on the right to be
trimmed.

value Same string expression minus the trailing Space characters.

Example:

value = TrimRightSpaces(" Hello ") ' Returns " Hello"
value = RTrim(" Hello ") ' Returns " Hello"

Results:
 See example comments.

Links:

TrimLeftSpaces, TrimSpaces

See Also:

Data Groups and Types

www.forex-warex.com

Part 4 – Blox Basic Language Reference 275

© 2013, Trading Blox, LLC. All rights reserved.

TrimSpaces

Returns a copy of the input string without the leading and trailing spaces.

Syntax:

value = TrimSpaces (inputString)

OR
value = Trim(inputString) ' Short form usage: "Trim".

Parameter: Description:

inputString String expression that needs the spaces on the right and left to
be trimmed

value Same string expression minus the leading and trailing Space
characters.

Example:

value = TrimSpaces(" Hello ") ' Returns "Hello"
value = Trim(" Hello ") ' Returns "Hello"

Results:
 See example comments.

Links:

TrimLeftSpaces, TrimRightSpaces

See Also:

Data Groups and Types

www.forex-warex.com

Trading Blox Builder's Guide276

© 2013, Trading Blox, LLC. All rights reserved.

UpperCase

Returns text characters to Upper-Case in a string expression.

Syntax:

value = UpperCase(inputString)
OR

value = UCase(inputString) ' Short form usage: "UCase"

Parameter: Description:

inputString Text or string expression with lower case characters

value Lower Case characters converted to Upper Case characters.

Example:

value = UpperCase("Hello") ' Returns "HELLO"
value = UCase("hello") ' Returns "HELLO"

Results:

Links:

See Also:

Data Groups and Types

www.forex-warex.com

Part 4 – Blox Basic Language Reference 277

© 2013, Trading Blox, LLC. All rights reserved.

9.7 Type Conversion Functions

"AS" functions convert a numeric expression to the TYPE class used in the function's name.

"IS" functions examine and report the truth of a TYPE class expression being the TYPE class used in
the function's name.

TYPE: Description:

AsFloating Converts an passed expression to a TYPE FLOATING point numeric
value.

AsInteger Converts an passed expression to a TYPE INTEGER point numeric value.

AsSeries Changes how a TYPE SERIES array is passed to a Chart Object
function.

AsString Converts an passed expression to a TYPE STRING a character text
value.

IsFloating Use this function when you need to be sure the expression is of TYPE
FLOATING.

IsInteger Use this function when you need to be sure the expression is of TYPE
INTEGER.

IsString Use this function when you need to be sure the expression is of TYPE
STRING.

See Also:

Data Groups and Types

www.forex-warex.com

Андрей
tr-software-download

Trading Blox Builder's Guide278

© 2013, Trading Blox, LLC. All rights reserved.

AsFloating

Converts an passed expression to a TYPE FLOATING point numeric value.

Syntax:

value = AsFloating(expression)

Parameter: Description:

expression Expression to convert to a floating numeric value

value Converted expression is returned as a TYPE Floating number.

Example:

VARIABLES: stringOne, stringTwo TYPE: STRING

stringOne = "123.456"
stringTwo = "456.789"

print stringOne + stringTwo
print AsFloating(stringOne) + AsFloating(stringTwo)

Results:
This prints the string "123.456456.789"
This prints the number 580.245

Links:

AsInteger, AsSeries, AsString, IsFloating, IsInteger, IsString

See Also:

Data Groups and Types

www.forex-warex.com

Part 4 – Blox Basic Language Reference 279

© 2013, Trading Blox, LLC. All rights reserved.

AsInteger

Converts an passed expression to a TYPE INTEGER point numeric value.

Displays the given value as an integer. Function does not round a number with decimals, instead the
value returned is the integer portion of the number.

Syntax:

AsInteger(AnyValue)

Parameter: Description:

AnyValue Any numeric value, Or expression that results in a numeric
value.

Example:

' ~~
' BPV Manual Series Test Values
' ~~
dVal[1] = -1.50
dVal[2] = -1.00
dVal[3] = -0.50
dVal[4] = 0.00
dVal[5] = 0.50
dVal[6] = 1.00
dVal[7] = 1.50

' ~~
PRINT "AsInteger Function:"
PRINT "-------------------"

FOR Ndx = 1 TO 7
 ' Floor Calculations
 PRINT "AsInteger(" + AsString(dVal[Ndx], 2) + ") = ", AsInteger(dVal[Ndx])
Next ' Ndx
' ~~

Results:
 AsInteger Function:

 AsInteger(-1.50) = -1
 AsInteger(-1.00) = -1
 AsInteger(-0.50) = 0
 AsInteger(0.00) = 0
 AsInteger(0.50) = 0
 AsInteger(1.00) = 1
 AsInteger(1.50) = 1

Links:

www.forex-warex.com

Trading Blox Builder's Guide280

© 2013, Trading Blox, LLC. All rights reserved.

AsFloating, AsSeries, AsString, IsFloating, IsInteger, IsString, Ceiling, Floor,

See Also:

Data Groups and Types

AsSeries

Changes how a TYPE SERIES array is passed to a Chart Object function.

Custom Chart Director series data parameter assignment methods requires that all data series
passed to a chart parameter use this function.

AsSeries passes the location data's for the first element in a series instead of passing all the values
in the series. Charting functions also require data passed to their function also include an element
count.

This function is not required for static variables or properties that are not a series.

Syntax:

AsSeries(Any_BPV_Series)

Parameter: Description:

Any_BPV_Series Any BPV Series assigned to any Custom Chart parameter is
required to use this conversion function.

Example:

' Add 5 element values to represent "bar1"
 chart.AddBarSeries(AsSeries(bar1), 5)

Links:

Chart, AsFloating, AsInteger, AsString, IsFloating, IsInteger, IsString

See Also:

Data Groups and Types

www.forex-warex.com

Part 4 – Blox Basic Language Reference 281

© 2013, Trading Blox, LLC. All rights reserved.

AsString

Converts an passed expression to a TYPE STRING a character text value.

Usually this is wanted when the results are to be used in a report where the number of decimal value
must be controlled. It will also provide comma separation for large numbers.

Syntax:

 stringVariable = AsString(expression, [decimals], [addCommas])

Parameter: Description:

expression Expression to convert

[decimals] Optional number of decimals to display

[addCommas] Optional True/False to include commas in the number

stringVariable Expression converted to a character string.

Example:

' ---
VARIABLES: integerOne, integerTwo TYPE: INTEGER
integerOne = 123
integerTwo = 456

PRINT integerOne + integerTwo
PRINT AsString(integerOne) + AsString(integerTwo)

Results:
This prints "579"
This prints "123456"

' ---
VARIABLES: floatVar TYPE: FLOATING
floatVar = 123.456789

PRINT AsString(floatVar, 2)

Results:
This prints "123.45"

' ---
VARIABLES: floatVar TYPE: FLOATING
floatVar = 123456.456789

PRINT AsString(floatVar, 2, true)

Results:
This prints "123,456.45"

Links:

www.forex-warex.com

Trading Blox Builder's Guide282

© 2013, Trading Blox, LLC. All rights reserved.

AsFloating, AsInteger, AsSeries, IsFloating, IsInteger, IsString

See Also:

www.forex-warex.com

Part 4 – Blox Basic Language Reference 283

© 2013, Trading Blox, LLC. All rights reserved.

IsFloating

Use this function when you need to be sure the expression is of TYPE FLOATING.

Function examines the expression numeric TYPE to determine if it is a Floating Point or decimal
number.

Syntax:

value = IsFloating(expression)

Parameter: Description:

expression expression to check

value Returns True when the expression is a floating value, or a
False when it isn't.

Example:

VARIABLES: variableOne TYPE: STRING
variableOne = "ABC"

IF IsFloating(variableOne) THEN
 print variableOne, " is floating."
ELSE
 print variableOne, " is NOT floating."
ENDIF

Results:
This prints "ABC is NOT floating.

Links:

AsFloating, AsInteger, AsSeries, AsString, IsInteger, IsString

See Also:

Data Groups and Types

www.forex-warex.com

Trading Blox Builder's Guide284

© 2013, Trading Blox, LLC. All rights reserved.

IsInteger

Use this function when you need to be sure the expression is of TYPE INTEGER.

Syntax:

value = IsInteger(expression)

Parameter: Description:

expression Expression you need to check

value Returns True when the expression is an Integer value

Example:

VARIABLES: VariableOne TYPE: STRING
VariableOne = "ABC"

IF (IsInteger(variableOne)) THEN
 print variableOne, " is an integer."
ELSE
 print variableOne, " is NOT an integer."
ENDIF

Results:
 This prints "ABC is NOT an integer."

Links:

AsFloating, AsInteger, AsSeries, AsString, IsFloating, IsString

See Also:

Data Groups and Types

www.forex-warex.com

Part 4 – Blox Basic Language Reference 285

© 2013, Trading Blox, LLC. All rights reserved.

IsString

Use this function when you need to be sure the expression is of TYPE STRING.

Syntax:

value = IsString(expression)

Parameter: Description:

expression expression to check

value TRUE when the expression is of TYPE STRING value.

Example:

VARIABLES: variableOne TYPE: STRING
variableOne = "ABC"

IF (IsString(variableOne)) THEN
 print variableOne, " is a string."
ELSE
 print variableOne, " is NOT a string."
ENDIF

Results:
 This prints "ABC is a string."

Links:

AsFloating, AsInteger, AsSeries, AsString, IsFloating, IsInteger

See Also:

Data Groups and Types

www.forex-warex.com

Trading Blox Builder's Guide286

© 2013, Trading Blox, LLC. All rights reserved.

Section 10 – Indicator Reference

You can use a variety of indicators in a trading system. They can be used in your scripts, as well as
graphed with the trading data.

Types of indicators Description:

Basic Indicators that use a built in formula. These are computed pre test.

Calculated
Indicators

that take an expression. These can only use pre test static data as they are
computed pre test.

Custom Indicators that are computed during the test using the Update Indicators script.

Extended Indicators
Indicator Pack 1

1. To create a new Basic or Calculated indicator for your block, click on the Indicators item in the
lower left panel of the Blox Editor and hit New.

2. To create a Calculated Indicator, select the Calculated type from the type drop down box. You can
then enter an expression in the Indicator Value Expression box.

3. To create a Custom Indicator, create an Auto-Indexed Instrument Permanent Variable of type
Series. Then assign this value in the Update Indicators script.

10.1 Basic Indicators

Indicators listed below are the names of the standard built-in indicators accessible from the Indicator
section dialog shown in the Creating Indicators topic section.

Most of the indicators require Parameter values, but not all of them.

When selecting an indicator examine the fields in the dialog that are colored with a white background
and enter, or change the value shown where necessary.

Indicator Names: Descriptions:

Accumulation/Distribution Volume-based momentum indicator

ADX - Average Directional
Index

J. Welles Wilder's trend strength indicator

Average True Range EMA of the True Range. Computes a simple moving average to
start, then an exponential moving average.

Average True Range Simple SMA of the True Range

Bar History Value Historical Value of the indicator

Bar Plot Color This is a special type of indicator that is only used by the
SetSeriesColorStyle function to dynamically set the color of the
bars on the trade chart. This indicator has no values and does
not plot itself. Turn Plotting ON and Display OFF.

Bar Value Value assigned to the indicator like "High + Low / 2"

www.forex-warex.com

Part 4 – Blox Basic Language Reference 287

© 2013, Trading Blox, LLC. All rights reserved.

Indicator Names: Descriptions:

Bollinger Lower Lower channel of the Bollinger band

Bollinger Upper Upper channel of the Bollinger band. Uses a standard deviation
based channel width from an ema. Both the StdDev and EMA
are computed in the alternate fashion, with the bar 1 values as
the prime value.

Calculated See Calculated Indicators for more information

DI- - Negative Directional
Indicator

J. Welles Wilder's Negative Directional Indicator

DI+ - Positive Directional
Indicator

J. Welles Wilder's Positive Directional Indicator

EMA Alternate Exponential Moving Average of the Value that primes with the
Value itself on bar 1 and uses the EMA smoothing constant
only.

Exponential Moving Average Exponential Moving Average of the Value that primes with a
simple moving average of the Value, and then uses the EMA
smoothing constant thereafter.

Highest Value Highest Value for N bars

Keltner Lower Lower channel of the Keltner Band.

Keltner Upper Upper channel of the Keltner Band. Uses an atr based channel
width from an EMA. Both the ATR and EMA are computed in
the alternate fashion, with the bar 1 values as the prime value.

Lowest Value Lowest Value for N bars

MACD - MA Convergence
Divergence

MACD for the value. The short moving average minus the long
moving average. Uses the simple moving average to prime the
short and long exponential moving averages.

MACD Alternate Alternate version of the MACD, using the bar 1 value as the
prime value rather than using a simple moving average.

Midpoint Price that is the value between the current price, and the price
at the offset price bar.

Range Returns the range value of the highest-high to lowest-low from
bar prices within the range.

Parabolic SAR J. Welles Wilder's entry and exit indicator

RSI - Relative Strength Index J. Welles Wilder's movement momentum indicator

Simple Moving Average Simple Moving Average of the Value

Standard Deviation Standard Deviation of the value of n-Bars

Standard Deviation Log Standard Deviation of the log of the ratio bar change over n-
Bars

Stochastic Oscillator %K Stochastic Value for n-Bars

Stochastic Oscillator Full Smoothed Stochastic

Stochastic Oscillator Slow %D Stochastic Value for n-Bars

Unknown This appears at the top of the built-in indicator list, and it is a
marker for when an optional add-on indicator is missing it will
be obvious that indicator type is now no longer available.

www.forex-warex.com

Trading Blox Builder's Guide288

© 2013, Trading Blox, LLC. All rights reserved.

www.forex-warex.com

Part 4 – Blox Basic Language Reference 289

© 2013, Trading Blox, LLC. All rights reserved.

10.2 Creating Indicators

To create an Indicator in the Blox Editor, select the Indicators item and right click or use the Items
menu. This will bring up the new indicator dialog:

Name for Code
This is the name which will be used to access the indicator in a script. In this case we named our
indicator averageClose. We can use this like a variable in our scripts, with or without indexing. You
can use any name here that complies with the rules for creating variables.

Using the indicator name without indexing refers to the most recent available data, today. Example:

IF averageClose > averageClose[1] THEN

OR

IF instrument.averageClose > instrument.averageClose[1] THEN

Type
Indicators listed below are the names of the standard built-in indicators accessible from the
Indicator section dialog shown above.

Most of the indicators require Parameter values, but not all of them. When selecting an indicator
examine the fields in the dialog that are colored with a white background and enter or change the
value shown where necessary.

www.forex-warex.com

Trading Blox Builder's Guide290

© 2013, Trading Blox, LLC. All rights reserved.

Available Indicators:
Available Indicators

Parameter Values:
The Value is the basis for the computation of the Indicator. The choices are:

Price Field: Description:

Open the open for the bar

High the high for the bar

Low the low for the bar

Close the close of the bar

High + Low / 2 the average of the high and low

High + Low + Close /
 3

the average of the high, low, and close

OHLC / 4 the average of the open, high, low, and close

Volume the volume for the bar

Open Interest the open interest for the bar (futures only)

Unadjusted Close the unadjusted close for the bar

Extra Data 1 the value of the extra data 1 field for the bar

Extra Data 2 the value of the extra data 2 field for the bar

Not Applicable Used for cases like the Average True Range, which do not require a value
input

For example, a "Simple Moving Average" indicator that used a value of "High" would be a simple
moving average of the instrument's high.

Time Frame
Reserved for future use.

Parameters
Most types of indicators require numeric constants for their computation. For instance, the MACD
indicator requires the days for the long and short moving averages. You can select from a list of
Parameters that you have created, or you can choose "Enter Value" and enter a constant value in
the box to the right.

For many indicators, there is a final option called "Smoothing." This option will smooth the indicator
by the bars indicated, using the EMA formula. If you enter 1 for the number of bars to smooth,
there will be no smoothing.

Example: To create an RSI indicator with a smoothed signal RSI line, create two indicators, one
with smoothing, and one without.

Scope
Set the scope based on which blocks and scripts need access to this indicator. If you set Scope to
Block (default value), only the scripts in the same block will have access to the indicator. If you set
to Scope to System, then all scripts and blocks in the system will have access to the indicator.
When System Scoped indicators are shared across a system, an IPV Series variable using the
same name as the indicator must be declared in the other blox. In addition, you should enable the

www.forex-warex.com

Part 4 – Blox Basic Language Reference 291

© 2013, Trading Blox, LLC. All rights reserved.

option "Defined Externally in another Block" so the same name IPV will be linked to the indicator in
a different blox by telling the script parser the IPV variable is declared and defined elsewhere.

Plots on Trade Graph
Check to have the indicator plotted on the trade chart. When you plot an indicator on the trade
graph, you can select the Display Name, the Color, and whether the indicator should be offset by
one day.

Displays on Trade Graph
Check to have the indicators value displayed in the right panel of the trade chart, as the cross hairs
are moved by the mouse or cursor. By clicking on the indicator name on the trade chart, plotting
can be dynamically enabled or disabled. The indicator can also be removed from the chart.

Offset Plot by One Day
This option shifts the indicator ahead one day. This is useful when your indicator is used for stop
or limit orders, and you want the indicator to visually cross the bar as an indication your order was
hit. This is only a visual change on the graph, and does not change the calculations or results.

Graph Area
The text in this field will determine where the indicator is plotted. If you select "Price Chart" the
value will be plotted on the price chart area. If you select any other text value, it will create a new
chart and put the indicator there. You can have multiple indicators on the same chart area.

If the values of the indicator are not within the range of values shown for the instrument price bars,
the indicator will not appear because its value will be out of range. If this absence is only
occasional, assigning its Graph Area to the Price Chart will be useful. If it is most of the time, it will
be best to assign the indicator to its own Graph Area by entering a name different thant Price
Chart.

Graph Style
Select a graph style for the plot.

Notes on Priming
The maximum amount of bars required to prime this indicator plus one will be added to overall
priming. If the indicator is a 10 day moving average, then the first day scripts will run is day 11.
Overall priming is the maximum bars required for indicators plus one, plus the maximum lookback
parameter plus one.

www.forex-warex.com

Trading Blox Builder's Guide292

© 2013, Trading Blox, LLC. All rights reserved.

10.3 Calculated Indicators

Calculated Indicators
Calculated indicators are calculated before the test has begun to run so all their values are
available during the test. See Basic Indicators for more information on the other controls and
options in this dialog.

To create a calculated indicator, select the Calculated type from the type drop down box. Use this to
create a simple expression based on indicators, parameters, or values. An example for the channel top
from the ATR Channel Breakout system is:

Example:

closeAverageDays + (channelWidth * averageTrueRange)

Test Computed Indicators:
This property is computed dynamically during the simulation run and can be used in scripting as
needed. This property cannot be used in Calculated Indicators because all values for all calculated
indicators are computed before the simulation starts running, and this property has not been computed
yet.

Test computed indicators do not support look-back references. However, their calculated result from
each instrument bar can be stored in an IPV series that will support look-back referencing if that
process is coded into the blox.

You can use indexes of other indicators, and the current value of indicators that are declared above
this one. Please be careful, as the syntax checker cannot fully verify your expression. An illegal
expression will cause your test to return unexpected results.

You can access past values of other indicators, so to create an easy smoothing of the RSI:

Example:

(rsiIndicator[1] + rsiIndicator[2] + rsiIndicator[3]) / 3

Scripted Calculated example from the Turtle system:

www.forex-warex.com

Part 4 – Blox Basic Language Reference 293

© 2013, Trading Blox, LLC. All rights reserved.

Valid items to use in the expression:
Parameters, other indicators, numbers, certain instrument properties that are available pre test.
To use another calculated indicator in the expression of a calculated indicator, be sure that the
other indicator is listed first so that the value is updated for the bar prior to being used.

Instrument object properties that are static prior to the test start can be used. Dynamic instrument
object properties cannot be used. No other objects can be used.

www.forex-warex.com

Trading Blox Builder's Guide294

© 2013, Trading Blox, LLC. All rights reserved.

10.4 Custom Indicators

To create a Custom Indicator, create a System Scoped Auto-Indexed Instrument Permanent Variable
of type Series. Then assign this value in the Update Indicators script.

An example of a custom indicator might be the average close since trade entry. This value cannot be
determined pre test, so it cannot be a calculated indicator and must be a custom indicator.

Create a new Auxiliary Block. Create a system scoped auto indexed IPV series variable. Set it to plot.
Let's call it averageClose.

Now in the Update Indicators script section set the created averageClose series value like this:

Example:

' We can only compute this value when we are in a position
IF instrument.position <> OUT THEN

 ' Compute the number of bars in the trade including the entry bar.
 bars = instrument.unitBarsSinceEntry[1] + 1

 ' Compute the average close over the last 'bars' number of bars
 averageClose = Average(instrument.close, bars)
ENDIF

This value will be set everyday of the test. It will be set at the start of the instrument bar, so it can be
used as part of the order fill process, stop adjustment, risk adjustment, after trading day work as well
as entry and exit signals for the next trading day.

www.forex-warex.com

Part 4 – Blox Basic Language Reference 295

© 2013, Trading Blox, LLC. All rights reserved.

10.5 Indicator Access

Access:
You can access Indicators through scripting two ways. NOTE: Indicators are READ ONLY. They can
be used by scripts, but not changed.

A way to access the indicator so that it performs when the condition is TRUE, is to create a statement
like this:

Example:

IF myIndicator = 5 THEN PRINT "It is 5"

Or you can access using the instrument object as follows:

Example:

IF instrument.myIndicator = 5 THEN PRINT "It is 5"
IF sp500Index.myIndicator = 5 THEN PRINT "It is 5"

Using the instrument '.' syntax is equivalent to using the indicator directly.

You can access indicators of other instrument objects using instrument variables and the '.' syntax.
For the following example assume that an instrument variable called "sp500Index" has been created
and set to the data for the S&P 500 stock index.

Example:

' When both conditions are TRUE, Go Long on next OPEN
IF sp500Index.shortMovingAverage > sp500Index.longMovingAverage AND
 instrument.shortMovingAverage > instrument.longMovingAverage THEN

 ' Go Long on the Open.
 broker.EnterLongOnOpen(instrument.longMovingAverage)
ENDIF

System Scoped Indicators:
To access indicators in other blox of your system, you can set them to System Scoped. In the
other block, create an IPV Series variable and check Defined Externally in another Block.

www.forex-warex.com

Trading Blox Builder's Guide296

© 2013, Trading Blox, LLC. All rights reserved.

Here is an example:

Now you can use this averageClose variable in the block and the value will be consistent across
the whole system.

www.forex-warex.com

Part 4 – Blox Basic Language Reference 297

© 2013, Trading Blox, LLC. All rights reserved.

Section 11 – Indicator Pack 1

All Indicators and Series Functions listed in this section are contained in the DLL files listed below:

DLL File Name: Use with Trading Blox 4 & Installed Windows Bit-Size
Version:

IndicatorPack1-32.dll
IndicatorPack1-64.dll

32-Bit & 64-Bit version of Windows. Both can be the direct the
Extension folder at the same time. Trading Blox will use the version
that it needs and will ignore the other DLL.

Note:
Reference the Trading Blox User Help file's Getting Started topic that discusses "Installing and
Running Trading Blox."

Description information about this indicators and series functions is available:
Indicators:

Indicator Pack 1 Indicators

Series Functions:
Indicator Pack 1 Series Functions

Indicator Pack extensions are placed in the Trading Blox Extension folder that is created when Trading
Blox is installed. If you need to discover where the files are located or need to know where to place
them, use this director image detail:

www.forex-warex.com

Trading Blox Builder's Guide298

© 2013, Trading Blox, LLC. All rights reserved.

11.1 Indicator Pack 1 Indicators

All the Indicators listed in this topic are contained in both versions of this Indicator Pak1 extension.

Indicators: Description:

Average Trend
Channel

Simple moving average that utilizes the moving average of the highs and
lows to determine a channel. When prices are above the channel high the
moving average is only allowed to increase and vice-versa. This
mechanism can be used to reduce whipsaws when price trades rapidly
above/below a simple moving average.

Chaiken Money Flow Chaikin Money Flow is a volume weighted average of Accumulation/
Distribution over the specified period. The principle behind the Chaikin
Money Flow, is when the close is nearer to the high the more
accumulation has taken place. Conversely the nearer the close is to the
low, the more distribution has taken place.

If the price action consistently closes above the bar's midpoint on
increasing volume then the Chaikin Money Flow will be positive.
Conversely, if the price action consistently closes below the bar's midpoint
on increasing volume, then the Chaikin Money Flow will be a negative
value.

Commodity Channel
Index

The Commodity Channel Index (CCI) is an oscillator that measures price
variation from the statistical average. Depending on the period 70 to 80
percent of CCI values will fall in the range of -100 to 100.

Dema Double Exponential Moving Average is a lower lag moving average
based on combining a singe and double exponential moving average. The
formula for Dema = (2 * EMA(x,n) - EMA(EMA(x,n),n) .

The double exponential moving average was created by Patrick Mulloy and
discussed in the January 1994 issue of Stocks and Commodities
Magazine"

Dominant Cycle "Estimated dominant cycle period of the market. The dominant cycle is
the cycle period that has the most influence on prices. Based on
Homodyne Discriminator algorithm described in "Rocket Science for
Traders" by John Ehlers."

Algorithm:
1: Homodyne Discriminator Algorithm
2: Filter Bank Algorithm

Dominant Cycle
Highest

Returns the highest high over the dominant cycle period. The dominant
cycle period is calculated on the supplied time series (e.g Close)

Dominant Cycle
Lowest

The lowest low of the dominant cycle period. The dominant cycle period is
calculated on the supplied time series (e.g Close)

Dominant Cycle
Phase

Provides the phase position from 0 to 360 degrees within the current
dominant cycle period. The phase can be negative due to wraparound
effects from 360 to 0. The phase can also be negative in a persistent
downtrend. Based on phase algorithm described in "Rocket Science for
Traders" by John Ehlers."

Ehlers Lead
Sinewave

The Sin of the dominant cycle phase + 45 degreees. Combined with the
Sinewave Indicator provides cycles turning points.

www.forex-warex.com

Part 4 – Blox Basic Language Reference 299

© 2013, Trading Blox, LLC. All rights reserved.

The lead sinewave crosses the sinewave indicator 1/16 of a cycle before
the turning point of the cycle is reached.

Ehlers Nonlinear Ma Weighted moving average where the weights are dynamically calculated
on each bar. Bars where the distance is largest from n-Bars ago will have
the greatest weights.

Ehlers Sinewave The sin of the dominant cycle phase. Combined with the lead Sinewave
indicator provides cycles turning points.

Ehlers Zero Lag Ema Adaptive exponential moving average. The moving average adapts based
on the distance between the moving average and the current price.
Described in November 2010 issue of Technical Analysis of Stocks
and Commodities Magazine.

FAMA Following Adaptive Moving Average is complementary moving average
to MAMA. The moving average adapts half as fast as the MAMA moving
average. Ehlers suggests a basic system can be developed based on the
crossovers of MAMA and FAMA. Ehlers recommends values of 0.5 and
0.05 for FastLimit and SlowLimit arguments respectively.

Historic Volatility Volatility measured as the standard deviation of close to close returns.

Instantaneous
Trendline

Moving average taken over the dominant cycle. The moving average has
the effect of removing the dominant cycle. As the dominant cycle can
vary at each bar the effect is an adaptive moving average. The lag is half
of the calculated dominant cycle.

Instantaneous
Trendline Alternate

A lower lag version of the Instantaneous Trendline moving average. The
standard Instantaneous Trendline has a lag of N/2 where N is the
measured dominant cycle. The lag of the alternate calculation is
considerably less and is only 8 bars when the dominant cycle is 40.

Kaufman Adaptive
Moving Average

"Kaufman's Adaptive Moving Average is an adaptive moving average that
uses the noise level of the market to determine the length of the trend
required to calculate the average. The more noise in the market, the
slower the trend used to calculate the average."

Keltner Channel Keltner channel is a technical analysis indicator showing a central moving
average line plus channel lines at a distance above and below.

Laguerre Moving
Average

Adaptive moving average where low frequency (trend) parts of price are
delayed much more than the high frequency components. The moving
average will rapidly follow prices changes but will flatten out during
consolidation periods.

MAMA Mother of Adaptive Moving Averages (MAMA) is an adaptive
exponential moving average created by John Ehlers. The moving average
adapts to the rate of change of the phase of the dominant cycle. Ehlers
recommends values of 0.5 and 0.05 for FastLimit and SlowLimit arguments
respectively.

Momentum Momentum is the difference between current price and the price a
specified number of bars ago.

Money Flow Index Money Flow Index measures the flow of money into and out of a security
over the specified Period. Its calculation is similar to that of the Relative
Strength Index (RSI), but takes volume into account in its calculation. The
indicator is calculated by accumulating positive and negative money flow
values, then creating a ratio of the two values. The final ratio is then scaled
to fall between 0 – 100.

www.forex-warex.com

Trading Blox Builder's Guide300

© 2013, Trading Blox, LLC. All rights reserved.

On Balance Volume On Balance Volume is a cumulative indicator that uses volume to gauge
the strength of a market. If prices close up, the current bar's volume is
added to OBV, and if prices close down, it is subtracted.

Percent R Percent R (%R) is a momentum indicator developed by Larry Williams.
Like the Stochastic Oscillator, %R is used to gauge overbought and
oversold levels, and ranges between 0 and 100.

Percent Rank Calculates the percentile ranking of a value in a price series.

Percentile Returns a price value estimate of the specified percentile level

Range High minus Low of the current bar

Rate of Change The Rate of Change (ROC) indicator provides a percentage that the
security's price has changed over the specified period.

Simons Historic
Volatility

Historic volatility measurement that incorporates the high, low, and gaps as
well as close to close returns. Described in "The Dynamic Option
Selection System" by Howard Simons."

TEMA Triple Exponential Moving Average is a unique combination of simple
exponential moving average, double exponential moving average and a
triple exponential moving average.

Tema = (3*EMA – 3*EMA(EMA)) + EMA(EMA(EMA))

The TEMA, or Triple Exponential Moving Average, was introduced by
Patrick Mulloy in Technical Analysis of Stocks & Commodities
Magazine, February 1994.

Trend Vigor The strength of the trend as measured over the dominant cycle. Trend
Vigor is defined as the momentum over the dominant cycle period divided
by the amplitude of the dominant cycle.

Ehlers suggests trend trades should only be taken when the trend vigor is
> +1 for longs and < -1 for shorts.

True High The maximum of the current high and the previous close.

True Low The minimum of the current low and the previous close.

True Range Equal to the “True High” minus the “True Low”

Weighted Moving
Average

Linearly Weighted Moving Average (WMA). The WMA applies more weight
to recent data and less weight to older elements.

ZScore ZScore is a statistical function that indicates the number of standard
deviation an item is above or below the average.

www.forex-warex.com

Part 4 – Blox Basic Language Reference 301

© 2013, Trading Blox, LLC. All rights reserved.

Average Trend Channel

Simple moving average that utilizes the moving average of the highs and lows to determine a channel.
When prices are above the channel high the moving average is only allowed to increase and vice-
versa. This mechanism can be used to reduce whipsaws when price trades rapidly above/below a
simple moving average.

Parameter: Description:

TrendChannelBars Number of bars used in determining the average trend channel results.

Setup Example (Click on Images to enlarge):

Average Trend Channel setup dialog

Chart Example (Click on image to enlarge):

www.forex-warex.com

Trading Blox Builder's Guide302

© 2013, Trading Blox, LLC. All rights reserved.

Average Trend Channel Indicator

Links:

See Also:

www.forex-warex.com

Part 4 – Blox Basic Language Reference 303

© 2013, Trading Blox, LLC. All rights reserved.

Chaiken Money Flow

Indicator calculates and indexed value based on the price and volume for the number of bars that are
being specified in the input length.

The Chaikin Money Flow is used to determine when a stock is being accumulated or distributed. It
makes this determination by comparing the closing price to the high-low range value of the instrument
on the same price bar. and then comparing the sum volume to the closing price and the daily peaks.
It does not define the number of instrument issues being purchased and sold. Chaikin uses both the
price and the volume over a 21-day calculation price-bar period to get the sum of the accumulation/
distribution volume numbers and then divides the volume difference by the sum of the volume for the
same price-bar period.

Chaikin Money Flow indicator theory tells us accumulation is happening when a stock with a volume
increase has a Close price near the high of the market. Distribution happens with an increase in
volume when the stock closes near the low of the price-bar.

Indicator values above 0, indicates accumulation, and values below 0 indicates distribution is in effect.
 Money Flow values values above +0.25 or below -0.25 indicates the bullish or bearish trends are
strong and winning positions can add units on minor corrections.

Divergences may show up in the indicator has an increasing oscillator value while the price action
makes a lower low informing us that there is less selling pressure pulling the security's price lower.

Parameter: Description:

ChaikenCalcBars Number of price bars over which to calculate the accumulation/distribution
ratio.

Setup Example (Click on Images to enlarge):

www.forex-warex.com

Trading Blox Builder's Guide304

© 2013, Trading Blox, LLC. All rights reserved.

Chaiken Money Flow Oscillator setup dialog

www.forex-warex.com

Part 4 – Blox Basic Language Reference 305

© 2013, Trading Blox, LLC. All rights reserved.

Chaiken Money Flow Oscillator Zero-Line setup dialog

Chaiken Zero plotting line is an optional line that improves in aiding the visibility of the index value
crossing from positive to negative.

Chart Example (Click on image to enlarge):

www.forex-warex.com

Trading Blox Builder's Guide306

© 2013, Trading Blox, LLC. All rights reserved.

Chaiken Money Flow Oscillator

Links:

See Also:

www.forex-warex.com

Part 4 – Blox Basic Language Reference 307

© 2013, Trading Blox, LLC. All rights reserved.

Commodity Channel Index

The Commodity Channel Index (CCI) is an oscillator that measures price variation from the statistical
average. Depending on the period 70 to 80 percent of CCI values will fall in the range of -100 to 100.

Parameter:: Description:

CCIChannelBars Number of bars to use in calculating CCI.

Setup Example (Click on Images to enlarge):

Commodity Channel Index setup dialog

www.forex-warex.com

Trading Blox Builder's Guide308

© 2013, Trading Blox, LLC. All rights reserved.

Commodity Channel Index Zeroline setup dialog

Zeroline plotting line is an optional line that improves in aiding the visibility of the index value crossing
from positive to negative.

Chart Example (Click on image to enlarge):

www.forex-warex.com

Part 4 – Blox Basic Language Reference 309

© 2013, Trading Blox, LLC. All rights reserved.

Commodity Channel Index Indicator

Links:

See Also:

www.forex-warex.com

Trading Blox Builder's Guide310

© 2013, Trading Blox, LLC. All rights reserved.

Kaufman Adaptive Moving Average

Kaufman's Adaptive Moving Average, KAMA, is an adaptive calculation that uses the noise level of the
market to determine the length of the trend required to calculate the average. The more noise in the
market, the slower the trend used to calculate the average.

On page 731 of Perry Kaufman's New Trading Systems and Methods, 4th edition, he describes how
his adaptive trend calculations work, and his ideas on how they can be applied to trading ideas.

Parameter: Description:

nBarsLen Number of price bars over which to calculate the Kaufman averages.

Setup Example (Click on Images to enlarge):

www.forex-warex.com

Part 4 – Blox Basic Language Reference 311

© 2013, Trading Blox, LLC. All rights reserved.

Kaufman Adaptive High Dialog Settings

www.forex-warex.com

Trading Blox Builder's Guide312

© 2013, Trading Blox, LLC. All rights reserved.

Kaufman Adaptive Low Dialog Settings

Chart Example (Click on image to enlarge):

www.forex-warex.com

Part 4 – Blox Basic Language Reference 313

© 2013, Trading Blox, LLC. All rights reserved.

Kaufman Adaptive High-Low Range on Euro Currency

Links:

See Also:

www.forex-warex.com

Trading Blox Builder's Guide314

© 2013, Trading Blox, LLC. All rights reserved.

Keltner Channel

Keltner channel is a technical analysis indicator showing a central moving average line plus channel
lines at a distance above and below.

To create a Keltner Channel Trading Blox provides two indicators to create the upper and lower
channel indicator calculations. it also provides the simple Average function to create the average
price line created by the average of the High, Low and Close price values.

Example shows the period lengths for the Keltner upper and lower bands, Average True Range, and
Center price average. All the calculations used the same parameter bar count value.

Indicator lines displayed above and below the center average price are drawn a distance from center
indicator price using the a floating point parameter value to spread the channel lines.

Parameter: Description:

KeltnerBars Integer value of the number of price bars to use in the calculation of the
moving average, and the number of bars to use in the calculation of the
ATR Bars (Average True Range). It is also the parameter used in the
calculation of the average price shown between the upper and lower
channel bands.

KeltnerBandOffset Decimal value used to expand the average price standard deviation
distance for the upper and lower bands from the average price value.

Setup Example (Click on Images to enlarge):

www.forex-warex.com

Part 4 – Blox Basic Language Reference 315

© 2013, Trading Blox, LLC. All rights reserved.

Keltner Upper Channel setup dialog.

www.forex-warex.com

Trading Blox Builder's Guide316

© 2013, Trading Blox, LLC. All rights reserved.

Keltner Lower Channel setup dialog.

www.forex-warex.com

Part 4 – Blox Basic Language Reference 317

© 2013, Trading Blox, LLC. All rights reserved.

Keltner Average Price setup dialog

Chart Example (Click on image to enlarge):

www.forex-warex.com

Trading Blox Builder's Guide318

© 2013, Trading Blox, LLC. All rights reserved.

Keltner Upper, Lower and Average Price indicators

Links:

See Also:

www.forex-warex.com

Part 4 – Blox Basic Language Reference 319

© 2013, Trading Blox, LLC. All rights reserved.

Trend Vigor

The strength of the trend as measured over the dominant cycle. Trend Vigor is defined as the
momentum over the dominant cycle period divided by the amplitude of the dominant cycle.

Ehlers suggests trend trades should only be taken when the trend vigor is > +1 for longs and < -1
for shorts.

Parameter:: Description:

TrendVigorBars Number of price-bars to use in the Trend Vigor calculation.

Setup Example (Click on Images to enlarge):

Trend Vigor Indicator setup dialog

Chart Example (Click on image to enlarge):

www.forex-warex.com

Trading Blox Builder's Guide320

© 2013, Trading Blox, LLC. All rights reserved.

Trend Vigor Indicator

Links:

See Also:

www.forex-warex.com

Part 4 – Blox Basic Language Reference 321

© 2013, Trading Blox, LLC. All rights reserved.

11.2 Indicator Pack 1 Series Functions

All the Series Functions listed in this topic are contained in both version of Indicator Pak1
extension.

Function Name: Description:

EhlersZeroLagEma Adaptive exponential moving average. The moving
average adapts based on the distance between the
moving average and the current price.

InstantaneousTrendLine Adaptive moving average whose length is determined
each bar by the dominantCycleSeries parameter.

MarketNoise Calculates an estimate of the “noise” in the market over
the specified number of bars. Noise is defined as the
maximum absolute deviation from the momentum trend
line. The momentum is calculated over the number of bars
specified. This estimate can be helpful in placing stops
outside the noise of the market.

MedianAbsoluteDeviation Median Absolute Deviation (MAD) is a measure of
variation used in a similar manner to the standard
deviation. The MAD is more robust in the presence of
outliers and does not require a gaussian distribution. In
order to estimate the standard deviation for a gaussian
distribution the MAD can be multiplied by 1.4826

Momentum Momentum is the difference between current price and
the price a specified number of bars ago.

MRO Most Recent Occurrence returns the numbers of bars ago
that the condition was true. If the condition was not true
during the lookback the function returns the value -1.

Percentile Returns a price value estimate of the specified percentile
level.

PercentRank Most Recent Occurrence returns the numbers of bars ago
that the condition was true. If the condition was not true
during the lookback the function returns the value -1.

RateOfChange The Rate of Change (ROC) indicator provides a
percentage that the security's price has changed over the
specified period.

SpearmanCorrelation Spearman correlation is an alternative to the Pearsons
correlation and correlates based on the ranking of the
series values.

SpearmanCorrelationSync Spearman correlation is an alternative to the Pearsons
correlation and correlates based on the ranking of the
series values . Used for IPV Auto Indexed Series or Price
Series and synchs the dates of the two series before
computing the correlation.

SpearmanLogCorrelation Spearman correlation is an alternative to the Pearsons
correlation and correlates based on the ranking of the
series values . This version computes the log returns
before computing the correlation.

SpearmanLogCorrelationSync Spearman correlation is an alternative to the Pearsons

www.forex-warex.com

Trading Blox Builder's Guide322

© 2013, Trading Blox, LLC. All rights reserved.

correlation and correlates based on the ranking of the
series values . Used for IPV Auto Indexed Series or Price
Series and synchs the dates of the two series before
computing the correlation. This version computes the log
returns before computing the correlation.

WMA Weighted Moving Average calculation method applies
more weight to recent data and less weight to older
elements.

ZScore ZScore is a statistical function that indicates the number
of standard deviation an item is above or below the
average.

ValueChart Volatility adjusted overbought/oversold oscillator. Value
chart levels between -4 and +4 are considered “fair
value”; +4 to +8 moderately overbought; -4 to -8
moderately oversold. Levels above +8 are considered
significantly overbought and below -8 significantly
oversold.

EhlersZeroLagEma

Adaptive exponential moving average.

The moving average adapts based on the distance between the moving average and the current price.

Syntax:

EhlersZeroLagEma(series, emaseries, bars, lastValueOfSeries)

Parameter: Description:

series The name of the series

emaseries Normal exponential moving average (ema) series that was previously
calculated. This ema should use the same period and is used as a starting
point for adapting the moving average.

bars The number of bars over which to find the moving average

lastValueOfSeries The previous value in the series

Returns:

The zero lag exponential moving average.

Example:

www.forex-warex.com

Part 4 – Blox Basic Language Reference 323

© 2013, Trading Blox, LLC. All rights reserved.

' ~~
' Update Indicators Script
' ~~
' EZLEma = IPV numeric auto-index series
' EmaClose = Built-In Indicator EMA Close - 21-bars
' Bar_ Count = 21 - Parameter - Lookback enabled
' Ehler's Zero Lag Ema - EmaClose = built-in Ema of Close
EZLEma = EhlersZeroLagEma(Instrument.Close, _
 EmaClose, _
 Bar_Count, _
 EZLEma[1])
' ~~

Chart Display:

Links:

EMA

See Also:

Data Group and Types

www.forex-warex.com

Trading Blox Builder's Guide324

© 2013, Trading Blox, LLC. All rights reserved.

InstantaneousTrendLine

Adaptive moving average whose length is determined each bar by the dominantCycleSeries
parameter.

Syntax:

InstantaneousTrendLine(series, dominantCycleSeries)

Parameter: Description:

series The input series to be averaged

dominantCycleS
eries

Previous calculated series corresponding to the result of the dominant cycle
basic indicator.

 See basic indicator - Dominant Cycle documentation for more information.

Returns:

Adaptive moving average of the input series.

Example:

Links:

See Also:

MarketNoise

Calculates an estimate of the “noise” in the market over the specified number of bars. Noise is defined
as the maximum absolute deviation from the momentum trend line. The momentum is calculated over
the number of bars specified. This estimate can be helpful in placing stops outside the noise of the
market.

Syntax:

MarketNoise(series, bars)

Parameter: Description:

series The name of the series.

bars The number of bars over which to find the noise.

Returns:

Estimate of market noise over the specified number of bars.

www.forex-warex.com

Part 4 – Blox Basic Language Reference 325

© 2013, Trading Blox, LLC. All rights reserved.

Example:

Links:

See Also:

www.forex-warex.com

Trading Blox Builder's Guide326

© 2013, Trading Blox, LLC. All rights reserved.

MedianAbsoluteDeviation

Median Absolute Deviation (MAD) is a measure of variation used in a similar manner to the standard
deviation. The MAD is more robust in the presence of outliers and does not require a gaussian
distribution.

In order to estimate the standard deviation for a gaussian distribution the MAD can be multiplied by
1.4826

Syntax:

MedianAbsoluteDeviation(series, bars)

Parameter: Description:

bars The number of bars over which to find the median absolute deviation

Returns:

The median absolute deviation over the specified number of bars.

Example:

' ~~
' Update Indicators Script
' ~~
' MedAbsDev = IPV - Numeric Series
' Bar_Count = 21
MedAbsDev = MedianAbsoluteDeviation(Instrument.Close, Bar_Count)
' ~~

www.forex-warex.com

Part 4 – Blox Basic Language Reference 327

© 2013, Trading Blox, LLC. All rights reserved.

Chart Display:

Links:

See Also:

www.forex-warex.com

Trading Blox Builder's Guide328

© 2013, Trading Blox, LLC. All rights reserved.

Momentum

Momentum is the difference between current price and the price a specified number of bars ago.

Syntax:

Momentum(series, bars)

Parameter: Description:

series Names of the data series

bars Number of bars over which to find the momentum value.

Returns:

Momentum value over the specified number of bars.

Example:

' ~~
' Update Indicators Script
' ~~
' Bar_ Count = 21 - Parameter - Lookback enabled
' Difference in Close of Today and the Close[Bar_Count]
Mom_Close = Momentum(instrument.close, Bar_Count)
' ~~

OR

www.forex-warex.com

Part 4 – Blox Basic Language Reference 329

© 2013, Trading Blox, LLC. All rights reserved.

Chart Display:

Links:

See Also:

www.forex-warex.com

Trading Blox Builder's Guide330

© 2013, Trading Blox, LLC. All rights reserved.

MRO

Most Recent Occurrence returns the numbers of bars ago that the condition was true.

If the condition was not true during the lookback the function returns the value -1.

Syntax:

MRO(conditionseries, bars, instance)

Parameter: Description:

conditionseries Name of the condition series.

The Condition series should use 1 for TRUE, and 0 for FALSE.

bars The number of bars over which to find the instance of the condition.

instance Which occurrence the condition to search for; for example, 1 = most recent,
2 = 2nd most recent.

Returns:

The number of bars ago that the condition was true or -1 if not found.

Example:

' ~~
' Update Indicators Script
' ~~
' HighPivot = IPV Series - Auto-Index - Default = False
' PlotHighPivot = IPV Series - Auto-Index - Default = Zero
' Plot Dot on Pivot High
' Bar_Count = 21
' Instance = 1 = Most Recent

' Test for a simple High Pivot Bar Pattern
If instrument.high[2] < instrument.high[1] AND
 instrument.high[1] > instrument.high[0] THEN
 ' Assign this element a True State
 HighPivot = TRUE
ENDIF

' Show High Pivot Locations
If MRO(HighPivot, Bar_Count, 1) = 1 THEN
 ' Plot Dot over Pivot High
 PlotHighPivot[2] = instrument.high[2] + (instrument.minimumTick * 4)
Else
 PlotHighPivot = Undefined
ENDIF

' ~~

www.forex-warex.com

Part 4 – Blox Basic Language Reference 331

© 2013, Trading Blox, LLC. All rights reserved.

Chart Display:

Links:

See Also:

www.forex-warex.com

Trading Blox Builder's Guide332

© 2013, Trading Blox, LLC. All rights reserved.

Percentile

Returns a price value estimate of the specified percentile level.

Syntax:

Percentile(series, bars, percentileLevel)

Parameter: Description:

series The name of the series.

bars The number of bars over which to find the percentile

percentileLeve
l

The percentage level used to find the percentile.

Specified as a value between 0 and 100, representing 0-100%.

Returns:

Percentile estimate.

Example:

Links:

See Also:

www.forex-warex.com

Part 4 – Blox Basic Language Reference 333

© 2013, Trading Blox, LLC. All rights reserved.

PercentRank

Calculates the percentile ranking of a series value within the range of elements specified for the price
series.

Syntax:

PercentRank (series, bars)

Parameter: Description:

series Name of numeric series

bars Count of the number of series elements over which to find the percentile.

Returns:

The percentile ranking.

Example:

' ~~
' Update Indicators Script
' ~~
' Bar_ Count = 21 - Parameter - Lookback enabled
' Calculates percentile ranking of a value in a price series period
Percent_Rank_Close = PercentRank(instrument.close, Bar_Count)
' ~~

OR

www.forex-warex.com

Trading Blox Builder's Guide334

© 2013, Trading Blox, LLC. All rights reserved.

Chart Display:

Links:

See Also:

www.forex-warex.com

Андрей
tr-software-download

Part 4 – Blox Basic Language Reference 335

© 2013, Trading Blox, LLC. All rights reserved.

RateOfChange

The Rate of Change (ROC) provides a percentage that the instrument's price has changed over the
specified period.

Syntax:

RateOfChange (series, bars)

Parameter: Description:

series Name of data series.

bars The number of bars over which to find the rate of change

Returns:

The rate of change over the specified number of bars.

Example:

' ~~
' Update Indicators Script
' ~~
' Bar_ Count = 21 - Parameter - Lookback enabled
' Calculates Rate of Price over price period length.
ROC_Close = RateOfChange (instrument.close, Bar_Count)
' ~~

OR

www.forex-warex.com

Trading Blox Builder's Guide336

© 2013, Trading Blox, LLC. All rights reserved.

Chart Display:

Links:

See Also:

www.forex-warex.com

Part 4 – Blox Basic Language Reference 337

© 2013, Trading Blox, LLC. All rights reserved.

SpearmanCorrelation

Spearman correlation is an alternative to the Pearsons correlation and correlates based on the ranking
of the series values.

Syntax:

SpearmanCorrelation(series1, series2, bars)

Parameter: Description:

series1 Name of first data series

series2 Name of second data series

bars Number of bars over which to find the correlation.

Returns:

The correlation over the specified number of bars.

Example:

Links:

See Also:

www.forex-warex.com

Trading Blox Builder's Guide338

© 2013, Trading Blox, LLC. All rights reserved.

SpearmanCorrelationSync

Spearman correlation is an alternative to the Pearsons correlation and correlates based on the ranking
of the series values . Used for IPV Auto Indexed Series or Price Series and synchs the dates of the
two series before computing the correlation.

Syntax:

SpearmanCorrelationSync(series1, series2, bars)

Parameter: Description:

series1 Name of first data series

series2 Name of second data series

bars Number of bars over which to find the correlation.

Returns:

The correlation over the specified number of bars.

Example:

Links:

See Also:

www.forex-warex.com

Part 4 – Blox Basic Language Reference 339

© 2013, Trading Blox, LLC. All rights reserved.

SpearmanLogCorrelation

Spearman correlation is an alternative to the Pearsons correlation and correlates based on the ranking
of the series values . This version computes the log returns before computing the correlation.

Syntax:

SpearmanLogCorrelation(series1, series2, bars)

Parameter: Description:

series1 Name of first data series

series2 Name of second data series

bars Number of bars over which to find the correlation.

Returns:

The correlation over the specified number of bars.

Example:

Links:

See Also:

www.forex-warex.com

Trading Blox Builder's Guide340

© 2013, Trading Blox, LLC. All rights reserved.

SpearmanLogCorrelationSync

Spearman Correlation is an alternative to the Pearsons Correlation and correlates based on the
ranking of the series values . Used for IPV Auto Indexed Series or Price Series and synchs the dates
of the two series before computing the Correlation. This version computes the Log returns before
computing the Correlation.

Syntax:

SpearmanLogCorrelationSync(series1, series2, bars)

Parameter: Description:

series1 Name of first data series

series2 Name of second data series

bars Number of bars over which to find the correlation.

Returns:

The correlation over the specified number of bars.

Example:

Links:

See Also:

www.forex-warex.com

Part 4 – Blox Basic Language Reference 341

© 2013, Trading Blox, LLC. All rights reserved.

WMA - Weighted M-Avg.

The WMA applies more weight to recent data and less weight to older elements.

Syntax:

WMA(series, bars)

Parameter: Description:

series Name numeric series

bars Count of the number of series elements bars over which to find the WMA
value

Returns:

The weighted moving average.

Example:

' ~~
' Update Indicators Script
' ~~
' Bar_ Count = 21 - Parameter - Lookback enabled
' Calculates Weigthed Moving Avg over price period length.
WMA_Close = WMA(instrument.close, Bar_Count)
' ~~

OR

www.forex-warex.com

Trading Blox Builder's Guide342

© 2013, Trading Blox, LLC. All rights reserved.

Chart Display:

Links:

See Also:

www.forex-warex.com

Part 4 – Blox Basic Language Reference 343

© 2013, Trading Blox, LLC. All rights reserved.

Z-Score

ZScore is a statistical function that indicates the number of standard deviation an item is above or
below the average.

Syntax:

ZScore (series, bars)

Parameter: Description:

series Name of data series

bars Number of bars over which to find the Z-Score value.

Returns:

Z-score value.

Example:

' ~~
' Update Indicators Script
' ~~
' Bar_ Count = 21 - Parameter - Lookback enabled
' Calculates Number of Std. Deviation Above & Below Averag
ZScoreClose = ZScore(instrument.close, Bar_Count)
' ~~

OR

Chart Display:

www.forex-warex.com

Trading Blox Builder's Guide344

© 2013, Trading Blox, LLC. All rights reserved.

Links:

See Also:

www.forex-warex.com

Part 4 – Blox Basic Language Reference 345

© 2013, Trading Blox, LLC. All rights reserved.

ValueChart

Volatility adjusted overbought/oversold oscillator. Value chart levels between -4 and +4 are
considered “fair value”; +4 to +8 moderately overbought; -4 to -8 moderately oversold. Levels above
+8 are considered significantly overbought and below -8 significantly oversold.

Value Charts are discussed in the book “Dynamic Trading Indicators” by Mark W. Helweg & David
C. Stendahl.

Syntax:

ValueChart (series, bars)

Parameter: Description:

series Name of the series. The series must be one of Instrument.High,
Instrument.Low, Instrument.Close, Instrument.Open.

bars The number of bars over which to find the value chart level.

Notes:
In copyright publication dated 2002 Value Charts are described on page 127 to 145.

Book uses the value of the Value Chart return to decide if a bar on the chart qualifies for a
signal.

Returns:

The value chart level over the specified number of bars.

Example:

' ~~
' Update Indicators
' ~~
' Boundary Levels above and below zero
' Two Parameter positive numbers feed upper and boundary
' levels by inverting values for lower boundaries
VC_Level2Up = VC_Level2 ' 8 IPV Series Plot
VC_Level1Up = VC_Level1 ' 2 IPV Series Plot
VC_Level1Dn = -VC_Level1 ' -2 IPV Series Plot
VC_Level2Dn = -VC_Level2 ' -8 IPV Series Plot

' Value Chart Indicator Feeds IPV Series with BarCoun length
Value_Chart = ValueChart(Instrument.Close, BarsCount)
' ~~

www.forex-warex.com

Trading Blox Builder's Guide346

© 2013, Trading Blox, LLC. All rights reserved.

Chart Display:

Links:

Numeric Series

See Also:

Data Group and Types

www.forex-warex.com

Part 4 – Blox Basic Language Reference 347

© 2013, Trading Blox, LLC. All rights reserved.

Section 12 – Operator Reference

Mathematical Operators: (+, -, *, /, ^, mod or %, >, <, <> or !=):
All mathematical expressions should be enclosed in parentheses when you are uncertain about
how the precedence of calculations will be applied.

Operator
Symbol:

Description:

+ Sums two variables.
result = (expression1 + expression2)

- Finds the difference between two numbers.
result = (expression1 - expression2)

* Multiplies two numbers.
result = (expression1 * expression2)

/ Divides two numbers.
result = (expression1 / expression2)

^ Raises expression1 to the power of an expression2. The result is always
floating.
result = (expression1 ^ expression2)

mod or % Divides the value of one expression by the value of another, and returns the
remainder. The left and right expressions can be floating or integer. The results
will be float or int depending on the values used.
result = (expression1 mod expression2)

example: dayOfWeek = instrument.julianDate mod 7

> Greater than symbol used in a conditional reference test where a True or a
False is needed.
1 > 2 = True, 2 > 1 = False

< Less than symbol used in a conditional reference test where a True or a False
is needed.
1 < 2 = True, 2 < 1 = False

<> or != Both symbol pairs are used when the values on either side are Not True.
1 <> 2 = True, 2 <> 2 = False, 4 != 3 = True

Boolean Operators (AND NOT OR):

Operator
Names:

Description:

AND Performs a logical conjunction on two expressions. The result is always an
Integer.
expression1 AND expression2

NOT Performs logical negation on an expression. The result is always an Integer.
NOT expression

OR Performs a logical disjunction on two expressions. The result is always an
Integer.
expression1 OR expression2

www.forex-warex.com

Trading Blox Builder's Guide348

© 2013, Trading Blox, LLC. All rights reserved.

These operators can be enclosed in parentheses like a mathematical expression to force evaluation in
a certain order.

If ((a = 1) AND (b > 5)) OR ((a = 2) AND (b < 6) AND (NOT
c)) THEN
 ' Do something
Else
 ' Do something else
EndIf

12.1 Comparison

Comparison in Blox Basic is similar to other programming languages. It is recommended that
expressions should be enclosed in parentheses so it is not ambiguous what is being compared with
what.

=
Equivalent to.

IF (var1 = var2) THEN ...

!=
<>

Not equivalent to. Both symbols are valid.

VARIABLES: i TYPE: Integer, var1 TYPE: String

WHILE (i != 10)
 var1 = "Message for you, sir."
 i = (i + 1)
ENDWHILE

>
Greater than.

<
Less than.

<=
Less than or equal to.

>=
Greater than or equal to.

www.forex-warex.com

Part 4 – Blox Basic Language Reference 349

© 2013, Trading Blox, LLC. All rights reserved.

Section 13 – Permanent Variables

Enter topic text here.

13.1 Data Parameter Reference

Parameters are a very powerful feature of Trading Blox. Parameters allow you to create systems that
present their own user interface to allow the user to easily change system settings.

For example, you can create a parameter to be used for the number of days in a moving average, and
then change that value when you run your system for historical testing or trading purposes without
altering your Blox or Systems. Trading Blox automatically creates a user interface for your parameters
which give the user the option of setting a fixed value or stepping through a series of values for every
parameter you define. Parameters can also be referenced directly as if they were a variable in any
scripts in the block where they are defined.

To create a Parameter, select "Parameters" on the left and click the "New" button.

The Parameter Type is an Integer in the case above. The supported types are:

Integer whole number values e.g. 1, 400, 5, -10

Floating Point fractional numeric values e.g. 1.25, 2.5,
187.41415

Percent numeric percentage e.g. 1.5%, 10%. Enter
these as a decimal (.50 for 50%).

Boolean values that are either TRUE or FALSE

String a string value such as "hello" or "20081001"

www.forex-warex.com

Trading Blox Builder's Guide350

© 2013, Trading Blox, LLC. All rights reserved.

Selector values that are selected from a list of values.
You can assign values using the "Selector
Entries". These values will appear in a drop-
down menu, and can be stepped through. An
example might be "Trade Long", "Trade Short",
and "Trade All". The Basic Constant is the code
you would use to reference this selected value.
This is filled in automatically when you create a
selector

Default Value
The default value is the number initially assigned to the parameter when first presented in the Parameter
Editor for a system. After that initial setting Trading Blox Builder will remember the current value, so the
Default Value is only used the first time a system is used for a Test Suite..The Default Value for the
parameter above is 0.

Scope
Set the scope based on what blocks and scripts need access to this parameter. If you set to Block
scope (default) only the scripts in the block will have access. If you set to System scope, then all scripts
in all block in the system will have access. If you set to Test scope, then all scripts in the test will have
access.

Used for Lookback
Check this box if the parameter is going to be used to reference past values of an indicator or past
values of an instrument.

For example, if you are using the following type of code in your script, the parameter "closeLookback"
should be a lookback parameter:

IF instrument.close[closeLookback] > instrument.close THEN

If you are only using this parameter as input to an indicator, then you do not need to check the
lookback box.

Priming will be increased by this lookback value plus 1. So for a lookback value of 5, the first day
scripts would run is day 6. Overall priming is the maximum bars required for indicators plus one, plus
the maximum lookback parameter plus one.

Stepping Priority
This sets the priority of this parameter for stepping purposes. When stepping multiple parameters, the
highest value priority will be stepped first, and the lowest will be the outer step. The global parameters
have a step priority of zero, so to have your custom parameters step after the globals, use a negative
step value. This can be left at zero for most situations.

User Interface
Here is how this parameter looks to the user:

We can access this parameter in scripts by using "closeAverageDays". Parameter can also be used
for inputs to Indicators. In fact, this is probably the most common use for parameters.

www.forex-warex.com

Part 4 – Blox Basic Language Reference 351

© 2013, Trading Blox, LLC. All rights reserved.

NOTE: Parameters are READ ONLY. They can be accessed by scripts, but not changed by them.

13.2 Block Permanent Variables

Block Permanent Variables are the same regardless of instrument, and retain their value (unlike
variables declared with the VARIABLES statement). For instance, dayNumber (shown below) will be the
same for Gold or Silver unless changed in a script.

To create a Block Permanent Variable, select "Block Permanent Variables" on the left and click the
"New" button.

Name for Code
The name of variable as you would use it in a Script. Common convention is that you start variable
names with a lower case, and use upper case for the first letter of each subsequent word or part of the
variable name. No spaces or special characters are allowed in variable names.

Name for Humans
A more friendly description of the variable. In the case of Block Permanent this name is not displayed
anywhere, but is useful to remember what the variables purpose is.

Variable Type
The kind of value the variable will be. This cannot be changed in a script.

For a description of the different types, see the VARIABLES section. In addition to the two types listed
there Block Permanent Variables can also be of type Series and Instrument:

Series - A series is a list of numbers, sometimes referred to as an array. These can be tied to the
test day using the "Auto-Index" feature described below.
A Series of Strings can be used for many purposes, but also as the x axis label of custom charts.

www.forex-warex.com

Trading Blox Builder's Guide352

© 2013, Trading Blox, LLC. All rights reserved.

Instrument - An instrument variable can be used to refer to specific market indexes or to iterate
over the instruments in a portfolio.

The Default Value is the value that will be assigned to the variable when it is first used. So in this case at
the start of running the program, the variable dayNumber will be set to 50.

Upon creation, you can now use this variable in any of the Scripts of the Block using the variable name
"dayNumber".

The Scope determines where you can use this variable.

Block -- You can only use this variable in the scripts that are in the block.
System -- You can use this variable in any block in the System.
Test -- You can use this variable in any block in the Test.
Simulation -- Same as Test scoped except the value is not reset for every test (parameter run).

Plotting BPV Test Scope Series variables on the Summary Custom Chart

If you define a BPV as a Series variable that is System or Test scope you have the option to plot this
series on a Summary Custom Chart. Select Plots on Trade Graph, the color, style, and select a Graph
Area. The Graph Area is used for the title of the chart. If you have more than one plotting variable with
the same Graph Area, they will be plotted together so make sure the range is common and consistent. If
you have multiple different Graph Areas in your test, then multiple Summary Custom Charts will be
created for each one.

Be sure to check the Custom Graph checkbox in Preferences for the chart to show up. See the
Trading Blox User manual for details.

If any plotting BPV series are defined as "Log Scale" then all series plotting in the same Graph Area will
plot as log scale.

A BPV Series with Auto Index checked, will track the test.currentDay index.

Example:

To plot the Margin to Equity ratio, create the BPV below and put the following in the After Trading Day
script:

plotMarginEquity = test.totalMargin / test.totalEquity * 100

www.forex-warex.com

Part 4 – Blox Basic Language Reference 353

© 2013, Trading Blox, LLC. All rights reserved.

13.3 Instrument Permanent Variables

These variables can be different for each instrument, but retain their value (unlike variables declared
with the VARIABLES statement). For instance, totalProfit (shown below) can be 100 for Soybeans and
50 for Gold.

To create a Instrument Permanent Variable, select "Instrument Permanent Variables" on the left and
click the "New" button.

www.forex-warex.com

Trading Blox Builder's Guide354

© 2013, Trading Blox, LLC. All rights reserved.

The Name for Code is the name of variable as you would use it in a Script. Common convention is that
you start variable names with a lower case, and use upper case for the first letter of each subsequent
word or part of the variable name. No spaces or special characters are allowed in variable names.

The Name for Humans is a more friendly description of the variable. In the case of Instrument
Permanent this name is not displayed anywhere unless the variable is a series, but is useful to
remember what the variables purpose is. For series variables, the Name for Humans is used as the
label.

Defined Externally in Another Block -- check this option if this variable has been declared as System
Scope in another block in the system. This option lets the Syntax Checker know about this variable.

The Variable Type is the kind of value the variable will be, and cannot be changed in a script. For a
description of the different types, see the VARIABLES section.
An IPV of type Series String can be used to display a different string value for each bar on the trade
chart. It will not plot of course.

The Default Value is the value that will be assigned to the variable when it is first used. So in this case at
the start of running the program, the variable lastMonth will be set to 0.

Upon creation, you can now use this variable in any of the Scripts of the Block using the variable name
"lastMonth."

The Scope determines where you can use this variable. Instrument Permanent Variables cannot be
Test scope.

Block -- You can only use this variable in the scripts that are in the block.
System -- You can use this variable in any block in the System by declaring the variable as External
in the other blocks.

www.forex-warex.com

Part 4 – Blox Basic Language Reference 355

© 2013, Trading Blox, LLC. All rights reserved.

Simulation -- Same as System scoped except the value is not reset for every test (parameter run).

Note that for Instrument Permanent Variables, if you select the Series variable type, you have the option
to plot. If you want to plot the value, it is recommended to use the Auto Index feature. The Auto Index will
set the index using the instrument.bar property.

As with Indicators, select Plots on Trade Chart, Displays on Trade Chart, Select the color, set the Graph
Area, Select Offset by One Day if desired. The Graph Style has many options. Use the one most
appropriate to your situation.

For both Block Permanent and Instrument Permanent, if you do not select Auto Index, you must specify
a size for the array. This example, curentStopPrice, is an Auto Index series that plots in the Price Chart
graph area in Red as Small Dots.

Access

You can access Instrument Permanent Variables through scripting two ways.

1. Using the variable directly. This will return the variable for the current instrument:

myInstrumentVariable = 5
IF myInstrumentVariable = 5 THEN PRINT "It is 5"

If a Series object you can access and set the index values:
mySeriesVariable[1] = 5
IF mySeriesVariable[1] = 5 THEN PRINT "Yesterday was 5"

www.forex-warex.com

Trading Blox Builder's Guide356

© 2013, Trading Blox, LLC. All rights reserved.

2. Or you can access instrument variables using the instrument or another instrument variable object as
follows:

instrument.myInstrumentVariable = 5
sp500Index.myInstrumentVariable = 5
sp500Index.mySeriesVariable[1] = 5

IF instrument.myInstrumentVariable = 5 THEN PRINT "S&P has 5"
IF sp500Index.mySeriesVariable[1] = 5 THEN PRINT "S&P has 5"

Accessing a variable using the instrument '.' syntax is equivalent to using the variable directly. The '.'
syntax is the only way to access the value of instrument variables which are not part of the current
instrument.

www.forex-warex.com

Part 4 – Blox Basic Language Reference 357

© 2013, Trading Blox, LLC. All rights reserved.

Section 14 – Series Functions

The following functions can be used with series variables.

Function Name: Description:

Average Finds the average value of the series.

Correlation Finds the correlation of two series.

CorrelationLog Finds the correlation of two series, using the log of the change in
price.

CorrelationLogSync
h

Used for IPV Auto Indexed Series or Price Series and synchs the
dates of the two series before computing the correlationlog

CorrelationSynch Used for IPV Auto Indexed Series or Price Series and synchs the
dates of the two series before computing the correlation

CrossOver Returns true if two series have crossed over.

Data Series
Indexing

Explaination of how Series are indexed.

GetReference Used to pass a series reference to a Custom Function

GetSeriesSize Returns the current size of the series.

Highest Find the highest value of the series.

HighestBar Returns the number of bars back from the starting offset of the
highest bar.

Lowest Finds the lowest value of the series.

LowestBar Returns the number of bars back from the starting offset of the
lowest bar.

Median Returns the median.

RegressionEnd Finds the end point (Y axis) after a call to RegressionSlope

RegressionSlope Finds the slope of the linear regression.

RegressionValue Finds the value of a linear regression of the series at any point
using an offset

RSI Computes the RSI of a series.

SetSeriesColorStyl
e

Function will color an IPV Auto-Index series, or a Indicator section
indicator created to hold decimal-numbers or text String.

SetSeriesSize Sets the size of the series.

SetSeriesValues Sets a value into every element of the series

SortSeries Sorts the series

SortSeriesDual Sorts series1 based on the values of series2

StandardDeviation Finds the standard deviation of the series.

StandardDeviationL
og

Returns the standard deviation of the log of the change in prices.

Sum Finds the sum of the series.

SwingHigh Returns the swing high value.

www.forex-warex.com

Trading Blox Builder's Guide358

© 2013, Trading Blox, LLC. All rights reserved.

SwingHighBar Returns the number of bars back from the starting offset of the
swing high bar.

SwingLow Returns the swing low value.

SwingLowBar Returns the number of bars back from the staring offset of the swing
low bar.

The series on which these function apply:

instrument.open
instrument.high
instrument.low
instrument.close
instrument.volume
instrument.openInterest
instrument.unAdjustedClose
instrument.extraData1 through instrument.extraData8
instrument.weekOpen (indexed by week)
instrument.weekHigh (indexed by week)
instrument.weekLow (indexed by week)
instrument.weekClose (indexed by week)
BPV (Block Permanent Series) Variable
IPV (Instrument Permanent Series) Variable
Indicators

Example:

' myCustomArray is defined as an Instrument Permanent
' non Auto Indexed Series Variable
' Finds the average of elements number 8, 9, and 10:
myAverage = Average(myCustomArray, 3, 10)

NOTES:

If you use this function on an "Auto Indexed" Instrument Permanent or Block Permanent
Series variable, then the offset parameter sets the start index as a lookback from the current
instrument bar or test day. However, if you use this function on a non "Auto Indexed" series
variable, then the offset parameter is the start index. The function uses the bars prior to and
including the start index for the calculation.

For information on using functions with non auto indexed series review Series Functions.

14.1 Average

Finds the average value of the series.

www.forex-warex.com

Part 4 – Blox Basic Language Reference 359

© 2013, Trading Blox, LLC. All rights reserved.

Syntax

Average(series, bars, [offset])

Parameters

series the name of the series

bars the number of bars over which to find the value

offset the number of bars to offset before finding the
value

returns the average

Example
VARIABLES: highestClose, highestHigh, lowestLow, averageClose,

standDev TYPE: Price

' Find the highest close of the last 50 bars
highestClose = Highest(instrument.close, 50)

' Find the lowest low of the last 100 bars
lowestLow = Lowest(instrument.low, 100)

' Find the highest high since the entry of the first unit of the
current position

IF instrument.position <> OUT THEN
highestHigh = Highest(instrument.high, instrument.unitBarsSinceEntry

)
ENDIF

' Find the 10 day average of the close starting 20 days ago
averageClose = Average(instrument.close, 10, 20)

' Find the standard deviation of the close over the last 100 days
standDev = StandardDeviation(instrument.close, 100)

This example shows the use of the common auto indexed series. For information on using functions with
non auto indexed series review Series Functions.

14.2 Correlation

The Correlation function returns the statistical correlation for the specified number of bars between two
markets.

Syntax

Correlation(series1, series2, barsToMeasure, [offset1], [offset2])

Parameters

barsToMeasure the number of bars over which to measure the
correlation

series1 the first series

www.forex-warex.com

Trading Blox Builder's Guide360

© 2013, Trading Blox, LLC. All rights reserved.

series2 the second series

offset1 the offset of the first series

offset2 the offset of the second series

returns statistical correlation for last barsToMeasure
bars

Example
soybeans.LoadSymbol("S")
gold.LoadSymbol("GC")
correlation = Correlation(soybeans.close, gold.close, 500)

Returns the correlation between GC and S over the last 500 days

Returns a decimal number between -1 and 1. Returns -1 if the two series are perfectly negatively
correlated. Returns 0 if the two series are not correlated at all. Returns 1 if the two series are perfectly
positively correlated.

Generally less than .7 is considered uncorrelated, while .7 to .9 is considered loosely correlated and
greater than .9 is considered closely correlated.

14.3 CorrelationLog

The CorrelationLog function returns the statistical correlation for the specified number of bars between
two markets. It measure the correlation based on the change in the log of the values in the series.

Syntax

CorrelationLog(series1, series2, barsToMeasure, [offset1], [offset2])

Parameters

barsToMeasure the number of bars over which to measure the
correlation

series1 the first series

series2 the second series

offset1 the offset of the first series

offset2 the offset of the second series

returns statistical correlation for last barsToMeasure
bars

Example
soybeans.LoadSymbol("S")
gold.LoadSymbol("GC")
correlation = CorrelationLog(soybeans.close, gold.close, 500)

www.forex-warex.com

Part 4 – Blox Basic Language Reference 361

© 2013, Trading Blox, LLC. All rights reserved.

Returns the correlation between GC and S over the last 500 days

Returns a decimal number between -1 and 1. Returns -1 if the two series are perfectly negatively
correlated. Returns 0 if the two series are not correlated at all. Returns 1 if the two series are perfectly
positively correlated.

Generally .7 or greater is considered loosely correlated and .9 or greater is considered closely
correlated.

www.forex-warex.com

Trading Blox Builder's Guide362

© 2013, Trading Blox, LLC. All rights reserved.

14.4 CorrelationLogSynch

Syntax:

Parameter: Description:

Example:

Results:

Links:

See Also:

www.forex-warex.com

Part 4 – Blox Basic Language Reference 363

© 2013, Trading Blox, LLC. All rights reserved.

14.5 CorrelationSynch

Syntax:

Parameter: Description:

Example:

Results:

Links:

See Also:

14.6 CrossOver

Finds the cross over of two series.

Syntax

CrossOver(series1, series2, [direction], [crossOverSize], [offset])

Parameters

series1 series1

series2 series2

direction the direction of the cross over. A positive number
looks for when series1 goes from below series2
to above series2. A negative number looks for
when series1 goes from above series2 to below
series2. The default is 1.

crossOverSize the number of bars to consider when looking for
the cross. Default value is 1 bars which will
check if the cross occured between the last bar
and the current bar.

offset the number of bars to offset before finding the
value. The default is to look at the current bar.

returns TRUE if there was a cross over, FALSE if not.

www.forex-warex.com

Trading Blox Builder's Guide364

© 2013, Trading Blox, LLC. All rights reserved.

Example
' Check if there was a cross over between the short moving average and

the long moving average.

IF CrossOver(shortMovingAverage, longMovingAverage) THEN
PRINT "Yes, there was a cross over today."

ENDIF

www.forex-warex.com

Part 4 – Blox Basic Language Reference 365

© 2013, Trading Blox, LLC. All rights reserved.

14.7 Data Series Indexing

Series can be Auto Indexed or indexed manually.

Deries can be auto indexed according a test's test.currentDay, an instrument's
instrument.bar, or manually indexed by script code. An Auto-Indexed series is sized
automatically to match the highest value of their indexing index. A manually indexed series must first
be size in its declaration dialog, and then maintained by increasing, clearing and even reducing for
some uses by script code.

This means that when accessing the series variable the value in the "[]" braces is a location
reference. Auto-Indexed series also automatically have their size set according to the number of bars
of instrument data or number of days in the test depending whether they are an Instrument or Block
Permanent Variable.

Example of an Auto-Indexed series:

Day 1:
customIndicator = 10 ' Sets the value of 10 for the series
 ' at day 1.

Day 2:
customIndicator = 20 ' Sets the value of 20 for the series
 ' at day 2.

Day 3:
Print customIndicator[1] ' Will print the number 20 since that
 ' is the value from one day back.

Note that the Block Permanent Series will Auto Index on the test's CurrentDay value, while the
Instrument Permanent Series will Auto Index on the instrument's bar value. This difference is because
some markets/instruments don't trade on certain days because of exchange-specific holidays.

Example of accessing a series that is not Auto-Indexed (regular array):

If you do not select Auto-Index then each element is accessed the same regardless of the movement
in through time. You need to set each value using the [] and retrieve them using the same index. You
also need to set the size yourself since Trading Blox won't know how many elements you want to store
in the series.

Errors will be generated when the non auto indexed array is used without an index [] or when the index
is less than 1 or greater than the number of defined elements.

In the following example, customArray is a non auto-indexed array of size 10.

Day 1:
customArray[1] = 10 ' Sets the value of 10 into the
 ' series at index 1

Day 2
customArray[3] = 20 ' Sets the value of 20 into the
 ' series at index 3

Day 3
Print customArray[1] ' Will print the value 10, since

www.forex-warex.com

Trading Blox Builder's Guide366

© 2013, Trading Blox, LLC. All rights reserved.

 ' that is the value at index 1

www.forex-warex.com

Part 4 – Blox Basic Language Reference 367

© 2013, Trading Blox, LLC. All rights reserved.

14.8 GetReference

Syntax:

Parameter: Description:

Example:

Results:

Links:

See Also:

www.forex-warex.com

Trading Blox Builder's Guide368

© 2013, Trading Blox, LLC. All rights reserved.

14.9 GetSeriesSize

Get the current size of the series. Used with Non Auto Indexed Series to find the size when assigning
values. If the series is too small, increase with SetSeriesSize.

Syntax:

seriesSize = GetSeriesSize(seriesName)

Parameter: Description:

seriesName Name of manually sized IPV & BPV series arrays. Manually
means the Auto-Index option is disabled.

returns Variable 'seriesSize' shown above will contain the number of
elements contained in the series.

Example:

VARIABLES: seriesSize TYPE: integer

' Set instrument.myCustomSeries size to 34
SetSeriesSize(instrument.myCustomSeries, 34)

' Get the current size.
seriesSize = GetSeriesSize(instrument.myCustomSeries)

' If we have enough space, then set the value.
IF index < seriesSize THEN
 instrument.myCustomSeries[index] = someNumber
ELSE
 ERROR "The index is too large for the series myCustomSeries"
ENDIF

Print "seriesSize = ", seriesSize

Results:
seriesSize = , 34

Links:

SetSeriesSize, SetSeriesValues

See Also:

Series Functions

14.10 Highest

Finds the highest value of the series.

Syntax

Highest(series, bars, [offset])

www.forex-warex.com

Part 4 – Blox Basic Language Reference 369

© 2013, Trading Blox, LLC. All rights reserved.

Parameters

series the name of the series

bars the number of bars over which to find the value

offset the number of bars to offset before finding
the value

returns the highest value

Example
VARIABLES: highestClose, highestHigh, lowestLow, averageClose,

standDev TYPE: Price

' Find the highest close of the last 50 bars
highestClose = Highest(instrument.close, 50)

' Find the lowest low of the last 100 bars
lowestLow = Lowest(instrument.low, 100)

' Find the highest high since the entry of the first unit of the
current position

IF instrument.position <> OUT THEN
highestHigh = Highest(instrument.high, instrument.unitBarsSinceEntry

)
ENDIF

' Find the 10 day average of the close starting 20 days ago
averageClose = Average(instrument.close, 10, 20)

' Find the standard deviation of the close over the last 100 days
standDev = StandardDeviation(instrument.close, 100)

This example shows the use of the common auto indexed series. For information on using functions with
non auto indexed series review Series Functions.

14.11 HighestBar

Finds the highest value of the series, then return the bars back.

Syntax

HighestBar(series, bars, [offset])

Parameters

series the name of the series

bars the number of bars over which to find the value

offset the number of bars to offset before finding
the value

returns the number of bars back from the offset starting

www.forex-warex.com

Trading Blox Builder's Guide370

© 2013, Trading Blox, LLC. All rights reserved.

index to the highest value bar

Example
VARIABLES: highestCloseBar, highestHighBar, lowestLowBar TYPE: Price

' Find the highest close bar of the last 50 bars
highestCloseBar = HighestBar(instrument.close, 50)

' Find the lowest low bar of the last 100 bars
lowestLowBar = LowestBar(instrument.low, 100)

' Find the highest high bar since the entry of the first unit of the
current position

IF instrument.position <> OUT THEN
highestHighBar = HighestBar(instrument.high,

instrument.unitBarsSinceEntry)
ENDIF

' Now print the close of the highest bar:
PRINT instrument.close[highestHighBar]

The return value is the number of bars back from the starting index. If no starting index is used, then it
is the bars back from the current bar. If a starting index offset is used, then the return value is the bars
back from that offset.

This example shows the use of the common auto indexed series. For information on using functions with
non auto indexed series review Series Functions.

14.12 Lowest

Finds the lowest value of the series.

Syntax

Lowest(series, bars, [offset])

Parameters

series the name of the series

bars the number of bars over which to find the value

offset the number of bars to offset before finding
the value

returns the lowest value

Example
VARIABLES: highestClose, highestHigh, lowestLow, averageClose,

standDev TYPE: Price

' Find the highest close of the last 50 bars
highestClose = Highest(instrument.close, 50)

www.forex-warex.com

Part 4 – Blox Basic Language Reference 371

© 2013, Trading Blox, LLC. All rights reserved.

' Find the lowest low of the last 100 bars
lowestLow = Lowest(instrument.low, 100)

' Find the highest high since the entry of the first unit of the
current position

IF instrument.position <> OUT THEN
highestHigh = Highest(instrument.high, instrument.unitBarsSinceEntry

)
ENDIF

' Find the 10 day average of the close starting 20 days ago
averageClose = Average(instrument.close, 10, 20)

' Find the standard deviation of the close over the last 100 days
standDev = StandardDeviation(instrument.close, 100)

This example shows the use of the common auto indexed series. For information on using functions with
non auto indexed series review Series Functions.

14.13 LowestBar

Finds the lowest value of the series, then return the bars back.

Syntax

LowestBar(series, bars, [offset])

Parameters

series the name of the series

bars the number of bars over which to find the value

offset the number of bars to offset before finding
the value

returns the number of bars back from the offset starting
index to the lowest value bar

Example
VARIABLES: highestCloseBar, highestHighBar, lowestLowBar TYPE: Price

' Find the highest close bar of the last 50 bars
highestCloseBar = HighestBar(instrument.close, 50)

' Find the lowest low bar of the last 100 bars
lowestLowBar = LowestBar(instrument.low, 100)

' Find the highest high bar since the entry of the first unit of the
current position

IF instrument.position <> OUT THEN
highestHighBar = HighestBar(instrument.high,

instrument.unitBarsSinceEntry)
ENDIF

www.forex-warex.com

Trading Blox Builder's Guide372

© 2013, Trading Blox, LLC. All rights reserved.

' Now print the close of the highest bar:
PRINT instrument.close[highestHighBar]

The return value is the number of bars back from the starting index. If no starting index is used, then it
is the bars back from the current bar. If a starting index offset is used, then the return value is the bars
back from that offset.

This example shows the use of the common auto indexed series. For information on using functions with
non auto indexed series review Series Functions.

14.14 Median

Finds the median value of the series.The median is the middle value of the series if the series has an odd
number of elements. If there are an even number of elements, the median is the average of the middle two
values.

Syntax

Median(series, [bars], [offset])

Parameters

series the name of the series

bars the number of bars over which to find the value.
Default is the whole series.

offset the number of bars to offset the starting index.
Default is zero.

returns the median

Example
' Find the median value of the last 100 bars of the series.

medianValue = Median(instrument.close, 100)

This example shows the use of the common auto indexed series. For information on using functions with
non auto indexed series review Series Functions.

14.15 RegressionEnd

Finds the end point of a linear regression of the series. Note that this function must be used in
conjunction with RegressionSlope. This function merely returns the value already calculated by
RegressionSlope, so this function must follow RegressionSlope to return the correct value. The series is
a required input parameter. There are no other required values since the end point has already been
determined.

Syntax

www.forex-warex.com

Part 4 – Blox Basic Language Reference 373

© 2013, Trading Blox, LLC. All rights reserved.

RegressionEnd(series)

Parameters

series the name of the series

returns the end point

Example
' Find the slope of the linear regression of the last 10 closes.
' Once the slope has been found, we can retrieve the end point as

well.
slope = RegressionSlope(instrument.close, 10)
endPoint = RegressionEnd(instrument.close)

' Plot the linear regression on the bars that have been used to
calculate it. This is postdictive.

' The variable plotRegression is declared as an Instrument Permanent
Auto Index Series Variable with plotting.

FOR i = 0 to 9
plotRegression[i] = endPoint - i * slope

NEXT

This example shows the use of the common auto indexed series. For information on using functions with
non auto indexed series review Series Functions.

14.16 RegressionSlope

Finds the linear regression slope of the series.

Syntax

RegressionSlope(series, bars, [offset])

Parameters

series the name of the series

bars the number of bars over which to find the value

offset the number of bars to offset before finding
the value

returns the slope

Example
' Find the slope of the linear regression of the last 10 closes.
' Once the slope has been found, we can retrieve the end point as

well.
slope = RegressionSlope(instrument.close, 10)
endPoint = RegressionEnd(instrument.close)

www.forex-warex.com

Trading Blox Builder's Guide374

© 2013, Trading Blox, LLC. All rights reserved.

This example shows the use of the common auto indexed series. For information on using functions with
non auto indexed series review Series Functions.

www.forex-warex.com

Part 4 – Blox Basic Language Reference 375

© 2013, Trading Blox, LLC. All rights reserved.

14.17 RegressionValue

Finds the value of a linear regression of the series at any point using an offset. Note that this function
must be used in conjunction with RegressionSlope. This function merely returns the slope and
endpoint already calculated by RegressionSlope, so this function must follow RegressionSlope to
return the correct value. The series is a required input parameter and an offset.

This example shows the use of the common auto indexed series. For information on using functions
with non auto indexed series review Series Functions.

Syntax:

RegressionValue(series, offset)

Parameter: Description:

series Name of the series

offset Number of bars back

returns Value at the offset

Example:

' Find the slope of the linear regression of the last 10 closes.
slope = RegressionSlope(instrument.close, 10)

' Plot the linear regression on the bars that have been used to calculate it. This is postdictive.
' The variable plotRegression is declared as an Instrument Permanent Auto Index Series Variable with plotting.

 FOR i = 0 to 9
 plotRegression[i] = RegressionValue(instrument.close, i)
 NEXT

Results:

Links:

RegressionSlope

See Also:

Series Functions

14.18 RSI

Computes the RSI of a series

Syntax

RSI(series, rsiBars, [elementCount], [offset])

www.forex-warex.com

Trading Blox Builder's Guide376

© 2013, Trading Blox, LLC. All rights reserved.

Parameters

series the name of the series

rsiBars the number of bars to use for the RSI
computation

elementCount the optional number of bars to use out of the
entire data series for this computation.

offset the optional offset from the current bar, for auto
indexed, and the start location for non auto
indexed. Defaults to zero.

returns the RSI value

14.19 SetSeriesColorStyle

Function allows each element of an Indicator created as a Floating or String IPV Auto-Index
series, or a Indicator section indicator. Series must have its ability to Plot on the software's instrument
chart area for this function to work. When applied to a single element the element color will display the
color that was asigned.

Syntax:

SetSeriesColorStyle(series, plotColor, [plotStyle], [offset])

Parameter: Description:

series Name of series

plotColor Element Color to use with named "series"

Preference Color Setup: Color Constant Name:

User Preference Color Table

ColorGrid

ColorBackground

ColorCrossHair

ColorLongTrade

ColorShortTrade

ColorTradeEntry

ColorTradeStop

ColorTradeExit

ColorUpBar

ColorDownBar

ColorUpCandle

ColorDownCandle

www.forex-warex.com

Part 4 – Blox Basic Language Reference 377

© 2013, Trading Blox, LLC. All rights reserved.

ColorCustom1

ColorCustom2

ColorCustom3

ColorCustom4

Note:
Review color information available here: Colors

[plotStyle] Style Value: Style Type:

1 Thin Line

2 Thick Line

3 Trace

4 Small Dot

5 Large Dot

6 Up Arrow

7 Down Arrow

8 Histogram

9 Area

10 Staircase

[offset] Zero will change the color of the bar information at the current location. An
offset value of 1 will change the color of the previous bar. Offset values
with this function operate in the same way as a price or auto-index series.

Example:

In the following, barPlotColor is a Bar Plot Color type indicator that is checked for plotting and
unchecked for display.
barMessage is an auto indexed string series.
plotTrades is an auto indexed numerical series.

www.forex-warex.com

Trading Blox Builder's Guide378

© 2013, Trading Blox, LLC. All rights reserved.

' ~~
' Setting the location, color, and style of a plotting IPV series.
If instrument.unitBarsSinceEntry = 1 AND instrument.position = LONG THEN
 plotTrades[1] = instrument.low[1] - instrument.minimumTick * 10
 SetSeriesColorStyle(plotTrades, ColorLongTrade, 6, 1)
ENDIF

If instrument.unitBarsSinceEntry = 1 AND instrument.position = SHORT THEN
 plotTrades[1] = instrument.high[1] + instrument.minimumTick * 10
 SetSeriesColorStyle(plotTrades, ColorShortTrade, 7, 1)
ENDIF

' Bar Plot Color type indicator example to color the trade
' chart bars dynamically.
If instrument.close > instrument.open THEN
 SetSeriesColorStyle(barPlotColor, ColorUpBar)
 barMessage = "Up Day!"
ELSE
 SetSeriesColorStyle(barPlotColor, ColorDownBar)
 barMessage = "Down Day!"
ENDIF
' ~~

Example:

' ~~
' This will set the color to a random color for each bar
' and the style to a random style – nice look!
SetSeriesColorStyle(averageTrueRange, ColorRGB(Random(255), _
 Random(255), Random(255)), Random(10))
' ~~

Example:

' ~~
' Color of the up bar AND a thin line:
SetSeriesColorStyle(averageTrueRange, ColorUpBar, 1)
' ~~

Example:

www.forex-warex.com

Part 4 – Blox Basic Language Reference 379

© 2013, Trading Blox, LLC. All rights reserved.

' ~~
' Label Volume using the direction of bar close change value
If instrument.close[0] > instrument.close[1] THEN
 ' Display Volume Series
 SeriesVolume = instrument.volume[0]
 ' Use ColorUpBar Color on this Volume bar
 SetSeriesColorStyle(SeriesVolume, ColorUpBar, 8, 0)
ELSE
 If instrument.close[0] < instrument.close[1] THEN
 ' Display Volume Series
 SeriesVolume = instrument.volume[0]
 ' Use ColorDownBar Color on this Volume bar
 SetSeriesColorStyle(SeriesVolume, ColorDownBar, 8, 0)
 ELSE
 If instrument.close[0] = instrument.close[1] THEN
 ' Use Default Color for Volume bar item
 SeriesVolume = instrument.volume[0]
 ENDIF ' i.close[0] = i.close[1]
 ENDIF ' i.close[0] < i.close[1]
ENDIF ' i.close[0] > i.close[1]
' ~~

Script code output in this example creates this next chart of volume changes:

Results:

www.forex-warex.com

Trading Blox Builder's Guide380

© 2013, Trading Blox, LLC. All rights reserved.

Links:

Colors, ColorRGB

See Also:

Prefernces

Or use a number like 8388736 which is violet. The Color picker in Preferences displays the number
for each custom color, so you can copy paste from there to set a fixed color.

If you use one of the custom colors from preferences, the user will be able to modify the colors as
desired.

www.forex-warex.com

Part 4 – Blox Basic Language Reference 381

© 2013, Trading Blox, LLC. All rights reserved.

14.20 SetSeriesSize

Sets the series size of a manually sized and manually indexed series of floating numbers or strings.
Manually sized series are created by selecting the one of the two series types available in the IPV and
BPV variable creation dialog, and then disabling the Auto-Indexed option.

This function is used to increase or decrease the size of a manually Indexed series. When the size of
a series is changed, the values currently in the series are retained, and the new elements (if bigger, or
includes more elements) are set to the default value used in the variable creation dialog.

Syntax:

SetSeriesSize(seriesName, newSize)

Parameter: Description:

seriesName Name of the series which is to be adjusted to a new size.

newSize Integer value of the new series size.

Example:

VARIABLES: seriesSize TYPE: integer

' Get the current series size.
seriesSize = GetSeriesSize(instrument.myCustomSeries)

' If we don't have enough space, then resize.
' Make bigger than necessary so we don't have to do this every time.
IF index > seriesSize THEN
 SetSeriesSize(instrument.myCustomSeries, index + 10)
ENDIF

' Set the value into the series.
instrument.myCustomSeries[index] = someNumber

Results:
SetSeriesSize doesn't return any value, but the size of a series can be obtained using the
GetSeriesSize function.

Links:

GetSeriesSize, SetSeriesValue

See Also:

Series Functions

www.forex-warex.com

Trading Blox Builder's Guide382

© 2013, Trading Blox, LLC. All rights reserved.

14.21 SetSeriesValues

Sets a value into all the elements of the series. Optional Start and End element parameters are
available to control which elements in the series will be assigned the replacement seed-Value. When
the Start and End elements index numbers are not used the entire series will be contain the
replacement seed-value.

This function makes clearing the entire series value of its previous values a fast and simple process.

Syntax:

SetSeriesValues(seriesName, seedValue, [Start-Element-Num], [End-Element-Num])

Parameter: Description:

seriesName Name of series to be changed.

seedValue Replacement value to use for the series, or for the range of
elements assigned in the Start and End element number range.

Start-Element-Num Earliest or lowest series index value from which seed-value will
begin replacing the values in the series.

End-Element-Num Latest or highest series index value at which the seed-value
replacements will stop being replaced.

Example:

www.forex-warex.com

Part 4 – Blox Basic Language Reference 383

© 2013, Trading Blox, LLC. All rights reserved.

' ~~
' Create a Series with 5-elements
SetSeriesSize(TestSeries, 5)

' Check the count of the TestSeries
iElementCount = GetSeriesSize(TestSeries)

' Create Column Titles
PRINT
PRINT "Series Elements with Values:"
PRINT "Series Element", "Element Value"
PRINT "--------------", "-------------"

' Assign an Ndx number to each Element
For Ndx = 1 TO iElementCount STEP 1
 ' ClearRankAdjustments
 TestSeries[Ndx] = Ndx

 ' Show Each Element Value
 PRINT "TestSeries[" + AsString(Ndx, 0) + "] = ", TestSeries[Ndx]
Next ' ndx

' Set All the Elements in the Series to Zero
SetSeriesValues(TestSeries, 0)

' Create More Column Titles
PRINT
PRINT "Series Elements with New Values:"
PRINT "Series Element", "Element Value"
PRINT "--------------", "-------------"

' Show each element after the new value is assigned
For Ndx = 1 TO iElementCount STEP 1
 ' Show Each Element Value
 PRINT "TestSeries[" + AsString(Ndx, 0) + "] = ", TestSeries[Ndx]
Next ' ndx
' ~~

Results:
Series Elements with Values:
Series Element Element Value
-------------- -------------
TestSeries[1] = 1.000000000
TestSeries[2] = 2.000000000
TestSeries[3] = 3.000000000
TestSeries[4] = 4.000000000
TestSeries[5] = 5.000000000

Series Elements with New Values:
Series Element Element Value
-------------- -------------
TestSeries[1] = 0.000000000

www.forex-warex.com

Trading Blox Builder's Guide384

© 2013, Trading Blox, LLC. All rights reserved.

TestSeries[2] = 0.000000000
TestSeries[3] = 0.000000000
TestSeries[4] = 0.000000000
TestSeries[5] = 0.000000000

Links:

GetSeriesSize, SetSeriesSize

See Also:

Series Functions

www.forex-warex.com

Part 4 – Blox Basic Language Reference 385

© 2013, Trading Blox, LLC. All rights reserved.

14.22 SortSeries

Sorts the series in ascending and descending order. Will sort a limited part of the series any where in
the series.

Only use with non-auto indexed series.

Does not work with Auto Indexed series.

Syntax:

SortSeries(seriesName, [element count], [offset], [direction])

Parameter: Description:

seriesName Series name to be sorted.

[element count] Default is to sort all the elements in the series.

Option is to specify the number of elements to sort.

[offset] Default is to sort all the elements in the series.

When a value is entered into the "element count" field, the value entered in
this field will be the starting index from which element count uses to start
the optional "element count" amount of elements to sort.

[direction] Default, or no entry in this field will sort the elements in an ascending
order.
A positive value sorts the elements in an ascending order.
A negative value sorts the elements in a descending order.

Example 1:

www.forex-warex.com

Trading Blox Builder's Guide386

© 2013, Trading Blox, LLC. All rights reserved.

' ~~
' WtFactors = Manual, or Non Auto-Indexing Series
' ~~
' Adjust Series Element Count
SetSeriesSize(WtFactors, 3)
' Get Series New Size
PRINT
PRINT "Show Series Size"
PRINT "Series Size = ", GetSeriesSize(WtFactors)
' Assign Zero to all the Element in the series
SetSeriesValues(WtFactors, 0)

' Assign Weight Factor to Series
WtFactors[1] = 0.30
WtFactors[2] = 0.40
WtFactors[3] = 0.30

PRINT
PRINT "Unsorted Series"
For Ndx = 1 TO 3 STEP 1
 PRINT "WtFactors[" + AsString(Ndx,0) + "] = ", WtFactors[Ndx]
Next ' Ndx

' Sort Series in Ascending Order
SortSeries(WtFactors)

PRINT
PRINT "Series Sorted in Ascending Order"
For Ndx = 1 TO 3 STEP 1
 PRINT "WtFactors[" + AsString(Ndx,0) + "] = ", WtFactors[Ndx]
Next ' Ndx

' Sort Series in Descending Order
SortSeries(WtFactors,3,3,-1)

PRINT
PRINT "Series Sorted in Descending Order"
For Ndx = 1 TO 3 STEP 1
 PRINT "WtFactors[" + AsString(Ndx,0) + "] = ", WtFactors[Ndx]
Next ' Ndx
' ~~

Returns:

Show Series Size
Series Size = 3

Unsorted Series
WtFactors[1] = 0.300000000
WtFactors[2] = 0.400000000
WtFactors[3] = 0.300000000

Series Sorted in Ascending Order

www.forex-warex.com

Part 4 – Blox Basic Language Reference 387

© 2013, Trading Blox, LLC. All rights reserved.

WtFactors[1] = 0.300000000
WtFactors[2] = 0.300000000
WtFactors[3] = 0.400000000

Series Sorted in Descending Order
WtFactors[1] = 0.400000000
WtFactors[2] = 0.300000000
WtFactors[3] = 0.300000000

Example 2:

' Now sort the results series.
SortSeries(results, elementsToSort, elementsToSort, -1)

Links:

SortSeriesDual

See Also:

Series Functions

14.23 SortSeriesDual

Sorts the series1 based on the values in series2. Only for non auto indexed series. Not available for
auto indexed series.

Note that the three optional parameters are only optional if the preceding parameter is included.
The following are valid:

SortSeriesDual(series1, series2)
SortSeriesDual(series1, series2, elementCount)
SortSeriesDual(series1, series2, elementCount, offset)
SortSeriesDual(series1, series2, elementCount, offset, direction)

The following is not valid:

SortSeriesDual(series1, series2, direction)

Syntax

SortSeriesDual(series1, series2, [element count], [offset], [direction]
)

Parameters

series1 Series 1, that will be sorted

series2 Series 2, to use for the sorting

element count the number of elements to sort. Default is series
element count.

offset the starting index from which element count
goes back for non auto indexed series. Default

www.forex-warex.com

Trading Blox Builder's Guide388

© 2013, Trading Blox, LLC. All rights reserved.

is series element count.

direction positive number sorts ascending, negative
number sorts descending. Default is ascending
sort.

returns n/a

Example

' Sort resultsIndex based on the values of the results series.
SortSeriesDual(resultsIndex, results, elementsToSort,

elementsToSort, -1)

' Now sort the results series.
SortSeries(results, elementsToSort, elementsToSort, -1)

14.24 StandardDeviation

Finds the standard deviation of the series.

Syntax

StandardDeviation(series, bars, [offset])

Parameters

series the name of the series

bars the number of bars over which to find the value

offset the number of bars to offset before finding
the value

returns the standard deviation

Example
VARIABLES: highestClose, highestHigh, lowestLow, averageClose,

standDev TYPE: Price

' Find the highest close of the last 50 bars
highestClose = Highest(instrument.close, 50)

' Find the lowest low of the last 100 bars
lowestLow = Lowest(instrument.low, 100)

' Find the highest high since the entry of the first unit of the
current position

IF instrument.position <> OUT THEN
highestHigh = Highest(instrument.high, instrument.unitBarsSinceEntry

)
ENDIF

' Find the 10 day average of the close starting 20 days ago
averageClose = Average(instrument.close, 10, 20)

www.forex-warex.com

Part 4 – Blox Basic Language Reference 389

© 2013, Trading Blox, LLC. All rights reserved.

' Find the standard deviation of the close over the last 100 days
standDev = StandardDeviation(instrument.close, 100)

This example shows the use of the common auto indexed series. For information on using functions with
non auto indexed series review Series Functions.

14.25 StandardDeviationLog

Finds the standard deviation of the series. Uses the change in the log of the values.

Syntax

StandardDeviationLog(series, bars, [offset])

Parameters

series the name of the series

bars the number of bars over which to find the value

offset the number of bars to offset before finding
the value

returns the standard deviation

Example
VARIABLES: highestClose, highestHigh, lowestLow, averageClose,

standDev TYPE: Price

' Find the highest close of the last 50 bars
highestClose = Highest(instrument.close, 50)

' Find the lowest low of the last 100 bars
lowestLow = Lowest(instrument.low, 100)

' Find the highest high since the entry of the first unit of the
current position

IF instrument.position <> OUT THEN
highestHigh = Highest(instrument.high, instrument.unitBarsSinceEntry

)
ENDIF

' Find the 10 day average of the close starting 20 days ago
averageClose = Average(instrument.close, 10, 20)

' Find the standard deviation of the close over the last 100 days
standDev = StandardDeviationLog(instrument.close, 100)

This example shows the use of the common auto indexed series. For information on using functions with
non auto indexed series review Series Functions.

www.forex-warex.com

Trading Blox Builder's Guide390

© 2013, Trading Blox, LLC. All rights reserved.

14.26 Sum

Finds the sum of the series.

Syntax

Sum(series, bars, [offset])

Parameters

series the name of the series

bars the number of bars over which to find the value

offset the number of bars to offset before finding the
value

returns the sum

Example

' Find the sum of the 10 closes starting 20 days ago
sumCloses = Sum(instrument.close, 10, 20)

This example shows the use of the common auto indexed series. For information on using functions with
non auto indexed series review Series Functions.

14.27 SwingHigh

Finds the swing high value.

Syntax

swingValue = SwingHigh(series, [occurrence], [forwardStrengthBars],
[backwardStrengthBars], [lookbackBars], [offsetBars])

Parameters

series the series to use

occurrence the occurrence to look for. Default is the first
occurrence of this swing high back from the
current bar. A value of 2 will find the second
occurrence back, etc.

forwardStrengthBars the number of bars forward to check for a given
bar to determine if a swing occurred. Default is
to check one bar. If all forwardStrengthBars are
lower than the bar, then the swing occurred. If
any are equal, then the swing did not occur. Flat
tops are ignored.

backwardStrengthBars the number of bars backward to check for a
given bar to determine if a swing occurred.
Default is to check forwardStrengthBars number
of bars. If all backwardStrengthBars are lower
than the bar, then the swing occurred. If any are

www.forex-warex.com

Part 4 – Blox Basic Language Reference 391

© 2013, Trading Blox, LLC. All rights reserved.

equal, then the swing did not occur. Flat tops are
ignored.

lookbackBars the total number of bars to check for a swing.
Default is to use all available bars.

offset the number of bars to offset before finding the
value. The default is 0, using the current bar.

returns the swing value. Returns -1 if not found.

Example
' Find the second occurrence back where the post 4 and prior 5 bar

values were lower than the current value.
' Check the last 500 bars.

swingValue = SwingHigh(instrument.high, 2, 4, 5, 500)

This example shows the use of the common auto indexed series. For information on using functions with
non auto indexed series review Series Functions.

14.28 SwingHighBars

Finds the swing high bar.

Syntax

barLookbackIndex = SwingHighBar(series, [occurrence],
[forwardStrengthBars], [backwardStrengthBars], [lookbackBars], [offsetBars]
)

Parameters

series the series to use

occurrence the occurrence to look for. Default is the first
occurrence of this swing high back from the
current bar. A value of 2 will find the second
occurrence back, etc.

forwardStrengthBars the number of bars forward to check for a given
bar to determine if a swing occurred. Default is
to check one bar. If all forwardStrengthBars are
lower than the bar, then the swing occurred. If
any are equal, then the swing did not occur. Flat
tops are ignored.

backwardStrengthBars the number of bars backward to check for a
given bar to determine if a swing occurred.
Default is to check forwardStrengthBars number
of bars. If all backwardStrengthBars are lower
than the bar, then the swing occurred. If any are
equal, then the swing did not occur. Flat tops are
ignored.

lookbackBars the total number of bars to check for a swing.
Default is to use all available bars.

www.forex-warex.com

Trading Blox Builder's Guide392

© 2013, Trading Blox, LLC. All rights reserved.

offset the number of bars to offset before finding the
value. The default is 0, using the current bar.

returns the number of bars back from the offset starting
index of the swing bar. Returns -1 if not found.

Example
' Find the second occurrence back where the post 4 and prior 5 bar

values were lower than the current value.
' Check the last 500 bars.

swingBar = SwingHighBar(instrument.high, 2, 4, 5, 500)

' Print the date of the swing bar.
PRINT instrument.date[swingBar]

This example shows the use of the common auto indexed series. For information on using functions with
non auto indexed series review Series Functions.

14.29 SwingLow

Finds the swing low value.

Syntax

swingValue = SwingLow(series, [occurrence], [forwardStrengthBars],
[backwardStrengthBars], [lookbackBars], [offsetBars])

Parameters

series the series to use

occurrence the occurrence to look for. Default is the first
occurrence of this swing high back from the
current bar. A value of 2 will find the second
occurrence back, etc.

forwardStrengthBars the number of bars forward to check for a given
bar to determine if a swing occurred. Default is
to check one bar. If all forwardStrengthBars are
higher than the bar, then the swing occurred. If
any are equal, then the swing did not occur. Flat
tops are ignored.

backwardStrengthBars the number of bars backward to check for a
given bar to determine if a swing occurred.
Default is to check forwardStrengthBars number
of bars. If all backwardStrengthBars are higher
than the bar, then the swing occurred. If any are
equal, then the swing did not occur. Flat tops are
ignored.

lookbackBars the total number of bars to check for a swing.
Default is to use all available bars.

offset the number of bars to offset before finding the

www.forex-warex.com

Part 4 – Blox Basic Language Reference 393

© 2013, Trading Blox, LLC. All rights reserved.

value. The default is 0, using the current bar.

returns the swing value. Returns -1 if not found.

Example
' Find the second occurrence back where the post 4 and prior 5 bar

values were higher than the current value.
' Check the last 500 bars.

swingValue = SwingLow(instrument.low, 2, 4, 5, 500)

This example shows the use of the common auto indexed series. For information on using functions with
non auto indexed series review Series Functions.

14.30 SwingLowBars

Finds the swing low bar.

Syntax

barLookbackIndex = SwingLowBar(series, [occurrence],
[forwardStrengthBars], [backwardStrengthBars], [lookbackBars], [offsetBars]
)

Parameters

series the series to use

occurrence the occurrence to look for. Default is the first
occurrence of this swing low back from the
current bar. A value of 2 will find the second
occurrence back, etc.

forwardStrengthBars the number of bars forward to check for a given
bar to determine if a swing occurred. Default is
to check one bar. If all forwardStrengthBars are
higher than the bar, then the swing occurred. If
any are equal, then the swing did not occur. Flat
tops are ignored.

backwardStrengthBars the number of bars backward to check for a
given bar to determine if a swing occurred.
Default is to check forwardStrengthBars number
of bars. If all backwardStrengthBars are higher
than the bar, then the swing occurred. If any are
equal, then the swing did not occur. Flat tops are
ignored.

lookbackBars the total number of bars to check for a swing.
Default is to use all available bars.

offset the number of bars to offset before finding the
value. The default is 0, using the current bar.

returns the number of bars back from the offset starting
index of the swing bar. Returns -1 if not found.

www.forex-warex.com

Trading Blox Builder's Guide394

© 2013, Trading Blox, LLC. All rights reserved.

Example
' Find the second occurrence back where the post 4 and prior 5 bar

values were higher than the current value.
' Check the last 500 bars.

swingBar = SwingLowBar(instrument.low, 2, 4, 5, 500)

' Print the date of the swing bar.
PRINT instrument.date[swingBar]

This example shows the use of the common auto indexed series. For information on using functions with
non auto indexed series review Series Functions.

www.forex-warex.com

Андрей
tr-software-download

Part 4 – Blox Basic Language Reference 395

© 2013, Trading Blox, LLC. All rights reserved.

Section 15 – Statement Reference

Statement syntax is case-insensitive. "WHILE" is the same as "while". We capitalize these for clarity.
Also, while the commands within a statement do not have to be indented, this is recommended to show
the "flow" of the script at a glance. Trading Blox Builder includes the following statement types:

Keyword Description

Assignment Assign a value to a different variable.

DO a general-purpose loop that repeats a group of statements

ERROR a statement that can be used to indicate unexpected conditions

FOR a special purpose loop that executes a set of statements a particular
number of times

IF a statement that does something only if certain conditions are met

PRINT a statement that writes values to the log window and file

WHILE a loop that repeats a group of statements as long as a certain condition
exists

www.forex-warex.com

Trading Blox Builder's Guide396

© 2013, Trading Blox, LLC. All rights reserved.

15.1 Assignment

A variable is assigned a new value with an Assignment statement.

Syntax

variable = expression

variable An expression to evaluated and assigned to variable

expression An expression to evaluated and assigned to variable

Variables should be declared before being assigned to in an assignment statement.

VARIABLES: variableOne TYPE: Floating, greeting TYPE: String

variableOne = 50.60
greeting = "Have a nice day."

PRINT greeting

www.forex-warex.com

Part 4 – Blox Basic Language Reference 397

© 2013, Trading Blox, LLC. All rights reserved.

15.2 DO

Repeats a block of statements while a condition is TRUE or until a condition becomes TRUE

Syntax

DO [WHILE | UNTIL condition]
 [statements]
LOOP

condition Expression that evaluates to True or False .

statements One or more statements executed while or until condition is True .

In this case if a WHILE is used, the condition is checked first and if the condition is TRUE then the
statements are executed and the condition is reevaluated again until the condition becomes FALSE at
which point the loop stops.

If an UNTIL the condition is checked first and if the condition is FALSE then the statements are
executed and the condition is reevaluated again until the condition becomes TRUE at which point the
loop stops.

Or, you can use this syntax:

DO
 [statements]
LOOP [WHILE | UNTIL condition]

condition Expression that evaluates to True or False .

statements One or more statements executed while or until condition is True .

The second form where the WHILE and UNTIL follow the LOOP keyword at end of the DO ... LOOP
differs from the first form in that the statements are always executed at least once after which the
condition is evaluated.

If WHILE follows the LOOP and the condition is TRUE, the statements are executed again and the
condition is reevaluated until the condition becomes FALSE.

If UNTIL follows the LOOP and the condition is FALSE, the statements are executed again and the
condition is reevaluated until the condition becomes TRUE.

Examples

DO
 print a
 a = (a + 1)

LOOP WHILE (a < 11)

VARIABLES: fibonacci, lastFibonacci TYPE: INTEGER
fibonacci = 1
lastFibonacci = 1

www.forex-warex.com

Trading Blox Builder's Guide398

© 2013, Trading Blox, LLC. All rights reserved.

DO UNTIL fibonacci > 100
 ' Print out the Fibonacci number.
 PRINT fibonacci

 ' Compute the next fibonacci number
 fibonacci = (fibonacci + lastFibonacci)
 lastFibonacci = fibonacci
LOOP

www.forex-warex.com

Part 4 – Blox Basic Language Reference 399

© 2013, Trading Blox, LLC. All rights reserved.

15.3 ERROR

Stops the program in the debugger on the line where this statement occurs and displays the message
defined by the expressions passed to the ERROR statement in the Debugger's message area. Similar to
using a Breakpoint, but in this case the program will terminate rather than continue.

Syntax

ERROR [expression, expression,...]

expression An expression to be printed, separated by commas or semicolons

ERROR without any parameters displays a blank message.

The ERROR statement is useful for detecting unusual conditions that you don't believe should occur.

Example
IF stopPrice < 0 THEN

 ERROR "The stop price was negative ", stopPrice

ENDIF

See also: Test.AbortTest and Test.AbortAllTests
Keywords: Stop, Break, Abort, Assert

www.forex-warex.com

Trading Blox Builder's Guide400

© 2013, Trading Blox, LLC. All rights reserved.

15.4 FOR

Repeats a group of statements a specified number of times.

Syntax

FOR counter = start TO end [STEP step]
 [statements]
NEXT

counter Variable used as a loop counter. This variable must be declared as an integer before
using. See the VARIABLES statement.

start Initial value of counter (can be a complex expression)

end Final value of counter (can be a complex expression)

step Integer amount counter is changed each time through the loop. If not specified, step
defaults to one.

statements One or more statements between FOR and NEXT that are executed the specified
number of times.

First the expression start and end are evaluated.

When the NEXT statement is encountered, step is added to the variable defined as the counter . At this
point, if counter is less than or equal to end, the statements in the loop execute again. If counter is
greater than end, then the loop is exited and execution continues with the statement following the NEXT
statement.

The expressions start, end and step can be any expression or variable of any type. However, unlike
with the WHILE statement, if end is an expression, the FOR statement evaluates this expression only
once at the start of the loop and stores this value for subsequent comparisons. So you should not write
code that relies on the end expression being evaluated every time through the loop.

Examples

FOR index = 1 TO 25
 PRINT index
NEXT

The following loop decrements index:

FOR index = -1 TO -25 STEP -1
 PRINT index
NEXT

You can nest FOR...NEXT loops by placing one FOR...NEXT loop within another. The following
illustrates a nested FOR statement:

FOR monthIndex = 1 TO 12 STEP 1
 FOR dayIndex = 1 TO 31 STEP 1

www.forex-warex.com

Part 4 – Blox Basic Language Reference 401

© 2013, Trading Blox, LLC. All rights reserved.

 print "Month = ", monthIndex, " Day = ", dayIndex
 NEXT
NEXT

www.forex-warex.com

Trading Blox Builder's Guide402

© 2013, Trading Blox, LLC. All rights reserved.

15.5 IF

If/then statements conditionally execute a group of commands, depending on the value of an
expression.

Syntax

IF condition THEN statement [ELSE else statement]

Alternatively, you can use the multi-line syntax:

IF condition THEN
 statements
ELSE
 else statements
ENDIF

condition Any expression that evaluates to TRUE or FALSE

statement, Statement(s) executed IF condition is TRUE .

else statements Statement(s) executed IF condition is FALSE .

When executing the IF statement, condition is tested. If condition is TRUE , the statements following
THEN are executed. If condition is FALSE , the statements following ELSE are executed. After
executing the statements following THEN or ELSE, execution continues with the statement following
ENDIF.

Examples

IF (a = 0) THEN print "OK"

IF (a = 0) or (b = 0) THEN c = (c - 1) ELSE c = (c + 1)

IF (a = 0) THEN
 (b = 0)
 (c = 0)
ELSE
 (b = 1)
 (c = 1)
ENDIF

You can nest IF statements by placing one IF within another:

IF (a = 0) THEN
 IF (b = 0) THEN
 (c = 0)
 ELSE
 (c = 1)
 ENDIF

www.forex-warex.com

Part 4 – Blox Basic Language Reference 403

© 2013, Trading Blox, LLC. All rights reserved.

ENDIF

www.forex-warex.com

Trading Blox Builder's Guide404

© 2013, Trading Blox, LLC. All rights reserved.

15.6 PRINT

Prints values to the log window (found under the Debug menu) and the print log files (see below).

Syntax

PRINT [expression, expression,...]

expression An expression to be printed, separated by commas or semicolons

PRINT without any parameters writes out a blank line.

Example
VARIABLES: variableOne, variableTwo TYPE: String

variableOne = "Hello I am "
variableTwo = "Bob"

PRINT variableOne, variableTwo
PRINT "Don't blame me, blame ", variableTwo

You can also print mathematical expressions which will be evaluated:

PRINT (AbsoluteValue (random (10) - 100))

Printing is extremely useful for debugging. For instance, if you are trying to figure out why something won't
work, can be useful to put several print statements like:

PRINT "The date: ", instrument.date, "Close: ", instrument.close
PRINT "The variable in question: ", entryRiskOrSomeOtherVariable
PRINT ""

You can print any expression, variable, parameter, indicator, or object.

Print Log Files
PRINT sends output to the log window and to two additional files:

C:\Program Files\TradingBlox\Results\PrintOutput.csv
C:\Program Files\TradingBlox\Log Files\Normal.log

PrintOutput.csv is re-written every time a test is run. Normal.log stores up to 1 MB of data, so it has results
from as many tests as it can hold. After it is full, it will create Normal.log.1, Normal.log.2, etc. up to 10 MB of
print results.

These files are comma delimited for use in other programs.

www.forex-warex.com

Part 4 – Blox Basic Language Reference 405

© 2013, Trading Blox, LLC. All rights reserved.

15.7 WHILE

Executes a series of statements as long as a given condition is TRUE.

Syntax

WHILE condition

 [statements]

ENDWHILE

condition Expression that evaluates to TRUE or FALSE.

statements One or more statements executed while condition is True.

If condition is TRUE, all statements are executed until the ENDWHILE statement is encountered.
Control then returns to the WHILE statement and condition is again checked. If condition is still TRUE,
the process is repeated. If it is not TRUE, execution resumes with the statement following the ENDWHILE
statement.

Unlike the FOR statement, the WHILE statement evaluates condition on every loop pass.

Example

VARIABLES: a TYPE: Integer

WHILE (a > 0)
 print "a = ", a
 a = (a - 1)
ENDWHILE

www.forex-warex.com

Trading Blox Builder's Guide406

© 2013, Trading Blox, LLC. All rights reserved.

Section 16 – Trouble Shooting Script Problems

Section will discuss various methods for discovering problems in Trading Blox Basic script statements,
and the tools Trading Blox provides to make the process of problem resolution possible.

"Work In Progress"

www.forex-warex.com

Part 4 – Blox Basic Language Reference 407

© 2013, Trading Blox, LLC. All rights reserved.

16.1 Debugger

The Debugger is a powerful tool of Trading Blox. It allows you to set breakpoints in your code, and
look at all the variables at that point. You set a breakpoint by clicking on a particular line of code in
your Script, and pressing the Set Breakpoint button at the bottom right.

To clear that breakpoint you can click on the same line of code and press Clear Breakpoint. Or you
can clear all breakpoints by pressing the Clear Breakpoints button. When you set a breakpoint in
this manner, the default is to break on every instrument on every day.

If your breakpoint gets hit during the execution of the system, you will see a debugger window
which shows you all the local, global, and object variables available to that script. It is useful in
determining whether things are operating normally.

The debugger includes several different buttons on the toolbar which aid you in making sure that
your code is doing what you intended. Starting from left to right we have:

The Run button runs the script.

 The Stop button stops a script that is being debugged, terminating its execution.

 The Breakpoint button toggles a breakpoint at the current line.

Use F11 to step from one line to the next.

You can also set or edit a breakpoint by double clicking on the line number. The line number is the
number just in front of each line of code in your script. When you set or edit the breakpoint this
way, you have more options.

www.forex-warex.com

Trading Blox Builder's Guide408

© 2013, Trading Blox, LLC. All rights reserved.

You can break for all instruments or a single instrument. To enter a single instrument use the
symbol. For Soybeans the symbol would be S. Use upper case. Indicate the Instrument Type,
whether it is a future, stock, or forex.

You can also filter by date:
All Dates: Break every time
Exact Date: Breaks only on date entered (enter in format YYYYMMDD e.g. 20050704 for July 4,
2004)
Date Range: Breaks on dates between the two dates entered

www.forex-warex.com

Part 4 – Blox Basic Language Reference 409

© 2013, Trading Blox, LLC. All rights reserved.

16.2 Auto-Keyword Changes

Software advancements create a need to change older features and add new abilities. Tables in this
section will list the keywords changed or removed and inform which new keywords and methods can
be used in their place where it is possible.

Historical information on Object properties and function changes will be listed in each of the object's
changed keyword tables. Language functions and keyword changes will be listed the Trading Blox
Basic Language keyword change table.

Automatic Keyword Changes
Trading Blox updates all the scripts with any scripting changes that it can easily identify. From a user
perspective this means any program keyword changes discovered in the Blox modules will be replaced
with a the keyword assigned as the obsoleted keyword replacement.

When a keyword is replaced the user will be prompted to save the changes. If the user declines to
save changes after the first startup of a new version displays its “Do you want to save changes?” those
automatic scripting updated keywords will be lost.

Modules with keywords that are no longer viable will create an error condition when that module is run
because the keyword replacement process will not run again until a new version is used. However, if
the user is willing to go into the Trading Blox directory and use Windows Notepad to view the
“Registry.ini” file in the Trading Blox directory they can reset the control setting so the automatic
keyword replacement process will run the next time Trading Blox is executed.

To reset the automatic keyword replacement process locate the “UpgradedToVersion” control word
and reset the value to zero.

When the value of the control word is below the version value of Trading Blox the automatic keyword
process will execute and the Registry.ini setting will be updated regardless of whether the keyword
changes were saved.

Keyword Replacement Example:

When this keyword is found:
 instrument.futuresMonth

Trading Blox will remove the above keyword AND insert this keyword:
 instrument.deliveryMonth

2.1 Previous KeyWord Replacement KeyWord

www.forex-warex.com

Trading Blox Builder's Guide410

© 2013, Trading Blox, LLC. All rights reserved.

instrument.futuresMonth instrument.deliveryMonth

instrument.totalUnits instrument.currentPositionUnits

instrument.barsSinceEntry instrument.unitBarsSinceEntry

instrument.totalPositionSiz
e

 instrument.currentPositionQuantity

instrument.totalPositionPro
fit

 instrument.currentPositionProfit

instrument.totalPositionRis
k

 instrument.currentPositionRisk

instrument.tradeOrder instrument.priorityIndex

test.equityDrawdown test.currentDrawdown

test.dayNumber test.currentDay

2.2 Previous KeyWord Replacement KeyWord

.LoadPortfolioInstrument .LoadSymbol

test.currentParameterRun test.currentParameterTest

test.totalParameterRuns test.totalParameterTests

test.AbortParameterRun test.AbortTest

broker.EnterLongStopOpenOnl
y

 broker.EnterLongOnStopOpen

broker.EnterShortStopOpenOn
ly

 broker.EnterShortOnStopOpen

2.3 Previous KeyWord Replacement KeyWord

test.generatingOrders test.orderGenerationBar

test.totalInstruments test.instrumentCount

system.sortInstruments system.rankInstruments

3.3 Previous KeyWord Replacement KeyWord

instrument.totalEquity instrument.testTotalEquity

3.5.5 Previous KeyWord Replacement KeyWord

system.openEquity system.currentOpenEquity

4.0.3 Previous KeyWord Replacement KeyWord

chart.xAxis chart.setxAxisLabels

chart.addLine chart.addLineSeries

www.forex-warex.com

Part 4 – Blox Basic Language Reference 411

© 2013, Trading Blox, LLC. All rights reserved.

4.0.10 Previous KeyWord Replacement KeyWord

system.positionInstruments system.totalPositions

system.tradingBars system.dataLoadedBars

script.SetStringReturnValue script.SetReturnValue

Links:

See Also:

www.forex-warex.com

Trading Objects Reference

Part

V

www.forex-warex.com

Part 5 – Trading Objects Reference 413

© 2013, Trading Blox, LLC. All rights reserved.

Part 5 – Trading Objects Reference

Trading Objects represent real-world objects used in trading, the instrument object represents a
tradeable market, the broker represents the broker who takes your orders, etc.

Blox Basic scripts use the Trading Objects to access information and to affect the trading simulation.
The Trading Objects used in Trading Blox Builder are:

Object Names: Description:

Block represents the current Trading Block and is generally only used for
debugging purposes

Broker Broker methods are used to enter orders with their stops when
protective exit prices are used, and exiting positions.

Broker Entry order call the Unit Sizing script, which is followed by
the Can Add Unit script. Both entry and exit orders are processed
by the Can Fill Order script.

Chart used to create custom charts

Email
Manager

used to send emails from scripting

FileManager used to read and write files

Instrument Represents a given market, or a tradeable instrument to access
pricing, position, and other information that is useful for influencing
system orders and positions.

Order contains information about the order used in the Can Fill Order
script

Script used to access custom user scripts

System represents the system itself and is used to access system-level
information such as the total equity

Test represents the test and is used to obtain test-level information like
the start and end dates

www.forex-warex.com

Trading Blox Builder's Guide414

© 2013, Trading Blox, LLC. All rights reserved.

Section 1 – Alternate Objects

Alternate Objects are created for accessing data outside of the range of a system's normal object
range.

Object: Description:

AlternateBroker AlternateBroker object is used to place orders in another system.

Set the system of the alternateBroker with SetAlternateSystem. Then pass
the symbol into the alternateBroker function call.

AlternateOrder

AlternateSystem

www.forex-warex.com

Part 5 – Trading Objects Reference 415

© 2013, Trading Blox, LLC. All rights reserved.

1.1 AlternateBroker Object

The AlternateBroker is also a broker object with all the same functions and properties.

The AlternateBroker is also a broker object with all the same functions and properties. It is brought into
context by use of the test.SetAlternateSystem function. When the alternateSystem object is set, the
alternateBroker object is also set to the same alternate system. In this way orders can be placed for
any system, from any system, including from a Global Suite System (GSS). In a GSS the system can
be looped over, and orders placed for any or all systems in the suite. From a GSS, the
instrument.symbol needs to be the first parameter, as the GSS has no default instrument context.

Here is an example of placing an order for Gold (GC) in System_1. This function call can be done
from a GSS or any other system in the test, and it assumes GC is in the current portfolio for system 1.

Example:

' Example loads Gold Future contract
If instrument.LoadSymbol("F:GC", 1) THEN
 ' Set system data access to System-index 1
 test.SetAlternateSystem(1)
 ' When the Instrument is primed, and
 ' when the instrument's position is Flat,...
 If instrument.isPrimed AND instrument.position = OUT THEN
 ' Use the alternate Broker Object function
 ' to create an Long Entry On_Open order for Gold
 alternateBroker.EnterLongOnOpen(instrument.symbol)
 ' If the Long Entry order is created successfully,
 ' and if it didn't get rejected,...
 If alternateSystem.OrderExists() THEN
 ' Set the order quantity to 10-contracts
 order.SetQuantity(10)
 ENDIF
 ENDIF ' inst.isPrimed AND inst.position = OUT
ELSE
 ' Show the Gold Futures file failed to load.
 PRINT "Unabled to load symbol"
ENDIF ' i.LoadSymbol

www.forex-warex.com

Trading Blox Builder's Guide416

© 2013, Trading Blox, LLC. All rights reserved.

1.2 AlternateOrder Object

Trading Blox allows users to access order information in the script sections where the Object Order
does not automatically have context by using the System's SetAlternateOrder function where
each order is brought into context using the order's index value.

Once an order is in context, information about that order is made available using the Order Object's
alternateOrder object prefix to access the properties and functions. This next example shows a
simple approach to accessing order information in script section where order don't normally exist:

Example:

' Loop over the open orders setting the order sort
' value with a secret computation.
FOR orderIndex = 1 to system.totalOpenOrders STEP 1
 ' Bring order index by the 'orderIndex' Integer value.
 system.SetAlternateOrder(orderIndex)
 ' Change the order's sort value property to a random
 ' number between 1 and 100
 alternateOrder.SetSortValue(Random(100))
NEXT ' orderIndex

Once the order is in context other information can be accessed and changed as needed.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access as
the Order object. However, the alternateOrder object must be brought into context using the
system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

www.forex-warex.com

Part 5 – Trading Objects Reference 417

© 2013, Trading Blox, LLC. All rights reserved.

1.3 AlternateSystem Object

Alternate System Object is used when referencing other system that are in the same suite.

www.forex-warex.com

Trading Blox Builder's Guide418

© 2013, Trading Blox, LLC. All rights reserved.

Section 2 – Block

All Block properties provide information about the module and the system in which the module is
applied.

Most often these properties are used in a debugging operation so the programmer will know the
source from where the debugging output is being generated.

Properties Descriptions

Group Group name of the Blox that was assigned by the Blox Editor

Name Block module name being executed. When name is printed during debugging
operation it shows the current script execution locations.

ScriptName Name of the script currently being executed. Useful when printed.

System System name where block is physically assigned during testing.

SystemIndex System index number of the system.

When only one system is located in the Suite, the system index value is
always 1. When multiple systems are assigned to the Suite, the index values
are assigned based upon the order in which they were first assigned to the
Simulation Suite.

Within a system where these script name are listed more than once, all the scripts with the following
names can execute when a new order is created, and an entry or exit order is filled:

Script Name: Executes Timing:

CAN ADD UNIT All New Entry Orders

CAN FILL ORDER ALL FILLED ORDERS

ENTRY ORDER FILLED ALL FILLED ENTRY ORDERS

EXIT ORDER FILLED ALL FILLED EXIT ORDERS

When modules within a system have multiple instances of any of the above script names, and there is
programming code in each of the multiple instances of these scripts it might be necessary to filter
which orders can be processed by which module's script section using filtering logic similar to this:

Example -- CAN FILL ORDER :

' ~~
' Reject Orders Generated by other System Modules
If order.systemBlockName = system.name + "." + block.name THEN
 ' Allow this module's CAN FILL ORDER script to only apply
 ' to orders that are generated by this Blox to do
 ' something in this area
ENDIF
' ~~

Common debugging block orbject properties:

Example -- BEFORE ORDER EXECUTION:

www.forex-warex.com

Part 5 – Trading Objects Reference 419

© 2013, Trading Blox, LLC. All rights reserved.

' ~~
PRINT "Block Name: ", block.name
PRINT "Block Group Name: ", block.group
PRINT "Block Script Section Name: ", block.scriptName
PRINT "Blox applied System Name: ", block.system
PRINT "System Suite Index Number: ", block.systemIndex
' ~~

PRINT OUTPUT:

Block Name: _Max_Position_Limiter 3
Block Group Name: _Dev
Block Script Section Name: Before Order Execution
Blox applied System Name: Bollinger Breakout Plus
System Suite Index Number: 2

Links:

lineNumber

See Also:

www.forex-warex.com

Trading Blox Builder's Guide420

© 2013, Trading Blox, LLC. All rights reserved.

2.1 Group

Blox are assigned a Group-Name when they are created, or changed. Name returned is the name
shown in the Group Name column when shown in the System Editor listing of all blox modules.

It is also the same name shown in the Blox Editor groups section where the blox module is made
available for editing.

Syntax:

block.group

Parameter: Description:

<none>

Example:

' ~~
PRINT "Block Group Name ", block.group
' ~~

Returns:

Block Group Name: _Dev

Links:

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 421

© 2013, Trading Blox, LLC. All rights reserved.

2.2 Name

Actual name assigned to the block that is in the system.

Syntax:

block.name

Parameter: Description:

<none>

Example:

' ~~
PRINT "Block Name: ", block.name
' ~~

Returns:

Block Name: _Max_Position_Limiter 3

Links:

See Also:

www.forex-warex.com

Trading Blox Builder's Guide422

© 2013, Trading Blox, LLC. All rights reserved.

2.3 ScriptName

Name of script section where this scriptName property is being used.

When block properties are placed in a custom script section, the name returned by the scriptName
property will be the script name in which the script.Execute("CustomScript") is called.

Syntax:

block.scriptName

Parameter: Description:

<none>

Example:

' ~~
PRINT "Block Script Section Name: ", block.scriptName
' ~~

Returns:

Block Script Section Name: Before Order Execution

Links:

Execute, Script

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 423

© 2013, Trading Blox, LLC. All rights reserved.

2.4 System

Name of the System to which the blox module is attached and displayed in the System Editor
module listing.

Syntax:

block.system

Parameter: Description:

<none>

Example:

' ~~
PRINT "Blox applied System Name ", block.system
' ~~

Returns:

Blox applied System Name Bollinger Breakout Plus

Links:

System

See Also:

www.forex-warex.com

Trading Blox Builder's Guide424

© 2013, Trading Blox, LLC. All rights reserved.

2.5 SystemIndex

System index reports the index assignment of the system in a suite.

Systems are assigned an index value based upon the order in which they are selected to be included
in a suite. Where this is ony 1 system in a suite, the system index will always be one. When there
are more than one system in a suite, the first system selected to be included the suite will be given
the index value of 1, the second system selected will be given an index value of 2, and the last system
selected will be given the index value that matches the number of systems attached to the suite.

Suites can become a Global System (GSS) when there is a system name that is the same as the
suite's name. Modules attached to a GSS will be reported as having a system index of 0.

Scripts within the GSS modules execute ahead or behind the system index sequencing order.
Review the details here to understand when GSS are executed: Global Script Timing

Syntax:

block.systemIndex

Parameter: Description:

<none>

Example:

' ~~
PRINT "System Suite Index Number ", block.systemIndex
' ~~

Returns:

System Suite Index Number 2

Links:

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 425

© 2013, Trading Blox, LLC. All rights reserved.

Section 3 – Broker

Broker object contains three classes of functions:

Class Type: Description:

Entry Order Required to create a new position, add a unit to an existing position, or
reverse the direction of position.

Exit Order Required to close out a position, remove a unit from a position, remove
a set quantity of a position.

Position Adjustment Position adjustment can add quantity by adding a unit, remove a unit,
or reduce the quantity of a position by removing some of the quantity
in a unit, some of the units when a larger quantity needs to be removed
than is available in a unit, and this function cal also apply a quantity
removal percentage that will terminate a position when the remaining
quantity is less than the smallest possible trade size of that instrument.

Each Broker function selection determines an order's type and execution requirements:

Type-of-
Execution:

Type-of-Order:

at Market Long Entry

on Open Short Entry

on Close Long Exit

on Stop Short Exit

on Stop Open

on Stop Close

on Limit

on Limit Open

at Limit Close

Notes:

When a Broker function is executed, it starts the process of assembling the information the
software will need to determine if the order can succeed, or fail, with the current market
information.

All Trading Blox orders are "Day-Orders." This means that once they are tested against the
market's information they must be enabled, or rejected. Rejected orders are canceled and
removed from access.

When an order is rejected it is no longer available and it must be recreated with another Broker
function execution so a new order will be available for the next test-date market information.
Recreating the order assume the system requires an order for the next market record.

Entry orders to reverse a position will exit a position trading in the opposite direction to the new
entry order. In testing this works well, but in brokerage most electronic orders require an order to
exit and a different order to enter in the opposite direction. This means that orders reversing
direction in systems that will be traded should generate an exit order and a new entry order to
ensure the brokerage follows the system's intent.

www.forex-warex.com

Trading Blox Builder's Guide426

© 2013, Trading Blox, LLC. All rights reserved.

It is important at this stage to get a solid understanding of the order creation process. Click on this
link Order Object, If you have not studied how orders are created and processed.

Risk and Broker Orders
Protective exit price Stop-orders are used to calculate the risk of trades. Risk is determined by
difference between the order price and the protective exit stop price of an active position. This
difference creates a position point spread that is part of the risk/reward calculations, and is
sometimes used with position sizing in the Money Manager. For instance, the Fixed Fractional
Money Manager uses the entry risk provided in a new entry order to determine the unit's quantity.
If you have no stops, undefined risk is assumed, and there is insufficient information to complete a
Fixed Fractional calculation required for this sizing method.

When new entry orders are generated without any risk point spread, a different method for
determining size must be used. For example, the "Multi Money Manager" money manager blox
allows the trader to select volatility sizing approach so as to create an estimate of the new entry
order risk in order for a fractional sizing calculation to be successful. There are many other
methods for determining size that can be found in the postings in the Trading Blox forum.

Example:

' Typical broker statement to enter
' long at next market open without
' any protection price.
broker.EnterLongOnOpen ' Places an order to buy at
 ' the open with no stop.
' Typical broker statement to enter
' long at next market open with a
' protection price.
broker.EnterLongOnOpen(stopPrice) ' Places an order to buy at
 ' the open with a protective
 ' stop at stopPrice.

In the second broker example where the order's execution type is to enter on the next open, the
risk basis price uses the difference from the current date Close price to the protective
"stopPrice" to determine the risk of a single contract or share purchase. This is also the same
process used with active positions that use protective exit prices to determine the risk amount of
each contract in the position. When multiple units are used, the point spread between the Close-
price to each unit's protective price is used to estimate each unit's risk, Multiple unit positions then
sum the total risk of all units to create the instrument's currentPositionRisk.

The quantity of each order is determined by the Money Manager. The Broker object calls the
Money Manager, and the Money Manager sets the quantity for each order. If there is no Money
Manager Block in the system, the unitSize defaults to 0. You must set the order quantity using
order.order.SetQuantity() in the Unit Size script, or the size will be 0, which will result in a trade that
has no effect in your testing.

When a protective stop price is used in the entry order, that value is saved with the instrument and
can be accessed using the instrument's unitExitStop property. The stop order itself, however,
is only placed for the entry price bar. To 'hold' the stop and place it in the market every day, use
the following code in your Exit Orders script:

Example:

www.forex-warex.com

Part 5 – Trading Objects Reference 427

© 2013, Trading Blox, LLC. All rights reserved.

' Protective Single-Unit Exit Order
broker.ExitAllUnitsOnStop(instrument.unitExitStop)

Many of our built-in systems use the above method to "hold" stops (keep a protective order in the
market).

Multiple Units require an order for each unit when units are treated independently:

Example:

' .
' Update Long Position's Multiple Unit Protection
For UnitNum = 1 TO instrument.currentPositionUnits
 ' Use Max of New-High Offset, Previous Unit Exit,
 ' Or Position's Initial Entry Protection Price
 Exit_Price = Max(TestExitPrice, _
 instrument.unitExitStop[1], _
 Money_Stop)

 ' Update Unit's Protective Exit Price Property
 instrument.SetExitStop(UnitNum, Exit_Price)

 ' Generate an Protective Exit Order for this Unit
 broker.ExitUnitOnStop(UnitNum, Exit_Price)
Next ' UnitNum
' .

Price-Record Processing:

Use the Entry Day Retracement parameter to adjust how entry day stops are processed. A setting
of 100% is the most conservative, a setting of 0% is the least conservative, and a setting of -1 will
disable entry day stops.

Symbol as the First Parameter:
All broker functions will execute an order for the current default instrument in context. When an
order is intended for an instrument that isn't by default in the script at that time, the broker
function's first parameter can be an instrument symbol. Applying a symbol that is different than
the instrument in context will apply the order to instrument specified in the broker function. When
no symbol is provided the broker function will apply the order to the current instrument in context.

When specifying any instrument out of its normal context assignments it is important to check the
instrument.tradesOnTradeDate property to know if there is a new record available, or a
holiday omission in the instrument's data. This practice is just as important when manually looping
over instruments using the LoadSymbol function, be sure new calculations with missing data are
not distorting previously correct instrument information.

Example:

' Create an Entry On_Open order using symbol
' when Instruments are out of context
broker.EnterLongOnOpen(useThisSymbol)

AlternateBroker:
When the Broker Object is out of the context of its default context scripts, the AlternateBroker

www.forex-warex.com

Trading Blox Builder's Guide428

© 2013, Trading Blox, LLC. All rights reserved.

object should be used to execute any of the Broker Object Entry and Exit Functions.
AlternateBroker has the same functions and properties as the Broker Object and will work in the
same way.

Links:

AlternateObject Object, AlternateBroker Object, Order Object

See Also:

Data Groups and Types

www.forex-warex.com

Part 5 – Trading Objects Reference 429

© 2013, Trading Blox, LLC. All rights reserved.

3.1 Entry Order Functions

Entry Order functions are most often executed from within the Entry Orders script section of the
system's Entry Block. These Broker functions are the methods that generate the orders that create
new positions.

Market On Open Orders Descriptions:

EnterLongOnOpen Buy on the open

EnterShortOnOpen Short on the open

Stop Open Only Orders

EnterLongOnStopOpe
n

Buy on the open if market is above/equal specified price

EnterShortOnStopOp
en

Short on the open if market is below/equal specified price

Limit Open Only Orders

EnterLongAtLimitOp
en

Buy on the open if the market is below specified price

EnterShortAtLimitO
pen

Short on the open if the market is above specified price

Stop Orders

EnterLongOnStop Buy any time if the market hits specified price

EnterShortOnStop Short any time if the market hits specified price

Limit Orders

EnterLongAtLimit Buy any time if the market dips below specified price

EnterShortAtLimit Short any time if the market climbs above specified price

Market On Close Orders

EnterLongOnClose Buy on the close

EnterShortOnClose Short on the close

Stop Close Only Orders

EnterLongOnStopClo
se

Buy on the close if market is above/equal specified price

EnterShortOnStopCl
ose

Short on the close if market is below/equal specified
price

Limit on Close Orders

www.forex-warex.com

Trading Blox Builder's Guide430

© 2013, Trading Blox, LLC. All rights reserved.

EnterLongAtLimitCl
ose

Buy on close if close is below the specified price

EnterShortAtLimitC
lose

Short on close close is above the specified price

AlternateBroker:
When the Broker Object is out of the context of its default context scripts, the AlternateBroker
object should be used to execute any of the Broker Object Entry and Exit Functions.
AlternateBroker has the same functions and properties as the Broker Object and will work in the
same way.

www.forex-warex.com

Part 5 – Trading Objects Reference 431

© 2013, Trading Blox, LLC. All rights reserved.

EnterLongOnOpen

Enters a long position on the next open. This function is generally used by an Entry Block to initiate a
position.

Syntax:

broker.EnterLongOnOpen([protectStopPrice])

Parameter: Description:

protectStopPrice Value of the protect Exit Stop price to be used in case the market goes
against the position (optional parameter when a protective exit price isn't
wanted for the bar of entry).

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

' Enter the market on the next open.
broker.EnterLongOnOpen(protectStopPrice)

OR
' Enter the market on the next open with no stop
broker.EnterLongOnOpen

Links:

Broker, Entry Order Functions, Unit Size Script

See Also:

www.forex-warex.com

Trading Blox Builder's Guide432

© 2013, Trading Blox, LLC. All rights reserved.

EnterShortOnOpen

Enters a short position on the next open. This function is generally used by an Entry Block to initiate a
position.

Syntax:

broker.EnterShortOnOpen([protectStopPrice])

Parameter: Description:

protectStopPric
e

Value of the protect Exit Stop price to be used in case the market goes
against the position (optional parameter when a protective exit price isn't
wanted for the bar of entry).

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

' Enter the market on the next open.
broker.EnterShortOnOpen(protectStopPrice)

OR
' Enter the market on the next open with no stop
broker.EnterShortOnOpen

Links:

Broker, Entry Order Functions, Unit Size Script

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 433

© 2013, Trading Blox, LLC. All rights reserved.

EnterLongOnStopOpen

Enters a long position on the next open if the open is greater than or equal to the specified price. This
function is generally used by an Entry Block to initiate a position.

Syntax:

broker.EnterLongOnStopOpen(stopPrice [, protectStopPrice])

Parameter: Description:

stopPrice Stop order price

protectStopPric
e

Value of the protect Exit Stop price to be used in case the market goes
against the position (optional parameter when a protective exit price isn't
wanted for the bar of entry).

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

broker.EnterLongOnStopOpen(entryPrice, protectStopPrice)

OR

broker.EnterLongOnStopOpen(entryPrice)

Links:

Broker, Entry Order Functions, Unit Size Script

See Also:

www.forex-warex.com

Trading Blox Builder's Guide434

© 2013, Trading Blox, LLC. All rights reserved.

EnterLongAtLimitOpen

Enters a long position on the next open if it is lower than the specified price. This function is generally
used by an Entry Block to initiate a position.

Syntax:

broker.EnterLongAtLimitOpen(limitPrice [, protectStopPrice])

Parameter: Description:

limitPrice Price which the market must be lower in order to trigger this order

protectStopPric
e

Value of the protect Exit Stop price to be used in case the market goes
against the position (optional parameter when a protective exit price isn't
wanted for the bar of entry).

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

' Enter the market on the next open if below the entry price.
broker.EnterLongAtLimitOpen(entryPrice, protectStopPrice)

OR

' Enter the market on the next open if below entry price with no stop
broker.EnterLongAtLimitOpen(entryPrice)

Links:

Broker, Entry Order Functions, Unit Size Script

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 435

© 2013, Trading Blox, LLC. All rights reserved.

EnterShortOnStopOpen

www.forex-warex.com

Trading Blox Builder's Guide436

© 2013, Trading Blox, LLC. All rights reserved.

Enters a short position on the next open if it is lower than or equal to the specified price. This function
is generally used by an Entry Block to initiate a position.

Syntax:

broker.EnterShortOnStopOpen(stopPrice [, protectStopPrice])

Parameter: Description:

stopPrice Stop order price

protectStopPric
e

Value of the protect Exit Stop price to be used in case the market goes
against the position (optional parameter when a protective exit price isn't
wanted for the bar of entry).

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

' Enter the market on the next open if at or below the entry price.
broker.EnterShortOnStopOpen(entryPrice, protectStopPrice)

OR

' Enter the market on the next open if at or below entry price with no stop
broker.EnterShortOnStopOpen(entryPrice)

Links:

Broker, Entry Order Functions, Unit Size Script

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 437

© 2013, Trading Blox, LLC. All rights reserved.

EnterShortAtLimitOpen

www.forex-warex.com

Trading Blox Builder's Guide438

© 2013, Trading Blox, LLC. All rights reserved.

Enters a short position on the next open if it is higher than the specified price. This function is
generally used by an Entry Block to initiate a position.

Syntax:

broker.EnterShortAtLimitOpen(limitPrice [, protectStopPrice])

Parameter: Description:

limitPrice Price which the market must be higher in order to trigger this order

protectStopPric
e

Value of the protect Exit Stop price to be used in case the market goes
against the position (optional parameter when a protective exit price isn't
wanted for the bar of entry).

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

' Enter the market on the next open if above the entry price.
broker.EnterShortAtLimitOpen(entryPrice, protectStopPrice)

OR

' Enter the market on the next open if above entry price with no stop
broker.EnterShortAtLimitOpen(entryPrice)

Links:

Broker, Entry Order Functions, Unit Size Script

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 439

© 2013, Trading Blox, LLC. All rights reserved.

EnterLongOnStop

Enters a long position if the next bar's high is greater than or equal to the order price. This function is
generally used by an Entry Block to initiate a position.

Syntax:

broker.EnterLongOnStop(stopPrice [, protectStopPrice])

Parameter: Description:

stopPrice Stop order price

protectStopPric
e

Value of the protect Exit Stop price to be used in case the market goes
against the position (optional parameter when a protective exit price isn't
wanted for the bar of entry).

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

broker.EnterLongOnStop(entryPrice, protectStopPrice)

OR

broker.EnterLongOnStop(entryPrice)

Links:

Broker, Entry Order Functions, Unit Size Script

See Also:

www.forex-warex.com

Trading Blox Builder's Guide440

© 2013, Trading Blox, LLC. All rights reserved.

EnterShortOnStop

Enters a short position if the next bar's low is lower than or equal to the order price. This function is
generally used by an Entry Block to initiate a position.

Syntax:

broker.EnterShortOnStop(stopPrice [, protectStopPrice])

Parameter: Description:

stopPrice Stop order price

protectStopPric
e

Value of the protect Exit Stop price to be used in case the market goes
against the position (optional parameter when a protective exit price isn't
wanted for the bar of entry).

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

broker.EnterShortOnStop(entryPrice, protectStopPrice)

OR

broker.EnterShortOnStop(entryPrice)

Links:

Broker, Entry Order Functions, Unit Size Script

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 441

© 2013, Trading Blox, LLC. All rights reserved.

EnterLongAtLimit

Enters a long position if the next bar's low is lower than the order price. This function is generally used
by an Entry Block to initiate a position.

Syntax:

broker.EnterLongAtLimit(limitPrice [, protectStopPrice])

Parameter: Description:

limitPrice Limit order price

protectStopPric
e

Value of the protect Exit Stop price to be used in case the market goes
against the position (optional parameter when a protective exit price isn't
wanted for the bar of entry).

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

broker.EnterLongAtLimit(priceTarget, protectStopPrice)

OR

broker.EnterLongAtLimit(priceTarget)

Links:

Broker, Entry Order Functions, Unit Size Script

See Also:

www.forex-warex.com

Trading Blox Builder's Guide442

© 2013, Trading Blox, LLC. All rights reserved.

EnterShortAtLimit

Enters a short position if the next bar's high is greater than the order price. This function is generally
used by an Entry Block to initiate a position.

Syntax:

broker.EnterShortAtLimit(limitPrice [, protectStopPrice])

Parameter: Description:

limitPrice Limit order price

protectStopPric
e

Value of the protect Exit Stop price to be used in case the market goes
against the position (optional parameter when a protective exit price isn't
wanted for the bar of entry).

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

broker.EnterShortAtLimit(priceTarget, protectStopPrice)

OR

broker.EnterShortAtLimit(priceTarget)

Links:

Broker, Entry Order Functions, Unit Size Script

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 443

© 2013, Trading Blox, LLC. All rights reserved.

EnterLongOnClose

Enters a long position on the next close. This function is generally used by an Entry Block to initiate a
position.

Syntax:

broker.EnterLongOnClose([protectStopPrice])

Parameter: Description:

protectStopPric
e

This sets the protective stop price of the order, and the position (optional
parameter when a protective exit price isn't wanted for the bar of entry).

Note:
Orders with a price that is close are excluded from same day exits, so
this protective stop is not used on the day of entry.

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

' Enter the market on the next close.
broker.EnterLongOnClose

Links:

Broker, Entry Order Functions, Unit Size Script

See Also:

www.forex-warex.com

Trading Blox Builder's Guide444

© 2013, Trading Blox, LLC. All rights reserved.

EnterShortOnClose

www.forex-warex.com

Part 5 – Trading Objects Reference 445

© 2013, Trading Blox, LLC. All rights reserved.

Enters a short position on the next close. This function is generally used by an Entry Block to initiate a
position.

Syntax:

broker.EnterShortOnClose([protectStopPrice])

Parameter: Description:

protectStopPric
e

This sets the protective stop price of the order, and the position (optional
parameter when a protective exit price isn't wanted for the bar of entry).

Note:
Orders with a price that is close are excluded from same day exits, so
this protective stop is not used on the day of entry.

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

Links:

Broker, Entry Order Functions, Unit Size Script

See Also:

www.forex-warex.com

Trading Blox Builder's Guide446

© 2013, Trading Blox, LLC. All rights reserved.

EnterLongOnStopClose

Enters a long position if the close is at or above the specified price. This function is generally used by
an Entry Block to initiate a position.

Syntax:

broker.EnterLongOnStopClose(stopPrice, [protectStopPrice])

Parameter: Description:

stopPrice Entry stop price of the order

protectStopPric
e

This sets the protective stop price of the order, and the position (optional
parameter when a protective exit price isn't wanted for the bar of entry).

Note:
Orders with a price that is close are excluded from same day exits, so
this protective stop is not used on the day of entry.

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

' Enter the market if the close is at or above the entry price
broker.EnterLongOnStopClose(entryPrice)

Links:

Broker, Entry Order Functions, Unit Size Script

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 447

© 2013, Trading Blox, LLC. All rights reserved.

EnterShortOnStopClose

Enters a short position if the close is at or below than the specified price. This function is generally
used by an Entry Block to initiate a position.

Syntax:

broker.EnterShortOnStopClose(stopPrice, [protectStopPrice])

Parameter: Description:

stopPrice Entry stop price of the order

protectStopPric
e

This sets the protective stop price of the order, and the position (optional
parameter when a protective exit price isn't wanted for the bar of entry).

Note:
Orders with a price that is close are excluded from same day exits, so
this protective stop is not used on the day of entry.

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

' Enter the market if the close is at or below the entry price
broker.EnterShortOnStopClose(entryPrice)

Links:

Broker, Entry Order Functions, Unit Size Script

See Also:

www.forex-warex.com

Trading Blox Builder's Guide448

© 2013, Trading Blox, LLC. All rights reserved.

EnterLongAtLimitClose

Enters a long position if the close of the next bar trades through the specified price. This function is
generally used by an Entry Block to initiate a position.

Syntax:

broker.EnterLongAtLimitClose(limitPrice, [protectStopPrice])

Parameter: Description:

limitPrice Entry limit order price

protectStopPric
e

This sets the protective stop price of the order, and the position (optional
parameter when a protective exit price isn't wanted for the bar of entry).

Note:
Orders with a price that is close are excluded from same day exits, so
this protective stop is not used on the day of entry.

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

' Enter the market if the close trades through the price target
broker.EnterLongAtLimitClose(priceTarget)

Links:

Broker, Entry Order Functions, Unit Size Script

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 449

© 2013, Trading Blox, LLC. All rights reserved.

EnterShortAtLimitClose

Enters a short position if the close trades through the specified price. This function is generally used
by an Entry Block to initiate a position.

Syntax:

broker.EnterShortAtLimitClose(limitPrice, [protectStopPrice])

Parameter: Description:

limitPrice Entry limit order price

protectStopPric
e

This sets the protective stop price of the order, and the position (optional
parameter when a protective exit price isn't wanted for the bar of entry).

Note:
Orders with a price that is close are excluded from same day exits, so
this protective stop is not used on the day of entry.

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

' Enter the market if the close trades through the price target
broker.EnterShortAtLimitClose(priceTarget)

Links:

Broker, Entry Order Functions, Unit Size Script

See Also:

www.forex-warex.com

Trading Blox Builder's Guide450

© 2013, Trading Blox, LLC. All rights reserved.

3.2 Exit Order Functions

Exit Order functions are most often used in the Exit Orders script section in a system's Exit Block.
These Broker functions are the primary method that generate the exit orders for reducing the
number of units in a position, reducing the quantity in a unit, providing in the market protective order
prices, or creating orders that provide target price exits.

Market On Open Orders Descriptions:

ExitAllUnitsOnOpe
n

Exit all units on the open

ExitUnitOnOpen Exit the specified unit on the open

Stop Open Only Orders

ExitAllUnitsOnSto
pOpen

Exit all units on the open if market hits specified price

ExitUnitOnStopOpe
n

Exit the specified unit on the open if hits specified price

Limit Open Only Orders

ExitAllUnitsAtLim
itOpen

Exit all units on the open if market exceeds price

ExitUnitAtLimitOp
en

Exit specified unit on the open if the market exceeds price

Stop Orders

ExitAllUnitsOnSto
p

Exit all units any time if the market hits specified price

ExitUnitOnStop Exit the specified unit any time if the market hits specified
price

Limit Orders

ExitAllUnitsAtLim
it

Exit all units any time if the market exceeds specified price

ExitUnitAtLimit Exit the specified unit any time if the market exceeds
specified price

Market On Close Orders

ExitAllUnitsOnClo
se

Exit all units on the close

ExitUnitOnClose Exit the specified unit on the close

Stop Close Only Orders

ExitAllUnitsOnSto Exit all units on the close if market hits specified price

www.forex-warex.com

Part 5 – Trading Objects Reference 451

© 2013, Trading Blox, LLC. All rights reserved.

pClose

ExitUnitOnStopClo
se

Exit the specified unit on the close if market hits specified
price

Limit on Close Orders

ExitAllUnitsAtLim
itClose

Exit all units on close if the market exceeds the specified
price

ExitUnitAtLimitCl
ose

Exit the specified unit on close if the market exceeds the
specified price

AlternateBroker:
When the Broker Object is out of the context of its default context scripts, the AlternateBroker
object should be used to execute any of the Broker Object Entry and Exit Functions.
AlternateBroker has the same functions and properties as the Broker Object and will work in the
same way.

www.forex-warex.com

Trading Blox Builder's Guide452

© 2013, Trading Blox, LLC. All rights reserved.

ExitAllUnitsOnOpen

Exits all units for the current instrument on the next open. This function is generally used by an Exit
Block to close out a position.

Syntax:

broker.ExitAllUnitsOnOpen

Parameter: Description:

none Function does not take any parameters.

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

' Exit the market on the next open.
broker.ExitAllUnitsOnOpen

Links:

Broker, Exit Order Functions

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 453

© 2013, Trading Blox, LLC. All rights reserved.

ExitUnitOnOpen

Exits the specified unit for the current instrument on the next open. This function is generally used by
an Exit Block to lighten up a position.

Syntax:

broker.ExitUnitOnOpen(unitNumber, [quantity])

Parameter: Description:

unitNumber Unit # to exit.

quantity Optional quantity for a partial exit of the unit

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

' Exit the first unit on the next open.
broker.ExitUnitOnOpen(1)

Links:

Broker, Exit Order Functions

See Also:

www.forex-warex.com

Trading Blox Builder's Guide454

© 2013, Trading Blox, LLC. All rights reserved.

ExitAllUnitsOnStopOpen

Exits all units for the current instrument on the next open if it is lower than the stop price for long
positions or higher than the stop price for short positions. This function is generally used by an Exit
Block to close out a position.

Syntax:

broker.ExitAllUnitsOnStopOpen(stopPrice)

Parameter: Description:

stopPrice Protective Price at which the open must exceed a price (above/below) to
trigger this order.

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

' Exit all units on the next open if it hits our stop.
broker.ExitAllUnitsOnStopOpen(exitStop)

Links:

Broker, Exit Order Functions

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 455

© 2013, Trading Blox, LLC. All rights reserved.

ExitAllUnitsAtLimitOpen

Exits all units for the current instrument on the next open if it is higher than the limit price for long
positions or lower than the limit price for short positions. This function is generally used by an Exit
Block to close out a position.

Syntax:

broker.ExitAllUnitsAtLimitOpen(limitPrice)

Parameter: Description:

limitPrice A price at which the open must exceed (above/below) to trigger this order.

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

' Exit all units on the next open if it trades through our limit.
broker.ExitAllUnitsAtLimitOpen(limitPrice)

Links:

Broker, Exit Order Functions

See Also:

www.forex-warex.com

Trading Blox Builder's Guide456

© 2013, Trading Blox, LLC. All rights reserved.

ExitUnitOnStopOpen

Exits the specified unit for the current instrument on the next open if it is lower than the stop price for
long positions or higher than the stop price for short positions. This function is generally used by an
Exit Block to lighten up a position.

Syntax:

broker.ExitUnitOnStopOpen(unitNumber, stopPrice)

Parameter: Description:

unitNumber Unit number to exit.

stopPrice A price at which the open must exceed (above/below) to trigger this order.

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

' Exit the first unit on the next open if it hits our stop.
broker.ExitUnitOnStopOpen(1, exitStop)

Links:

Broker, Exit Order Functions

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 457

© 2013, Trading Blox, LLC. All rights reserved.

ExitUnitAtLimitOpen

Exits the specified unit for the current instrument on the next open if it is higher than the limit price for
long positions or lower than the limit price for short positions. This function is generally used by an Exit
Block to lighten up a position.

Syntax:

broker.ExitUnitAtLimitOpen(unitNumber, limitPrice)

Parameter: Description:

unitNumber Unit number to exit

limitPrice A price at which the open must exceed (above/below) to trigger this order.

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

' Exit the first unit on the next open if it trades through our limit.
broker.ExitUnitAtLimitOpen(1, exitLimit)

Links:

Broker, Exit Order Functions

See Also:

www.forex-warex.com

Trading Blox Builder's Guide458

© 2013, Trading Blox, LLC. All rights reserved.

ExitAllUnitsOnStop

Exits all units for the current instrument if the price during the next bar goes lower than the stop price
for long positions or higher than the stop price for short positions. This function is generally used by
an Exit Block to close out a position.

Syntax:

broker.ExitAllUnitsOnStop(stopPrice)

Parameter: Description:

stopPrice A price at which the next bar must exceed (above/below) to trigger this
order

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

' Exit all units during the next bar if it hits our stop.
broker.ExitAllUnitsOnStop(exitStop)

Links:

Broker, Exit Order Functions

See Also:

www.forex-warex.com

Андрей
tr-software-download

Part 5 – Trading Objects Reference 459

© 2013, Trading Blox, LLC. All rights reserved.

ExitUnitOnStop

Exits the specified unit for the current instrument on the next bar if the market goes lower than the stop
price for long positions or higher than the stop price for short positions. This function is generally used
by an Exit Block to lighten up a position.

Syntax:

broker.ExitUnitOnStop(unitNumber, stopPrice, [quantity])

Parameter: Description:

unitNumber Unit to exit

stopPrice A price at which the next bar must exceed (above/below) to trigger this
order

quantity Exit option to remove a partial quantity from the unit. When left blank,
entire unit will be removed.

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

' Exit the first unit if the market hits our stop.
broker.ExitUnitOnStop(1, exitStop)

Links:

Broker, Exit Order Functions

See Also:

www.forex-warex.com

Trading Blox Builder's Guide460

© 2013, Trading Blox, LLC. All rights reserved.

ExitAllUnitsAtLimit

Exits all units for the current instrument if the price trades through the limit price. This function is
generally used by an Exit Block to close out a position.

Syntax:

broker.ExitAllUnitsAtLimit(limitPrice)

Parameter: Description:

limitPrice A price at which the market must trade through to trigger this order.

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

' Exit all units during the next bar if it trades through our target.
broker.ExitAllUnitsAtLimit(limitPrice)

Links:

Broker, Exit Order Functions

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 461

© 2013, Trading Blox, LLC. All rights reserved.

ExitUnitAtLimit

Exits the specified unit for the current instrument on the next bar if the market trades through the
specified limit price. This function is generally used by an Exit Block to lighten up a position.

Syntax:

broker.ExitUnitAtLimit(unitNumber, limitPrice, [quantity])

Parameter: Description:

unitNumber Unit number to exit

limitPrice A price a which the next bar must trade through to trigger this order.

quantity Exit option to remove a partial quantity from the unit. When left blank,
entire unit will be removed.

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

' Exit the first unit if the market trades through our target.
broker.ExitUnitAtLimit(1, limitPrice)

Links:

Broker, Exit Order Functions

See Also:

www.forex-warex.com

Trading Blox Builder's Guide462

© 2013, Trading Blox, LLC. All rights reserved.

ExitAllUnitsOnClose

Exits all units for the current instrument on the next close. This function is generally used by an Exit
Block to close out a position.

Syntax:

broker.ExitAllUnitsOnClose

Parameter: Description:

none This function does not take any parameters.

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

' Enter the market on the next open.
broker.ExitAllUnitsOnClose

Links:

Broker, Exit Order Functions

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 463

© 2013, Trading Blox, LLC. All rights reserved.

ExitUnitOnClose

Exits the specified unit for the current instrument on the next close. This function is generally used by
an Exit Block to lighten up a position.

Syntax:

broker.ExitUnitOnClose(unitNumber)

Parameter: Description:

unitNumber Unit number to exit on next trade day close.

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

' Exit the first unit on the next close.
broker.ExitUnitOnClose(1)

Links:

Broker, Exit Order Functions

See Also:

www.forex-warex.com

Trading Blox Builder's Guide464

© 2013, Trading Blox, LLC. All rights reserved.

ExitAllUnitsOnStopClose

Exits all units for the current instrument on the next close if it is lower than the stop price for long
positions or higher than the stop price for short positions. This function is generally used by an Exit
Block to close out a position.

Syntax:

broker.ExitAllUnitsOnStopClose(stopPrice)

Parameter: Description:

stopPrice A price at which the next bar must exceed (above/below) to trigger this
order

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

' Exit all units on the next close if it hits our stop.
broker.ExitAllUnitsOnStopClose(exitStop)

Links:

Broker, Exit Order Functions

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 465

© 2013, Trading Blox, LLC. All rights reserved.

ExitUnitOnStopClose

Exits the specified unit for the current instrument on the next close if it is lower than the stop price for
long positions or higher than the stop price for short positions. This function is generally used by an
Exit Block to lighten up a position.

Syntax:

broker.ExitUnitOnStopClose(unitNumber, stopPrice)

Parameter: Description:

unitNumber Unit number to exit.

stopPrice A price at which the next bar must exceed (above/below) to trigger this
order

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

' Exit the first unit on the next close if it hits our stop.
broker.ExitUnitOnStopClose(1, exitStop)

Links:

Broker, Exit Order Functions

See Also:

www.forex-warex.com

Trading Blox Builder's Guide466

© 2013, Trading Blox, LLC. All rights reserved.

ExitAllUnitsAtLimitClose

Exits all units for the current instrument if the close trades through the limit price. This function is
generally used by an Exit Block to close out a position.

Syntax:

broker.ExitAllUnitsAtLimitClose(limitPrice)

Parameter: Description:

limitPrice A price a which the next bar must trade through to trigger this order.

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

' Exit all units during the next bar if it trades through our limit price.
broker.ExitAllUnitsAtLimitClose(limitPrice)

Links:

Broker, Exit Order Functions

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 467

© 2013, Trading Blox, LLC. All rights reserved.

ExitUnitAtLimitClose

Exits the specified unit for the current instrument on the next close if it trades through the specified
limit price. This function is generally used by an Exit Block to lighten up a position.

Syntax:

broker.ExitUnitAtLimitClose(unitNumber, limitPrice)

Parameter: Description:

unitNumber Unit number to exit.

limitPrice A price a which the next bar must trade through to trigger this order.

Returns:

When a broker function succeeds it will place a True in the system.orderExists() and when it
fails to this property will return a False. Before attempting to access any order information expected
from a broker order, consider checking to confirm an order was created with a conditional statement
similar to this:
 ' ~~~
 ' When New Order is Created,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' s.OrderExists
 ' ~~~

Example:

' Exit the first unit if the close trades through our target.
broker.ExitUnitAtLimitClose(1, limitPrice)

Links:

Broker, Exit Order Functions

See Also:

www.forex-warex.com

Trading Blox Builder's Guide468

© 2013, Trading Blox, LLC. All rights reserved.

3.3 Position Adjustment Functions

Position adjustment functions are most often used in the Adjust Instrument Risk script section of
a Risk Manager Block.

When these functions are called they will reduce or increase the quantity in a position by reducing
the quantity in a single unit, or in a group of units with multiple unit positions when a larger quantity
is required to be removed than what is available in a single unit.

As quantities in any of the units are reduced to zero those unit are terminated.

As the quantities of a position are increased a unit will be added to a position to contain the added
quantity, and an incremental unit number will appear.

Adjust Size On Open
Order

Descriptions:

AdjustPositionOn
Open

Adjusts the position on the open

Adjust Size On Stop
Order

AdjustPositionOn
Stop

Adjusts the position any time if the market hits specified
price

Adjust Size At Limit
Order

AdjustPositionAt
Limit

Adjusts the position on any time if the market goes beyond
specified price

Adjust Size On Close
Order

AdjustPositionOn
Close

Adjusts the position on the close

AlternateBroker:
When the Broker Object is out of the context of its default context scripts, the AlternateBroker
object should be used to execute any of the Broker Object Entry and Exit Functions.
AlternateBroker has the same functions and properties as the Broker Object and will work in the
same way.

AdjustPositionOnClose

Increases or decreases an existing position by the specified factor as of the close.

Increasing a position size will result in the addition position units since the contract/share additions
will have a different entry date than any of the existing units.

Decreasing a position size will remove contracts/shares starting with the last unit on, and working
back through the remaining units until enough quantity has been removed.

www.forex-warex.com

Part 5 – Trading Objects Reference 469

© 2013, Trading Blox, LLC. All rights reserved.

For instance:
broker.AdjustPositionOnClose(1.4)

would increase a position by 40%, while

broker.AdjustPositionOnClose(.8)
would decrease the position by 20%.

This function is generally used by a Risk Manager Block to lighten a position to meet certain risk
restrictions.

Syntax:

broker.AdjustPositionOnClose(adjustmentFactor)

Parameter: Description:

adjustmentFacto
r

Factor by which the current position quantity will be multiplied. Result will
determine position size after adjustmens have been processed.

Example:

' Reduce the position size by our computed adjustment.
broker.AdjustPositionOnClose(riskAdjustment)

Links:

Broker

See Also:

 Risk Manager Block

AdjustPositionOnOpen

Increases or decreases an existing position by the specified factor as of the next bar's open.

For instance:
broker.AdjustPositionOnOpen(1.4)

would increase a position by 40%, while

broker.AdjustPositionOnOpen(.8)
would decrease the position by 20%.

Increasing a position size will result in adding units since the contract/share additions will have a
different entry date than any of the existing units. Decreasing a position size will remove contracts/
shares starting with the last unit on, and working back to the first if necessary.

This function is generally used by a Risk Manager Block to lighten a position to meet certain risk
restrictions.

Syntax:

broker.AdjustPositionOnOpen(adjustmentFactor)

www.forex-warex.com

Trading Blox Builder's Guide470

© 2013, Trading Blox, LLC. All rights reserved.

Parameter: Description:

adjustmentFacto
r

Factor by which the current position quantity will be multiplied. Result will
determine position size after adjustmens have been processed.

Example:

' Reduce the position size by our computed adjustment.
broker.AdjustPositionOnOpen(riskAdjustment)

Links:

Broker

See Also:

Risk Manager Block

AdjustPositionOnStop

Increases or decreases an existing position by the specified factor, if the market hits the stop price.
See: AdjustPositionOnOpen for a more complete description of the adjustment factor.

Increasing a position size will result in adding units since the contract/share additions will have a
different entry date than any of the existing units. Decreasing a position size will remove contracts/
shares starting with the last unit on, and working back to the first if necessary.

This function is generally used by a Risk Manager Block to lighten a position to meet certain risk
restrictions.

Syntax:

broker.AdjustPositionOnStop([symbol], adjustmentPercent, stopPrice)

Parameter: Description:

[symbol] Symbol is optional when intended broker order is for the instrument
naturally in context.

adjustmentPerce
nt

the factor which will be multiplied by the existing position quantities to arrive
at the new unit sizes.

stopPrice the price which the market must hit to trigger an adjustment.

Example:

' Adjust the position size by our computed adjustment when Stop price is penetrated.
broker.AdjustPositionOnStop(0.75, stopPrice)

Links:

Broker

www.forex-warex.com

Part 5 – Trading Objects Reference 471

© 2013, Trading Blox, LLC. All rights reserved.

See Also:

AdjustPositionOnOpen

AdjustPositionAtLimit

Increases or decreases an existing position by the specified factor if the market trades through the
limit price. See: AdjustPositionOnOpen for a more complete description of the adjustment factor.

Increasing a position size will result in adding units since the contract/share additions will have a
different entry date than any of the existing units. Decreasing a position size will remove contracts/
shares starting with the last unit on, and working back to the first if necessary.

This function is generally used by a Risk Manager Block to lighten a position to meet certain risk
restrictions, or by an Exit Block to take profits on a portion of a position at a specified profit target.

Syntax:

' Change the positions quantity using the adjustment percent
' when limit price is traded through.
broker.AdjustPositionAtLimit([symbol], adjustmentPercent, limitPrice)

Parameter: Description:

[symbol] Symbol is optional when intended broker order is for the instrument
naturally in context.

adjustmentPerce
nt

Percentage rate multiplier applied the existing position quantity to determine
new position size.

limitPrice Trade through limit price required to change position size.

Returns:

Adjust Position will add a unit when percentage factor increases position quantity, and it will
reduce units greater than one unit when reducing position quantity.

Example:

' Take profits on a portion of our position at our target.
broker.AdjustPositionAtLimit(riskAdjustment, profitTarget)

Links:

Broker

See Also:

AdjustPositionOnOpen

www.forex-warex.com

Trading Blox Builder's Guide472

© 2013, Trading Blox, LLC. All rights reserved.

Section 4 – Chart

Custom Charts
At the end of a Simulation Test it is possible to have various custom data graphs display test
information on chart not possible previously. These new chart are created with scripts using
Trading Blox Basic statements, and they can be directed appear in the Trading Blox Summary
Performance Reports, or as individual images in a browser window.

Custom Chart images are in addition to the standard BPV Custom Graph images. These new
Custom Charts can create new chart types shown here:

Pie Columns with Lines

Scatter Bars with Lines

Lines - Linear Scale Lines - Log Scale

Contour - Smooth Map Contour - without Smooth Map

New custom charts provide users with an ability to analyze trading ideas with new visual data
displays by collecting and analysis data and displaying the results in new ways. These new

www.forex-warex.com

Part 5 – Trading Objects Reference 473

© 2013, Trading Blox, LLC. All rights reserved.

chart types are intended to expand the ways that Trading Blox Basic can display data as
independent images or as an expanded information in its end of simulation testing report. All
the needed new functions and properties needed to create, store and include the custom
charts in an expanded report, or in a seperate browser page are explained in the topics of this
Chart Object subordinate pages.

Chart Creation:
Programming new charts starts with the process of deciding which of the six new chart types
will be used.

Five of the new chart use the same basic creation function NewXY, but Pie charts require the
NewPie function designed specifically for Pie charts to start the custom chart process.

Once the chart type, name and image size dimensions have been created, other functions can
be added to change from a standard chart display to a more tailor image by apply control over
the plotted area size and location, adding overlays that change how a chart appears, and then
adding data.

When all the chart creation scripts have been executed, the Make function is executed so that
it creates a file image that can be accessed and loaded into a summary report or a browser
page.

When a custom chart is directed to appear in the Trading Blox Summary Performance
Report, it will be placed in the area below the Custom Graphs section. If the custom chart is
intended to provide information after a stepped simulation test, it will appear just below the
stepped optimization table and chart area of a Summary Performance Report.

Charts can also be directed to automatically appear as an images displayed by browsers, or
by the user imported the chart image into documents. Regardless of where the new custom
chart is directed to appear, the chart images are files that can preserved in any folder named
in the chart creation scripting process.

Chart Creation Step:
Custom charts only need a few simple steps to create a chart:

Collect and analyze the data into BPV numeric series, and BPV String series if labels
are needed.
Determine the size of the chart, and then execute either the NewXY or NewPie functions
to create chart image space .
Adjust the plotting area within the chart image so the data plots, scales, labels and
legends will all display properly.
Add all the data series needed for plotting, and then decide if dates, axis labels are
needed to improve chart information.
Make the chart into a finished image by executing the Make function that directs the file
to active report folder.
Create the simple HTML image display code when images are to be displayed in a
browser, or displayed in a performance report.

Custom Chart Requirement:
Before charts can be displayed they must be saved as an image file so they can be accessed
and displayed in performance reports or browsers. Creating an image file is made easy with
the Make function that must be present at the end of all chart script sections. Once the file is
saved, it can be displayed when the Trading Blox Preference setting is enabled:

www.forex-warex.com

Trading Blox Builder's Guide474

© 2013, Trading Blox, LLC. All rights reserved.

Preference settings to enable Custom Graphs and Custom Charts.

Display Custom Charts in a Simulation Report:
Images in the simulation report use a default width of 830 pixels. By using that width, or a
smaller value the report's display width will be preserved.

Custom chart images displays in the summary performance report are supported by two new
test-object functions. Each function places custom charts in different locations to support
where the charts can be found.

Display custom charts in the area at the bottom of where BPV custom graphs are
displayed:

Example:

www.forex-warex.com

Part 5 – Trading Objects Reference 475

© 2013, Trading Blox, LLC. All rights reserved.

BEFORE TEST SCRIPT

' ==
' This task will load the chart SystemEquity.jpg image into
' the simmulation report:
' ~~
' This statement creates a single chart displaying task.
test.SetChartTestHtml("<img src='" _
 + test.resultsReportPath _
 + "\SystemEquity" _
 + AsString(test.currentParameterTest) _
 + ".gif" _
 + "' width=830 height=500>")
' ==

OR
' ==
' This task will load two chart images in the
' simulaiton report:
' ~~
' Next two lines assign the full path and file name to two BPV
' variables:
chartHtml1 = "<img src='" _
 + test.resultsReportPath _
 + "\Winning Trades" _
 + AsString(test.currentParameterTest) _
 + ".gif" _
 + "' width=415 height=400>"

chartHtml2 = "<img src='" _
 + test.resultsReportPath _
 + "\Losing Trades" _
 + AsString(test.currentParameterTest) _
 + ".gif" _
 + "' width=415 height=400>"

' This statement creates a task to display two charts
' side by side.
test.SetChartTestHtml(chartHtml1 + chartHtml2)
' ==

OR
' ==
' This task will load the same two chart images defined above
' simulation report, but it will place the first image above
' the second image:
' ~~

' This statement creates a task to display two charts
' one above the other.
test.SetChartTestHtml(chartHtml1 + "
" + chartHtml2)
' ==

www.forex-warex.com

Trading Blox Builder's Guide476

© 2013, Trading Blox, LLC. All rights reserved.

Display charts just below Multi-Parameter Table in the Stepped Parameter Summary
Performance table:

Example:

BEFORE TEST SCRIPT

' ==
' This task will load the chart SystemEquity.jpg image into
' the simmulation report:
' ~~
' This statement creates a single chart displaying task.
test.SetChartSimulationtHtml("<img src='" _
 + test.resultsReportPath _
 + "\SystemEquity" _
 + AsString
(test.currentParameterTest) _
 + ".gif" _
 + "' width=830 height=500>")
' ==

OR
' ==
' This task will load two chart images in the
' simulaiton report:
' ~~
' Next two lines assign the full path and file name to two BPV
' variables:
chartHtml1 = "<img src='" _
 + test.resultsReportPath _
 + "\Winning Trades" _
 + AsString(test.currentParameterTest) _
 + ".gif" _
 + "' width=415 height=400>"

chartHtml2 = "<img src='" _
 + test.resultsReportPath _
 + "\Losing Trades" _
 + AsString(test.currentParameterTest) _
 + ".gif" _
 + "' width=415 height=400>"

' This statement creates a task to display two charts
' side by side.
test.SetChartSimulationtHtml(chartHtml1 + chartHtml2)
' ==

OR
' ==
' This task will load the same two chart images defined above
' simulation report, but it will place the first image above
' the second image:
' ~~

' This statement creates a task to display two charts

www.forex-warex.com

Part 5 – Trading Objects Reference 477

© 2013, Trading Blox, LLC. All rights reserved.

' one above the other.
test.SetChartSimulationtHtml(chartHtml1 + "
" + chartHtml2)
' ==

Display Custom Charts in default browser:
Usually, the default program is the computer's default browser.

Example:

AFTER TEST SCRIPT

Place this code section below the area where the custom chart script creation has saved the
chart using the chart.Make function

' ~~
' Show Custom Chart as a HTML image page.
' ~~
' Assign custom chart image name to BPV variable
CustomChartName = "SectorPerformancePieChart.png"

' Create Full Path and HTML file name where Custom Chart images
' will be stored and displayed.
SummaryFileLocation = test.resultsReportPath + "\SummaryCharts.html"

' Open the newly created HTML file name in the new
' test result data folder to get a file number for writing reference.
iFileNum = fileManager.OpenWrite(SummaryFileLocation)

' If file is created and opened successfully,...
If iFileNum THEN
 ' Write the HTML Header & Body tags
 fileManager.WriteLine(iFileNum, "<HTML><BODY>")

 ' Create the image links for the Scatter Chart Image
 fileManager.WriteLine(iFileNum, sTD_Prefix + CustomChartName + sTD_Suffix)

 ' Close HTML Body structure
 fileManager.WriteLine(iFileNum, "</BODY></html>")
ENDIF ' iFileNum

' Close the HTML image display file.
fileManager.Close(iFileNum)

' ~~
' Open the new HTML Custom Chart with the Default Browser
OpenFile(SummaryFileLocation)
' ~~

Links:

Make, NewPie, NewXY, OpenFile, SetChartSimulationHtml, SetChartTestHtml

www.forex-warex.com

Trading Blox Builder's Guide478

© 2013, Trading Blox, LLC. All rights reserved.

www.forex-warex.com

Part 5 – Trading Objects Reference 479

© 2013, Trading Blox, LLC. All rights reserved.

4.1 AddBarLayer

AddBarLayer can modifies the appearance of bars and enhance the 3D effect of an XYChart
created to show bars or columns.

Syntax:

chart.AddBarLayer([BarMethodEffect], [3D_Depth])

Parameters: Data Information:

BarMethodEffect

Bar Method Effect: Use Value:

Overlay 0

Stack 1

Depth 2

Side (Default) 3

Percentage 4

Note:
Optional parameter, unless there is a need to change the 3D bar effect.
When only a 3D effect change is needed, enter a value of 3 to use the
default side-by-side bar display, or use the value of another effects when
needed.

3D_Depth

Optional:
No value is required in this parameter location when the 3D effect doesn't
need to be changed.

Bar Depth Effect: Use Value:

Auto Adjust 3D Effect -1

Control 3D Depth Size Pixels depth size

NOTE:
This method is not required with bar charts, but when it is used the first parameter provides five
methods that change the way bar are displayed on a chart. Its second parameter provides control
over the chart's 3-dimensional appearance. Applying a bar display modification doesn't require
the user to change the 3D effect of the chart, but both parameters can be applied at the same
time.

This method must be executed ahead of when any of the chart's data is applied so that all the
series are handled correctly.

Examples:

www.forex-warex.com

Trading Blox Builder's Guide480

© 2013, Trading Blox, LLC. All rights reserved.

' ~~
' Rotated XY-Axis - Horizontal Bar Chart Code
' ~~
' Create with rotated X & Y Axis so bars lay horizontal
' "Vertical" option creates horizontal bars
chart.NewXY("Horizontal Bar", 300, 200, "Vertical")
' 3D Plot Area Adjustment - See SetPlotArea Notes
chart.SetPlotArea(10, 30, 60, 30)
' See Table Notes for BarMethodEffect & 3D_Depth values
chart.AddBarLayer([BarMethodEffect], [3D_Depth]) ' Examples ->
' Add 3 element Bar series data "bar1"
chart.AddBarSeries(AsSeries(bar1), 3)
' Add 3 element Bar series data "bar2"
chart.AddBarSeries(AsSeries(bar2), 3)

' Create & Save an image of the chart with
' this file name. BackSlash Character is Required
' when using ResultsReportPath
chart.Make(test.resultsReportPath + "\" + hbar.png")

Horizontal Bar Layout Options
Group 1

Horizontall Bar Layout Options
Group 2

' ~~
' Standard XY-Axis - Vertical Bar/Column Chart Code
' ~~
' Create with Standard X & Y Axis Columns
chart.NewXY("Horizontal Bar", 300, 200)
' 3D Plot Area Adjustment - See SetPlotArea Notes
chart.SetPlotArea(10, 40, 60, 30) '(10, 50, 60, 30) <- % Bars
' See Table Notes for BarMethodEffect & 3D_Depth values
chart.AddBarLayer([BarMethodEffect], [3D_Depth]) 'Examples ->

www.forex-warex.com

Part 5 – Trading Objects Reference 481

© 2013, Trading Blox, LLC. All rights reserved.

' Add 3 element Bar series data "bar1"
chart.AddBarSeries(AsSeries(bar1), 3)
' Add 3 element Bar series data "bar2"
chart.AddBarSeries(AsSeries(bar2), 3)

' Create & Save an image of the chart with
' this file name. BackSlash Character is Required
' when using ResultsReportPath
chart.Make(test.resultsReportPath + "\" + vbar.png")

Verticall Bar Layout Options
Group 1

Verticall Bar Layout Options
Group 1

Note:
Chart example images have a drop shadow effect so they would appear above the background.
NewXY can automatically add a similar drop-shadow effect when the "Shadow" option is added
as an option.

Links:

AddBarSeries, AsSeries, Make, NewXY, resultsReportPath, SetPlotArea

See Also:

www.forex-warex.com

Trading Blox Builder's Guide482

© 2013, Trading Blox, LLC. All rights reserved.

4.2 AddBarSeries

AddBarSeries adds a different series of data on a chart display.

Syntax:

chart.AddBarSeries(AsSeries(BarSeries), Elements)

Parameter: Data Information:

BarSeries BPV Numeric series intended to represent a group of bars.

Note:
Use with all BPV Numeric or String series that are passed to any Chart
parameter.
AsSeries(...) function conditions the series so the chart function will be able
to use the information contained within each of the series elements.

Elements Count of the numeric elements in the series.

Note:
Manually Sized Series:

GetSeriesSize function provides the element count.

Auto-Index series:
BPV: test.currentDay property reports last series element index.
IPV: instrument.bar property reports last series element index.

NOTE:
To add an addition bar group to a chart, call AddBarSeries again with a different data series.

Example:

 ' ~~
 ' CREATE a Column / Vertical Bar Chart
 ' Create graphing space for a horizontal chart 300-Pixel wide,
 ' & 200-Pixels tall with chart title: "Vertical Columns"
 chart.NewXY("Line Chart", 300, 200)

 ' Size Plotting Area to these values
 chart.SetPlotArea(10, 35, 60, 30)

 ' Use Side-by-Side Bar/Column display
 chart.AddBarLayer(3)

 ' Add 5 element values to represent "bar1"
 chart.AddBarSeries(AsSeries(bar1), 5)

 ' Add 5 element values to represent "bar2"
 chart.AddBarSeries(AsSeries(bar2), 5)

 ' Create & Save an image of the chart with
 ' this file name. BackSlash Character is Required

www.forex-warex.com

Part 5 – Trading Objects Reference 483

© 2013, Trading Blox, LLC. All rights reserved.

 ' when using ResultsReportPath
 chart.Make(Test.ResultsReportPath + "\" + "vbar.png")

NewXY Option "Vertical" Not Enabled. NewXY Option "Vertical" Enabled.

Links:

AddBarLayer, AsSeries, Make, NewXY, ResultsReportPath, SetPlotArea

See Also:

www.forex-warex.com

Trading Blox Builder's Guide484

© 2013, Trading Blox, LLC. All rights reserved.

4.3 AddContourLayer

Applies a 3-Dimensional contour layer color map onto a newly created NewXY chart.

Syntax:

chart.AddContourLayer(AsSeries(XAxisSeries), _
 AsSeries(YAxisSeries), _
 AsSeries(ZAxisSeries), _
 SeriesCount, _
 [Smooth])

Parameter: Description:

XAxisSeries X-Axis Series data.

YAxisSeries Y-Axis Series data.

ZAxisSeries Z-Axis Series data.

Note:
Use with all BPV Numeric or String series that are passed to any Chart
parameter.
AsSeries(...) function conditions the series so the chart function will be
able to use the information contained within each of the series elements.

SeriesCount Integer value specifies the number of data element values in of all three of
the data series specified.

Note:
Manually Sized Series:

GetSeriesSize function provides the element count.

Auto-Index series:
BPV: test.currentDay property reports last series element index.
IPV: instrument.bar property reports last series element index.

Smooth Optional:
When left out, chart will draw contours with clear line definitions between the
contour colors levels creating levels that change with clear level lines.

When the optional "Smooth" is added the color changes showing the
different contour levels will have a blended color change transition indicating
the landscape level change have a smooth contoured slope.

NOTE:
This function must be executed after the NewXY statement has sized the chart.

AddContourLayer requires data for the X,Y and Z data series, which are the first three
parameters. Fourth parameter requires the count of the number elements in the Z-Axis series.

An optional "Smooth" parameter can be applied so that the color transitions between each of the
different levels displayed are shown as blended color gradient transition between area colors.

Contour maps display the X-Axis scale below the plotting areas lower chart boundary. Y-Axis
scale is displayed just outside the plot areas right side boundary. Z-Axis scale steps are

www.forex-warex.com

Part 5 – Trading Objects Reference 485

© 2013, Trading Blox, LLC. All rights reserved.

displayed in the area between the outside boundary Y-Axis scale. White space on the right side
of a contour chart needs to provide enough pixel space to enable the Z-Scale color legend to
display so that it doesn't interfere with the Y-Scale display.

Creating the extra space around plotted areas is created by the use of the SetPlotArea
function.

Example:

 ' ~~
 ' CONTOUR COLOR MAP CHART
 ' ~~
 ' Create graphing space that is 600-Pixels wide, & 300-Pixel high.
 ' Place the name "Contour Map" in the chart's window Title Bar space.
 chart.NewXY("Contour Map", 600, 300)

 ' Size the Bar Ploting area within the boundaries of the graphing
 ' image area
 ' (x-Left, x-Right, y-Top, y-Bottom)
 chart.SetPlotArea(10, 100, 40, 40)

 ' Create a contour map with BPV numeric series for x, y, & z axis
 chart.AddContourLayer(AsSeries(randomx), _
 AsSeries(randomy), _
 AsSeries(house2x), iContourLevels, sSurface)

 ' Add Titles for X & Y Axis Scales
 ' Function places: "Temperature" near the x-Axis bottom left-side
 ' and it places "Humidity" at the bottom right as vertical text
 chart.SetAxisTitles("Temperature", "Humidity")

 ' Create & Save this graph as a chart image file.
 ' Note: a BackSlash "\" Character is Required
 ' when using ResultsReportPath <-- Click Link below for Details
 chart.Make(test.resultsReportPath + "\" + "Contour.png")
 ' ~~

www.forex-warex.com

Trading Blox Builder's Guide486

© 2013, Trading Blox, LLC. All rights reserved.

Contour XY & Z Axis with Smooth Enabled

Contour Smooth option omitted AddContourLayer

Links:

AsSeries, Make, NewXY, resultsReportPath, SetAxisTitles, SetPlotArea

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 487

© 2013, Trading Blox, LLC. All rights reserved.

4.4 AddLineLayer

Function allows the chart's Linear scale to be converted to a Log scale.

Syntax:

chart.AddLineLayer([LineMethod], [Options])

Parameter: Description:

LineMethod Not used. However, when the Log option is enabled, enter a Zero or 1 in this
field.

Options Converts linear scale to a Log scale.

Example:

' ~~
' Log Scale Line Chart Example
' ~~
' Establish Scatter Chart image size
iChartWidth = 500 ' X-Axis Width
iChartHeight = 300 ' Y-Axis Height

' Create a image
chart.NewXY("Log Scale Line Chart Example", iChartWidth, iChartHeight)
' Size the Scatter Dot Ploting area
chart.SetPlotArea(30, 30, 40, 50)

' Use Log Scale
chart.AddLineLayer(0, "Log") ' <-- Converts Linear Scale to Log Scale

' Generate Blue Color Value
ColorValue1 = ColorRGB(255, 0, 0)
' Generate Green Color Value
ColorValue2 = ColorRGB(0, 255, 0)
' Generate Red C0lor Value
ColorValue3 = ColorRGB(0, 0, 255)

' Add Line data series 1
chart.AddLineSeries(AsSeries(Line1), 100, "Line1", ColorValue1)
' Add Line data series 2
chart.AddLineSeries(AsSeries(Line2), 100, "Line2", ColorValue2)
' Add Line data series 3
chart.AddLineSeries(AsSeries(Line3), 100, "Line3", ColorValue3)

' Create & Save this new chart as a file.
' Always add a backSlash Character after "resultsReportPath"
chart.Make(test.resultsReportPath + "\" + "LogChartExample.png")

Code Script Output:

www.forex-warex.com

Trading Blox Builder's Guide488

© 2013, Trading Blox, LLC. All rights reserved.

Links:

AsSeries, AddLineSeries, ColorRGB, Make, NewXY, resultsReportPath,
SetPlotArea

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 489

© 2013, Trading Blox, LLC. All rights reserved.

4.5 AddLineSeries

Adds a chart line to a NewXY chart. Function has four parameters, but only the first two parameters
are required.

First parameter is a BPV data series, Second parameter is the element count of the first parameter's
data series.

Two optional parameters are, Title and Color. Title will be the name displayed with the series, and
Color will determine the color if its value isn't assigned the default value of "-1". Leaving the Color
parameter blank will lets the chart automatically designate an unused color.

Syntax:

chart.AddLineSeries(AsSeries(LineSeries), SeriesElements, [Title], [Color])

Parameter: Description:

LineSeries Name of BPV Series containing data to be plotted.

Note:
Use with all BPV Numeric or String series that are passed to any Chart
parameter.
AsSeries(...) function conditions the series so the chart function will be
able to use the information contained within each of the series elements.

SeriesElements Number of data elements in the series.

Note:
Manually Sized Series:

GetSeriesSize function provides the element count.

Auto-Index series:
BPV: test.currentDay property reports last series element index.
IPV: instrument.bar property reports last series element index.

Title Parameter is a text field. Name entered will be used as the name for the line
series label. If the name option is not used, the name of the data series name
is used.

Color A color value of: -1 - will uses the chart's automatic color assignment.
See ColorRGB and the Colors for information on how to use other colors.

Example:

www.forex-warex.com

Trading Blox Builder's Guide490

© 2013, Trading Blox, LLC. All rights reserved.

 ' ~~
 ' LINE CHART EXAMPLE
 ' ~~
 ' Establish Scatter Chart image size
 iChartWidth = 500 ' X-Axis Width
 iChartHeight = 300 ' Y-Axis Height

 ' Create a image
 chart.NewXY("Line Chart Example", iChartWidth, iChartHeight)

 ' Size the Scatter Dot Ploting area
 chart.SetPlotArea(30, 30, 40, 50)

 ' Generate Blue Color Number
 ColorValue1 = ColorRGB(255, 0, 0)
 ' Generate Green Color Number
 ColorValue2 = ColorRGB(0, 255, 0)
 ' Generate Red C0lor Number
 ColorValue3 = ColorRGB(0, 0, 255)

 ' Add Line data series 1
 chart.AddLineSeries(AsSeries(Line1), 100, "Line1", ColorValue1)
 ' Add Line data series 2
 chart.AddLineSeries(AsSeries(Line2), 100, "Line2", ColorValue2)
 ' Add Line data series 3
 chart.AddLineSeries(AsSeries(Line3), 100, "Line3", ColorValue3)

 ' Create & Save this new chart as a file.
 ' Always add a backSlash Character after "resultsReportPath"
 chart.Make(test.resultsReportPath + "\" + "LineChartExample.png")

' ~~

3-Line Chart Example:

Multi-Line Chart Example:

www.forex-warex.com

Part 5 – Trading Objects Reference 491

© 2013, Trading Blox, LLC. All rights reserved.

' ~~
' Create a chart area that is 80-Pixels wide, and 500-Pixels high
chart.NewXY("System Equity Curves", iChartWidth, iChartHeight)
' Number of data points to place on the chart
elementCount = test.currentDay
' Place a scale label identifying the vertical scale information
chart.SetAxisTitles("", "Percent Gain/Loss")
' Set X-Axis Dates to use beginning of month
chart.SetxAxisDates(AsSeries(DateSeries), elementCount, 4)
' Plot a Black line at the chart's Y-Axis Zero location
chart.AddLineSeries(AsSeries(systemEquity), elementCount, "", 0)
' ~~
' Examine each system in the Simulation Suite
For systemIndex = 1 TO test.systemCount
 ' Access each system in the suite
 test.SetAlternateSystem(systemIndex)
 ' Capture the daily exchange net equity rate change of '
 ' each system in the Suite
 For i = 1 TO elementCount
 ' Calculate the total equity net percentage change between '
 ' Test dates and store that information in a BPV system equity series.
 systemEquity[i] = (alternateSystem.totalEquity[elementCount - i] _
 / alternateSystem.totalEquity[elementCount - 1] - 1) * 100
 Next ' i
' ~~
 ' Assign each system net rate change to a specific color
 plotColor = ColorItem[systemIndex]
'OR
 ' Consider a random number color assignment
 ' BLUE GREEN RED
 'plotColor = ColorRGB(Random(255), Random(255), Random(255))
 ' Place this system's test-date total equity percentage net change
 ' value in the chart space using the new color
 chart.AddLineSeries(AsSeries(systemEquity), elementCount, _
 alternateSystem.name, plotColor)
Next ' systemIndex
' ~~
' When all the system's equity changes are display as new chart
' lines, save the image information as a file.
chart.Make(sFilePath2)
' ~~

www.forex-warex.com

Trading Blox Builder's Guide492

© 2013, Trading Blox, LLC. All rights reserved.

Links:

AsSeries, ColorRGB, Make, NewXY, resultsReportPath, SetPlotArea

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 493

© 2013, Trading Blox, LLC. All rights reserved.

4.6 AddScatter

Scatter charts show unconnected shapes that reflect the two-dimensional values of each data point
intersection on supplied data series.

Syntax:

chart.AddScatter(AsSeries(xSeries),AsSeries(ySeries),ElementCount,[Symbol],[Size])

Parameter: Description:

xSeries An array of numbers representing the x values of the data points. If no explicit
x coordinates are used in the chart (eg. using an enumerated x-axis), an
empty array may be used for this argument.

ySeries An array of numbers representing the y values of the data points.

Note:
Use with all BPV Numeric or String series that are passed to any Chart
parameter.
AsSeries(...) function conditions the series so the chart function will
be able to use the information contained within each of the series
elements.

ElementCount Number of data elements in the series.

Note:
Manually Sized Series:

GetSeriesSize function provides the element count.

Auto-Index series:
BPV: test.currentDay property reports last series element index.
IPV: instrument.bar property reports last series element index.

Symbol Enter #: Shape Description:

1 Square shape

2 Diamond shape

3 Triangle pointing up

4 Triangle pointing right

5 Triangle pointing left

6 Triangle pointing down

7 Circle

Size Optional parameter will create symbols the at size entered.
Default symbol size is 12-Pixels.

Example:

' ~~
' Win Trade Code Example - More code available in blox "Trade Charts"

www.forex-warex.com

Trading Blox Builder's Guide494

© 2013, Trading Blox, LLC. All rights reserved.

' --
' Create a scatter chart of Winning Trades
chart.NewXY("Winning Trades", 415, 400)
' Display each trade's profit as a chart dot
chart.AddScatter(AsSeries(labelSeries), AsSeries(dataSeries), count, 3, 8)
' Display the average of the sum of all winning trades as a line
chart.AddLineSeries(AsSeries(dataAverage), count, "Avg Win$", ColorRGB(0,255,0))
' Display the Chart's labels for X & Y Axis scales
chart.SetAxisTitles("Winning Trade Number", "Profit ($)")
' Create the chart as an image file in the current test folder.
chart.Make(test.resultsReportPath _
 + "\Winning Trades" _
 + AsString(test.currentParameterTest) _
 + ".gif")
' ~~

Trade Charts Blox - Win Loss Report Image Example

Click Image to enlarge, Click again to reduce

Links:

AddLineSeries, AsSeries, Make, NewXY, resultsReportPath,
SetxAxisLabels, SetAxisTitles, SetPlotArea

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 495

© 2013, Trading Blox, LLC. All rights reserved.

4.7 Make

Saves scripted charts as image files in the names of the location and file name specified.

Syntax:

chart.Make(FileSavingDetails)

Parameter: Description:

FileSavingDetail
s

This parameter must contain the path, folder, file name and the image type
name being created.

String variable or Text contained with quotation marks required:
<Drive>:\<Full path and folder name>\<filename>.<image-
format>

Supported Image Formats:
PNG, JPG, GIF, BMP

Notes:
This function only creates the file so that other methods can access the graph and then display
it in a report, and or browser.

When specifying destination paths where the file is to be saved, it is recommended the path be
created using the test-object property: resultsReportPath. This property identifies the the
current test folder path and folder name where the other test report images and data are being
saved, and it provides a convenient method for referencing the destination of where to place a
file, and then later in the script where to access the file when it is time to display it in a report or
browser.

Example:

 ' Create & Save this new chart as a file.
 ' Always add a backSlash Character after "resultsReportPath"
 chart.Make(test.resultsReportPath + "\" + "Scatter.png")

Results:
A drive, path, including folder-name, will be appended to your file name, and will appear similar
to this next line as long you have added a backslash character '\' between the folder name and
the file name:
"C:\Trading Blox\Results\Test 2013-01-08_08_47_55\Scatter.png"
File path information folder name reflects the 'Suite Name" and the date and time in YYYY-MM-
DD_HH_MM_S format of the test executed and the time execution began.

Click on any of the these links to review chart creation code examples to see how all the chart
methods use this Make function:

AddBarSeries

AddContourLayer

AddLineLayer

AddLineSeries

AddScatter

NewPie

www.forex-warex.com

Trading Blox Builder's Guide496

© 2013, Trading Blox, LLC. All rights reserved.

Links:

Chart, General Properties, resultsReportPath

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 497

© 2013, Trading Blox, LLC. All rights reserved.

4.8 NewPie

Creates a sectioned Pie chart that can show legends, and pie section values connected to each
segment of the pie chart.

Syntax:

Chart.NewPie(ChartTitle, xAxisWidth, yAxisHeight, _
 AsSeries(pieChartValues), AsSeries(pieLabels), PieSections, [Option])

Parameter: Data Information:

ChartTitle String variable. Name to display in pie chart's title bar area.

xAxisWidth Horizontal pixel external width of chart.

yAxisHeight Vertical pixel external height of chart.

pieChartValues BPV numeric series of pie section value.

pieLabels BPV String series of pie section names.

Note:
Use with all BPV Numeric or String series that are passed to any Chart
parameter.
AsSeries(...) function conditions the series so the chart function will be
able to use the information contained within each of the series elements.

PieSections pieChartValue sectopm and pieLabels series.

Option Option create an upper left corner light source shadow behind the lower right
area of the pie chart image so that is it appears to stand above the background
area.

Notes:
Do not use the SetPlotArea function with PIE charts because they don't support adjustable
overlays.

Example:

www.forex-warex.com

Trading Blox Builder's Guide498

© 2013, Trading Blox, LLC. All rights reserved.

' ~~
' PIE CHART - Script Example from the Pie Charts Blox
' ~~
' Establish Chart image size
iChartWidth = 500 ' X-Axis Width
iChartHeight = 300 ' Y-Axis Height

' Create Random Pie Segment Values
pieChartValues[1] = Random(10000)
pieChartValues[2] = Random(10000)
pieChartValues[3] = Random(10000)
pieChartValues[4] = Random(10000)
pieChartValues[5] = Random(10000)
pieChartValues[6] = Random(10000)

' Pie Label Values
pieLabels[1] = "Metals"
pieLabels[2] = "Grains"
pieLabels[3] = "Softs"
pieLabels[4] = "Financials"
pieLabels[5] = "Treasuries"
pieLabels[6] = "Energies"

' Create a Pie graph, use 6 numeric pieChartValues values
' add 6 segment pieLabel names, do not use "shadow" option.
chart.NewPie("Profit Contribution by Sector", iChartWidth, iChartHeight, _
 AsSeries(pieChartValues), AsSeries(pieLabels), 6)

' Create & Save this new chart as a file.
' Always add a backSlash Character after "resultsReportPath"
chart.Make(test.resultsReportPath + "\" + "PieChart.png")

Shadow styling around image was added later by graphics editing program

Links:

www.forex-warex.com

Part 5 – Trading Objects Reference 499

© 2013, Trading Blox, LLC. All rights reserved.

AsSeries, Make, NewPie, Random, resultsReportPath

See Also:

www.forex-warex.com

Trading Blox Builder's Guide500

© 2013, Trading Blox, LLC. All rights reserved.

4.9 NewXY

NewXY is the starting method used to create Bar, Scatter, Line, linear and, or Logarithmic charts.

Syntax:

Chart.NewXY(ChartTextName, ChartPixelWidth, ChartPixelHeight, [ChartOptions])

Parameter: Descriptions:

ChartTextName Text assigned to this parameter will be placed in the title bar area above the
chart image.

ChartPixelWidth Chart width is determined by the number of pixel entered into this
parameter.

ChartPixelHeight Chart height is determined by the number of pixel entered into this
parameter.

ChartOptions

There are three optional words that can change a chart:

Methods: Descriptions:

Log
Using the Log option in this parameter will convert the Y-Axis
scale of the chart display from a Linear-scale to a Log-scale
presentation

Shadow

This option adds a drop shadow effect to the chart's
appearance. When used the shadow effect reduces the
plot area of the image by the size of the added drop shadow
effect.

Color used for the shadow will be different from the normal
white color of the background to make its appearance
noticeable.

Vertical

Bar, Contour, Dot, and Line charts are oriented according
the placement of the X & Y axis locations. In most charts
the orientation of the X-Axis is placed at the bottom of the
chart, and the Y-Axis is place along the side, or vertical axis.

This option allows the X & Y Axis locations to be rotated so
that the X-Axis is positioned along the side, or vertical axis,
and it places the Y-Axis along the bottom axis. When
"Vertical" is used in this optional parameter location, the
chart's data axis locations will show its visual information
rotated 90-degrees to the right.

Vertical bars which show their value by their height
orientation along an image's side or vertical axis will change
to displaying horizontal bars that show their value in a left to
right orientation along the rotated bottom axis.

Contour, dot and line information will also be rotated when
those type of displays are added to the chart image space.

Combined
Methods

All three methods can be combined as an additional
instruction to the NewXY chart method.

www.forex-warex.com

Part 5 – Trading Objects Reference 501

© 2013, Trading Blox, LLC. All rights reserved.

Example:
"Vertical Shadow" will create a rotated axis chart with a
drop shadow effect
"Log Shadow" will create a rotated axis with a drop
shadow effect.
"Log Vertical Shadow" will create a rotated axis Log chart
with a drop shadow effect.

Notes:
After this method has been executed, the type of features available on a chart are determined
by adding other methods to the chart to generate the kind of chart needed.

When NewXY is executed:

First parameter is a text-value that places the characters into the chart's title label area.
Second parameter is a numeric value that determines the chart's outside boundary width in
pixels.
Third parameter is value that determines the chart's outside vertical height in pixels.
Fourth parameter is an optional modification string value that can rotate the orientation of the
X & Y axis, the scaling of the data from a Linear to a Log scaled display, and it can add a
drop shadow effect to the resulting image.

Examples:

NewXY function is required in the code scripts to start the creation of all the custom charts except
the Pie Charts:
AddBarSeries

AddContourLayer

AddLineLayer

AddLineSeries

AddScatter

Links:

Chart, General Properties

See Also:

www.forex-warex.com

Trading Blox Builder's Guide502

© 2013, Trading Blox, LLC. All rights reserved.

4.10 SetAxisTitle

SetAxisTitles function adds two text axis titles to X & Y scale locations.

Syntax:

chart.SetAxisTitles(xAxisLabel, yAxisLabel)

Parameter: Description:

xAxisLabel String - Name of x-Axis title.

yAxisLabel String - Name of y-Axis title.

Note:
Plotting area in this image used the SetPlotArea function to control how much space around
the image would be provided for scale values and the addition of the axis titles. Axis titles are
displayed without a problem, but if the x-axis scale values are converted to dates, the additional
space needed by the data labels might cause some or all of the the x-axis title name to be
obscured. When that happens, increase the plot area pixel size of the last value parameter on the
right. Rotating scales using the "Vertical" option will also require plot area size location
changes.

Example:

' ~~
' SCATTER CHART - x-Axis At Chart Bottom - Axis Not Rotated
' ~~
' Establish Scatter Chart image size
iChartWidth = 500 ' X-Axis Width
iChartHeight = 300 ' Y-Axis Height
' Create a image
chart.NewXY("Scatter", iChartWidth, iChartHeight)
' Size the Scatter Dot Ploting area
chart.SetPlotArea(20, 50, 40, 55)
' Place the X-Axis scale label "Temperature" in the left corner.
' Place the Y-Axis label "Humidity" in the lower right corner.
chart.SetAxisTitles("Temperature", "Humidity")
' Place the series of 100 dots positioned at element coordinates
' x & y using the BPV "Randomx" element values.
chart.AddScatter(AsSeries(randomx), AsSeries(randomy), iNumber, 7, 6)
' Place the series of 100 dots positioned at element coordinates
' x & y using the BPV "House2x" element values.
chart.AddScatter(AsSeries(house2x), AsSeries(house2y), iNumber, 3, 10)
' Create & Save this new chart as a file.
' Always add a backSlash Character after "resultsReportPath"
chart.Make(test.resultsReportPath + "\" + "Scatter.png")

www.forex-warex.com

Part 5 – Trading Objects Reference 503

© 2013, Trading Blox, LLC. All rights reserved.

Standard x-Axis position places x-Axis below x-Scale
and y-Axis scale is placed along y-Scale on right side of plotted area.

' ~~
' SCATTER CHART - x-Axis At Chart Left Size - Axis Rotated
' ~~
' Establish Scatter Chart image size
iChartWidth = 500 ' X-Axis Width
iChartHeight = 300 ' Y-Axis Height
' Create a image
chart.NewXY("Scatter", iChartWidth, iChartHeight, "Vertical")
' Size the Scatter Dot Ploting area
chart.SetPlotArea(50, 20, 50, 40)
' Place the X-Axis scale label "Temperature" in the left corner.
' Place the Y-Axis label "Humidity" in the lower right corner.
chart.SetAxisTitles("Temperature", "Humidity")
' Place the series of 100 dots positioned at element coordinates
' x & y using the BPV "Randomx" element values.
chart.AddScatter(AsSeries(randomx), AsSeries(randomy), iNumber, 7, 6)
' Place the series of 100 dots positioned at element coordinates
' x & y using the BPV "House2x" element values.
chart.AddScatter(AsSeries(house2x), AsSeries(house2y), iNumber, 3, 10)
' Create & Save this new chart as a file.
' Always add a backSlash Character after "resultsReportPath"
chart.Make(test.resultsReportPath + "\" + "Scatter.png")

www.forex-warex.com

Trading Blox Builder's Guide504

© 2013, Trading Blox, LLC. All rights reserved.

Code for this image is using the "Vertical" option with the NewXY function to rotate the x-Axis scale 90-degrees to the right
When axis locations are rotated, x-axis label is placed along left side of image, and y-axis label is placed below y-axis scale.

Links:

AddScatter, AsSeries, Make, NewXY, resultsReportPath, SetPlotArea

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 505

© 2013, Trading Blox, LLC. All rights reserved.

4.11 SetBarGapShape

Function must be used with the AddBarLayer function and it must only be executed after the
AddBarLayer has executed.

When used this function can change the shape of the bar, and optionally it can the gap between bars,
and as an additional option it can change the space between bar groups.

Syntax:

chart.SetBarGapShape([Shape], [Gap], [Subgap])

Parameter: Description:

Shape Enter #: Shape Description:

1 Square shape

2 Diamond shape

3 Triangle pointing up

4 Triangle pointing right

5 Triangle pointing left

6 Triangle pointing down

7 Circle

Gap Sets the gap between the bars in a bar chart layer.

Gap between the bars is expressed as the portion of the space between the bars.
For example, a bar gap of 0.2 means 20% of the distance between two adjacent
bars is the gap between the bars.

The portion of the space between the bars, or between bar groups for multi-bar
layers, uses a default bar gap = 0.2 or 20%

Subgap This argument only applies to multi-bar charts. It is the portion of the space
between the bars in a bar group. Gap uses the same decimal process to
represent the size of the Subgap spacing between groups

NOTE:
A Gap is the space between each bar value of the same series. Subgap spacing is the distance
between the bars of different series, which is also of a different color. For multi-bar layers (bar
layers using the Side data combine method, or for stacked bar layers with multiple data groups),
Gap refers to the portion of the space between bar groups, while SubGap refers to the portion of
the space between bars within the same bar group.

Example:

 ' ~~
 ' CREATE a Column / Vertical Bar Chart
 ' Create graphing space for a horizontal chart 300-Pixel wide,
 ' & 200-Pixels tall with chart title: "Vertical Columns"
 chart.NewXY("Line Chart", 300, 200)

www.forex-warex.com

Trading Blox Builder's Guide506

© 2013, Trading Blox, LLC. All rights reserved.

 ' Size Plotting Area to these values
 chart.SetPlotArea(10, 35, 60, 30)

 ' Use Side-by-Side Bar/Column display
 chart.AddBarLayer(3)

 ' Add 5 element values to represent "bar1"
 chart.AddBarSeries(AsSeries(bar1), 5)

 ' Add 5 element values to represent "bar2"
 chart.AddBarSeries(AsSeries(bar2), 5)

 ' Create & Save an image of the chart with
 ' this file name. BackSlash Character is Required
 ' when using ResultsReportPath
 chart.Make(Test.ResultsReportPath + "\" + "vbar.png")

This Image is a collection of column chart images showing the various shapes. It also shows the
Gap and Subgap locations where their size changes the bar spacing:

www.forex-warex.com

Part 5 – Trading Objects Reference 507

© 2013, Trading Blox, LLC. All rights reserved.

Bar Shapes & Gap Space References

Links:

AddBarLayer, AddBarSeries, AsSeries, Make, NewXY, ResultsReportPath,
SetPlotArea

See Also:

www.forex-warex.com

Trading Blox Builder's Guide508

© 2013, Trading Blox, LLC. All rights reserved.

www.forex-warex.com

Part 5 – Trading Objects Reference 509

© 2013, Trading Blox, LLC. All rights reserved.

4.12 SetPlotArea

SetPlotArea is used to control the positioning and size of the plotting area within the
boundaries of the image. Each of the four parameters provides the offset distance in pixels
from the image edge to graph's plotting area around which space for the axis scales, labels,
and legends is provided.

Syntax:

chart.SetPlotArea(xLeftOffset, xRightOffset, yTopOffset,
yBottomOffset)

Parameter: Description:

xLeftOffset Size of space to offset the graph's left side boundary plotting area from the
image's left side edge.

xRightOffset Pixel size positioning where the graph's right edge graphing boundary border
area is placed from the right edge of the graphing image boundary.

yTopOffset Pixel size positioning of the graph's top edge graphing boundary border area
from the top edge of the graphing image boundary.

yBottomOffset Pixel size positioning of the graph's bottom edge graphing boundary border
area from the bottom edge of the graphing image boundary.

Note:
Do not use SetPlotArea function with a NewPie chart because the plot area is not
adjustable.

When trying to determine how many pixels are needed to make room for the
characters and numbers in the scales and labels, there is no simple rule available. It
isn't available because different Font sizes and different fonts with a different styles
require different pixel widths and heights of space to allow the label or scale information
to be legible. Pixel spacing is also influenced by the screen's pixel density settings.
For example, in this image its size is 500 pixel wide by 300 pixel high. Image was
created created in Windows 7 64-Bit using a screen resolution of 1680 x 1050 pixels
with 32-bit color. Screen density is 96 pixels per inch set in Landscape mode to fit a
21-inch monitor.

NewXY & SetPlotArea Dimension Locations

www.forex-warex.com

Trading Blox Builder's Guide510

© 2013, Trading Blox, LLC. All rights reserved.

Example:

 ' ~~
 ' SCATTER CHART - Script Example from the Scatter Charts Blox
 ' ~~
 ' Establish Scatter Chart image size
 iChartWidth = 500 ' X-Axis Width
 iChartHeight = 300 ' Y-Axis Height
 ' Create a image
 chart.NewXY("Scatter", iChartWidth, iChartHeight)

 ' Size the Scatter Dot Ploting area
 chart.SetPlotArea(20, 50, 40, 90) <-- Reference Chart Diagram Details Above

 ' Use a BPV stepped string series to send date labels to X-Axis
 chart.SetxAxisLabels(AsSeries(LabelSeries), iRandomRange)
 ' Place the X-Axis scale label "Temperature" in the left corner.
 ' Place the Y-Axis label "Humidity" in the lower right corner.
 chart.SetAxisTitles("Temperature", "Humidity")
 ' Place the series of 100 dots positioned at element coordinates
 ' x & y using the BPV "Randomx" element values.
 chart.AddScatter(AsSeries(randomx), AsSeries(randomy), iNumber, 7, 6)
 ' Place the series of 100 dots positioned at element coordinates
 ' x & y using the BPV "House2x" element values.
 chart.AddScatter(AsSeries(house2x), AsSeries(house2y), iNumber, 7, 6)
 ' Create & Save this new chart as a file.
 ' Always add a backSlash Character after "resultsReportPath"
 chart.Make(test.resultsReportPath + "\" + "Scatter.png")

Links:

AddScatter, AsSeries, Make, NewXY, SetxAxisLabels, SetAxisTitles

www.forex-warex.com

Part 5 – Trading Objects Reference 511

© 2013, Trading Blox, LLC. All rights reserved.

See Also:

www.forex-warex.com

Trading Blox Builder's Guide512

© 2013, Trading Blox, LLC. All rights reserved.

4.13 SetxAxisDates

Function changes the numbered X-Axis scale labels to Dates at the major tick-mark locations. Date
range displayed on the chart will cover the entire date range between the simulation Test-Start date
and Test-End date.

Syntax:

chart.SetxAxisDates(AsSeries(DateSeries), [ElementCount], [Filter], [LabelStep], [Format])

Parameters: Description:

DateSeries Numeric date series, converted using ChartTime. Or if 0 is passed in, the default
internal test date/time will be used.
Note:

Use with all BPV Numeric or String series that are passed to any Chart
parameter.
AsSeries(...) function conditions the series so the chart function will be
able to use the information contained within each of the series elements.

ElementCount Number of elements in the date series.

Filter Option is dependent upon date data in the supplied series, and chart axis
display area.

Use #: Filter & Label Stepping Description:

1 Start Of Hour

2 Start Of Day

3 Start Of Week

4 Start Of Month

5 Start Of Year

6 None

LabelStep Default is zero, or one, and it will show all the axis labels the scale area allows.
A values of 2 will hide two months of a quarter, a value of 6 shows a date label
every 6-months.

Format "{value|mmm-yy}"

Notes:
Controlling the stepping of dates is highly dependent upon the amount of area available to display
dates.
If using a custom date series, convert each element to ChartTime. As an example, in the After
Trading Day script: DateSeries = chartTime(test.currentdate, test.currentTime)
To use the internal default date/time chartTime series, pass in 0 as the date series. Further
parameters can still be used for formatting and such.

Example:

' ~~
' Multi-Line Chart Example in AddLineSeries Examples:
' ~~
' Set X-Axis Dates to use beginning of month
chart.SetxAxisDates(AsSeries(DateSeries), elementCount, 4)

www.forex-warex.com

Part 5 – Trading Objects Reference 513

© 2013, Trading Blox, LLC. All rights reserved.

Multiple System Equity Curves.tbx

Links:

AddLineSeries, AsSeries

See Also:

ChartTime, Colors

www.forex-warex.com

Trading Blox Builder's Guide514

© 2013, Trading Blox, LLC. All rights reserved.

4.14 SetxAxisLabels

This function will place a label along the X-Axis of a chart. It works with charts that have the X-Axis in
its normal location below the plot lower boundary area, or along the left side of the chart when the
NewYX function's optional parameter "Vertical" option is applied.

Syntax:

chart.SetxAxisLabels(AsSeries(LabelSeries), LabelCount)

Parameter: Description:

LabelSeries BPV String Series.

Note:
Use with all BPV Numeric or String series that are passed to any Chart
parameter.
AsSeries(...) function conditions the series so the chart function will be
able to use the information contained within each of the series elements.

LabelCount Number of labels contained in the BPV String series.

NOTE:
Custom labels are located at the chart's tick-marks, and they are passed to this function using a
BPV String series. String series can be auto-indexed, or manually sized and manually indexed,
but both indexing types of series must be passed using the AsSeries function.

Label names are created as part of the chart's creation code. Their placement on the chart and
the space between each label is handled by the logic used to create the label names that the
script places into the elements of the series. Space between label when there are lot of data
points along the X-Axis is required to prevent the placement of subsequent labels from covering
the previous label because the tick marks where the labels are place are too close together.

Label can be applied the chart's X-Axis when it is in its standard position below the chart's plotting
area, or when tje X-Axis is rotated. When the X-Axis is rotated, the labels will be placed near the
tick-mark just outside of the chart's left vertical plotting boundary area.

Example:

www.forex-warex.com

Part 5 – Trading Objects Reference 515

© 2013, Trading Blox, LLC. All rights reserved.

' ~~
' HORIZONTAL BAR & COLUMN CHARS with Axis Labels
' ~~
' Establish Contour map image size
iChartWidth = 600 ' X-Axis Width
iChartHeight = 300 ' Y-Axis Height

' Create graphing space for a bar chart wide,
' tall with chart title "vertical" option creates
' horizontal bars.
chart.NewXY("Vertical Bars", iChartWidth, iChartHeight, "")
'chart.NewXY("Horizontal Rotated Axis Bars", _
' iChartWidth, iChartHeight, "Vertical")

' Size the Bar Ploting area
chart.SetPlotArea(10, 40, 60, 70)

' Values entered into each parameter location can change the
' appearance of the layout and 3D depth effect.
chart.AddBarLayer(3)

' Add x-Axis Bar Labels
chart.SetxAxisLabels(AsSeries(LabelSeries), iBarCount)

' Add 10 element Bar series data "bar1"
chart.AddBarSeries(AsSeries(bar1), iBarCount)

' Add 10 element Bar series data "bar2"
chart.AddBarSeries(AsSeries(bar2), iBarCount)

' Create an image of the contour map named: contour.png
' & save that image into the test results folder
chart.Make(test.resultsReportPath + "\" + "HVbars.png")

Links:

 AddBarLayer, AddBarSeries, AsSeries, Make, NewXY, resultsReportPath

www.forex-warex.com

Trading Blox Builder's Guide516

© 2013, Trading Blox, LLC. All rights reserved.

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 517

© 2013, Trading Blox, LLC. All rights reserved.

Section 5 – Email Manager

Trading Blox provides the functions needed to send unsecured, and secured emails. Unsecured
email servers are not very popular any longer, so you might forced to only use the SSL (Secure
Socket Layer) encryption connection function to establish a connection. SSL method emails are
more secure because of the authentication processes involved that are used with unsecured emails.

To understand what is required, spend time reviewing the functions and the examples, and get the
information your email client is required to use when you send an email using a specific email
service.

When you have a working email process functioning with Trading Blox you will be able to send text
messages and files like the standard Trading Blox files, or a customer position and order file created
for how you communicate brokerage orders.

Function Name: Description:

EmailConnect connects to the email server

EmailConnectSSL connects using stunnel SSL

EmailSend sends an email

EmailSendHTML sends an html formatted email

EmailDisconnect disconnects from the email server

www.forex-warex.com

Trading Blox Builder's Guide518

© 2013, Trading Blox, LLC. All rights reserved.

5.1 Email Connect

The EmailConnect function connects to the email server.

Syntax:

connected = EmailConnect(serverName, [returnEmail], [replyEmail], [userName], [password], [port])

Parameter: Description:

serverName name of the email server

[returnEmail] return address

[replyEmail] reply address

[userName] username for the email account

[password] password for the email account

[port] port

Example:

Returns:

connected =

Links:

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 519

© 2013, Trading Blox, LLC. All rights reserved.

5.2 EmailConnectSSL

The EmailConnectSSL function connects to the email server using SSL over Stunnel.
Required for sending mail through gmail and yahoo mail.

// that the only differences between them are the server names
// and the SMTP ports, which is either 465 or 587.
//
// Provider Port Server Name
// -------- ---- -----------
// GMAIL 465 smtp.gmail.com
// 995 pop.gmail.com
// 993 imap.gmail.com
//
// HotMail 587 smtp.live.com
// 995 pop3.live.com
//
// Yahoo 465 plus.smtp.mail.yahoo.com
// 995 plus.pop.mail.yahoo.com
//
// MS Online 587 smtp.mail.microsoftonline.com
// 995 pop.mail.microsoftonline.com
//
// Sympatico 587 smtphm.sympatico.ca
// 995 pophm.sympatico.ca

Syntax:

connected = EmailConnectSSL(serverName, [returnEmail], [replyEmail],
[userName], [password], [port])

Parameter: Description:

serverName Name of user's email server

[returnEmail] Return email address

[replyEmail] Reply to email address

[userName] User's "username-ID" for their email account

[password] Password for the user's email account

[port] Out-Going SMTP port number

Example:

' ~~
' Connect to user's Out-Going mail server
If EmailConnectSSL("smtp.gmail.com", _
 "tradingblox@gmail.com", _
 "tradingblox@gmail.com", _
 "tradingblox@gmail.com", _

www.forex-warex.com

Trading Blox Builder's Guide520

© 2013, Trading Blox, LLC. All rights reserved.

 "password", 465) THEN
 ' When Connection is reported as TRUE,...
 ' Send a HTML email message here:
 EmailSendHTML("tim@tradingblox.com", _
 "TradingBlox Orders", "@" + test.orderReportPath)
 ' Send the same HTML email message here:
 EmailSendHTML("tim@tradingblox.com", "Trading Blox Reports", _
 "", "", "", "", _
 "Images/TradingBloxLogo.jpg")
 ' Send a regular Text-Only email message here:
 EmailSend("tim@tradingblox.com", "Trading Blox Orders", _
 "Order Report Attached", "", "", test.orderReportPath)
ELSE
 ' Create an Error condition that generates a message
 ERROR ("Unable to connect to email server")
ENDIF

' Disconnect from the user's out-going email server
EmailDisconnect()
' ~~

Returns:

connected = value of true if the connection was successful

Links:

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 521

© 2013, Trading Blox, LLC. All rights reserved.

5.3 Email Send

This function sends email using the connection to the email server setup with EmailConnect.

Syntax:

EmailSend(toList, subject, message, [cclist], [bcclist], [attachments])

Parameter: Description:

toList list of email address to send the email to. To send to more than one email
address put <> around each address and separate using a semi colon.

subject subject of the email

message message body of the email

[cclist] email cc list

[bcclist] email bcc list

[attachments] list of file names to attach. Full path name required. Separate multiple files
by a semicolon only -- no spaces.

Example:

' ~~
EmailSend("thewebmaster@tradingblox.net",_
 "Trading Blox Order Message", outputString)

EmailSend("<thewebmaster@tradingblox.net>;<myBroker@tradingblox.net>",_
 "Trading Blox Order Message", outputString)

EmailSend("thewebmaster@tradingblox.net",_
 "Trading Blox Order Message", outputString,_
 "", "", "c:\myResults.pdf")

EmailSend("thewebmaster@tradingblox.net", "Trading Blox Order Message",_
 outputString, "", "", "c:\myResults.pdf;c:\myOrders.csv")
' ~~

Returns:

Links:

See Also:

www.forex-warex.com

Андрей
tr-software-download

Trading Blox Builder's Guide522

© 2013, Trading Blox, LLC. All rights reserved.

5.4 EmailSendHTML

This function sends html formatted email using the connection to the email server setup with
EmailConnect.

Additional EmailSendHTML Notes:
If the first character of the message (6th argument) or alternate text (8th argument) is a '@', then it
is considered as the filename which contains the message to send.

The 'Images' field contains the filenames of images that are to be embedded in the email
message. The first image must be referenced in the text of the HTML encode email message as

The second image (if any) must be referenced as

Continue in this way for all embedded images.
'AltText' is used to provide a plain ASCII text equivalent of the message for those email clients
that cannot decode HTML.

Syntax:

EmailSendHTML(toList, subject, message,_
 [ccList], [bccList], [attachments], [images],
[alternate text])

Parameter: Description:

toList the list of email address to send the email to. To send to more than one
email address put <> around each address and separate using a semi
colon.

subject subject of the email

message message body of the email

[ccList] email cc list

[bccList] email bcc list

[attachments] list of file names to attach. Full path name required. Separate multiple files
by a semicolon only -- no spaces.

[images] Image files to send

[alternate
text]

alternate text for plain text viewers

Example:

Returns:

www.forex-warex.com

Part 5 – Trading Objects Reference 523

© 2013, Trading Blox, LLC. All rights reserved.

Links:

See Also:

www.forex-warex.com

Trading Blox Builder's Guide524

© 2013, Trading Blox, LLC. All rights reserved.

5.5 EmailDisconnect

This function disconnects from the server setup with EmailConnect.

This function should be called before the test completes, in order to close the connection with the
email server

Syntax:

EmailDisconnect()

Parameter: Description:

<none>

Example:

' ~~
' Disconnect from out-going SMTP mail server.
EmailDisconnect()
' ~~

Returns:

Links:

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 525

© 2013, Trading Blox, LLC. All rights reserved.

Section 6 – File Manager

Object functions and properties allow the importing and exporting of data by way of external files.
Multiple files can be opened at the same time, and there are additional File & Disk Functions
functions available that support task associated with working with data on the disk and its various
sub-directory folders.

Functions: Description:

Close Closes an open file.

DefaultFolder Returns the default folder used by the file manager for locating
files. This is also the main Trading Blox folder

EndOfFile or EOF Returns TRUE if the end of the file is reached

CountLines Returns the number of lines in the file. Takes the file number as a
parameter

OpenRead Opens a file for reading

OpenWrite Opens a file for writing

PartialLine Returns TRUE if the entire line was not read fully by ReadLine

ReadLine Reads a line from a file into a string variable

WriteLine Writes a string to the file appending a new line character

WriteString Writes a string to the file without a new line character

See string functions GetField for use in parsing the input from files. See GetFieldCount for
discovering the number of comma seperated fields in the record.

NOTE:
If you are opening multiple files be sure to save the File Numbers into BPV Integer Variables for
use in other areas of the module.

If you save a File-Number in a temp Local variable, then it will be lost once you leave the script
section.

Normally one would open the files in the Before Test script and close in the After test script. The
BPV Integer File Number variables can then be used to read and write from the various files at
the same time. When using the OpenAppend function the file can be closed and opened multiple
times during the test, since the writing will always be appended to the end of the file.

Links:

File & Disk Functions, GetField, GetFieldCount

See Also:

www.forex-warex.com

Trading Blox Builder's Guide526

© 2013, Trading Blox, LLC. All rights reserved.

Functions: Description:

Close closes the file

CopyFile

CountLines returns the number of lines in the file.
Takes the file number as a parameter

CreateDirectory

DeleteFile

EditFile

FileExists

FileSize

MoveFile

OpenAppend

OpenFile

OpenFileDialog

OpenRead opens a file for reading

OpenWrite opens a file for writing

PartialLine returns TRUE if the entire line was not
read fully by ReadLine

ReadLine reads a line from a file into a string
variable

WriteLine writes a string to the file appending a new
line character

WriteString writes a string to the file without a new
line character

Functions: Description:

OpenRead opens a file for reading

OpenWrite opens a file for writing

Close closes the file

WriteLine writes a string to the file appending a new line
character

WriteString writes a string to the file without a new line
character

ReadLine reads a line from a file into a string variable

EndOfFile or EOF returns TRUE if the end of the file is reached

PartialLine returns TRUE if the entire line was not read fully
by ReadLine

www.forex-warex.com

Part 5 – Trading Objects Reference 527

© 2013, Trading Blox, LLC. All rights reserved.

defaultFolder returns the default folder used by the file
manager for locating files. This is also the main
Trading Blox folder.

CountLines returns the number of lines in the file. Takes the
file number as a parameter

www.forex-warex.com

Trading Blox Builder's Guide528

© 2013, Trading Blox, LLC. All rights reserved.

6.1 Close

The Close function closes a text file that has previously been opened using OpenRead or OpenWrite.
Pass in the optional file number if more than one file has been opened.

Syntax:

fileManager.Close(fileNumber)

Parameter: Description:

ffile number File number of each file opened

Returns:

<none>

Example:

' ~~
VARIABLES: lineString Type: String
VARIABLES: fileNumber Type: Integer
' ~~
' Open the file.
fileNumber = fileManager.OpenWrite("C:\FileToOpen.txt")

' If file-number > 0, . . .
If fileNumber > 0 THEN
 ' Create text line using the symbol, a comma delimiter
 ' and the instrument's close price
 lineString = instrument.symbol + "," + instrument.close

 ' Write the line to the file identified by the file-number.
 fileManager.WriteLine(fileNumber, lineString)

 ' Close the file identified by the file-number.
 fileManager.Close(fileNumber)
ENDIF
' ~~

Links:

Close, OpenWrite, WriteLine

See Also:

File Manager

www.forex-warex.com

Part 5 – Trading Objects Reference 529

© 2013, Trading Blox, LLC. All rights reserved.

6.2 CountLines

Function will return the number of records in a FileManager object opened file by using the file's file
number to access the file.

Syntax:

iRecs = fileManager.CountLines(iFilNum)

Parameter: Description:

iFilNum Integer value provided by the FileManager's Open methods.

Returns:

Number of records contained in the file.

Example:

' ~~
VARIABLES: sFullPathFileName, sPathName, sFileName Type: String
VARIABLES: iFilNum, iRecs Type: Integer
' ~~
' Combine Path + "\" + File-Name into a Full Path-File statement
sFullPathFileName = sPathName + sFileName

' If the file Exist, . . .
If FileExists(sFullPathFileName) THEN
 ' Open File to obtain its File Number
 iFilNum = fileManager.OpenRead(sFullPathFileName)
 ' If a File number is assigned, . . .
 If iFilNum THEN
 ' Count the Records contained in the file
 iRecs = fileManager.CountLines(iFilNum)
 ENDIF ' iFilNum
ENDIF ' FileExists
' ~~

Links:

FileExists, OpenAppend, OpenRead, OpenWrite

See Also:

FileManager, File & Disk Functions

www.forex-warex.com

Trading Blox Builder's Guide530

© 2013, Trading Blox, LLC. All rights reserved.

6.3 DefaultFolder

Function provides the full path location of Trading Blox.

Syntax:

' Get Trading Blox Installation Path
sTBPath = fileManager.DefaultFolder

Parameter: Description:

<none>

Returns:

Assigns the text containing the Full Path of the installed Trading Blox location.
i.e. C:\Trading Blox\

Example:

' ~~
VARIABLES: sTBPath Type: String
' ~~
' Get Trading Blox Installation Path
sTBPath = fileManager.DefaultFolder

Links:

See Also:

File Manager

www.forex-warex.com

Part 5 – Trading Objects Reference 531

© 2013, Trading Blox, LLC. All rights reserved.

6.4 EndOfFile

The EndOfFile function returns TRUE if the end of the file is reached after a sequence of ReadLine
calls while reading a file previously opened with OpenRead.

Syntax:

endReached = fileManager.EndOfFile(fileNumber)

Parameter: Description:

fileNumber File-number identified by the number value.

Returns:

endReached is set to TRUE when the End-of-File marker is reached.

Example:

' ~~
VARIABLES: lineString Type: String
VARIABLES: fileNumber Type: Integer
' ~~
' Open file for Read Only access.
fileNumber = fileManager.OpenRead("C:\FileToOpen.txt")

' When a file-number > 0 is available, . . .
If fileNumber > 0 THEN
 ' Loop reading lines until we reach the
 ' end of the file marker.
 Do UNTIL fileManager.EndOfFile(fileNumber)
 ' Read a line from the current file.
 lineString = fileManager.ReadLine(fileNumber)

 ' Print the line
 PRINT lineString
 LOOP

 ' Close the file.
 fileManager.Close(fileNumber)
ENDIF ' fileNumber > 0
' ~~

Links:

OpenRead, ReadLine

See Also:

File Manager

www.forex-warex.com

Trading Blox Builder's Guide532

© 2013, Trading Blox, LLC. All rights reserved.

6.5 OpenAppend

The OpenAppend function opens a text file for writing. If the file already exists, the file will be opened
for writing at the end of the file and any previous information will not be erased.

If the file cannot be opened, the function will return false.

To add more records to the file use the WriteLine and WriteString functions.

If a colon is included in the path, then the path is literal and used as is, so you can open any file in
any folder. If a colon is not included, then the path is relative to the Trading Blox directory. If a // is
included, then the path is literal so you can access any file on any folder on any server.

If the file name includes a colon, then the file name is considered a full path, and that full path will be
used.
If the file name starts with \\ then the file name is considered a full path to a server location.
If the file name does not contain a colon or \\, then the file name is considered relative to the main
Trading Blox folder.

Syntax:

fileNumber = fileManager.OpenAppend(fileName)

Parameter: Description:

fileName Full Path & File-Name of the file to open

Returns:

fileNumber = Trading Blox assigned file identication number of the file opened so additional
information can be added.

Example:

' ~~
VARIABLES: fileName Type: String
VARIABLES: fileNumber Type: Integer
' ~~
' Open file named so additional information can be appended.
fileNumber = fileManager.OpenAppend(fileName)

Links:

OpenRead, OpenWrite, WriteLine, WriteString

See Also:

File Manager

www.forex-warex.com

Part 5 – Trading Objects Reference 533

© 2013, Trading Blox, LLC. All rights reserved.

6.6 OpenRead

The OpenRead function opens a text file for reading. If the file is opened successfully, the File
Number is returned. The file can then be read using the ReadLine function.

If the file does not exist, the function returns FALSE or Zero.

If a colon is included in the path, then the path is literal and used as is, so you can open any file in
any folder. If a colon is not included, then the path is relative to the Trading Blox directory. If a // is
included, then the path is literal so you can access any file on any folder on any server.

If the file name includes a colon, then the file name is considered a full path, and that full path will be
used.
If the file name starts with \\ then the file name is considered a full path to a server location.
If the file name does not contain a colon or \\, then the file name is considered relative to the main
Trading Blox folder.

Syntax:

fileNumber = fileManager.OpenRead(fileName)

Parameter: Description:

fileName Name of the file to open

Returns:

fileNumber = File identification number when file is successfully opened for Read only access.

Example:

' ~~
VARIABLES: fileNumber Type: Integer
' ~~
' Open the file.
If fileManager.OpenRead("C:\FileToOpen.txt") THEN
 PRINT "File Opened Successfully"
ENDIF

OR
' Open the file.
fileNumber = fileManager.OpenRead("C:\FileToOpen.txt")

If fileNumber > 0 THEN
 PRINT "File Number", fileNumber, "Opened Successfully"
ENDIF
' ~~

Links:

See Also:

www.forex-warex.com

Trading Blox Builder's Guide534

© 2013, Trading Blox, LLC. All rights reserved.

www.forex-warex.com

Part 5 – Trading Objects Reference 535

© 2013, Trading Blox, LLC. All rights reserved.

6.7 OpenWrite

Function opens a text file for write only access using the WriteLine and WriteString functions.

If the file already exists, any information contained in the file will be erased.
If the file cannot be opened, the function will return FALSE or Zero.

If a colon is included in the path, then the path is literal and used as is, so you can open any file in
any folder. If a colon is not included, then the path is relative to the Trading Blox directory. If a // is
included, then the path is literal so you can access any file on any folder on any server.

If the file name includes a colon, then the file name is considered a full path, and that full path will be
used.
If the file name starts with \\ then the file name is considered a full path to a server location.
If the file name does not contain a colon or \\, then the file name is considered relative to the main
Trading Blox folder.

Syntax:

fileNumber = fileManager.OpenWrite(fileName)

Parameter: Description:

fileName Name of the file to open

Returns:

fileNumber = File identification number required to access the file when opened successful; Zero if not successful.

Example:

' ~~
VARIABLES: fileNumber Type: Integer
VARIABLES: lineString Type: String
' ~~
' Open the file.
fileNumber = fileManager.OpenWrite("C:\FileToOpen.txt")

If fileNumber > 0 THEN
 ' Construct the line.
 lineString = instrument.symbol + "," + instrument.close

 ' Write out the line to the file.
 fileManager.WriteLine(fileNumber, lineString)

 ' Another way to write the same thing as above.
 fileManager.WriteLine(fileNumber, instrument.symbol, instrument.close

 ' Close the file.
 fileManager.Close(fileNumber)
ENDIF ' fileNumber > 0
' ~~

Links:

www.forex-warex.com

Trading Blox Builder's Guide536

© 2013, Trading Blox, LLC. All rights reserved.

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 537

© 2013, Trading Blox, LLC. All rights reserved.

6.8 PartialLine

Function will return TRUE when the line being read is longer than the maximum String length of 512
characters. This chatacter length restriction requires the function to report a TRUE condition so the
programming will know when there are more character that are available. Access to the additional
characters is made available by performing additional ReadLine executions of the same record value.

Syntax:

iNotAllRecordData = fileManager.PartialLine

Parameter: Description:

<none >

Returns:

iNotAllRecordData is TRUE when record could NOT read the entire record's contents

Example:

' Read indexed record as a string
sRecord = fileManager.ReadLine(iFilNum, x)
' Did ReadLine Fail to get the entire record
iNotAllRecordData = fileManager.PartialLine

Links:

ReadLine, String

See Also:

www.forex-warex.com

Trading Blox Builder's Guide538

© 2013, Trading Blox, LLC. All rights reserved.

6.9 ReadLine

Function reads and returns all the characters from a file's record that was previously opened with the
OpenRead function. When ReadLine will read each line in the file and return its text contents until it
reaches the End-of-Line marker sequence.

This call can be used in conjunction with the GetFieldCount to identify how many fields are in a
comma delimited text file, and use the GetField functions to use that field count information to extract
values the text record in the lineString variable supplied by the ReadLine function's file access.

ReadLine will only read the first 512 characters of the line. If there are more characters then the
fileManager.PartialLine flag will be set to true, and the next call to ReadLine will return the
remaining characters.

When not using the optional lineIndex parameter, the file is read sequentially. When using the
lineIndex parameter the file can be read random access. But note that this later method is much
slower.

Syntax:

lineString = fileManager.ReadLine(fileNumber, [lineIndex])

Parameter: Description:

fileNumber File identification number of open file to be read.

[lineIndex] Optional line index to return, or when used to access a record, it will read
the record at the index value assigned.

Returns:

lineString = Text contents of the record read from the file.

Example:

www.forex-warex.com

Part 5 – Trading Objects Reference 539

© 2013, Trading Blox, LLC. All rights reserved.

' ~~
VARIABLES: lineString Type: String
VARIABLES: fileNumber Type: Integer
' ~~
' Open the file.
fileNumber = fileManager.OpenRead("C:\FileToOpen.txt")

If fileNumber > 0 THEN
 ' Loop reading lines until we reach the
 ' end of the file.
 Do UNTIL fileManager.EndOfFile(fileNumber)
 ' Read a line from the current file.
 lineString = fileManager.ReadLine(fileNumber)

 ' Print the line
 PRINT lineString
 LOOP

 ' Close the file.
 fileManager.Close(fileNumber)
ENDIF
' ~~

Links:

DO, GetField, GetFieldCount, EndOfFile, PartialLine, OpenRead

See Also:

File Manager

www.forex-warex.com

Trading Blox Builder's Guide540

© 2013, Trading Blox, LLC. All rights reserved.

6.10 WriteLine

Function writes an optional list of string expressions to a file that was previously opened with
OpenWrite function, and then writes the Windows End-of-Line character sequence after all the
expressions have been written.

If no expressions, or numeric variables are supplied, then WriteLine just writes the End-of-Line
character sequence.

For Windows, the End-of-Line sequence is ASCII character 10 for Line Feed. Windows text file
editors like NotePad will interpret this sequence as the start of a new line. If more than one parameter
is passed, they are separated by commas for ease of using CSV formatting to simplify file use in
spreadsheet programs.

Syntax:

fileManager.WriteLine(fileNumber, [expression , expressionTwo ...])

Parameter: Description:

fileNumber file number if more than one file has been
opened.

[expression , expressionTwo ...] the first string expression to write (optional) and
second string expression to write (optional)

Returns:

nothing is returned

Example:

' ~~
VARIABLES: lineString Type: String
VARIABLES: fileNumber Type: Integer
' ~~
' Open the file.
fileNumber = fileManager.OpenWrite("C:\FileToOpen.txt")

If fileNumber > 0 THEN
 ' Construct the line.
 lineString = instrument.symbol + "," + instrument.close

 ' Write out the line to the current file.
 fileManager.WriteLine(fileNumber, lineString)

 ' Another format for the above.
 fileManager.WriteLine(fileNumber, instrument.symbol, instrument.close)

 ' Close the file.
 fileManager.Close(fileNumber)
ENDIF ' fileNumber > 0
' ~~

www.forex-warex.com

Part 5 – Trading Objects Reference 541

© 2013, Trading Blox, LLC. All rights reserved.

Links:

Close, OpenWrite

See Also:

File Manager

www.forex-warex.com

Trading Blox Builder's Guide542

© 2013, Trading Blox, LLC. All rights reserved.

6.11 WriteString

The WriteString function writes a list of string expressions to a file that was previously opened with
OpenWrite. It does not write the windows end-of-line character like WriteLine does. If multiple
parameters are passed, they are not separated by commas, so you can control the exact characters
being output.

Syntax:

fileManager.WriteString(fileNumber, expression [, expressionTwo ...])

Parameter: Description:

fileNumber file number if more than one file has been opened

expression the first string expression to write

[,
expressionTwo...
]

the second string expression to write (optional)

Returns:

Nothing is returned.

Example:

' ~~
VARIABLES: lineString Type: String
VARIABLES: fileNumber Type: Integer
' ~~
' Open the file.
fileNumber = fileManager.OpenWrite("C:\FileToOpen.txt")

If fileNumber > 0 THEN
 ' Write out the date to the current file.
 fileManager.WriteString(fileNumber, instrument.date, ",")

 ' Construct another line.
 lineString = instrument.symbol + "," + instrument.close

 ' Write out the line to the current file.
 fileManager.WriteString(fileNumber, lineString)

 ' Write out the end-of-line character sequence.
 fileManager.WriteLine(fileNumber)

 ' Close the file.
 fileManager.Close(fileNumber)
ENDIF ' fileNumber > 0
' ~~

Links:

Close, OpenWrite

www.forex-warex.com

Part 5 – Trading Objects Reference 543

© 2013, Trading Blox, LLC. All rights reserved.

See Also:

File Manager

www.forex-warex.com

Trading Blox Builder's Guide544

© 2013, Trading Blox, LLC. All rights reserved.

Section 7 – Instrument

All instrument data is specific to each system's portfolio, and the instrument specific data that is
generated as a result of the simulation.

Additional specific instrument information can be added by a user creating a new IPV variable name
that will be in context when that specific instrument time arrives in the instrument rotation that happens
in all instrument specific script sections. Added external data can be loaded into specific instruments
by looping through the instruments before it is needed in the simulation. Scripts like Before Test and
Before Trading Day are often used to load instrument information in a bulk processing of all
instruments.

In most cases where the same symbol data is used in suites hosting multiple system, the actual file
data in each instrument's file will be the same. Although prices are the same for an instrument over
all systems, the positions and trades are often different over multiple systems. This means each
instrument's object data collection is a specific instance of information that is only representative of
that instrument's information in that system. When trying to make a decision with your scripting code
to use an IPV or a BPV, the decision should be based upon whether the value being used is specific
to the instrument, or universal for all instruments. When it is specific to an instrument, use an IPV;
when the same value is to be applied to all instruments, use a BPV.

Added information can be assigned during execution, or it can be assigned at the initialization of a
test. How to decide when added information is assigned to an instrument should be based upon how
soon the information will be needed to affect system operations, or whether the repeated calculations
done ahead of time to create a static test value make sense to do them once. In most cases the
decision is fairly simple, and the process of assigning information ahead of time is easy using the
System function LoadSymbol.

Most of the time LoadSymbol is used in script where the instruments will not have automatic context.
 These script section, shown in the next table, only execute once for each test record, whereas a
script section where instruments have automatic context are executed once for each instrument of
each test record.

Scripts Without Automatic Instrument Context:

Script Name: Usual
Sequence:

Before Simulation 1

Before Test 2

Before Trading
Day

3

Before Bar 4

Before Order
Execution

5

After Bar 6

Initialize Risk
Management

7

Compute Risk
Adjustment

8

After Trading Day 9

After Test 10

www.forex-warex.com

Part 5 – Trading Objects Reference 545

© 2013, Trading Blox, LLC. All rights reserved.

After Simulation 11

In scripts where multiple instrument must be processed and where automatic instrument context is not
supported must use LoadSymbol and then use a looping structure like a For Next area so that each
instrument can be loaded and processed within the looping structure.

An instrument can be loaded into a special type of BPV object structure using the LoadSymbol
function. In a BPV dialog there is a data type named 'instrument'.

This is why the LoadSymbol function can take take a symbol and a system's information as
parameters. When both are used, the reach of the LoadSymbol process can extend outside of the
module where the work is being performed.

When a BPV Instrument Type variable is used to load an instrument's information, that name can be
used elsewhere in the module to reference the values of the last loaded instrument. In some cases a
series of BPV - Instrument types are created with recognizable names so they can each load a
different instrument and provide simple access to that instrument's information whether it is in context
or not where it is needed.

Scripts were instrument context is automatic execute each script once for each instrument for each
test bar within the test period range. Instrument that don't have a trade data record with a test record
location will allow access to the previous instrument record when it exists, or will just skip the
instrument when there is no previous record is available. In these scripts, most often when an
instrument that doesn't have context at the time of when the instrument brought into context must be
accessed, then no looping structure is needed unless more than one instrument needs to be
accessed.

 Scripts with Automatic Instrument Context:

Script Name: Usual
Sequence:

Rank Instruments 1

www.forex-warex.com

Trading Blox Builder's Guide546

© 2013, Trading Blox, LLC. All rights reserved.

Filter Portfolio 2

Before Instrument
Day

3

Exit Orders 4

Entry Orders 5

Unit Size 6

Can Add Unit 7

Update Indicators 8

Can Fill Order 9

Exit Order Filled 10

Entry Order Filled 11

After Instrument
Open

12

Adjust Stops 13

After Instrument Day 14

Compute Instrument
Risk

15

Adjust Instrument
Risk

16

For most common usage, in the Entry and Exit scripts for example, the instrument object is setup for
the default instrument being processed, and for the test in which the script is executing.

BPV instrument objects can be defined in scripting, and will have access to the same functions and
properties as the default instrument object.

Correlation Properties
Correlation Functions
Data Access Properties
Data Functions
Group Properties
Historical Trade Properties
Instrument Loading Functions
Position Functions
Position Properties
Ranking Functions
Ranking Properties
Trade Control Properties
Trade Control Functions

If you want to save a value that is independent of instruments, use a Block Permanent Variable (see
Variables and Types).

Instrument properties and functions can be accessed using the '.' syntax:

www.forex-warex.com

Part 5 – Trading Objects Reference 547

© 2013, Trading Blox, LLC. All rights reserved.

Example:

variable1 = instrument.date

or if myTempInstrument is defined as a BPV Instrument object:

variable1 = myTempInstrument.date

Links:

See Also:

www.forex-warex.com

Trading Blox Builder's Guide548

© 2013, Trading Blox, LLC. All rights reserved.

7.1 Data Properties

Bar Indexing
Properties listed with a '[]' following them may be indexed using a number which determines which
day's data to access. There are also built in constants for 'today' and 'yesterday' which can be used.
For example:

yesterdaysDate = instrument.date[1]

OR

yesterdaysDate = instrument.date[yesterday]

will access yesterday's date.

If no index is used (i.e. like instrument.date above) then the value will return the current bar. This
value will be set to yesterday's bar for scripts which are run before the trading day and to today's bar
for scripts run after the current date has been set.

Data Access Properties:

Property: Description:

activeStatus optional value for stocks, A for active and I for inactive

averageVolume Current 5 day EMA of the unAdjustedVolume. Used internally by
Trading Blox for volume filters such as max volume per trade and
minimum volume.

This property is computed dynamically during the simulation run and
can be used in scripting as needed. This property cannot be used in
Calculated Indicators because all values for all calculated indicators are
computed before the simulation starts running, and this property has not
been computed yet.

Test computed indicators do not support look-back references.
However, their calculated result from each instrument bar can be stored
in an IPV series that will support look-back referencing if that process is
coded into the blox.

bar the bar number for the current date. Bar 1 is the first bar of data
loaded. The start of the test is likely not Bar 1.

bigPointValue usually 1.00 for Stocks, unless the Convert Profit by Stock Splits global
is on. In that case the big point value is the unadjusted close divided by
the adjusted close for any given day. For Futures, as set in the Futures
Dictionary and adjusted by the currency conversion if there is one.
Does not change for futures. For Forex, the current value in dollars for
the pair. For Forex, this number can change each day.

brokerSymbol the broker symbol as defined in the dictionary

close[] the close for the specified bar

conversionRate The conversion rate of foreign denominated futures and stocks. This
respects the "reverse conversion" checkbox in the forex dictionary.

currency The currency in which the future is denominated. Set in the Futures or
Stock Dictionary.

www.forex-warex.com

Part 5 – Trading Objects Reference 549

© 2013, Trading Blox, LLC. All rights reserved.

currencyBorrowRate The borrow rate of the currency.

currencyDate The current date of the currency converter, if present.

currencyLendRate The lending rate of the currency.

currencyTime The current time of the currency converter, if present.

currentBar the bar number minus the startBar plus one.

currentWeek the weekIndex minus the startWeek plus one.

dataLoadedBars total number of bars of data loaded and cached.

dataVendorID optional value for stocks, the data vendor id

date[] the date value for the specified bar. In YYYYMMDD format.

dayClose

[dayIndex]
the close of the current day as of the current time

dayHigh

[dayIndex]
the high of the current day as of the current time.

dayIndex the current day index for use with the day series which is derived from
intraday data

dayLow[dayIndex] the low of the current day as of the current time

dayOpen

[dayIndex]
the open of the current day

dayVolume

[dayIndex]
the volume of the current day as of the current time

defaultAverageTrue
Range

Current internal computation of the 39 day average true range. Used
internally for slippage calculations.

This property is computed dynamically during the simulation run and
can be used in scripting as needed. This property cannot be used in
Calculated Indicators because all values for all calculated indicators are
computed before the simulation starts running, and this property has not
been computed yet.

Test computed indicators do not support look-back references.
However, their calculated result from each instrument bar can be stored
in an IPV series that will support look-back referencing if that process is
coded into the blox.

deliveryMonth the delivery month of the contract represented by the data -- format:
YYYYMM (futures only)

deliveryMonthLette
r

the delivery month letter (Z for December, etc)

description the description from the appropriate dictionary for this symbol

displayDigits the number of digits to the right of the decimal, as set in the dictionary.

dividend the dividend for the current bar

endBar the bar number for the last day of testing for this instrument. Not system
specific.

endDate the end date of testing for this instrument. Not system specific. Can be
different than the lastDataLoadedDate if the end testing date changes to
an earlier date after the data is loaded and cached.

www.forex-warex.com

Trading Blox Builder's Guide550

© 2013, Trading Blox, LLC. All rights reserved.

exchange the instrument's exchange

extraData1[] ...
extraData8[]

the value of any optional extra data appended to the data file for the
specified bar. There are up to 8 extra data fields you can use with this
format.

fileName the filename of the instrument

firstDataLoadedDat
e

The first date of the data loaded and cached for this instrument. Not
system specific.

folder the folder location of the file

forexBaseBorrowRat
e

the borrow interest rate of the Base side of the forex pair

forexBaseLendRate the lending interest rate of the Base side of the forex pair

forexPipSize the pip size of the forex market as set in the forex dictionary with 7-
decimal maximum size

forexPipSpread the pip spread as set in the forex dictionary

forexQuoteBorrowRa
te

the borrow interest rate of the Quote side of the forex pair

forexQuoteLendRate the lend interest rate of the Quote side of the forex pair

high[] the high for the specified bar

inPortfolio returns TRUE if the instrument is in the system's portfolio. returns
FALSE if the instrument is a supporting forex file or loaded using
LoadSymbol and not in the portfolio.

intradayData returns TRUE if the instrument is using intraday data

isForex returns TRUE if the instrument is a forex

isFuture returns TRUE if the instrument is a future

isPrimed returns TRUE if the instrument is primed

isStock returns TRUE if the instrument is a stock

julianDate[] the number of days since 1900 for the current bar

lastBarOfDay returns TRUE if the bar is the last bar in the day

lastDataLoadedDate The last date of the data loaded and cached for this instrument. Not
system specific.

lastDayOfMonth returns TRUE if the bar is the last bar in the month

lastDayOfWeek returns TRUE if the bar is the last day in the week

lastDayOfYear returns TRUE if the bar is the last bar in the year

lastTradingInstrum
ent

returns TRUE if the instrument is the last trading instrument for the
trading day.

low[] the low for the specified bar

margin the margin requirement for a futures instrument as set in the Futures
Dictionary. Not used for stocks or forex.

minimumTick the amount of the minimum tick in points. For futures this is set in the
Futures Dictionary. For stocks this is .01 divided by the stock split
adjustment, which is calculated as the unadjusted close divided by the
adjusted close. In this way, the actual minimum tick for the time period
can be determined.

www.forex-warex.com

Part 5 – Trading Objects Reference 551

© 2013, Trading Blox, LLC. All rights reserved.

minimumVolume the minimum volume setting from global parameters. Uses the stock
minimum value for stocks, and the futures minimum volume for futures.
Forex returns minimum volume of zero.

monthClose

[monthIndex]
the close of the current calendar month, as of the current day

monthHigh

[monthIndex]
the high of the current calendar month, as of the current day

monthIndex the current month index for use with the month series

monthLow

[monthIndex]
the low of the current calendar month, as of the current day

monthOpen

[monthIndex]
the open of the current calendar month

nativeBPV the native currency big point value, as set in the dictionary

negativeAdjustment for back-adjusted data that goes below zero (eg CL) all prices are
raised so that no price will be negative. This is the amount by which
the prices are raised. Normally you don't need this since the debugger
prices, trade prices, and order generation prices are all converted back
to normal prices. But if you need the actual price for calculations in the
script, or to print the value, then you would subtract this amount.

open[] the open for the specified bar

openInterest[] the open interest for the specified bar (if available)

orderSortValue the order sort value as entered in the Futures Dictionary

referenceID This property is a special object pointer that is used by custom DLL
extension functions to access instrument object information.

priorityIndex the numerical order of the instruments used in a system. For futures,
the order is based on the order ranking in the futures dictionary. For
stocks and Forex, the order is alphabetical. Each system will have its
own ranking of instruments. All scripts that loop over instruments will do
so in this order.

roundLot returns the round lot of the instrument, as set in the dictionary

savedWFProfit The Walk Forward process saves open positions from one OOS test to
the next. For Forex, the profit is saved as well to help compute the
overall profit of the combined OOS tests. This value is available in the
After Test script for debugging purposes.

startBar the bar number of the first day of testing for this instrument taking into
consideration the priming required for this instrument for this system.

startDate the start date of testing for this instrument and system taking into
consideration priming. Is usually different than the firstDataLoadedDate.

startWeek the weekIndex of the startBar

stockSplitRatio The ratio of the unadjusted close to the adjusted close. When Convert
Profit by Stock Splits global is on, then the profit is multiplied using this
ratio on trade entry date vs. trade exit date, to account for the increase
in shares due to the splits during the course of the trade.

symbol the instrument's trading symbol, e.g. S, IBM, CL

systemClosedEquity the current system closed equity for the instrument

systemOpenEquity the current system open equity for the instrument

www.forex-warex.com

Trading Blox Builder's Guide552

© 2013, Trading Blox, LLC. All rights reserved.

systemTotalEquity the current total system profit/loss for the instrument

testClosedEquity the current test closed equity for the instrument

testOpenEquity the current total test open equity for the instrument

testTotalEquity the current total test profit/loss for the instrument

time[] the time value for the specified bar. 0 if daily data. In HHMM format.

tradeDayOpen the open for tomorrow. Useful in the Entry script to know the open for
the trade day.

tradesOnTradeBar

 (New)

tradesOnTradeDate

 (Obsolete)

returns TRUE if the instrument trades on the current trading date/time.
Works for intra day as well as daily systems to confirm if there is a bar
of data for the current test date/time. Important to use when excluding
holidays from a computation.

tradingMonths the trading months list defined in the Futures Dictionary. Used only for
accounting for contract rolls estimation, when the data does not have
the delivery month.

unadjustedClose the actual close price unadjusted for contract merging (futures), splits,
or dividends (stocks)

unAdjustedVolume the volume for stocks, unadjusted by stock splits. Typically the the raw
OHLC and V in the data series are all adjusted for stock splits.

usedMargin the total margin used for the current open position. This is purchase
equity for stocks and total margin for futures.

volume[] the volume for the specified bar

weekClose

[weekIndex]
the close of the current calendar week, as of the current day

weekHigh

[weekIndex]
the high of the current calendar week, as of the current day

weekIndex the current weekIndex used for the week series.

weekLow

[weekIndex]
the low of the current calendar week, as of the current day

weekOpen

[weekIndex]
the open of the current calendar week

Links:

Data Functions

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 553

© 2013, Trading Blox, LLC. All rights reserved.

7.2 DataFunctions

The following functions can be used to round or format price data and to load external data:

Function Name: Description:

AddCommission adds the specified amount to the commission to the
specified unit of the current position for the instrument.

Extract(fileName, startDate, endDate) Extracts all indicators and IPV Series variable by day
and by instrument to a file.

GetDateTimeIndex Returns the time index within a date.

GetDayIndex returns the day index for a date

PriceFormat returns the price as a string formatted for printing. For
example, a price for Soybeans of 6.25 will return "6
1/4". Does not round to tick.

RealPrice returns the real price, converted back from being
negative adjusted.

RoundTick Rounds the specified price to the nearest tick

RoundTickDown returns the price rounded down to the next tick

RoundTickUp returns the price rounded up to the next tick

RoundTick Rounded_Price = (price + minimumTick / 2)

Links:

Data Properties

See Also:

AddCommission

Adds commission per share/contract to the specified unit of the current position for the instrument. If
there is no current position or the unit number is out of range, then it will return an error.

Syntax

instrument.AddCommission([unitNumber], commission)

www.forex-warex.com

Trading Blox Builder's Guide554

© 2013, Trading Blox, LLC. All rights reserved.

Parameters

unitNumber the unit number to which the commission will
be added

commission the commission amount to add per share or
contract, in base system currency

Example of adding commission when an order is first entered. Place in the Entry Order Filled
Script

' Add $12 in commission per contract or share to this new unit.
' If there are 5 contracts or shares, the total commission added will

be $60.

instrument.AddCommission(instrument.currentPositionUnits, 12)

Extract

Syntax:

Extract(fileName, startDate, endDate)

Parameter: Description:

Returns:

Example:

Links:

See Also:

GetDateTimeIndex

Returns the bar index of the date and time. This bar index synchronizes with the instrument.bar. To find
the close for a bar Index returned, subtract from instrument.bar and use as a lookback index.

Returns -1 if the date time is not found in the instrument series.

Syntax

www.forex-warex.com

Part 5 – Trading Objects Reference 555

© 2013, Trading Blox, LLC. All rights reserved.

barIndex = instrument.GetDayIndex(date, time)

Parameters

date the date in YYYYMMDD format.

time the time in HHMM

Example
barIndex = instrument.GetDayIndex(20060101, 1130)

IF barIndex <> -1 THEN
barClose = instrument.close[instrument.bar - barIndex]
barDate = instrument.date[instrument.bar - barIndex]

ENDIF

PRINT barClose, barDate

GetDayIndex

Returns the bar index of the date and optional time. This bar index synchronizes with the instrument.bar.
To find the close for a bar Index returned, subtract from instrument.bar and use as a lookback index.

Returns -1 if the date is not found in the instrument series.

Syntax

barIndex = instrument.GetDayIndex(date, [time])

Parameters

date the date in YYYYMMDD format.

time the optional time in HHMM format

Example
barIndex = instrument.GetDayIndex(20060101)

IF barIndex <> -1 THEN
barClose = instrument.close[instrument.bar - barIndex]
barDate = instrument.date[instrument.bar - barIndex]

ENDIF

PRINT barClose, barDate

www.forex-warex.com

Trading Blox Builder's Guide556

© 2013, Trading Blox, LLC. All rights reserved.

PriceFormat

Returns the price formatted for printing. For example, a price for Soybeans of 6.25 will return "6 1/4".

Note that this function does not change the value of the price, and if a tick value is required
RoundTickUp and/or RoundTickDown can be used to adjust the price prior to using this function.

This function returns a string value, and cannot then assigned to a floating point variable or used in any
computations. The return value should only be used for Printing or Reporting purposes.

Syntax

roundedValue = PriceFormat(price)

Parameters

price the price to be formatted

return value Returns a STRING type variable

Example
' Print the price.
PRINT "Price = ", instrument.PriceFormat(entryPrice)

RealPrice

Returns the real price as read from the data file. This can be different from the price used in scripting if the
data has been negative adjusted.

Syntax

rPrice = RealPrice(price)

Parameters

price the price value to adjust

Example
' Print the real price for debugging
PRINT instrument.RealPrice(instrument.close)

If the data series had any negative values in it, the entire data series
would be raised by the smallest factor or multiple of 10 possible. So if
the most negative number was -.5 then the data series would be raised by
1.00.

If the data series was raised by 1.00, then the
instrument.negativeAdjustment value would be 1.00, and the prices would be
higher by 1.00 than the actual data file, and the prices in the chart.

So a close price of 54 would be represented as 55 in scripting, but
charted as 54. To print the close price in real prices, use the
instrument.RealPrice function. In this case the return value of
instrument.RealPrice(55) would be 54, since the function subtracts the
instrument.negativeAdjustment value from the input price.

www.forex-warex.com

Part 5 – Trading Objects Reference 557

© 2013, Trading Blox, LLC. All rights reserved.

RoundTick

Rounds the specified price to the nearest tick using the instrument's tick value. Behaves the same as
roundTickDown(price + minimumTick/2).

Syntax

roundedValue = RoundTick(price)

Parameters

price the price to be rounded

Example
' Round the price to the nearest tick.
entryPrice = instrument.RoundTick(entryPrice)

RoundTickDown

Rounds the specified price rounded down to the nearest tick using the instrument's tick value.

Syntax

roundedValue = RoundTickDown(price)

Parameters

price the price to be rounded

Example
' Add one tick.
entryPrice = entryPrice + instrument.minimumTick

' Round the price up to the nearest tick.
entryPrice = instrument.RoundTickDown(entryPrice)

RoundTickUp

Rounds the specified price rounded up to the nearest tick using the instrument's tick value.

Syntax

roundedValue = RoundTickUp(price)

Parameters

price the price to be rounded

Example
' Add one tick.
entryPrice = entryPrice + instrument.minimumTick

' Round the price up to the nearest tick.
entryPrice = instrument.RoundTickUp(entryPrice)

www.forex-warex.com

Trading Blox Builder's Guide558

© 2013, Trading Blox, LLC. All rights reserved.

7.3 Correlation Functions

The correlation functions allow you to control the correlations for instruments dynamically as a test
runs.

Correlation Functions: Descriptions:

ResetCloselyCorrelated removes all instruments from the close correlation
matrix for this instrument

ResetLooselyCorrelated removes all instruments from the loose correlation
matrix for this instrument

AddCloselyCorrelated adds an instrument to the close correlation matrix for
this instrument

AddLooselyCorrelated adds and instrument to the loose correlation matrix for
this instrument

Links:

Correlation Properties

See Also:

ResetCloselyCorrelated

Removes all the instruments from the close correlation matrix for this instrument. This is usually done as
part of a dynamic correlation evaluation process where instruments are added based on their recent
correlation using the AddCloselyCorrelated function.

Syntax

ResetCloselyCorrelated

Parameters

none

Example
' Remove all the close correlations.
instrument.ResetCloselyCorrelated

ResetLooselyCorrelated

Removes all the instruments from the loose correlation matrix for this instrument. This is usually done as
part of a dynamic correlation evaluation process where instruments are added based on their recent
correlation using the AddLooselyCorrelated function.

Syntax

ResetLooselyCorrelated

www.forex-warex.com

Part 5 – Trading Objects Reference 559

© 2013, Trading Blox, LLC. All rights reserved.

Parameters

none

Example
' Remove all the loose correlations.
instrument.ResetLooselyCorrelated

AddCloselyCorrelated

Adds the specified market to the close correlation matrix for this instrument. This is usually done as part
of a dynamic correlation evaluation process where instruments are added based on their recent
correlation after a call has been made to the ResetCloselyCorrelated function.

NOTE: There is a maximum of 250 loose and 250 close correlations for each instrument. This function
is enabled for futures, forex, and stocks.

Syntax

AddCloselyCorrelated(symbol)

Parameters

symbol the symbol to add to the close correlation matrix

Example
' Add gold to the correlation matrix.
instrument.AddCloselyCorrelated("GC")

AddLooselyCorrelated

Adds the specified market to the loose correlation matrix for this instrument. This is usually done as part
of a dynamic correlation evaluation process where instruments are added based on their recent
correlation after a call has been made to the ResetLooselyCorrelated function..

NOTE: There is a maximum of 250 loose and 250 close correlations for each instrument. This function
is enabled for futures, forex, and stocks.

Syntax

AddLooselyCorrelated(symbol)

Parameters

symbol the symbol to add to the loose correlation matrix

Example
' Add gold to the correlation matrix.
instrument.AddLooselyCorrelated("GC")

www.forex-warex.com

Trading Blox Builder's Guide560

© 2013, Trading Blox, LLC. All rights reserved.

7.4 Correlation Properties

Correlation Property Names: Description:

closelyCorrelated String representation of all the closely correlated
instruments. Symbols separated by colons.

looselyCorrelated String representation of all the loosely correlated
instruments. Symbols separated by colons.

closelyCorrelatedLongUnits number of units long for all loosely correlated
instruments

closelyCorrelatedShortUnits number of units short for all closely correlated
instruments

looselyCorrelatedLongUnits number of units long for all loosely correlated
instruments

looselyCorrelatedShortUnits number of units short for all loosely correlated
instruments

closelyCorrelatedLongInstru
ments

number of long closely correlated instruments

closelyCorrelatedShortInstr
uments

number of short closely correlated instruments

looselyCorrelatedLongInstru
ments

number of long loosely correlated instruments

looselyCorrelatedShortInstr
uments

number of short loosely correlated instruments

closelyCorrelatedLongQuanti
ty

total quantity long for closely correlated instruments

closelyCorrelatedShortQuant
ity

total quantity short for closely correlated instruments

looselyCorrelatedLongQuanti
ty

total quantity long for loosely correlated instruments

looselyCorrelatedShortQuant
ity

total quantity short for loosely correlated instruments

closelyCorrelatedLongRisk total risk for closely correlated long instruments

closelyCorrelatedShortRisk total risk for closely correlated short instruments

looselyCorrelatedLongRisk total risk for loosely correlated long instruments

looselyCorrelatedShortRisk total risk for loosely correlated short instruments

closelyCorrelatedLongMargin total margin for closely correlated long instruments

closelyCorrelatedShortMargi total margin for closely correlated short instruments

www.forex-warex.com

Part 5 – Trading Objects Reference 561

© 2013, Trading Blox, LLC. All rights reserved.

n

looselyCorrelatedLongMargin total margin for loosely correlated long instruments

looselyCorrelatedShortMargi
n

total margin for loosely correlated short instruments

closelyCorrelatedLongProfit total profit for closely correlated long instruments

closelyCorrelatedShortProfi
t

total profit for closely correlated short instruments

looselyCorrelatedLongProfit total profit for loosely correlated long instruments

looselyCorrelatedShortProfi
t

total profit for loosely correlated short instruments

Note:
These do not include zero sized trades.

Links:

Correlation Functions

See Also:

www.forex-warex.com

Trading Blox Builder's Guide562

© 2013, Trading Blox, LLC. All rights reserved.

7.5 Group Properties

Group Index Categories:

1 = group1/industry

2 = group2/sector

3 = country

4 = currency

Dictionary Group Categories:

Group Names: Descriptions:

group1 name of the group1. Set in the Futures or Stock
Dictionary

group2 name of the group2.

industry same as group1. Used for stocks.

sector same as group2. Used for stocks.

country name of the country. Set in the Stock
Dictionary.

Instrument Group Properties:

Property Name: Descriptions:

groupLongInstruments[] the number of long instruments in the group

groupShortInstruments[] the number of short instruments in the group

groupLongQuantity[] the quantity long for instruments in the group

groupShortQuantity[] the quantity short for instruments in the group

groupLongUnits[] the number of units long for instruments in the
group

groupShortUnits[] the number of units short for instruments in the
group

groupLongRisk[] the total risk for long instruments in the group

groupShortRisk[] the total risk for short instruments in the group

groupLongMargin[] the total margin for long instruments in the
group

groupShortMargin[] the total margin for short instruments in the
group

groupLongProfit[] the total profit for long instruments in the group

groupShortProfit[] the total profit for short instruments in the group

Note:
These do not include zero sized trades.

www.forex-warex.com

Part 5 – Trading Objects Reference 563

© 2013, Trading Blox, LLC. All rights reserved.

www.forex-warex.com

Trading Blox Builder's Guide564

© 2013, Trading Blox, LLC. All rights reserved.

7.6 Historical Trade Properties

Trade Indexing:
Properties listed with a '[]' following them may be indexed using a number which determines the trade
starting with the last trade and working backward in time. If no index is supplied the property will
return the information for the last trade.

lastTradeProfit = instrument.tradeProfit[1]

OR

lastTradeProfit = instrument.tradeProfit

will access the last trade's profit for this instrument.

Historical Trade Properties: Descriptions:

tradeBarsInTrade[] the bars in the trade

tradeCommission[]

tradeCount the number of prior trades including zero size trades. Used to
index the following properties:

tradeCustomValue[] the custom value as set through scripting

tradeDaysInTrade[] the number days between entry and exit

tradeDirection[] the direction (LONG or SHORT)

tradeDollarsPerPoint[] the entry day dollars per point

tradeEntryBPV[] the entry bpv of the instrument

tradeEntryDate[] the entry date

tradeEntryFill[] the entry fill price

tradeEntryOrder[] the entry order price

tradeEntryRisk[] the entry risk as a percent of entry day trading equity

tradeEntryStop[] the protective stop on the day of entry

tradeEntryTime[] the entry time

tradeExitDate[] the exit date

tradeExitFill[] the exit fill price

tradeExitOrder[] the exit order price

tradeExitTime[] the exit time

tradeMaxAdverseExcursio
n[]

the maximum adverse excursion of the trade in points

tradeMaxFavorableExcurs
ion[]

the maximum favorable excursion of the trade in points

tradeMinFavorableExcurs
ion[]

the minimum favorable excursion

tradePositionReferenceI
D[]

Each unit in a position is given a the unique unit reference ID that
is passed on to this historical trade property. This ID number is
assigned to the position when it is enabled, and is then available

www.forex-warex.com

Part 5 – Trading Objects Reference 565

© 2013, Trading Blox, LLC. All rights reserved.

for each closed trade unit using the unit index with this property.
See instrument.unitPositionReferenceID[] and
order.referenceID.

tradeProfit[] the closed out profit including slippage and commission

tradeProfitPercent[] the profit as a percent of entry day trading equity

tradeQuantity[] the quantity in shares or contracts

tradeRuleLabel[] the rule label string as set in the unit, or the order that created the
unit.

tradeUnitNumber[] the unit number

www.forex-warex.com

Trading Blox Builder's Guide566

© 2013, Trading Blox, LLC. All rights reserved.

7.7 Instrument Loading

The following functions can be used with a Block Permanent Variable of type Instrument.

Instrument Loading
Functions:

Descriptions:

LoadSymbol Loads into an instrument variable the data from an instrument. The
instrument can be in the current portfolio, or not, and can be
accessed by either symbol, type:symbol, or index. To be used only
with a BPV variable of type Instrument; not to be used with the built in
"instrument" object.

LoadByLongRank Loads into an instrument variable the instrument located at the
specified long rank position.

LoadByShortRank Loads into an instrument variable the instrument located at the
specified short rank position.

LoadExternalData Loads into an instrument variable the data from an external file. The
data loads into IPV Series variables as defined.

LoadIPVFromFile Loads data into an IPV exactly as in the file. Does not fill holes in the
data.

www.forex-warex.com

Part 5 – Trading Objects Reference 567

© 2013, Trading Blox, LLC. All rights reserved.

LoadSymbol

Sets an instrument variable to a particular instrument. The instrument can be in the portfolio or not, and
the instrument can be set using the symbol, the type:symbol, or the index.

Recommended that all instruments to be loaded are loaded once in the Before Test script, so that these
instruments are set to the correct date when they are used. Subsequent calls to this function in the test
will not reload the instrument, but just set the variable accordingly.

Syntax

LoadSymbol(symbolSpecifier [or symbol] [or index], [system index])

Parameters

symbolSpecifier the symbol for the instrument with an optional
market type prefix like "F:GC" or "S:IBM"

Valid Prefixes:
 'F:' - Futures
 'S:' - Stocks
 'FX:' - Forex

symbol the symbol of the instrument like "S" or
"AUDCAD"

index the index in the current portfolio

systemIndex the optional system index for the instrument to
load.

returns TRUE if the load was successful

Examples

Create a Block Permanent Instrument Object Variable called tempInstrument.

VARIABLES: instrumentCount TYPE: Integer

' Get the instrument count.
instrumentCount = system.totalInstruments

' Loop printing the symbol for each instrument.
FOR index = 1 TO instrumentCount STEP 1

 ' Set the portfolio instrument.
 tempInstrument.LoadSymbol(index)

 ' Print out the file name.
 PRINT "Portfolio contains: ", tempInstrument.symbol

NEXT

Create a Block Permanent Variable called crudeOil.
This example assumes that the "CL" symbol is of the same type as the portfolio being tested:

www.forex-warex.com

Trading Blox Builder's Guide568

© 2013, Trading Blox, LLC. All rights reserved.

' Load the data for crude oil into the instrument
IF NOT crudeOil.LoadSymbol("CL") THEN PRINT "Could not load CL"

While this example makes it explicit, that "CL" is of type Futures. It is defined in the Futures Dictionary,
and the data is in the Futures Data Folder.

' Load the data for crude oil into the instrument
IF NOT crudeOil.LoadSymbol("F:CL") THEN PRINT "Could not load CL"

Here we are loading a market index which could be used to validate market trends before putting on a
position. The symbol of this instrument is "DJIA" and it is a stock.

IF NOT dowJoneIndustrials.LoadSymbol("S:DJIA") THEN PRINT "Could not
load DJIA"

To check if a loaded instrument is part of the system's portfolio, check if the instrument.priorityIndex >
0. If it is greater than zero, then it is part of the portfolio.

www.forex-warex.com

Part 5 – Trading Objects Reference 569

© 2013, Trading Blox, LLC. All rights reserved.

LoadByLongRank

Sets an instrument variable to a particular instrument.

Syntax

LoadByLongRank(rank)

Parameters

rank the long rank to load.

Examples

Create a Block Permanent Instrument Object Variable called tempInstrument.

' Loop printing the symbols in order of the long rank.
FOR index = 1 TO system.totalInstruments STEP 1

 ' Set the portfolio instrument.
 tempInstrument.LoadByLongRank(index)

 ' Print out the file name.
 PRINT "Long Ranking: ", index, tempInstrument.symbol

NEXT

.

www.forex-warex.com

Trading Blox Builder's Guide570

© 2013, Trading Blox, LLC. All rights reserved.

LoadByShortRank

Sets an instrument variable to a particular instrument.

Syntax

LoadByShortRank(rank)

Parameters

rank the short rank to load.

Examples

Create a Block Permanent Instrument Object Variable called tempInstrument.

' Loop printing the symbols in order of the short rank.
FOR index = 1 TO system.totalInstruments STEP 1

 ' Set the portfolio instrument.
 tempInstrument.LoadByShortRank(index)

 ' Print out the file name.
 PRINT "Short Ranking: ", index, tempInstrument.symbol

NEXT

.

LoadExternalData

Loads data from external text files and attaches it to particular instruments. Note that if using the
instrument object it must have default context such as in the After Instrument Day script. Normally this
function is used in the Before Simulation or Before Test script, so you need to create a BPV Instrument
variable to use. It must be loaded with an instrument by using LoadSymbol before using the
LoadExternalData function call.

See also LoadIPVFromFile function.

Option 1: Declare columns to be added as Instrument Permanent Auto Index Series Variables, so they
can then be accessed using the normal instrument.property usage and plotted.
Option 2: Columns are not declared, but are created as sparely populated arrays. These can be
accessed in a similar manner to IPV Series but cannot be plotted. These are useful to save memory
when running large stock tests, and if the loaded data is quarterly or some other non daily series.
Function must be placed in Before Simulation script to use this option.

If this function is used in the Before Simulation script the data is loaded just once for the entire
simulation. If placed in the Before Test script, it will be loaded (refreshed) before each parameter test
run. When using option 2 above, this function must be placed in the Before Simulation script in order

www.forex-warex.com

Part 5 – Trading Objects Reference 571

© 2013, Trading Blox, LLC. All rights reserved.

for the implicit series to be created on the fly.

The header column names in the file itself are ignored.

Note that the variable "portfolioInstrument" is a BPV instrument variable, and is loaded with LoadSymbol
prior to the use of this function. The default location for these files is the location of the data for the
instrument. To use a full path, include the "C:\" and any location can be used.

Syntax

loaded = LoadExternalData(fileName, dateColumn,
 [columnOne, columnTwo, ...])

Parameters

fileName the name of the file to open. If no path name is
given, it defaults to the location of the instrument
data file.

dateColumn the name for the column specifying the date --
"date"

columnOne the name for the first column of data after the
date

columnTwo the name for the second column of data after
the date

returns TRUE if the load was successful

Example
VARIABLES: instrumentCount TYPE: Integer
VARIABLES: externalFileName TYPE: String

' Get the instrument count.
instrumentCount = system.totalInstruments

' Loop initializing each instrument.
FOR index = 1 TO instrumentCount STEP 1

 ' Set the portfolio instrument. "portfolioInstrument" is defined
as a BPV Instrument variable.

 portfolioInstrument.LoadSymbol(index)

 ' Get the symbol for the instrument.
 externalFileName = portfolioInstrument.symbol +
 "_ExternalData.csv"

 ' Print out the file name.
 PRINT "Loading External File: ", externalFileName

 ' Load the external data.
 IF NOT portfolioInstrument.LoadExternalData(externalFileName,
 "date", "beta", "eps") THEN
 PRINT "Could not Load External Data for ", externalFileName

www.forex-warex.com

Trading Blox Builder's Guide572

© 2013, Trading Blox, LLC. All rights reserved.

 ENDIF

NEXT

This code loads external data files which use the symbol in the name and adds two new instrument
properties: beta and eps. These new properties can be accessed in other scripts like:

IF instrument.beta > 1.2 THEN

or

IF instrument.eps > instrument.eps[90] THEN

File Format
The LoadExternalData call requires comma delimited text files with the first column being a date in
the format YYYYMMDD.
A header is required, but ignored.

A data file, "CL_ExternalData.csv", which corresponds to the above LoadExternalData call might
use quarterly data:

Date, beta, eps
20050115, 1.201, 5.8
20050415, 1.345, 6.2
20050715, 1.112, 5.3
20051015, 1.535, 6.9
20060115, 1.231, 8.4

When using Option 2, Trading Blox keeps only the required data in memory but lets you access the
above properties as if there was data for each day in the instrument's data file. For example, on
20050413, the value for the beta property will be 1.201 and on 20050415 after the close the value will be
1.345. Note that even when using option 1, creating an IPV, the sparsely populated data will fill in any
holes as needed so there is a value at every index. To retain the holes as a default value, use the
LoadIPVFromFile function.

Property indexing uses the instrument's bar indexing so for daily bar data you will have access to the
data on a daily basis updated as per the timeframes in the external data file. For example, using the
above data on 20050415 after the close:

value = instrument.beta ' returns 1.345
value = instrument.beta[1] ' returns 1.201
value = instrument.beta[2] ' returns 1.201

LoadIPVFromFile

Loads data from external text files and attaches it to particular instruments. Note that if using the
instrument object it must have default context such as in the After Instrument Day script. Normally this
function is used in the Before Simulation or Before Test script, so you need to create a BPV Instrument
variable to use. It must be loaded with an instrument by using LoadSymbol before using this function
call.

See also LoadExternalData function.

This function requires that all IPV's are created and defined. If this function is used in the Before
Simulation script the data is loaded just once for the entire simulation. If placed in the Before Test

www.forex-warex.com

Part 5 – Trading Objects Reference 573

© 2013, Trading Blox, LLC. All rights reserved.

script, it will be loaded (refreshed) before each parameter test run. Note that if used in the Before
Simulation script, to avoid overwriting the data with the default value, the IPV should be set as Simulation
Scope.

The header column names in the file itself are ignored.

Note that the variable "portfolioInstrument" is a BPV instrument variable, and is loaded with LoadSymbol
prior to the use of this function. The default location for these files is the location of the data for the
instrument. To use a full path, include the "C:\" and any location can be used.

No "Date" parameter is used in this function.

Syntax

loaded = LoadIPVFromFile(fileName, [columnOne, columnTwo, ...])

Parameters

fileName the name of the file to open. If no path name is
given, it defaults to the location of the instrument
data file.

columnOne the name for the first column of data after the
date and optional time

columnTwo the name for the second column of data after
the date and optional time

returns TRUE if the load was successful

Example
VARIABLES: instrumentCount TYPE: Integer
VARIABLES: externalFileName TYPE: String

' Get the instrument count.
instrumentCount = system.totalInstruments

' Loop initializing each instrument.
FOR index = 1 TO instrumentCount STEP 1

 ' Set the portfolio instrument. "portfolioInstrument" is defined
as a BPV Instrument variable.

 portfolioInstrument.LoadSymbol(index)

 ' Get the symbol for the instrument.
 externalFileName = portfolioInstrument.symbol +
 "_ExternalData.csv"

 ' Print out the file name.
 PRINT "Loading External File: ", externalFileName

 ' Load the external data.
 IF NOT portfolioInstrument.LoadIPVFromFile(externalFileName,
 "beta", "eps") THEN

www.forex-warex.com

Trading Blox Builder's Guide574

© 2013, Trading Blox, LLC. All rights reserved.

 PRINT "Could not Load External Data for ", externalFileName
 ENDIF

NEXT

This code loads external data files which use the symbol in the name and adds two new instrument
properties: beta and eps. These new properties can be accessed in other scripts like:

IF instrument.beta > 1.2 THEN

or

IF instrument.eps > instrument.eps[90] THEN

File Format
The LoadExternalData call requires comma delimited text files with the first column being a date in
the format YYYYMMDD.
A header is required, but ignored.

A data file, "CL_ExternalData.csv", which corresponds to the above LoadExternalData call might
use quarterly data:

Date, beta, eps
20050115, 1.201, 5.8
20050415, 1.345, 6.2
20050715, 1.112, 5.3
20051015, 1.535, 6.9
20060115, 1.231, 8.4

This will will load data into the dates supplied, and the remainder of the IPV will be at the default value.

Indexing works like a normal IPV depending on whether this IPV was setup for auto indexing or not.
Auto indexing is recommended for this function. For example, using the above data on 20050715:

value = instrument.beta ' returns 1.112
value = instrument.beta[1] ' returns default value
value = instrument.beta[2] ' returns default value

Note that this function will load date and time data into an IPV as well. The file format would then be
Date, Time, column1, column2. This format will only work correctly if the instrument data is also intraday
data. Note that all date time combos in the file must also be present in the instrument data file.

www.forex-warex.com

Part 5 – Trading Objects Reference 575

© 2013, Trading Blox, LLC. All rights reserved.

7.8 Position Functions

These functions are used to assign or change the value of position property values.

Positions Functions: Descriptions:

SetUnitCustomValue sets the custom value of the current position for the specified unit to the
specified value

SetExitStop sets the exit stop price for the specified unit

SetExitLimit sets the exit limit price for the specified unit

order.SetRuleLabel Sets the text description of the rule that created the order during the order
process.

Links:

Position Properties

See Also:

SetUnitCustomValue

Sets the custom value field of the unit.

There must be a position on, so this cannot be used in the Unit Size, Can Add Unit, or Can Fill Order scripts
unless there is already a unit on and the intention is to reference the current open position unit and not the
current order. In these scripts the order is being processed so the order object should be used if that is the
intention.

This function is best used in the Entry Order Filled, Exit, Entry, or After Instrument Day scripts.

Syntax

SetUnitCustomValue([unitNumber,] value)

Parameters

unitNumber the unit number (optional). If not supplied this will
default to the first unit

value the custom value to be set. This value can be
retrieved using the unitCustomValue
property.

Example
' Set the custom value.
instrument.SetUnitCustomValue(1.5)

PRINT "The custom value is ", instrument.unitCustomValue
' Prints 1.5

www.forex-warex.com

Trading Blox Builder's Guide576

© 2013, Trading Blox, LLC. All rights reserved.

SetExitStop

Sets the exit stop for the specified unit.
There must be a position on, so this cannot be used in the Unit Size, Can Add Unit, or Can Fill Order
scripts. In these scripts the order is being processed so the order object should be used.
This function can be used in the Entry Order Filled, Exit, Entry, Adjust Stops, or After Instrument Day
scripts.

Syntax

SetExitStop([unitNumber,] stopPrice)

Parameters

unitNumber the unit number (optional). If not supplied this will
default to the first unit

stopPrice the value of the stop to be set.

Example for the Entry Order Filled script:
' Move the stop by the amount of the slippage.
instrument.SetExitStop(order.fillPrice - order.entryRisk)

' Set the stop price for the specified unit.
instrument.SetExitStop(unitNumber, newStopPrice)

NOTE: If you set the stop with this function, the daily risk will be calculated using this value, but no
order is placed. To place an actual stop in the market use a broker order like this:
broker.ExitAllUnitsOnStop(instrument.unitExitStop).

SetExitLimit

Sets the exit limit for the specified unit.
There must be a position on, so this cannot be used in the Unit Size, Can Add Unit, or Can Fill Order
scripts. In these scripts the order is being processed so the order object should be used.
This function can be used in the Entry Order Filled, Exit, Entry, Adjust Stops, or After Instrument Day
scripts.

Syntax

SetExitLimit([unitNumber,] limitPrice)

Parameters

unitNumber the unit number (optional). If not supplied this will
default to the first unit

limitPrice the value of the limit to be set.

Example
' Set the limit price.
instrument.SetExitLimit(limitPrice)

' Set the limit price for the specified unit.
instrument.SetExitLimit(unitNumber, limitPrice)

www.forex-warex.com

Part 5 – Trading Objects Reference 577

© 2013, Trading Blox, LLC. All rights reserved.

NOTE: If you set the limit with this function no order is placed. To place an actual limit order in the
market use a broker order like this: broker.ExitAllUnitsAtLimit(instrument.unitExitLimit).

www.forex-warex.com

Trading Blox Builder's Guide578

© 2013, Trading Blox, LLC. All rights reserved.

7.9 Position Properties

Unit Indexing
Properties listed with a '[]' following them may be indexed using a number which determines the unit.
If no index is supplied the property will return the information for the first unit. For example:

firstUnitQuantity = instrument.unitQuantity[1]

will access the quantity for the first unit for a position of this instrument.

Active Position
Properties:

Descriptions:

position the current position, represented by the numerical constants SHORT,
OUT, or LONG.

positionDescription the current position as a string (equal to "Long", "Short", or "Out").
Useful for printing.

currentPositionUnit
s

the total number of units on for the current position

currentPositionQuan
tity

the total number of contracts or shares on for the current position

currentPositionProf
it

the total profit, in dollars, using the current close, of all units in the
current position. This includes roll profit, slippage, and commission that
has already moved to closed equity, as well as forex carry and stock
dividends. Does not include future expected commission for the trade
once it has closed.

currentPositionRisk the total risk for this position, in dollars, based on the close and the
stop prices

barsSinceExit the number of bars since the last exit, regardless of unit

Unit Specific Properties: Descriptions:

unitEntryDate[] the entry date of the unit

unitEntryTime[] the entry time of the unit

unitEntryDayIndex[] the day index of the entry

unitEntryOrder[] the order price for the unit

unitEntryFill[] the fill price for the unit

unitQuantity[] the quantity for the unit

unitExitStop[] the exit stop for the unit as set by the original broker function call, or
set by SetExitStop

unitNoExitStop[] returns true if there is no exit stop set for the unit. Useful for cleaner
reporting.

unitExitLimit[] the exit limit for the unit as set by SetExitLimit

unitEntryRisk[] the entry risk for the unit adjusted by the fill price

www.forex-warex.com

Part 5 – Trading Objects Reference 579

© 2013, Trading Blox, LLC. All rights reserved.

unitProfit[] the open profit of the trade, net of commissions etc, in instrument
currency.

unitRollProfit[] the accrued closed profit of the futures trade for all rolls, in base
currency.

unitRollCommission
[]

the accrued commission of the futures trade from all rolls, in base
currency.

unitRollSlippage[] the accrued slippage of the futures trade from all rolls, in base
currency.

unitCommission[] the computed commission that will be applied to the trade when the
position exits.

unitCustomCommission
[]

the accrued custom commission added to the instrument through the
use of the AddCommission function.

unitCarry[] the total carry cost of the unit for forex trades.

unitBarsSinceEntry
[]

the number of bars since the entry of this unit

unitCustomValue[] the custom value as set through scripting into the unit, or the order
that created the unit. Float value.

unitSavedWFProfit[]

unitPositionReferenc
eID[]

New orders are given a the unique reference ID. This ID number is
assigned to the position when it is enabled. It is then available from
this property. See Order Properties

unitRuleLabel[] the rule label as set through scripting into the unit, or into the order
that created the unit. String value.

unitMaxFavorableExcu
rsion[]

the maximum favorable excursion of the unit

unitMaxAdverseExcurs
ion[]

the maximum unfavorable excursion of the unit

unitMinFavorableExcu
rsion[]

the minimum favorable excursion of the unit

unitDeliveryMonth[] the delivery month (YYYYMM) of the unit

Links:

Position Functions

See Also:

www.forex-warex.com

Trading Blox Builder's Guide580

© 2013, Trading Blox, LLC. All rights reserved.

7.10 Ranking Functions

The ranking functions are usually used in the Portfolio Manager to set ranking values and to filter the
instrument from the portfolio.
Note that only instruments that are primed and ready to trade will be ranked. Other markets will be
excluded from the ranking process.

Set the long ranking value and the short ranking value in the Rank Instruments script of the Portfolio
Manager block. Then in the Filter Portfolio script the long rank and short rank will be available using
the properties instrument.longRank and instrument.shortRank. The long ranking value is sorted
highest to lowest to determine the long rank. The short ranking value is sorted lowest to highest to
determine the short rank.

In the case of equal ranking values, the instruments will be sorted alphabetically.l

In the time between the execution of the Rank Instruments script and the Filter Portfolio script, the
system sorts all the instruments based on the short and long ranking value.

Function Name: Description:

SetLongRankingVal
ue

sets the long ranking value. Sorted highest to lowest.

SetShortRankingVa
lue

sets the short ranking value. Sorted lowest to highest.

The ranking values can also be set in others scripts, such as in a manual instrument loop in the
Before Test Script.
-- Set the Long and Short Ranking Values of each instrument
-- Call the system.RankInstruments function
-- Retrieve the Long Rank and Short Rank from each instrument

In addition, the custom sort value is available for use by the system.SortInstrumentList(method)
function.

Property:

instrument.customSortValue

Function:

instrument.SetCustomSortValue(value)

The Custom Sort Value can also be set in other scripts, just like the ranking Values.
-- Loop over each instrument setting the custom sort value
-- call system.sortInstrumentList(4)
-- Loop over each instrument and note how the instrument list has been sorted

Once the instrument list is sorted using the SortInstrumentList function, the Entry Orders script and
other instrument scripts will execute in a new order.

www.forex-warex.com

Part 5 – Trading Objects Reference 581

© 2013, Trading Blox, LLC. All rights reserved.

Links:

Ranking Properties

See Also:

SetLongRankingValue

Sets the long ranking value. This function is generally used by a Portfolio Manager block as part of the
instrument ranking process which is one way to select instruments for trading.

Syntax

instrument.SetLongRankingValue(rankingValue)

Parameters

rankingValue the value to be used for ranking this instrument
for long trades

Example code for the Rank Instruments script:
' Set the long ranking value for this instrument
instrument.SetLongRankingValue(rsi)

Example:

If you have three instruments in your portfolio A, B, and C.

In the Rank Instruments script you use the SetLongRankingValue function as follows:
For instrument A you set the long ranking value to 34.
For instrument B you set the long ranking value to 53

For instrument C you set the long ranking value to -12.

These will be sorted from highest to lowest.

Now in the Filter Portfolio script you can access the longRank property.

Instrument A will have a long rank of 2.
Instrument B will have a long rank of 1.
Instrument C will have a long rank of 3.

www.forex-warex.com

Trading Blox Builder's Guide582

© 2013, Trading Blox, LLC. All rights reserved.

SetShortRankingValue

Sets the short ranking value. This function is generally used by a Portfolio Manager block as part of the
instrument ranking process which is one way to select instruments for trading.

Syntax

instrument.SetShortRankingValue(rankingValue)

Parameters

rankingValue the value to be used for ranking this instrument
for short trades

Example code for the Rank Instruments script:
' Set the short ranking value.
instrument.SetShortRankingValue(rsi)

Example:

If you have three instruments in your portfolio A, B, and C.

In the Rank Instruments script you use the SetShortRankingValue function as follows:
For instrument A you set the short ranking value to 34.
For instrument B you set the short ranking value to 53
For instrument C you set the short ranking value to -12.

These will be sorted from highest to lowest.

Now in the Filter Portfolio script you can access the shortRank property.

Instrument A will have a short rank of 2.
Instrument B will have a short rank of 3.
Instrument C will have a short rank of 1.

www.forex-warex.com

Part 5 – Trading Objects Reference 583

© 2013, Trading Blox, LLC. All rights reserved.

7.11 Ranking Properties

The ranking properties can be accessed from anywhere in the system. So if you set the rank in the
portfolio manager, you can access that rank in the entry script.

The longRank, shortRank, longGroupRank, and shortGroupRank properties are based off the
longRankingValue and the ShortRanking Value. The way these get calculated is when the
RankingValue is set in the Rank Instruments script, the instruments are then sorted, and then the
Rank properties are available in the Filter Porfolio script. If the RankingValue is set anywhere else in
the system, the new Rank will not be available until the Portfolio Manager runs again for the next
day.

Function Name: Description:

longRankingValue the value used to rank the instrument for long trades

shortRankingValue the value used to rank the instrument for short trades

longRank the rank when sorted by long ranking value

shortRank the rank when sorted by short ranking value

longGroupRank the rank of the instrument within its group when sorted by long ranking
value

shortGroupRank the rank of the instrument within its group when sorted by short ranking
value

Links:

Ranking Functions

See Also:

www.forex-warex.com

Trading Blox Builder's Guide584

© 2013, Trading Blox, LLC. All rights reserved.

7.12 Trade Control Properties

Function Name: Description:

canTradeLong true if the instrument is allowed to trade long today

canTradeShort true if the instrument is allowed to trade short today

Note:
These can be used throughout the system. They are set by the Trade Control Functions in the
Portfolio Manager. Once set for the instrument, these properties are available for access anywhere
in the system.

Links:

Trade Control Functions

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 585

© 2013, Trading Blox, LLC. All rights reserved.

7.13 Trade Control Functions

Usually used in a portfolio manager to allow or deny trades for the day based on some criteria.

Instruments allow all trades by default at the beginning of the test.

This value is not reset by the system day to day, so whatever is set here sticks until the next time it is
updated.

Trade Control
Functions:

Descriptions:

AllowLongTrades marks instrument to allow long trades

AllowShortTrades marks instrument to allow short trades

AllowAllTrades marks instrument to allow all trades

DenyLongTrades marks instrument to deny long trades

DenyShortTrades marks instrument to deny short trades

DenyAllTrades marks instrument to deny all trades

If the AllowAllTrades function is used for an instrument, all trades both long and short will be
processed.
If the DenyAllTrades function is used for an instrument, all trades both long and short will be
rejected.

The following functions can be used independently. They affect only one direction, not both.
If the AllowLongTrades function is used for an instrument, long trades will be processed.
If the AllowShortTrades function is used for an instrument, short trades will be processed.
If the DenyLongTrades function is used for an instrument, long trades will be rejected.
If the DenyShortTrades function is used for an instrument, short trades will be rejected.

Note:
Use instrument.DenyAllTrades at the top of the Portfolio Manager block Filter Portfolio
script to deny all trades by default. In this way, the code can allow trades for instruments that meet
certain criteria, and the rest will be denied.

Links:

Trade Control Properties

See Also:

www.forex-warex.com

Trading Blox Builder's Guide586

© 2013, Trading Blox, LLC. All rights reserved.

AllowLongTrades

Marks the instrument to allow long trades.

Syntax:

instrument.AllowLongTrades

Parameter: Description:

none Function works without any user assigned values.

Results:

Example:

' If this instrument is in the top rankings...
IF instrument.longRank <= rankThreshold THEN

 instrument.AllowLongTrades
ENDIF

Links:

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 587

© 2013, Trading Blox, LLC. All rights reserved.

AllowShortTrades

Marks the instrument to allow short trades.

Syntax:

instrument.AllowShortTrades

Parameter: Description:

none Function works without any user assigned values.

Results:

Example:

' If this instrument is in the top rankings...
IF instrument.shortRank <= rankThreshold THEN

 instrument.AllowShortTrades
ENDIF

Links:

See Also:

www.forex-warex.com

Trading Blox Builder's Guide588

© 2013, Trading Blox, LLC. All rights reserved.

AllowAllTrades

Marks the instrument to allow both long and short trades.

Syntax:

instrument.AllowAllTrades

Parameter: Description:

none Function works without any user assigned values.

Results:

Example:

' Allow all trades unless we filter below based on
' further criteria.
instrument.AllowAllTrades

Links:

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 589

© 2013, Trading Blox, LLC. All rights reserved.

DenyLongTrades

Marks the instrument to deny long trades.This function is the opposite of AllowLongTrades.

Syntax:

instrument.DenyLongTrades

Parameter: Description:

Function works without any user assigned values.

Results:

Example:

' If this instrument is NOT in the top rankings...
IF instrument.longRank > rankThreshold THEN

 instrument.DenyLongTrades
ENDIF

Links:

See Also:

www.forex-warex.com

Trading Blox Builder's Guide590

© 2013, Trading Blox, LLC. All rights reserved.

DenyShortTrades

Marks the instrument to deny short trades. This function is the opposite of AllowShortTrades.

Syntax:

instrument.DenyShortTrades

Parameter: Description:

none Function works without any user assigned values.

Results:

Example:

' If this instrument is NOT in the top rankings...
IF instrument.shortRank > rankThreshold THEN

 instrument.DenyShortTrades
ENDIF

Links:

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 591

© 2013, Trading Blox, LLC. All rights reserved.

DenyAllTrades

Marks the instrument to deny both long and short trades. This function is the opposite of
AllowAllTrades.

Syntax:

instrument.DenyAllTrades

Parameter: Description:

none Function works without any user assigned values.

Results:

Example:

' Deny all trades unless we allow below based on further criteria.
instrument.DenyAllTrades

Links:

See Also:

www.forex-warex.com

Trading Blox Builder's Guide592

© 2013, Trading Blox, LLC. All rights reserved.

Section 8 – Order

Order object properties and function are available in the Unit Size, Can Add Unit, and Can Fill Order
script section where they have object context by default. They are also in context in the Entry
Orders, and Exit Orders script section after a Broker function statement when the Broker initiated
order has not been rejected.

 An order is available when the system.orderExists() property contains a TRUE value after a
Broker function statement returns execution to the Entry Orders or Exit Orders script section.

Orders are also in context in the Entry Orders Filled and Exit Orders Filled script section when those
orders have been filled.

In all other script sections where an order does not have context, access to an order property or
order function is possible when the AlternateOrder object process is used to bring the order object
into context so that the order's property information can be accessed or changed. Do not use the
Order object in any of the script sections where it does not have a default context.

Creating Orders:
All signals require an order to generate an instrument position. Each order contains information
about how the user intended the order to be executed, and in some cases protected. All orders are
generated by a Broker Object function. These functions decide if the order is for entry or exit.
Entry orders create positions when an instrument's prices satisfies the order's conditions to enable a
trade. Exit orders will terminate, or exit a position when the conditions given to the order to exit are
enabled in the market, or when the adjusted quantity remaining in a position is reduced to zero.

Once an Entry order is initiated by a Broker function order details are sent to the Unit Size script
where the logic in that script can assign a quantity to the order. All Trading Blox supplied money
manager modules will, by design, reject orders that are sized with a quantity less than the
instrument.roundLot property value. Orders with zero quantity can be used to create
positions, however without a quantity of at least at or above the instrument.roundLot value the
math that is applied to the price change and trade expenses will be rounded to zero. In order to
generate zero quantity orders it will be necessary to modify the logic changes in the Unit Sizing
script so a zero quantity order is not rejected.

Entry orders not rejected are then sent to the Can Add Unit script section where other rules and
conditions can be applied to allow or reject the order. Rejected orders will no longer exist after the
Can Add Unit script terminates execution. Orders that are not rejected will be accessible in the
script where the Broker function created the order. Orders rejected because an instrument's
canTradeLong or canTradeShort properties are set to False will create a rejection record that
will appear in the Filtered Log report. Rejected orders by either of these two properties will not be
accessible in the Unit Size or Can Add Unit script sections.

Exit orders can only be created when an instrument has an active position. Exit orders do not get
processed by the Unit Size or the Can Add Unit scripts.

All Entry and Exit orders that are not rejected before being tested on the next instrument's date are
processed through the Can Fill Order script section. In addition, all Entry orders are processed by
the Entry Order Filled script section, and all Exit orders are processed by the Exit Order Filled script
section.

Each order generated and enabled by the market is applied to either create a position, or is to be
added to an existing existing position as an additional unit with be assigned its own unit identifying
number. If only one signal is applied, then only one unit is used as that instrument's position

www.forex-warex.com

Part 5 – Trading Objects Reference 593

© 2013, Trading Blox, LLC. All rights reserved.

information. Order for creating a new unit will show a unitNumber as zero. Orders don't create
units, but instead executed orders create units. When an exit order is created, the unitNumber
proerty will show a value of at least one for the first order.

All rejected orders are listed in the Trading Blox Filter Log file available under the Main menu's File -
> Results -> Filtered Trades selection:

All the information required to generate an order is contained in the Order Object's properties.
Information that can be changed before the order is executed, or rejected, can be handled by using
one of the Order Object's functions.

Order Object: Description:

Order Properties When information is needed from an order use the properties listed in the
Order Object properties table.

Order Functions When information in an order needs to be changed, and that order has not
been executed in the market, and it has not been rejected prior to being
executed, use one of the functions listed in the Order Object function table.
 Executed and rejected order disappear from the system and are not
accessible.

All of the Order Object's properties using the Order prefix with a property or a function are only
accessible in the following script sections.

Script Section: Description:

Entry Orders Signal orders only exists in this script section after a Broker Object
function has been executed, and only when the order processing through
the Unit Size and Can Add Unit script sections have not rejected the order.
 To know if the order still exists, use the system.orderExists
property.

www.forex-warex.com

Trading Blox Builder's Guide594

© 2013, Trading Blox, LLC. All rights reserved.

Entry Order Filled When an Entry Order has been successful filled, it arrives in this script
section.

Exit Orders Signal orders to affect an existing position for the symbol in context of
this script section are created only after a Broker Object function has
been executed.

Exit Order Filled Exit order execution to close a position, or change a position's size, this
script is called with the results of order's fill information.

Can Add Unit Only entry orders pass through this script so they can be adjusted, or
rejected, for reasons other than risk or equity values.

Can Fill Order After all the available orders are executed on new data, this script is
called for each instrument so custom requirements can be applied to the
order's results.

Unit Size This is where all new Entry orders are sent once a Broker Object
function has been executed. This script handles the chores associate
with specifying the order's unit quantity. Orders leaving this script with
its order.continueProcessing flag still set to True are passed along
to the Can Add Unit script section, if that script section exist in the system
with scripted code.

Notes:
Order object information that is available can be accessed in any of the above order scripts
using the Order Object "order" prefix. An example is an Entry Orders script after a successful
Broker function call finishes. An example on how to know if the order was created succuessfully
is shown in this next code example that is placed after the completing Broker function:

Example:

' Check if the Broker Object created an Order,...
If system.orderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
ENDIF ' s.orderExists

This code snippet example uses the System Object property orderExists() to discover if the
order was successful or rejected before using the Order Object's functions to update the
Positions & Orders Report and Trade Log record with the signal rule information that created the
order. Testing to be sure the order exist is critical for preventing errors. To attempt to access an
order that doesn't exist will cause Trading Blox to generate an error because the script is trying to
assign information to an object that doesn't exist.

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using

www.forex-warex.com

Part 5 – Trading Objects Reference 595

© 2013, Trading Blox, LLC. All rights reserved.

the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order
Properties

See Also:

www.forex-warex.com

Trading Blox Builder's Guide596

© 2013, Trading Blox, LLC. All rights reserved.

8.1 OrderProperties

The order object (and the alternateOrder object) have the following properties. These properties
can only be access in scripts that have a default order object context, or if you have set the order
object using the SetOrder system function.

Properties: Description:

blockName Name of the order's originating block.

clearingIntent Value used by IB for clearing intent. Defaults to "IB"

continueProcessin
g

This is always TRUE so that it will continue processing. It is False when the
order has been rejected.

customValue By default it is always blank unless scripting assigned a numeric value with
the order function the SetCustomValue. Once a value is assigned, this
property will returns the custom value. It will also pass the value along to
the instrument.unitCustomValue property so that it can be used in
the system, and discovered in the system's TradeLog.

entryRisk the entry risk of the order, this is the difference between the order price
and the stop price. This is not adjusted by the fill price.

executionType the execution type as a string: "at Market", "on Stop", "on Open", "on
Close", "on Stop Close", "at Limit Close", "on Stop Open", "Limit", "on Limit
Open"

fillPrice the calculated fill price of the order. This value is not used automatically by
Trading Blox.

isBuy returns TRUE if the order is a buy order

isEntry returns TRUE if the order is an entry

limitPrice the profit taking limit price of the order

noStopPrice returns true if the order has no stop price set

orderPrice the price of the order for stop or limit orders, the close price for OnOpen
orders and OnClose orders

orderReportMessa
ge

returns the order report message as set by SetOrderReportMessage

orderType the order type as a string: "Long Entry", "Short Entry", "Long Exit", "Short
Exit"

position the position as an integer: LONG or SHORT. Returns an integer, with 1
being long and -1 being short. The constants LONG and SHORT can be
used for comparison purposes. This is not a string property.

processingMessag
e

returns the reject message if rejected.

quantity the quantity of the order

referenceID the unique reference ID for the order

ruleLabel returns the rule label as set by SetRuleLabel

sortValue returns the sort value as set by SetSortValue

stopPrice the protect stop price of the order. This value is only used automatically on
the order entry day, and only if the Entry Day Retracement is greater than
zero.

www.forex-warex.com

Part 5 – Trading Objects Reference 597

© 2013, Trading Blox, LLC. All rights reserved.

symbol the symbol of the order

systemBlockName the system and block name of the originating block and system

timeInForce the value used by IB for time in force. Defaults to "GTC"

unitNumber the unit number of the order

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object

See Also:

www.forex-warex.com

Trading Blox Builder's Guide598

© 2013, Trading Blox, LLC. All rights reserved.

blockName

TYPE: Description:

Example:

Returns:

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 599

© 2013, Trading Blox, LLC. All rights reserved.

clearingIntent

TYPE: Description:

Example:

Returns:

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties

See Also:

www.forex-warex.com

Trading Blox Builder's Guide600

© 2013, Trading Blox, LLC. All rights reserved.

continueProcessing

TYPE: Description:

Example:

Returns:

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 601

© 2013, Trading Blox, LLC. All rights reserved.

customValue

TYPE: Description:

customValue Any numeric value assigned using the order.SetCustomValue
function.

Example:

' ~~~
' Create a custom numeric value
value = 3 x 4
' Assign that custom numeric value to the
' order's customValue property.
order.SetCustomValue(value)

' Display user's custom value
PRINT "order.customValue = ", 12
' ~~~

Returns:

order.customValue = 12

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access as
the Order object. However, the alternateOrder object must be brought into context using the
system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties, SetCustomValue

See Also:

www.forex-warex.com

Trading Blox Builder's Guide602

© 2013, Trading Blox, LLC. All rights reserved.

entryRisk

TYPE: Description:

Example:

Returns:

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 603

© 2013, Trading Blox, LLC. All rights reserved.

executionType

TYPE: Description:

Example:

Returns:

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties

See Also:

www.forex-warex.com

Trading Blox Builder's Guide604

© 2013, Trading Blox, LLC. All rights reserved.

fillPrice

TYPE: Description:

Example:

Returns:

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 605

© 2013, Trading Blox, LLC. All rights reserved.

isBuy

TYPE: Description:

Example:

Returns:

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties

See Also:

www.forex-warex.com

Trading Blox Builder's Guide606

© 2013, Trading Blox, LLC. All rights reserved.

isEntry

TYPE: Description:

Example:

Returns:

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 607

© 2013, Trading Blox, LLC. All rights reserved.

limitPrice

TYPE: Description:

Example:

Returns:

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties

See Also:

www.forex-warex.com

Trading Blox Builder's Guide608

© 2013, Trading Blox, LLC. All rights reserved.

noStopPrice

TYPE: Description:

Example:

Returns:

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 609

© 2013, Trading Blox, LLC. All rights reserved.

orderPrice

TYPE: Description:

Example:

Returns:

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties

See Also:

www.forex-warex.com

Trading Blox Builder's Guide610

© 2013, Trading Blox, LLC. All rights reserved.

orderReportMessage

TYPE: Description:

Example:

Returns:

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 611

© 2013, Trading Blox, LLC. All rights reserved.

orderType

TYPE: Description:

Example:

Returns:

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties

See Also:

www.forex-warex.com

Trading Blox Builder's Guide612

© 2013, Trading Blox, LLC. All rights reserved.

position

TYPE: Description:

Example:

Returns:

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 613

© 2013, Trading Blox, LLC. All rights reserved.

quantity

TYPE: Description:

Example:

Returns:

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties

See Also:

www.forex-warex.com

Trading Blox Builder's Guide614

© 2013, Trading Blox, LLC. All rights reserved.

referenceID

TYPE: Description:

Example:

Returns:

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 615

© 2013, Trading Blox, LLC. All rights reserved.

ruleLabel

TYPE: Description:

Example:

Returns:

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties

See Also:

www.forex-warex.com

Trading Blox Builder's Guide616

© 2013, Trading Blox, LLC. All rights reserved.

sortValue

TYPE: Description:

Example:

Returns:

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 617

© 2013, Trading Blox, LLC. All rights reserved.

stopPrice

TYPE: Description:

Example:

Returns:

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties

See Also:

www.forex-warex.com

Trading Blox Builder's Guide618

© 2013, Trading Blox, LLC. All rights reserved.

symbol

TYPE: Description:

Example:

Returns:

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 619

© 2013, Trading Blox, LLC. All rights reserved.

systemBlockName

TYPE: Description:

Example:

Returns:

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties

See Also:

www.forex-warex.com

Trading Blox Builder's Guide620

© 2013, Trading Blox, LLC. All rights reserved.

timeInForce

TYPE: Description:

Example:

Returns:

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 621

© 2013, Trading Blox, LLC. All rights reserved.

unitNumber

TYPE: Description:

Example:

Returns:

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties

See Also:

www.forex-warex.com

Trading Blox Builder's Guide622

© 2013, Trading Blox, LLC. All rights reserved.

8.2 OrderFunctions

The Order functions are used to modify an existing order. You can set the fill price, quantity, stop
price, or reject the order all together. It is common in the Unit Size script to use the SetQuantity
function to set the quantity of the order.

Note that these can only be used in certain scripts that have default order object context. The scripts
in which they can be used are listed for each function.

Order Function: Description:

SetFillPrice sets a new fill price for the order

SetQuantity sets a new quantity for the order

SetStopPrice sets a new protect stop for the order. This value is only used
automatically on the order entry day, and only if the Entry Day
Retracement is greater than zero.

SetLimitPrice sets a new profit taking limit for the order. This value is not used
automatically by Trading Blox.

Reject rejects the order to stop further processing, and sets the reject message
that is printed in the Filtered Trade Log

SetRuleLabel sets the rule label string

SetCustomValue sets the custom value number

SetOrderReportMes
sage

sets the order report message string

SetSortValue sets the sort value number of the order, for use in sorting the orders

SetTimeInForce sets the time in force property for IB orders. The default is "GTC"

SetClearingIntent sets the clearing intent property for IB orders. The default is set by the
system.SetClearingIntent, and is "IB".

Links:

AlternateOrder Object, AlternateSystem Object, Order Object, Order Properties

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 623

© 2013, Trading Blox, LLC. All rights reserved.

Reject

Rejects the order and prevents further processing.

This function can only be used in the Unit Size, Can Add Unit, and Can Fill Order scripts.

Syntax:

order.Reject(message)

Parameter: Description:

message Script reason why the order was rejection, or filtered from available
orders.

Returns:

Generates a message in the Filtered Log report when software preferences have the log
enabled.

Example:

' ~~~
' Common Fixed Fractional Order sizing calculation.
' ~~~
' Calculate amount of equity available for order sizing.
riskEquity = system.tradingEquity * riskPerTrade

' Convert instrument point risk into dollars.
dollarRisk = order.entryRisk * instrument.bigPointValue

' Order quantity will be the integer portion division.
tradeQuantity = riskEquity / dollarRisk

' If tradeQuantity is less than 1,...
If tradeQuantity < 1 THEN
 ' Order quantities less than 1.are rejected
 order.Reject("Order Quantity less than 1.")
ELSE
 ' Order greater than 1 become order size amount.
 order.SetQuantity(tradeQuantity)
ENDIF ' tradeQuantity < 1
' ~~~

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

www.forex-warex.com

Trading Blox Builder's Guide624

© 2013, Trading Blox, LLC. All rights reserved.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

bigPointValue, entryRisk, SetQuantity, tradingEquity

See Also:

Can Add Unit, Can Fill Order, Unit Size, AlternateOrder Object, AlternateSystem Object, Order
Functions, Order Object, Order Properties

www.forex-warex.com

Part 5 – Trading Objects Reference 625

© 2013, Trading Blox, LLC. All rights reserved.

SetClearingIntent

Syntax:

Parameter: Description:

Returns:

Example:

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

See Also:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties

www.forex-warex.com

Андрей
tr-software-download

Trading Blox Builder's Guide626

© 2013, Trading Blox, LLC. All rights reserved.

SetCustomValue

Sets a user assigned custom numeric value to an order so that the value will be available when the
position is active and when it is reported in the Trade Log.

Syntax:

order.SetCustomValue(value)

Parameter: Description:

value Property will accept decimal, or Integer values.

Returns:

Assigned a numeric value that will appear in the order.customValue, and
instrument.unitCustomValue properties, after the trade has ended in the Trade Log
report.

Example:

' ~~~
' Create a custom numeric value
value = 3 x 4
' Assign that custom numeric value to the
' order's customValue property.
order.SetCustomValue(value)

' Display user's custom value
PRINT "order.customValue = ", 12
' ~~~

Results:

order.customValue = 12

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

www.forex-warex.com

Part 5 – Trading Objects Reference 627

© 2013, Trading Blox, LLC. All rights reserved.

customValue, unitCustomValue

See Also:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties

www.forex-warex.com

Trading Blox Builder's Guide628

© 2013, Trading Blox, LLC. All rights reserved.

SetFillPrice

Sets the fill price for an order to the specified price.

This function is only available in a Can Fill Order script section and it is used to set a fill price to
something other than the software's built-in fill algorithm's price.

Syntax:

order.SetFillPrice(fillPrice)

Parameter: Description:

fillPrice Price at which the order is filled

Returns:

order.fillPrice assigned in the Can Fill Order script section, or the price assigned by the software's built-in fill algorithm.

Example:

' Set the fill to the high of the day since this order
' was more than 10% of the market volume.

 Order.SetFillPrice(Instrument.High)

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access as
the Order object. However, the alternateOrder object must be brought into context using the
system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

fillPrice

See Also:

Can Fill Order, AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object,
Order Properties

www.forex-warex.com

Part 5 – Trading Objects Reference 629

© 2013, Trading Blox, LLC. All rights reserved.

SetLimitPrice

Syntax:

Parameter: Description:

Returns:

Example:

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

See Also:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties

www.forex-warex.com

Trading Blox Builder's Guide630

© 2013, Trading Blox, LLC. All rights reserved.

SetOrderReportMessage

Sets the Order Report Message for the order. This message will show up on the order report, for this
order.

Syntax:

order.SetOrderReportMessage(message)

Parameter: Description:

message Text description of the rule that created the order.

Returns:

Rule Labels assigned will appear in the new order section of the Position and Order Report.

Example:

' ~~
' LONG EXIT ORDERS
If instrument.position = LONG THEN
 ' Protective Exit Price
 LongEx = instrument.RoundTick(Max(UpTrend, SellLine))

 ' Update Risk Basis Property
 instrument.SetExitStop(LongEx)

 ' Update Protective Exit Indicator
 StopPrice = LongEx

 ' Assemble Order's Rule Details
 sRuleLabel = "Lx@" + instrument.PriceFormat(StopPrice - PriceAdj) +"s,"

 ' Send Order to Market
 broker.ExitAllUnitsOnStop(LongEx)

 ' ~~
 ' When Broker Order Exist,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' OrderExists
' ~~
ENDIF ' i.Position = LONG

' ~~
' Printing order.ruleLabel after assignment:
Print "order.ruleLabel = ", order.ruleLabel

Results:

www.forex-warex.com

Part 5 – Trading Objects Reference 631

© 2013, Trading Blox, LLC. All rights reserved.

order.ruleLabel = Lx@100.35s

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access as
the Order object. However, the alternateOrder object must be brought into context using the
system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

Max, OrderExists, position, PriceFormat, RoundTick, ruleLabel,
unitRuleLabel
SetExitStop, SetOrderReportMessage

See Also:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties

www.forex-warex.com

Trading Blox Builder's Guide632

© 2013, Trading Blox, LLC. All rights reserved.

SetQuantity

Sets the quantity for an order to the specified amount. This function is only available to the Unit Size,
Can Add Unit, and Can Fill Order Script script and is used to set the order quantity.

NOTE:
This function is only valid for Entry Orders and is ignored for Exit Orders.

Syntax:

order.SetQuantity(quantity)

Parameter: Description:

quantity Quantity to assign to the order.

Returns:

Integer quantity assigned.

Example:

' ~~~
' Common Fixed Fractional Order sizing calculation.
' ~~~
' Calculate amount of equity available for order sizing.
riskEquity = system.tradingEquity * riskPerTrade

' Convert instrument point risk into dollars.
dollarRisk = order.entryRisk * instrument.bigPointValue

' Order quantity will be the integer portion division.
tradeQuantity = riskEquity / dollarRisk

' If tradeQuantity is less than 1,...
If tradeQuantity < 1 THEN
 ' Order quantities less than 1.are rejected
 order.Reject("Order Quantity less than 1.")
ELSE
 ' Order greater than 1 become order size amount.
 order.SetQuantity(tradeQuantity)
ENDIF ' tradeQuantity < 1
' ~~~

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

www.forex-warex.com

Part 5 – Trading Objects Reference 633

© 2013, Trading Blox, LLC. All rights reserved.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

bigPointValue, entryRisk, Reject, tradingEquity

See Also:

Can Add Unit, Can Fill Order, Data Group and Types, Unit Size, AlternateOrder Object,
AlternateSystem Object, Order Functions, Order Object, Order Properties

www.forex-warex.com

Trading Blox Builder's Guide634

© 2013, Trading Blox, LLC. All rights reserved.

SetRuleLabel

Function assigns a text value that communicates the why this order was created.

Syntax:

order.SetRuleLabel(ruleLabel)

Parameter: Description:

ruleLabel Text description of the rule that created the order.

Returns:

Rule Labels assigned will appear in the Trade Log report.

Example:

' ~~
' LONG EXIT ORDERS
If instrument.position = LONG THEN
 ' Protective Exit Price
 LongEx = instrument.RoundTick(Max(UpTrend, SellLine))

 ' Update Risk Basis Property
 instrument.SetExitStop(LongEx)

 ' Update Protective Exit Indicator
 StopPrice = LongEx

 ' Assemble Order's Rule Details
 sRuleLabel = "Lx@" + instrument.PriceFormat(StopPrice - PriceAdj) +"s,"

 ' Send Order to Market
 broker.ExitAllUnitsOnStop(LongEx)

 ' ~~
 ' When Broker Order Exist,...
 If system.OrderExists() THEN
 ' Apply Order Detail To Trade Information
 order.SetRuleLabel(sRuleLabel)

 ' Apply Order Details To Order Information
 order.SetOrderReportMessage(sRuleLabel)
 ENDIF ' OrderExists
' ~~
ENDIF ' i.Position = LONG

' ~~
' Printing order.ruleLabel after assignment:
Print "order.ruleLabel = ", order.ruleLabel

Results:

www.forex-warex.com

Part 5 – Trading Objects Reference 635

© 2013, Trading Blox, LLC. All rights reserved.

order.ruleLabel = Lx@100.35s

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access as
the Order object. However, the alternateOrder object must be brought into context using the
system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

Max, OrderExists, position, PriceFormat, RoundTick, SetExitStop,
SetOrderReportMessage

See Also:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties

www.forex-warex.com

Trading Blox Builder's Guide636

© 2013, Trading Blox, LLC. All rights reserved.

SetSortValue

Sets the Sort Value for the order that will assigned to the order.sortValue property.

Loop over the orders setting this value, and then use the system.SortOrdersBySortValue to sort
the orders.

Syntax:

order.SetSortValue(sortValue)

TYPE: Description:

sortValue Assign a numeric sort value. Number is any user value based upon how
the user wants the orders sorted. Orders are sorted in an ascending
lowest to highest value sequence.

Returns:

Places the assigned sortValue in the order's sortValue property.

Example:

www.forex-warex.com

Part 5 – Trading Objects Reference 637

© 2013, Trading Blox, LLC. All rights reserved.

' ~~
' Before order Execution
' ~~
' Create Column Header Titles
 PRINT "#", "ao.referenceID", "ao.symbol", "ao.SortValue"
' ~~
' Get Total of Open Orders
totalOpenOrders = system.totalOpenOrders

' Show Order Sequence Before Orders are Sorted
PRINT "Before Orders are Sorted"
' Loop through the open orders & Assign Ranking
FOR x = 1 TO totalOpenOrders STEP 1
 ' Access each open order
 system.SetAlternateOrder(x)

 ' Generate a Random value for each order
 PRINT x, alternateOrder.referenceID, alternateOrder.symbol, alternateOrder.sortValue
Next ' x
' ~~

' Loop through the open orders & Assign a Random Ranking value
FOR x = 1 TO totalOpenOrders STEP 1
 ' Access each open order
 system.SetAlternateOrder(x)

 ' Generate a Random value for each order
 OrderRanking = Random(totalOpenOrders)

 ' Set the value as the order sort value.
 alternateOrder.SetSortValue(OrderRanking)
Next ' x
' ~~

' Sort All Open Orders in Ascending Order
system.SortOrdersBySortValue()
' ~~

' Show Order Sequence After Orders are Sorted
PRINT
PRINT "After Orders are Sorted"
' Loop through the open orders & Assign Ranking
FOR x = 1 TO totalOpenOrders STEP 1
 ' Access each open order
 system.SetAlternateOrder(x)

 ' Generate a Random value for each order
 PRINT x, alternateOrder.referenceID, alternateOrder.symbol, alternateOrder.sortValue
Next ' x
' ~~

Returns:

www.forex-warex.com

Trading Blox Builder's Guide638

© 2013, Trading Blox, LLC. All rights reserved.

When script shown above is created it will show the order prior to being sorted and getting a random
value for its order ranking property. After the orders have been assigned a random sort value, all the
orders are sorted in ascending numerical order. After the sorting the orders are shown again. All
reporting output will be found in the Print Output.csv file in the Trading Blox/Results folder.

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access as
the Order object. However, the alternateOrder object must be brought into context using the
system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

PRINT, referenceID, SetAlternateOrder, SetSortValue, SortOrdersBySortValue,
sortValue, symbol

See Also:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties

www.forex-warex.com

Part 5 – Trading Objects Reference 639

© 2013, Trading Blox, LLC. All rights reserved.

www.forex-warex.com

Trading Blox Builder's Guide640

© 2013, Trading Blox, LLC. All rights reserved.

SetStopPrice

Sets the stop price for an order to the specified price.

This function can only be used in the Unit Size, Can Add Unit, and Can Fill Order scripts.

It cannot be used in the Entry Order Filled script because the order is already filled. However, it can
be Use the instrument.SetExitStop instead.

NOTE:
Function is only valid for Entry Orders and is ignored for Exit Orders since there is only the
protective stop price for exit orders when one is assigned with a Broker Exit Order function.

Syntax:

order.SetStopPrice(stopPrice)

Parameter: Description:

stopPrice Stop price assigned to the order.

Returns:

order.stopPrice contains the instrument's protective exit price when one is assigned by a
Broker Entry function, or by the order.SetStopPrice. When the order.stopPrice does
not contain a price value, the order.noStopPrice will return True.

Example:

Unit Size script:
' Increment the stop by one tick.
order.SetStopPrice(order.stopPrice + instrument.minimumTick)

Can Fill Order script:
' Move the stop by the amount of the slippage.
order.SetStopPrice(order.fillPrice - order.entryRisk)

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

www.forex-warex.com

Part 5 – Trading Objects Reference 641

© 2013, Trading Blox, LLC. All rights reserved.

Links:

fillPrice, minimumTick, noStopPrice, SetExitStop, stopPrice

See Also:

 Can Add Unit, Can Fill Order, Entry Order Filled, Unit Size, AlternateOrder Object,
AlternateSystem Object, Order Functions, Order Object, Order Properties

www.forex-warex.com

Trading Blox Builder's Guide642

© 2013, Trading Blox, LLC. All rights reserved.

SetTimeInForce

Syntax:

Parameter: Description:

Returns:

Example:

Alternate Order Object:
Access to Order Object properties and functions in other scripts is made possible by using the
AlternateOrder Object as the prefix ahead of the "." property or function. AlternateOrder Object is
discussed below.

Notes:
Always check to be sure the order is available after a Broker function call using the
system.orderExists function prior to accessing it.

Using the alternateOrder object when orders are not in context will provide the same access
as the Order object. However, the alternateOrder object must be brought into context using
the system.SetAlternateOrder object function prior to any attempt to use is properties and
functions.

Once orders are brought into context their properties and function are available to reference and
changes.

Links:

See Also:

AlternateOrder Object, AlternateSystem Object, Order Functions, Order Object, Order Properties

www.forex-warex.com

Part 5 – Trading Objects Reference 643

© 2013, Trading Blox, LLC. All rights reserved.

Section 9 – Script

Trading Blox provides a Script Object to allow any user to create custom methods not available in
Trading Blox software. This ability is possible by using any of the functions and properties made
available in the Script Object.

Functions and Properties listed here provide everything that is needed to create specialize
calculations, file handling processes, text formatting, or any other scripting need your module requires
its system design.

Script Object Functions:

Functions Name: Descriptions:

Execute () Use this function to call for the execution of the custom scripts
needed at this location in the code.

GetSeriesValue () Used to access a value from a passed in series. Access is as
defined for the series so that auto indexed series are offset based,
and non auto indexed series are manual direct index based.

SetReturnValue () Used to set the return value to a number or string.

SetReturnValueList () Used to set a list of number return values.

Script Object Properties:

Properties Name: Description:

parameterCount The count of the number of parameters passed into the custom
function.

parameterList [] Used to access a specific parameter, or a number of parameters.

returnValue Used to access a custom function's return value number.

returnValueList [] Used to access the list of returned number values.

seriesParameterCount The count of the Series type parameters passed into the custom
function

stringParameterCount The count of the String type parameters passed into the custom
function

stringParameterList [] Used to access one specific String parameter, or a number of
String parameters.

stringReturnValue Used to access a custom function's return value string.

Creating Custom Scripts:
Custom scripts are created by the user adding a script name to the list of scripts in a blox. Name
used when creating the script must not be one of the standard script names Trading Blox provides.
Instead it should be a name that best describes the purpose of the custom script. Whatever name is
used, the name chosen will be the name used when the custom script is called.

To create a custom script, begin by selecting a blox where you want the custom script to be placed.
Pick the location in the script listing where you want it to appear, and then Right-Click on the script
name just before intended custom script location and a menu will appear.

www.forex-warex.com

Trading Blox Builder's Guide644

© 2013, Trading Blox, LLC. All rights reserved.

Custom Script Section Creation Menu Steps

When the New Custom menu item is clicked in the pop-up menu the next dialog will appear.

Name Entered will be Custom Script Section Name

Enter a name that is representative of the custom script section's process so that it helps in identifying
what will happen with this script section is executed.

When the name is entered and the New Custom Script dialog OK button is clicked, the new custom
script name will appear right after the After Simulation script section where we Right-Clicked to create
the custom script.

www.forex-warex.com

Part 5 – Trading Objects Reference 645

© 2013, Trading Blox, LLC. All rights reserved.

New Custom Script Section

Using Custom Scripts:
Custom script section can provide new functionality, but they share the same dependency and
limitations of the the script section from which they are called to execute. This means the script
section that executes the custom script section is a script section that is or can be executed for each
instrument in the portfolio without the need for the LoadSymbol function, then the custom script section
will share that access. If the calling script section only executes once each for each test.currentDay,
that script section will be required to use the LoadSymbol function to have access to an instrument.

To get a broader understanding of how the script section calling the custom section will condition the
custom script section, please read the details on the Instrument topic page were each of the standard
script sections are listed as having native instrument access, or are script section that only execute
once for each test.currentDate and need special access to instruments.

Custom script section variables share access to the calling script section. This means that variables
with the same name in the script section that calls the custom script section will have an impact on the
values in the custom script section, and also in the calling script section after the custom script section
has completed its execution of its scripts.

This means that it is possible to contaminate or share data between the two script sections. This is
also true when a script section calls another custom script section. There can either be contamination
or sharing of data that may or many not be intended.

To prevent unintended contamination of variables, use variable names in a script section that are not
going to be used within any other script. One simple way is to use a prefix or suffix in the custom
script that is added to any of the variable names so as the variable name will be unique to the custom
that specific custom script name.

In a custom script section named "Field_Count", all the variable names have a suffix attached to their
name using the two primary characters in the custom function name:

Example:

' Determine the Size of the String
String_Length_fc = Len(String_Fields_fc)

It is unlikely that a string_length variable would be created in a standard script section to make it
unique because variables can be limited in their data scope reach by how the variables are declared.
Custom script sections by default are limited in data scope reach by how they are declared. However,
that scoping reach includes the script section that calls the custom script because the process of how

www.forex-warex.com

Trading Blox Builder's Guide646

© 2013, Trading Blox, LLC. All rights reserved.

it is executed once called. In simple terms, when a custom script is called it is not any different from
how the same code would work had the scripting in the custom script section been typed into the
script section that executed the custom script.

Why then do we need custom script sections?
Custom script sections allow us to write code that can do a task that we don't have as a normal
function. By creating it as a custom script section we can write the code once and then use it many
times.

Once a custom script has been created it can then be used many times because the custom script
section can be placed in an Auxiliary module that is easily attached to a system list. A custom script
section can also be Right-Clicked, Copied, and then Pasted into another blox for use in that blox.

How many custom script sections are allowed?
There is no known limit, but there is a restriction when it comes to a custom script section name.
Each custom script section in a system must be different from any other custom script section in that
system. This is necessary because the Script Object's Execute function will search the entire system
list looking for the name used by the Execute function. If you have more than one a custom script with
the same name and it isn't exactly the same code, then the results you will get might not be what you
wanted because the search process looks and then uses the first custom script section it finds with the
name given to the Execute function.

Custom Function Example:
Source code shown below was created in 2008 and it is still being used today. Custom function
Field_Count returns the number of populated fields in a string where each field in the string is
separated by a comma. If the string is empty and has a length equal to zero, or only contains the
comma, the result returned will be zero. If there is one field and one comma, the return is one. Two
fields and two commas returns two, etc.

Example:

www.forex-warex.com

Part 5 – Trading Objects Reference 647

© 2013, Trading Blox, LLC. All rights reserved.

' ==
' FUNCTION NAME: Field_Count
' ==
' DESCRIPTION: This function returns the number of comma
' delimited fields in the passed string variable.
' USE:
' When a count of the number of comma separated values is
' needed before the GetField functions is used.
' CODE FUNCTION CALL:
' Function_Result = Script.Execute("Field_Count", _
' sAnyStringFieldGroup)
' OR
' PRINT Script.Execute("Field_Count", sAnyStringFieldGroup)
' --
' FUNCTION START - Field_Count
' --
' Function Parameter Variables
VARIABLES: String_Fields_fc Type: String
' Function Working Variables
VARIABLES: BeginPtr_fc, Field_Count_fc Type: Integer
VARIABLES: EndPtr_fc, String_Length_fc Type: Integer
' ~~
' Assign ParameterList Items to Parameter Variables
' so that Code is Self-Documenting, and so users can
' easily see parameter requirements.
String_Fields_fc = script.stringParameterList[1] ' STRING
' ~~
' Determine the Size of the String
String_Length_fc = Len(String_Fields_fc)

' When there is enough Characters,...
If String_Length_fc > 0 THEN

 BeginPtr_fc = 1 ' Start at the first character
 Field_Count_fc = 1 ' No Delimiters Found Indicate only 1 Field

 ' Look at each character in the string
 For EndPtr_fc = 1 TO String_Length_fc

 ' If the Character is a Delimiter,...
 If FindString(mid(String_Fields_fc, EndPtr_fc, 1), ",") > -1 THEN
 ' Count the field
 Field_Count_fc = Field_Count_fc + 1

 ' Adjust the Pointer's Character Location
 BeginPtr_fc = EndPtr_fc + 1
 ENDIF
 Next
ELSE
 ' Empty String Has No Fields
 Field_Count_fc = 0
ENDIF

www.forex-warex.com

Trading Blox Builder's Guide648

© 2013, Trading Blox, LLC. All rights reserved.

' Field_Count_fc Shows the number of Fields found
script.SetReturnValue(Field_Count_fc) ' Return Function Value
' --
' Field_Count - FUNCTION END
' ==

Construction Temporarily Paused Here!

Example:

' Create a custom script named "Multiply Two Numbers" with the following code:
script.SetReturnValue(script.parameterList[1] * script.parameterList[2])

' Call this new script from another script or block:
PRINT script.Execute("Multiply Two Numbers", 7, 8)

USER FUNCTION NOTES:

NOTE:
 ' Each Parameter List TYPE is parsed into each OF the following variable
 ' containers based upon the LEFT TO RIGHT sequence IN which the parameter
 ' value IS listed when it IS called, AND also the TYPE OF variable being
 ' passed:
 Script.ParameterList[] Use FOR INTEGER OR FLOAT parameters
 OR
 Script.StringParameterList[] Use FOR STRING parameters

www.forex-warex.com

Part 5 – Trading Objects Reference 649

© 2013, Trading Blox, LLC. All rights reserved.

CREATING & USING A USER FUNCTION:
'
' Enter your code (see example Blox listed above). With the code entered
' you can then call this script from anywhere in the system by using the
' following process:

 lResult = Script.Execute("User_Function_Name", [parameterlist...])

 [parameterlist...] is where you pass values to your new function (see
 example Blox listed above).
 PRINT lResult ' Sends the User Function result to the Log Window
 ' or the Print Output.csv file.

 Any_Var = lResult ' Assigns the User Function Result to Any_Var

' When you call a User Function like this, the calculation results are
' returned to variable you place on the left side of the calling statement.
' In this case, the variable "lResult" will hold the User Function
' calculation value you created in your function script.
'
' You can call a User Function to print directly to a PRINT statement:

 PRINT Script.Execute("User_Function_Name", [parameterlist...])

' In this method the function's result will print directly to TBB's Print
' Output.csv file or Log Window.

' When you create a User Function script, you'll need to assign the
' calculation results to a script's return property. This is done by
' using one of the following methods:
 ()
 ' No Longer Supported - Replaced by script.SetReturnValue()
 Script.SetStringReturnValue() ' Removed in version 4.x

 Script.SetReturnValue(Any_Num) ' Assigns a numeric or text/string Value

' You can call a User Function witout assigning a value to capture its return
' result. To do it that way, the calling statement would look like this:

 Script.Execute("User_Function_Name", [parameterlist...])

' In this case you would need to use one of the following properties to
' access the User Function results:

 lResult = Script.ReturnValue ' Use for INTEGER OR FLOAT Returns
 OR
 Any_Text = Script.StringReturnValue ' Use for STRING Return

www.forex-warex.com

Trading Blox Builder's Guide650

© 2013, Trading Blox, LLC. All rights reserved.

9.1 Script Functions

Script Object Functions:

Functions Name: Descriptions:

Execute () Use this function to call for the execution of the custom scripts
needed at this location in the code.

GetSeriesValue () Used to access a value from a passed in series. Access is as
defined for the series so that auto indexed series are offset based,
and non auto indexed series are manual direct index based.

SetReturnValue () Used to set the return value to a number or string.

SetReturnValueList () Used to set a list of number return values.

Functions used in the custom function:
' Used to set the return value to a number or string
script.SetReturnValue(value or string value, or value and string value)

' Used to set a list of number return values.
script.SetReturnValueList(value1, value2, value3...)

' Used to access a value from a passed in series. Access is as defined for
' the series so that auto indexed series are offset based, and non auto
' indexed series are manual direct index based.
script.GetSeriesValue(seriesParameterIndex, offsetIndex)

 ' These are Subrountine Processes for Setting the User Function's
RETURN value
 Script.SetStringReturnValue(STRING value) ' Use FOR a STRING RETURN

www.forex-warex.com

Part 5 – Trading Objects Reference 651

© 2013, Trading Blox, LLC. All rights reserved.

Execute

Custom scripts are called for execution from within any of the regular Trading Blox scripts, or from
within another custom script.

Syntax:

script.Execute("CustomScriptName", [parameterlist...])

Parameter: Description:

"CustomScriptNa
me"

Custom script's given name when it was created.

parameterlist Parameters values custom script will require to execute correctly.

Returns:

Custom scripts can return a value, but it isn't required.

Custom scripts that create a new function for processing information usually will return a Floating
number or a string.

Example:

' Custom script adds two numbers together
Print script.Execute("AddTwoNumbers", 2, 2)

Return:
4

Example:

' Custom script adds two numbers together
value = script.Execute("AddTwoNumbers", 2, 2)
Print value

Return:
4

Links:

Script

See Also:

www.forex-warex.com

Trading Blox Builder's Guide652

© 2013, Trading Blox, LLC. All rights reserved.

GetSeriesValue

Used to access a value from a passed in series. Access is as defined for the series so that auto
indexed series are offset based, and non auto indexed series are manual direct index based.

Syntax:

script.GetSeriesValue(aSeriesName,)

Parameter: Description:

Example:

Results:

Links:

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 653

© 2013, Trading Blox, LLC. All rights reserved.

SetReturnValue

Used this function to return a value from a Number or a String.

Syntax:

script.SetReturnValue(anyValue)

Parameter: Description:

anyValue Value can be any numeric or text value that needs to be
returned.

Example:

 ' Estimate Size to Remove
 SizeToRemove_GRQ = (iMinLotCount_GRQ * reductionRate)

 ' Return quantity Size to remove
 script.SetReturnValue(SizeToRemove_GRQ)

Results:
Returns value contained withing the variable SizeToRemove_GRQ

Links:

Script, Script Functions, Script Properties

See Also:

www.forex-warex.com

Trading Blox Builder's Guide654

© 2013, Trading Blox, LLC. All rights reserved.

SetReturnValueList

Syntax:

Parameter: Description:

Example:

Results:

Links:

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 655

© 2013, Trading Blox, LLC. All rights reserved.

9.2 Script Properties

Script Object Properties:

Properties Name: Description:

parameterCount The count of the number of parameters passed into the custom
function.

parameterList [] Used to access a specific parameter, or a number of parameters.

returnValue Used to access a custom function's return value number.

returnValueList [] Used to access the list of returned number values.

seriesParameterCount The count of the Series type parameters passed into the custom
function

stringParameterCount The count of the String type parameters passed into the custom
function

stringParameterList [] Used to access one specific String parameter, or a number of
String parameters.

stringReturnValue Used to access a custom function's return value string.

Parameters used in the custom function:
script.parameterList[] -- Used to access a number parameter

script.stringParameterList[] -- Used to access a string parameter

script.parameterCount -- The count of number parameters passed into the custom function

script.stringParameterCount -- The count of string parameters passed into the custom
function
script.seriesParameterCount -- The count of series parameters passed into the custom
function

Parameters used after a call to a custom function from the calling script:
script.returnValue -- Used to access the number return value

script.stringReturnValue -- Used to access the string return value

script.returnValueList[] -- Used to access the list of returned number values

NEW Parameters:
 ' Variable Containers of Passed Values to User Created Functions
 Script.ParameterList[] ' Use for INTEGER & FLOAT values
 Script.StringParameterList[] ' Use for STRING values

 ' Quantity Count of Passed Parameter Variables in User Function
 Script.ParameterCount ' Count of INTEGER & FLOAT variables
 Script.StringParameterCount ' Count of STRING variables

 ' Return Variable Container Of Last User Function Result
 Script.ReturnValue ' Use for INTEGER OR FLOAT Returns
 Script.StringReturnValue ' Use for STRING Return

www.forex-warex.com

Trading Blox Builder's Guide656

© 2013, Trading Blox, LLC. All rights reserved.

ParameterCount

Syntax:

Parameter: Description:

Example:

Results:

Links:

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 657

© 2013, Trading Blox, LLC. All rights reserved.

ParameterList

Syntax:

Parameter: Description:

Example:

Results:

Links:

See Also:

www.forex-warex.com

Trading Blox Builder's Guide658

© 2013, Trading Blox, LLC. All rights reserved.

ReturnValue

Used to return a numeric value from a custom function.

Syntax:

lResult = script.returnValue

Parameter: Description:

<None> Values assigned using the script.SetReturnValue()
function.

Example:

' Set the return value to 4
script.SetReturnValue(4)
' Assign the return value to the long integer lResult
lResult = script.returnValue
' Print the value of lResult
Print lResult

Results:
Print statement will display: 4

Links:

Script, Script Functions

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 659

© 2013, Trading Blox, LLC. All rights reserved.

ReturnValueList

Syntax:

Parameter: Description:

Example:

Results:

Links:

See Also:

www.forex-warex.com

Trading Blox Builder's Guide660

© 2013, Trading Blox, LLC. All rights reserved.

SeriesParameterCount

Syntax:

Parameter: Description:

Example:

Results:

Links:

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 661

© 2013, Trading Blox, LLC. All rights reserved.

StringParameterCount

Syntax:

Parameter: Description:

Example:

Results:

Links:

See Also:

www.forex-warex.com

Trading Blox Builder's Guide662

© 2013, Trading Blox, LLC. All rights reserved.

StringParameterList

Syntax:

Parameter: Description:

Example:

Results:

Links:

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 663

© 2013, Trading Blox, LLC. All rights reserved.

StringReturnValue

Syntax:

Parameter: Description:

Example:

Results:

Links:

See Also:

www.forex-warex.com

Trading Blox Builder's Guide664

© 2013, Trading Blox, LLC. All rights reserved.

Section 10 – System

The system object contains properties which describe system level attributes.

Since systems control the portfolio, the most common use for system properties is to determine the
number of instruments in the current portfolio.

System objects can also be used to determine dynamic correlations between instruments in the
portfolio.

System Function & Control
Areas:

Description:

Accessing System
Portfolio Instruments

SetAlternateSystem This is a test object function that provides access to any of the
multiple systems that are executing in the current simulation test.

System Functions

System Properties

www.forex-warex.com

Part 5 – Trading Objects Reference 665

© 2013, Trading Blox, LLC. All rights reserved.

10.1 Global Suite System

The global suite system is a special type of system. If a system has the same name as the suite, it will
be by definition a Global Suite System.

The scripts attached to this global suite system will be processed in a particular order: before the
others for the before scripts, and after the others for the after scripts.

The following "day/bar" scripts can be used in a GSS:
o Before Simulation,
o Before Test,
o Before Trading Day,
o Before Bar,
o Before Order Execution
o After Bar,
o After Trading Day,
o After Test,
o After Simulation

The following "Order" script:
o Entry Order Filled,
o Exit Order Filled,
o Can Add Unit,
o Can Fill Order

For the above "Order" scripts, the default system, default instrument and default order context is
taken from the system that originated the order. This is different from the non orders scripts, for
which the default system is the GSS, and the default instrument is null. The order object is null by
default, but can be valid after a call to the alternateBroker function. Use the
alternateSystem.OrderExists property to check if the order is available for access.

The Global Suite System has a system index of 0, and a system name of "Global Parameters".

Use system.IsGlobalSuiteSystem property to check if the system is a Global Suite System, if this is
important. Note that for order scripts, the system will be from the system originating the order, so this
property will return false. In the non order scripts, the system is the actual GSS, so this property will
return true. The GSS does not trade, so there is no instrument list, no positions, and no equity curve.
But BPV's and IPV's can be created, and accessed using the SetAlternateSystem and
SetAlternateInstrument functions. In this way the GSS can be used as a global storage location for
overall control and computation of test level variables.

For cases where the physical location of the script, such as system, is important, use the Block
object properties. An example might be when a block is used in both a GSS and regular system, and
uses an order script to process orders. The order script will be called twice, once in originating
system and once in the GSS. Checking if the block.systemIndex will indicate if the script is really in a
GSS.

The Net Risk block in the Blox Marketplace is a good example of how to loop over all instruments, in
all systems, and compute a suite level value for each market.

PRINT
PRINT test.currentDate

www.forex-warex.com

Trading Blox Builder's Guide666

© 2013, Trading Blox, LLC. All rights reserved.

totalRisk = 0

' Loop over all the instruments that are used in this test. Includes
all systems and all support forex conversion markets.

FOR testInstrumentIndex = 1 to test.instrumentCount STEP 1

' Get the symbol name.
PRINT "Getting instrument number", testInstrumentIndex
suiteInstrumentSymbol = test.instrumentList[testInstrumentIndex]
PRINT "Processing", suiteInstrumentSymbol

' Get the suite level instrument.
if suiteInstrument.LoadSymbol(suiteInstrumentSymbol, 0) THEN

' Reset our net position to zero for this instrument.
suiteInstrument.netRisk = 0

' Loop over all the systems in the test.
FOR systemIndex = 1 to test.systemCount STEP 1

' Set the alternate system so that we can use the name,
or other system properties.

PRINT "Setting to system index", systemIndex
test.SetAlternateSystem(systemIndex)
PRINT "Processing for system", alternateSystem.name

' Load the instrument symbol combo.
IF systemInstrument.LoadSymbol(suiteInstrumentSymbol,

systemIndex) THEN
PRINT "Loaded", systemInstrument.symbol

' If this instrument is in the portfolio for the
system, then check the position.

IF systemInstrument.InPortfolio THEN
PRINT "In portfolio for system",

alternateSystem.name, "with risk of",
systemInstrument.currentPositionRisk

' To get the net risk, we use positive for
long risk and negative for short risk.

IF systemInstrument.position = LONG THEN
PRINT "Long"
suiteInstrument.netRisk =

suiteInstrument.netRisk + systemInstrument.currentPositionRisk
ENDIF

IF systemInstrument.position = SHORT THEN
PRINT "Short"
suiteInstrument.netRisk =

suiteInstrument.netRisk - systemInstrument.currentPositionRisk
ENDIF

www.forex-warex.com

Part 5 – Trading Objects Reference 667

© 2013, Trading Blox, LLC. All rights reserved.

ELSE
PRINT "Not in portfolio for system",

alternateSystem.name
ENDIF

ELSE

PRINT "Unable to load", suiteInstrumentSymbol
ENDIF

NEXT

' Whether positive or negative, it's still risk.
suiteInstrument.netRisk = ABS(suiteInstrument.netRisk)

' Print out the net risk for this instrument.
PRINT "Net Risk", suiteInstrument.netRisk
totalRisk = totalRisk + suiteInstrument.netRisk

ELSE
PRINT "Unable to load", suiteInstrumentSymbol

ENDIF

NEXT

totalRisk = totalRisk / test.totalEquity * 100

10.2 System Functions

Referencing Sytem Object function will always used the "system." object referencing name in the
prefix area when calling any of the functions listed here:

Example:

' Sort Instruments by Dictionay Order Value:
system.SortInstrumentList(3)

System Function: Description:

RankInstruments Virtually ranks the instruments using the defined long and
short ranking. Sets the corresponding Long Rank and Short
Rank ordinal values based on the Long Ranking Value and
Short Ranking Value respectively. Long Rank is highest to
lowest, whereas Short Rank is lowest to highest. Only
primed markets ready to trade are ranked.

SetAccountNumber () Sets the IB account number for all orders in the system.

SetAlternateOrder (index) Sets the alternateOrder object by index. Used when looping
over all the open orders. To access the order, use the
alternateOrder object. This object acts just like the default

www.forex-warex.com

Trading Blox Builder's Guide668

© 2013, Trading Blox, LLC. All rights reserved.

Order Object and has the same properties and functions.

SetClearingIntent () Set to "IB" to clear the system orders in IB, and set to
"AWAY" when sending to IB but clearing elsewhere

SetVirtual (true/false) Sets whether the system will be treated as virtual or not.
Defaults to false at the beginning of each simulation. If set
to virtual, then the results of the system will not be included
in the test results.

SortInstrumentList (method) Sorts the physical instrument list that is used for the
simulation loop using the method indicated:

Method
Value:

Sorting Method Description:

1 Long Ranked number.

2 Long Ranking script assigned value.

3 Dictionary assigned Original Order Sort
value.

4 Custom Sort Value order.

5 Alphabetical by Symbol

6 Alphabetical by Group.

Note:
All markets are sorted regardless of
whether they are primed.

SortOrdersBySortValue Sorts the open order list by the order sort value, as set into
each order by order.SetSortValue. This function should
only be used in the Before Order Execution script.

Links:

System Properties

See Also:

Accessing System Portfolio Instruments

There are times when you might want to access one or more of the portfolio's instruments, an
instrument properties, or indicators. This is easily accomplished with the instrument's LoadSymbol
function. To make the following code work, to set an instrument variable to a particular instrument
in the portfolio by numeric index.

Example:

Accessing instruments out of their normal context scripts requires the use of a Instrument
container class variable, which is shown in this BPV dialog:

www.forex-warex.com

Part 5 – Trading Objects Reference 669

© 2013, Trading Blox, LLC. All rights reserved.

Any name can be used for the container variable. When accessing any IPV out of context, the
variable name must be used in the prefix or object name location. In the code script shown below,
the symbol is accessed by using the variable name and the instrument property for the symbol,
which is symbol -- portfolioInstrument.symbol

' Local declared variables
VARIABLES: instrumentCount, x Type: Integer

' Get the instrument count.
instrumentCount = system.totalInstruments

' Loop printing the symbol for each instrument.
For x = 1 TO instrumentCount STEP 1

 ' Set the portfolio instrument.
 portfolioInstrument.LoadSymbol(x)

 ' Print out the file name.
 If portfolioInstrument.inPortfolio THEN
 PRINT x,". Portfolio contains: ", portfolioInstrument.symbol
 ENDIF
Next ' x

In this code section the script is using the System's totalInstruments property. This property
contains the total number of symbols listed in the portfolio so the For loop structure would know how
many times it should loop to get access to all the portfolio's instruments.

When the above is executed with the Canadian Dollar, Euro, Feeder Cattle and Corn in the portfolio,
the main screen's Log Window will show this information:

Returns:

1 - Portfolio contains: CD
2 - Portfolio contains: EC

www.forex-warex.com

Trading Blox Builder's Guide670

© 2013, Trading Blox, LLC. All rights reserved.

3 - Portfolio contains: FC
4 - Portfolio contains: C2

Links:

Instrument Loading, System Properties,

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 671

© 2013, Trading Blox, LLC. All rights reserved.

RankInstruments

Syntax:

Parameter: Description:

Example:

Results:

Links:

See Also:

www.forex-warex.com

Trading Blox Builder's Guide672

© 2013, Trading Blox, LLC. All rights reserved.

SetAccountNumber

Syntax:

Parameter: Description:

Example:

Results:

Links:

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 673

© 2013, Trading Blox, LLC. All rights reserved.

SetAlternateOrder

Syntax:

Parameter: Description:

Example:

Results:

Links:

See Also:

10.3 System Properties

The following properties refer to the system which contains the block in which a script runs. If you
have multiple systems in your test, these values will be different for Blox that run in those different
systems.

The system equity numbers are updated prior to the After Trading Day script, so in this script they
will represent the most current equity.

Property Name: Description:

name the name of the system. Useful for printing.

tradingEquity the amount of money available for trading by the current system.

The trading equity is determined by the Global Setting parameter
"Trading Equity Base," the system allocation slider, the leverage
amount, and the drawdown reduction amount.

For example, if Trading Equity Base is set to "Total Equity", then the
value of system.tradingEquity is equal to the test.totalEquity
multiplied by the leverage multiplied by the system's allocation
percentage as set by the slider and reduced by the drawdown reduction
threshold/amount.

For order generation when a value has been entered for Order

www.forex-warex.com

Trading Blox Builder's Guide674

© 2013, Trading Blox, LLC. All rights reserved.

Generation Equity this number replaces the test total equity number. So
the trading equity is calculated from there.

totalEquity[] this starts out as system.tradingEquity, and is then affected by the total
profits, losses of trades by the system.

This property is Indexable, so you can access the system's total equity
for bars in the past. This value will be the same as
test.totalEquity, minus interest, if you only have one system in
your test with a 100% allocation. For order generation this is the Order
Generation Equity times the allocation. Note that this value is from the
close of the prior day.

closedEquity[] The closed equity of the system as of the close of the prior day.

currentOpenEquity The current open equity of the system. Dynamically takes into
consideration positions as they are exited.

currentClosedEquity The current closed equity of the system. Dynamically takes into
consideration positions as they are exited.

coreEquity The core equity of the system. Dynamically computed based on current
stop prices.

cash the current cash of the system. System closed equity minus open
position margin (for futures) or cost of purchase (for stocks).

allocationPercent the percentage of equity available to the current system. Set using the
slider in the global parameters

maximumDrawdown the maximum drawdown for the system, in percent from the peak (a
positive number between 0% and 100%).

currentDrawdown the current drawdown for the system, in percent from the peak (a
positive number between 0% and 100%).

currentRisk the risk in dollars of all open positions in the system. The risk for a given
position is determined by looking at the difference between the close
and the protect stop for each unit

totalMargin the total margin across all instruments. For futures this is the sum of the
futures margin, for stocks it is the sum of the cash required to buy the
stocks.

totalInstruments the total number of instruments in the portfolio being tested.

tradingInstruments the total number of instruments in the portfolio being tested that have
price information for the current test date, and are primed.

canTradeInstruments the total number of instruments in the portfolio being tested that have
price information for the current test date, are primed, and are allowed
to trade by the portfolio manager.

totalPositions the number of instruments in the portfolio with a position of LONG or
SHORT with a non zero position size

totalLongPositions the number of instruments in the portfolio with a long position with a non
zero position size

totalShortPositions the number of instruments in the portfolio with a short position with a
non zero position size

www.forex-warex.com

Part 5 – Trading Objects Reference 675

© 2013, Trading Blox, LLC. All rights reserved.

totalUnits the total number of units for long and short positions with a non zero
position size

totalLongUnits the total units for long positions only with a non zero position size

totalShortUnits the total units for short positions only with a non zero position size

index the index number of the system, from 1 to the number of systems in the
test.

totalOpenOrders the total number of open orders for the system

portfolioName the name of the portfolio being used for the system

orderExists returns true if the default Order object has context, and false if the
Order object is null and cannot be accessed

IsGlobalSuiteSystem returns true if the system is a Global Suite System

Links:

System Functions

See Also:

orderExists

This property is used to determine if an order exists prior to the order object properties and functions
being accessed. Orders that are not in context, or do not exists when scripts attempt to access them
will cause a run-time error during execution.

TYPE: Description:

orderExists() Returns TRUE when an order exists, and if the default Order, or
AlternateOrder object has context. Most orders that exists can be
accessed after the Broker function that creates them, and only when the
order has not been rejected. When an order is not available because it
wasn't created, was rejected or it was executed previously, this property will
return a Null or FALSE condition.

Example:

www.forex-warex.com

Trading Blox Builder's Guide676

© 2013, Trading Blox, LLC. All rights reserved.

 ' Genereate Long Entry on Next open, without
 ' a protective exit price
 broker.EnterLongOnOpen

 ' Create detauls why order is created.
 sRuleLabel = "Order Details go here."

 ' When Broker Order Exist,...
 If system.OrderExists() THEN
 ' Apply Exit Stop Update Information
 order.SetOrderReportMessage(sRuleLabel)

 ' Apply Exit Stop Update Information
 order.SetRuleLabel(sRuleLabel)
 ENDIF ' system.orderExists

Returns:

A True condition will be returned when an order exists and is in context.

Links:

See Also:

Data Group and Types

www.forex-warex.com

Part 5 – Trading Objects Reference 677

© 2013, Trading Blox, LLC. All rights reserved.

Section 11 – Test

The Test Trading Object contains test-level properties. They contain information about the overall test.

Test Object Types: Description:

Equity Properties Equity properties for every system in the test.

General
Properties

Test object properties for every system in the test.

String Arrays Test level global string array functions and properties.

Miscellaneous
Functions

Test level functions that provide access to paths, and control how test are
executed or terminated and which reporting features are changed or added.

Test Statistics After test level statistic & summary reporting functions.

Trade Properties Test level closed trade details for all the instruments in the test.

www.forex-warex.com

Trading Blox Builder's Guide678

© 2013, Trading Blox, LLC. All rights reserved.

11.1 Equity Properties

These properties access equity values for every system in the test (a test can run multiple systems at
once). They are also indexable - if you put a number in brackets, you will get the historical value from
that day. For instance, Test.ClosedEquity[5] will be the closed equity 5 days ago. Several
of these properties are also graphed when the results for a test are displayed.

Bar Indexing:

Properties listed with a '[]' following them may be indexed using a number which determines which
day's data to access. There are also built in constants for 'today' and 'yesterday' which can be used.
For example:

 ' Test Total Equity from 5-bars ago is assigned to the variable equity.
 equity = Test.TotalEquity[5]

OR
 ' Yesterday's Instrument's Date is assigned to the variable yesterday.
 ' A value of 1 references date record just before this date.
 YesterdaysDate = Instrument.Date[1]

When YesterdaysDate is referenceed it will return the date value in the data record just before the
current instrument date.

NOTE:
The most current equity numbers are from the prior day, since the final equity figures are not
determined until the end of the day when all scripting has finished for the Test.CurrentDate
value.

Update End-of-Day Equity numbers are available when scripting reaches the After Trading Day
script section.

Equity Properties Property Descriptions

cash Current cash of the test. Test closed equity minus open position
margin (for futures) or cost of purchase (for stocks)..

closedEquity[] Total Closed Equity for all systems.
For order generation this is the Order Generation Equity minus Open
Equity.

closedEquityHigh the current high water mark for closed equity. Used to compute the
curentClosedDrawdown.

coreEquity Core Equity at each Test.CurrentDay location of a test (not indexed).

currentClosedDrawdown the current bar's closed equity drawdown.

currentDrawdown[] the percent of total equity drawdown. Graphed as the "Drawdown"
graph under test results.

currentRisk[] the total percent of total equity at risk, based on the close for markets
with open positions minus the stop price for those positions. Graphed
as the "Total Risk Profile".

otherExpense the total other expenses as set by UpdateOtherExpenses

www.forex-warex.com

Part 5 – Trading Objects Reference 679

© 2013, Trading Blox, LLC. All rights reserved.

Equity Properties Property Descriptions

startingEquity the equity as of the start of the simulation. Equal to the Test Starting
Equity as specified in the Global Parameters

totalEquity[] Starts as the Test Starting Equity as specified in Global Parameters.
It is then affected by the total profits, losses, and interest of trades by
all systems. Graphed as the "Equity Curve" graph. For order
generation this is the Order Generation Equity.

Note:
This property is not affected by any of the following Global Parameter
settings:
System Allocation Slider
Drawdown Reduction Threshold, or its Amount,
Choice of Base Equity selection: Total Equity or Closed Equity.

totalEquityHigh the current high water mark for total equity. Used to compute the
currrentDrawdown.

totalMargin the total current margin of all open positions in the test

vadi[] VADI is the acronym for "Value Added Daily Index". VADI
calculations start at the start of trading equity, and it increases and
decreases as a ratio of profit/loss as a percent of trading equity.
VADI is net of capital adds and draws, and it includes accrued fees,
whereas equity only includes booked fees.

Note:
Fees are accrued on a daily basis, and booked as defined in
global parameters (daily/monthly/quarterly/yearly).

www.forex-warex.com

Trading Blox Builder's Guide680

© 2013, Trading Blox, LLC. All rights reserved.

11.2 General Properties

The following properties refer to the test object and they will be the same regardless from what system
they are referenced.

All Test Object properties are used with the "test." object prefix.

Example:

PRINT "Test Name: ", test.name
PRINT "Order Report Path: ", test.orderReportPath

Properties: Description:

abortTestPending Returns true when the Abort Test or Abort Simulation functions have been
used.

baseCurrency Returns the ISO code of the system wide base currency

baseCurrencyBorrow
Rate

Borrow rate of the system wide base currency

baseCurrencyLendR
ate

Lend rate of the system wide base currency

CapitalAddsDraws Total capital adds and draws to date, from the capital adds draws file.

currentDate Current simulation date. In YYYYMMDD format.

currentDay Number count of the current day. Count starts at one on the day of the
Test Start. Also used as the Test Bar when using Intraday Data, so this
can be the "Test Bar Number" when using date and time.

currentParameterTes
t

Number of the current active parameter step test

currentTime Current simulation time. In HHMM format.

feesIncentiveAccrue
d

Incentive fees accrued but not yet booked.

Note:
Fees are accrued on a daily basis, and booked as defined in global
parameters (daily/monthly/quarterly/yearly).

feesIncentiveTotal Total incentive fees booked to date.

feesManagementAcc
rued

Management fees accrued but not yet booked.

Note:
Fees are accrued on a daily basis, and booked as defined in global
parameters (daily/monthly/quarterly/yearly).

feesManagementTota
l

Total management fees booked to date.

forexDataPath Provides the full path to the Forex Files. Default Forex path: C:\Trading
Blox\Data\Forex\

futuresDataPath Provides the full path to the Futures Files. Default Forex path: C:\Trading
Blox\Data\Futures\

instrumentCount Total number of instruments being tested across all systems. This includes
forex conversion files and if systems are using different portfolio types,

www.forex-warex.com

Part 5 – Trading Objects Reference 681

© 2013, Trading Blox, LLC. All rights reserved.

could include stocks, futures, and forex markets. Does not include markets
loaded using the LoadSymbol function.

instrumentList[] List of all instruments in all the system portfolios, including the Forex
conversion files. Indexed from 1 to InstrumentCount. Returns the full
symbol, such as F:CL or S:IBM.

leverage Leverage as set in Global Parameters

name Name of the Current Test Suite.

orderGenerationBar Returns true if the current bar is after the test end record, and therefore
the order generation bar.

orderGenerationTest Returns true if the test is generating orders, rather than just running a
performance test.

orderReportPath Full path of the current order report

primeStart Earliest date for all loaded data for any instrument

resultsReportPath Path of the results folder for this test. Used to access charts and graphs in
the test results folder for display.

stockDataPath Provides the full path to the Stock Files. Default Forex path: C:\Trading
Blox\Data\Stocks\

summaryResultsPath Full path of the current test results saved file location.

systemCount Number of systems to be tested.

testEnd Test End date. The user entered end date, or the end of data, which ever
comes first.

testStart Test Start date. The first trading day equal to, or after the user entered
start date, or the start of data, which ever is later.

threadCount Number of active threads available in this Simulation test.

threadIndex Active thread index of this simulation test. Each thread index up to
ThreadCount will run concurrently, so if variables, or information needs to
be passed from one thread to another, make sure the ThreadIndex is a
match.

timeIncrement Returns the TimeIncrement used for the test loop when using Intraday
data. Output format is HHMM (Hour-Minute) order.

timeStamp Start Time stamp of this test. Used to access charts, graphs, and other
results for the test run.

totalParameterTests Total number of distinct parameter tests

walkForwardStatus Returns 0 for a normal test, 1 for the optimization portion of the walk
forward test, and 2 for the out of sample portion of the walk forward test.

Global Parameters report the current setting used in the Global Settings.

Global Parameter
Access

accountForContract
Rolls

accountForForexCa
rry

www.forex-warex.com

Trading Blox Builder's Guide682

© 2013, Trading Blox, LLC. All rights reserved.

commissionPercent
Value

commissionPerCont
ract

commissionPerShar
e

commissionPerTrad
e

convertStockSplit

earnDividends

earnInterest

entrydayRetraceme
nt

forexTradeSize

ignoreTestPositions

incrementTestStart

maxMarginEquityPe
rcent

maxVolumePerTrad
e

minimumFuturesVol
ume

minimumSlippage

minimumStockVolu
me

payMargin

rollSlippageATR

setTestDuration

slippagePercent

tradeLockLimit

tradeOnTick

useBrokerPositions

usePipBasedSlippa
ge

useStartDateSteppi
ng

At the beginning of each trading simulation day, the test's date is set to the current trading day while
the instrument date is set to the previous trading day. This prevents the creation of postdictive errors
or errors where trading system logic is allowed to access information that is not available in actual
trading. In effect, postdictive errors are errors which rely on seeing the future.

www.forex-warex.com

Part 5 – Trading Objects Reference 683

© 2013, Trading Blox, LLC. All rights reserved.

OrderReportPath

www.forex-warex.com

Trading Blox Builder's Guide684

© 2013, Trading Blox, LLC. All rights reserved.

Property returns the full path and folder name of the current test Suite.

Syntax:

CurrentOrderFolderPath = test.orderReportPath

Parameter: Description:

<None> Output is a String containing the current Trading Blox path
for saving order files.

Notes:
Use this property to discover the current order report saving location.

Example:

Links:

www.forex-warex.com

Андрей
tr-software-download

Part 5 – Trading Objects Reference 685

© 2013, Trading Blox, LLC. All rights reserved.

ResultsReportPath

www.forex-warex.com

Trading Blox Builder's Guide686

© 2013, Trading Blox, LLC. All rights reserved.

Property returns the full path and folder name of the current test Suite.

Syntax:

CurrentTestResultsFolderPath = test.resultsReportPath

Parameter: Description:

<None> Output is a String containing the newly created
performance results files path-name and folder-name used in
the Summary Performance Test Results page.

Used to access charts and graphs in the test results folder
for display, or for accessing Trade and Equity Logs enabled
in the Trading Blox Preferences Reporting sections.

Notes:
Use this property to discover the current test suite and folder full path details.

Property makes it easy to store and access custom charts and other test files.

Example:

 ' Assign results reporting folder path and name to a variable.
 CurrentTestResultsFolderPath = test.resultsReportPath

OR
 ' Display path and folder name to the Print Output.csv
 ' file or Main screen Log Window.
 Print test.resultsReportPath

Returns:
 ' Printed output would look something like...
 "C:\Trading Blox\Results\Test 2013-01-08_08_47_55"

Links:

Print

www.forex-warex.com

Part 5 – Trading Objects Reference 687

© 2013, Trading Blox, LLC. All rights reserved.

SummaryResultsPath

Property returns the full path and folder name of the current test Suite.

Syntax:

CurrentOrderFolderPath = test.summaryResultsPath

Parameter: Description:

<None> Output is a String containing the current Trading Blox path
for saving the current test result files.

Notes:
Use this property to discover the current test results file saving location.

Example:

Links:

www.forex-warex.com

Trading Blox Builder's Guide688

© 2013, Trading Blox, LLC. All rights reserved.

11.3 Test String Arrays

Test scoped String arrays provide access to the Test-Level String Table that allows a user to place,
and then retrieve text information into a multi-dimensional table.

For access to the global test level string arrays, use the following functions and properties:

test.CreateStringArray(arrayCount, elementCount, stringLength)

Creates multiple (arrayCount) string arrays each with a fixed number of elements (elementCount) and
a fixed string length (stringLength) for each string in the array.

test.SortStringArray(arrayIndex, direction, elementCount)

Sorts one of the string arrays (arrayIndex) using the direction (1 for ascending and -1 for
descending). Only sorts the first elementCount number of elements in the array.

string = test.GetStringArrayElement(arrayIndex, elementIndex)

Returns a string from the arrayIndex string array at elementIndex element.

test.SetStringArrayElement(arrayIndex, elementIndex, string)

Sets a string into the arrayIndex array at elementIndex element.

www.forex-warex.com

Part 5 – Trading Objects Reference 689

© 2013, Trading Blox, LLC. All rights reserved.

11.4 Miscellaneous Functions

Test level properties and functions that provide access to paths, and control how test are executed or
terminated and which reporting features are changed or added.

Test Function Name: Description:

AbortSimulation("message") Aborts the simulation

AbortTest Stops the current parameter test only. The simulation will
continue with the next parameter test

AddStatistic Adds a new custom statistic which will show up on the summary
list

CapitalAddsDraws

GetSteppedParameter
(paramIndex, paramValueIndex)

Returns the attributes of each stepped parameter.

SetAutoPriming(True/False) Use in Before Simulation Script to disable auto priming.

SetAlternateSystem(sysIndex) AlternateSystem object is a test function that provides access
to any of the multiple systems that are executing in the current
simulation test.

SetChartSimulationHtml Function creates end of test tasks to automatically display a
custom chart images in the area below the Stepped
Parameter Summary Performance Table.

SetChartTestHtml Function creates end of test tasks to automatically display a
custom chart images in the area below the BPV Custom
Graphs are displayed.

SetDisplayOrderReport(True/
False)

Sets whether the order report will display at the end of the
order generation run. Defaults to true at the beginning of each
test run.

SetEarliestTime(HHMM) Used in the Before Simulation script to set the earliest time
each day on which the test loop will start. Defaults to the
earliest time for any bar of data for all instruments in the test.

SetGeneratingOrders(True/
False)

Use in Before Test script to set whether a test run is going to
generate orders, or just run a normal back test.

SetGoodnessToChart(listofstats) Creates multi parameter charts (contour and 3D) for all status
in the list, such as ("Mar, Sharpe")

SetLatestTime(HHMM) Used in the Before Simulation script to set the latest time each
day on which the test loop will end. Defaults to the latest time
for any bar of data for all instruments in the test.

SetListNonTradedInstruments
(True/False)

Sets the preference to list all the instruments in the portfolio that
did not trade. If set to true, then all non traded instruments will
be listed in the trade chart with a zero entry. If set to false, then
only the instruments with trades will be listed in the trade chart.
This

SetSilentTestRun(True/False) Used in the Before Test Script to suppress any output from the
test run.

SetSmartFillExit Sets the global Smart Fill Exit parameter to true or false in
scripting. Useful when the system has many exits placed each
bar, and requires this functionality.

www.forex-warex.com

Trading Blox Builder's Guide690

© 2013, Trading Blox, LLC. All rights reserved.

SetStartEndDates(startDate,
endDate)

Dynamically sets the start and end dates of the test. Use in the
Before Test script. Must be between the original user set start
end dates because that controls how much data was loaded.

SetStartingEquity(equityValue) Dynamically sets the starting equity of the test. Use in the
Before Test script.

SetTimeIncrement(HHMM) Used in the Before Simulation script to set the time increment
for the test. Defaults to the smallest time increment for all data
in all instruments in the test.

UpdateOtherExpenses Adds or subtracts other expenses

www.forex-warex.com

Part 5 – Trading Objects Reference 691

© 2013, Trading Blox, LLC. All rights reserved.

AbortSimulation

Stops the entire simulation by aborting all parameter testing.

Syntax:

test.AbortSimulation([message])

Parameter: Description:

[message] Information about the reason why the test was aborted.

Returns:

<none>

Example:

' Abort the simulation because we could not load our data.
test.AbortSimulation("Test Completed")

Links:

Message Box

See Also:

www.forex-warex.com

Trading Blox Builder's Guide692

© 2013, Trading Blox, LLC. All rights reserved.

AbortTest

Stops the current parameter run but not the simulation. The simulation will continue with the next
parameter test.

Test results can be filtered in the after test script using the abortTest or SetSilentTestRun functions.

This function sets the test.abortTestPending flag to true, so that additional processing in the script
could be skipped if necessary. The test will actually abort after the script has finished.

Syntax:

test.AbortTest

Parameter: Description:

<none>

Returns:

<none>

Example:

' Abort the test because of invalid parameters
test.AbortTest

Links:

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 693

© 2013, Trading Blox, LLC. All rights reserved.

AddStatistic

You can add custom statistics to the summary page for sorting. Best if used in After Test script after

the statistic has been calculated.

Adds a new statistic which will show up in the test summary list and can be sorted there.

Syntax:

test.AddStatistic(statisticName, value, [decimal places], [type])

Parameter: Description:

statisticName String name of the statistic to be added

value Value of that statistic

[decimal
places]

Optional number of decimal places for display of float numbers. Default is 2
if left out

[type] Places is still optional. Float is default, although if value is a string the String
type is assumed.

Notes:

Optional Types:
"Integer" Prints as an integer, truncated.
"Float" Prints as a floating point number, default.
"Decimal" Prints as a decimal, multiplied by 100 and a % added.
"Currency" Prints as a comma delimited number with currency symbol prefixed.
"Date" Prints as a date string YYYY-MM-DD.
"String" Prints as a string. Must be a string, cannot be a number.

Example:

test.AddStatistic("Adjusted MAR", 2.12345) ' Output is 2.12
test.AddStatistic("My Custom Stat", 2.12345, 3) ' Output is 2.123
test.AddStatistic("My Custom Stat", 2.12345, "Integer") ' Output is 2
test.AddStatistic("The Best Market", "Gold", "String") ' Output is "Gold"
test.AddStatistic("The Best Market", "Gold") ' Output is "Gold"
test.AddStatistic("Return", 2.12345, "Percent") ' Output is "2.12%"
test.AddStatistic("Return", 2.12345, 0, "Percent") ' Output is "2%"
test.AddStatistic("Worst Date", 20010521, "Date") ' Output is "2001-05-21"
test.AddStatistic("Highest Value", 500000, "Currency") ' Output is "$500,000"

Links:

See Also:

www.forex-warex.com

Trading Blox Builder's Guide694

© 2013, Trading Blox, LLC. All rights reserved.

www.forex-warex.com

Part 5 – Trading Objects Reference 695

© 2013, Trading Blox, LLC. All rights reserved.

CapitalAddsDraws

Syntax:

Parameter: Description:

Returns:

Example:

Links:

See Also:

www.forex-warex.com

Trading Blox Builder's Guide696

© 2013, Trading Blox, LLC. All rights reserved.

GetSteppedParameter

When a test is being simulated this function will returns all the attributes of each stepped parameter, or
when the values of the parameters are zero, it will return the number of stepped parameters to be
sequenced.

Syntax:

test.GetSteppedParameter(paramIndex, paramValueIndex)

Parameter: Description:

paramIndex ParamIndex is based on the stepping priority.

paramValueIndex paramValueIndex is shown below.

Returns:

When values greater than 0 are used in each of the parameter locations, the return value will be
the attributes of each parameter.

When 0 is used in both of the parameter fields, the number of stepped parameters in the test is
the returned information.

Example:

steppedParameterCount = test.GetSteppedParameter(0, 0)

PRINT "Using the following stepped parameters."
PRINT "Name", _
 "Step Start", _
 "Step End", _
 "Step Step", _
 "Step Count", _
 "Step Index", _
 "Step Value", _
 "Step Priority"

FOR i = 1 to steppedParameterCount
 ' Stepped parameter values
 StepName = test.GetSteppedParameter(i, 1)
 stepStart = test.GetSteppedParameter(i, 2)
 stepEnd = test.GetSteppedParameter(i, 3)
 stepStep = test.GetSteppedParameter(i, 4)
 stepCount = test.GetSteppedParameter(i, 5)
 stepIndex = test.GetSteppedParameter(i, 6)
 stepValue = test.GetSteppedParameter(i, 7)
 stepPriority = test.GetSteppedParameter(i, 8)

 PRINT stepName, _
 stepStart, _
 stepEnd, _
 stepStep, _
 stepCount, _

www.forex-warex.com

Part 5 – Trading Objects Reference 697

© 2013, Trading Blox, LLC. All rights reserved.

 stepIndex, _
 stepValue, _
 stepPriority
NEXT

Links:

See Also:

www.forex-warex.com

Trading Blox Builder's Guide698

© 2013, Trading Blox, LLC. All rights reserved.

SetAlternateSystem

Companion function to the software's System Object. It purpose is to allow access to scripts and
values in systems other than the system in which this function is being executed. Most often this is
used in a Suite with a GSS system of the same name as the Suite name, but it can be used from a
different system. In use it is designed to provide access to other systems in the same Suite when the
context of that system where the information is located is not the system where the information is
needed.

When this function is used it brings the system identified by the system-index value into context so the
system executing this function can access information . WhenOnce in context any of the functions or
properties that are available from within a system are also made available. Names used are identical
to those listed in the System Object.

Global Suite System (GSS) are where this function is handy so as to allow information to pass
between the system running in the GSS container.

Syntax:

test.SetAlternateSystem(systemIndex)

Parameter: Description:

systemIndex System index number. When this function is executed it sets the special
built-in object "alternateSystem" with a new system by index.

System index number is assigned by the order in which systems are added
to a Suite. Index numbers for system begins at zero, which is reserved for
the Suite's GSS system, and the index values assigned end at the number
value that represents the number of non-GSS systems in the Suite.

Trading Blox allows a specific number of scripts for use in a GSS module.
To see which scripts are available, and to understand the order of when
those scripts will execute review the Global Script Timing Table.

Notes:

Sets the special built-in object "alternateBroker" with a new system by index. The
alternateBroker object can then be used to place orders for other systems.

Example:

' Loop over the systems in the test.
FOR systemindex = 1 TO test.systemCount

 ' Set the alternate system by index.
 test.SetAlternateSystem(systemIndex)

 ' Print each system name and available equity
 PRINT systemIndex, alternateSystem.name, alternateSystem.totalEquity
NEXT

Example of setting the alternate system, and using the alternateBroker object:

www.forex-warex.com

Part 5 – Trading Objects Reference 699

© 2013, Trading Blox, LLC. All rights reserved.

IF inst.LoadSymbol("F:GC", 1) THEN

 test.SetAlternateSystem(1)

 IF inst.isPrimed AND inst.position = OUT THEN
 alternateBroker.EnterLongOnopen(inst.symbol)

 IF alternateSystem.OrderExists() THEN
 order.SetQuantity(10)
 ENDIF
 ENDIF
ELSE
 PRINT "Unabled to load symbol"
ENDIF

Links:

System Object

See Also:

Global Script Timing Table

www.forex-warex.com

Trading Blox Builder's Guide700

© 2013, Trading Blox, LLC. All rights reserved.

SetAutoPriming

This function is used to enable or disable a test simulation and it must be called in the Before
Simulation script.

By default Trading Blox sets this property to TRUE so that test being run will use the software's ability to
automatically reserve enough data with each of the instrument files to allow period bar lengths to
perform calculations without causing an error.

When set to FALSE, Auto-Priming will not reserve any priming records. This means that blox
scripting must determine when there is enough data available to process calculations without the look
back reach of some calculation reaching back past the first available record in a series.

Priming of calculated indicators in the Indicator section of the Trading Blox Editor need to reference
look back values to prevent testing errors:

When a Parameter's "Used for Lookback" option is enabled, Trading Blox will reserve records for
priming so the calculated indicator in the Indicator section doesn't cause an error. When more than
one parameter enables its "Use for Lookback" option, the sum of the look backs is the amount of
instrument records that are reserved. This delay can be seen in the charting display by looking at the
bar number where the indicators first appear on the chart.

Syntax:

test.SetAutoPriming(TrueFalse)

Parameter: Description:

TrueFalse By default Auto Priming for parameters is set to TRUE. It can be disabled
for special handling when their is no chance that an indicator or calculation
will be used when there is insufficient bars available to all the range of the

www.forex-warex.com

Part 5 – Trading Objects Reference 701

© 2013, Trading Blox, LLC. All rights reserved.

calculation to perform without error.

Returns:

Function doesn't return a value. It just enables or prevents the automatic reservation of look back
data bars.

Example:

' BEFORE SIMULATION SCRIPT SECTION
' Disable Auto Priming
test.SetAutoPriming(FALSE)

Links:

See Also:

Miscellaneous Functions

SetChartSimulationHtml

Function creates end of test tasks to automatically display a custom chart images in the area below
the Stepped Parameter Summary Performance Table.

Test.SetChartSimulationHtml allows the user to insert HTML into the simulation summary chart through scripting.

Syntax:

' Create a task item for the summary report to load
' a custom chart below the plotted stepped parameter chart
' at the top of the Summary Results Report.
test.SetChartSimulationHtml(sHTMLImageReference)

Parameter: Description:

sHTMLImageReference HTML Image loading reference that includes image path and full
file name.

See code example below for exact details on how to create a
HTML image source reference.

Notes:
This function is placed in the BEFORE TEST script section.

Image width and height assigned to this function should match that the size used to create the
chart. If the the space allocated by the HTML statement to too small, some of the displayed image
will be blocked. If they are too large, more space around the image will be added creating wasted
space.

www.forex-warex.com

Trading Blox Builder's Guide702

© 2013, Trading Blox, LLC. All rights reserved.

When used with a multiple stepped test, only one image should be created, so only one image is
placed in the report. With thread processing in Trading Blox it will be necessary to and it will be
placed in the top section of the Summary Performance Report after the Contour and other
simulation scoped graphs.

Where this method differs is in the placement of where this method's charts are placed in the end
of test Summary Performance Report. When this method is used, the created chart will be
inserted right after the multi-parameter contour and 3D charts, which are created only once for
the entire simulation, not for every test step.

In multiple step simulations, the Contour Stats block is a good example of setting the place holder
in the Before Simulation script, checking for thread index one so that only one insert is made. As
you know, every thread runs the Before Simulation script, so we don't want multiple inserts made.

Trading Blox Preferences:

Preference settings to enable Custom Graphs and Custom Charts.

Display charts just below Multi-Parameter Table in the Stepped Parameter Summary
Performance table:

Example:

www.forex-warex.com

Part 5 – Trading Objects Reference 703

© 2013, Trading Blox, LLC. All rights reserved.

BEFORE TEST SCRIPT

' ==
' This task will load the chart SystemEquity.jpg image into
' the simmulation report:
' ~~
' This statement creates a single chart displaying task.
test.SetChartSimulationtHtml("<img src='" _
 + test.resultsReportPath _
 + "\SystemEquity" _
 + AsString(test.currentParameterTest) _
 + ".gif" _
 + "' width=830 height=500>")
' ==

OR
' ==
' This task will load two chart images in the
' simulaiton report:
' ~~
' Next two lines assign the full path and file name to two BPV
' variables:
chartHtml1 = "<img src='" _
 + test.resultsReportPath _
 + "\Winning Trades" _
 + AsString(test.currentParameterTest) _
 + ".gif" _
 + "' width=415 height=400>"

chartHtml2 = "<img src='" _
 + test.resultsReportPath _
 + "\Losing Trades" _
 + AsString(test.currentParameterTest) _
 + ".gif" _
 + "' width=415 height=400>"

' This statement creates a task to display two charts
' side by side.
test.SetChartSimulationtHtml(chartHtml1 + chartHtml2)
' ==

OR
' ==
' This task will load the same two chart images defined above
' simulation report, but it will place the first image above
' the second image:
' ~~

' This statement creates a task to display two charts
' one above the other.
test.SetChartSimulationtHtml(chartHtml1 + "
" + chartHtml2)
' ==

www.forex-warex.com

Trading Blox Builder's Guide704

© 2013, Trading Blox, LLC. All rights reserved.

Links:

currentParameterTest, resultsReportPath

SetChartTestHtml

Function creates end of test tasks to automatically display a custom chart images in the area below
the BPV Custom Graphs are displayed.

Syntax:

test.SetChartTestHtml(sHTMLImageReference)

Parameter: Data Information:

sHTMLImageReference HTML Image loading reference that includes image path and full
file name.

Multiple task can be included in as a single parameter by placing
a plus-sign + between each image to be loaded.

See code example below for exact details on how to create a
HTML image source reference.

Note:
The width and height specified should match that used to create the chart. If the the space
allocated by the HTML statement to too small, some of the displayed image will be blocked. If
they are too large, more space around the image will be added creating wasted space.

When this method is used with stepped test, the parameter test index is added to the file name
created. File names created will each have an index that matches equal the number of steps in
test when this method is used with multiple stepped test. When only 1-step is in a test, there will
only be one image. When there are more steps in a test, each test-step will have an image and
that image will have that step's index value as part of its file name.

Inserts HTML references that include a Custom Chart created graph image into the bottom area
where Trading Blox BPV series Custom Charts. When Chart Object images are created they are
saved into the Results folder with used to population of end of test Summary Performance Report
images.

Trading Blox reporting preferences for the level of reporting intended must show the reporting
option selected has the Custom Graph option enabled with a checkmark.

Trading Blox Preferences:

www.forex-warex.com

Part 5 – Trading Objects Reference 705

© 2013, Trading Blox, LLC. All rights reserved.

Preference settings to enable Custom Graphs and Custom Charts.

Display charts just below Multi-Parameter Table in the Stepped Parameter Summary
Performance table.

Example:

BEFORE TEST SCRIPT
' ==
' This task will load the chart SystemEquity.jpg image into
' the simmulation report:
' ~~
' This statement creates a single chart displaying task.
test.SetChartSimulationtHtml("<img src='" _
+ test.resultsReportPath _
+ "\SystemEquity" _
+ AsString(test.currentParameterTest) _
+ ".gif" _
+ "' width=830 height=500>")
' ==

OR

www.forex-warex.com

Trading Blox Builder's Guide706

© 2013, Trading Blox, LLC. All rights reserved.

' ==
' This task will load two chart images in the
' simulaiton report:
' ~~
' Next two lines assign the full path and file name to two BPV
' variables:
chartHtml1 = "<img src='" _
+ test.resultsReportPath _
+ "\Winning Trades" _
+ AsString(test.currentParameterTest) _
+ ".gif" _
+ "' width=415 height=400>"

chartHtml2 = "<img src='" _
+ test.resultsReportPath _
+ "\Losing Trades" _
+ AsString(test.currentParameterTest) _
+ ".gif" _
+ "' width=415 height=400>"

' This statement creates a task to display two charts
' side by side.
test.SetChartSimulationtHtml(chartHtml1 + chartHtml2)
' ==

OR

' ==
' This task will load the same two chart images defined above
' simulation report, but it will place the first image above
' the second image:
' ~~

' This statement creates a task to display two charts
' one above the other.
test.SetChartSimulationtHtml(chartHtml1 + "
" + chartHtml2)
' ==

Links:

AsString, currentParameterTest, resultsReportPath

www.forex-warex.com

Part 5 – Trading Objects Reference 707

© 2013, Trading Blox, LLC. All rights reserved.

SetGeneratingOrders

Regardless of whether the test was run using Run Simulation or Generate Orders, you can set whether
the test will generate orders or not. Set to true to generate orders for this test, set to false to run a
normal backtest. By default this is set by which button was pressed to invoke the simulation.

Generally this function is used in the Before Test script.

Useful if an order generation run requires a couple of stepped test runs prior to the order generation
run.

Syntax:

Parameter: Description:

Returns:

Example:

Links:

See Also:

www.forex-warex.com

Trading Blox Builder's Guide708

© 2013, Trading Blox, LLC. All rights reserved.

SetSilentTestRun

Continues the test, but sets the test to silent, so that no test results are displayed in the summary
report.

Test results can be filtered in the after test script using the abortTest or SetSilentTestRun functions.

Syntax:

test.SetSilentTestRun(true/false)

Parameter: Description:

true/false Use True or False keywords, or the values, 1 = True, 0=False

Returns:

No Return

Example:

IF test.totalTrades < tradesThreshold THEN

 test.SetSilentTestRun(true)

 PRINT "Filtered test ", test.currentParameterTest, _
 " because total trades of ", test.totalTrades, _
 " were less than threshold of ", tradesThreshold
ENDIF

Links:

See Also:

www.forex-warex.com

Part 5 – Trading Objects Reference 709

© 2013, Trading Blox, LLC. All rights reserved.

UpdateOtherExpenses

Adjusts the Other Expenses category by the specified amount. This can be used to account for fees or
taxes. This amount can be accessed using test.otherExpenses property and will print on the
Summary Report as "Other Expenses"

This function immediately moves the indicated equity from closed equity to Other Expenses.

Syntax:

test.UpdateOtherExpenses(expenseAdjustment)

Parameter: Description:

expenseAdjustme
nt

Amount to add, or subtract from the other expenses category

Returns:

See example comments.

Example:

' Moves one percent of the total equity from closed equity
' to other expenses. This amount is no longer available equity
' to the test.
otherExpenseAdjustment = test.totalEquity * .01
test.UpdateOtherExpenses(otherExpenseAdjustment)

' Adds $100,000 to the test closed equity. Subtracts from
' the other expenses.
test.UpdateOtherExpenses(-100000)

Links:

See Also:

www.forex-warex.com

Trading Blox Builder's Guide710

© 2013, Trading Blox, LLC. All rights reserved.

11.5 Test Statistics

These are the test level statistics. They are designed to be used in the After Test script. They match
the summary statistics printed by Trading Blox in the summary report.

They can also be used for export, other calculations, or with the AddStatistic function to have them in
the sortable results list.

Note:
Some of these statistics calculate the value when used, so use with care as this could be a
performance issue.

Statistic Name: Description:

goodness the statistic as set in the goodness preferences

expectationRatio the expectation ratio

annualGeometricReturn the annual geometric return

dailyGeometricReturn the daily geometric return using calendar days

marRatio the mar ratio

averageDailyReturn the average daily return

averageMonthlyReturn the average monthly return

averageAnnualReturn the average annual return

dailyReturnStandardDeviation the standard deviation of the daily returns

monthlyReturnStandardDeviation the standard deviation of the monthly returns

annualReturnStandardDeviation the standard deviation of the annual returns

modifiedSharpeRatio the modified sharpe ratio

dailySharpeRatio the daily sharpe ratio

dailyGeoSharpeRatio the daily geometric sharpe ratio

monthlySharpeRatio the monthly sharpe ratio

annualSharpeRatio the annual sharpe ratio

annualizedMonthlySharpeRatio the annualized monthly sharpe ratio

dailyReturnDownsideDeviation the downside standard deviation of the daily return

monthlyReturnDownsideDeviation the downside standard deviation of the monthly
return

annualReturnDownsideDeviation the downside standard deviation of the annual
return

dailySortinoRatio the daily sortino ratio

monthlySortinoRatio the monthly sortino ratio

annualSortinoRatio the annual sortino ratio

calmarRatio the calmar ratio

rSquared the R Squared

rar the RAR

rCubed the R Cubed

averageMaxDrawdown the average maximum drawdown

www.forex-warex.com

Part 5 – Trading Objects Reference 711

© 2013, Trading Blox, LLC. All rights reserved.

averageLongestDrawdown the average longest drawdown

robustSharpe the robust sharpe

maxClosedDrawdown the max closed equity drawdown percent

maxOpenDrawdown the max total equity drawdown percent

maxOpenMonthlyDrawdown the max total equity monthly drawdown percent

maxClosedMonthlyDrawdown the max closed equity monthly drawdown percent

longestOpenDrawdownMonths the longest total equity drawdown in months

averageClosedDrawdown the average closed equity drawdown percent

averageOpenDrawdown the average total equity drawdown percent

closedDrawdownStandardDeviation the standard deviation of the closed equity
drawdown percent

openDrawdownStandardDeviation the standard deviation of the total equity drawdown
percent

netProfit the net profit

totalWinDollars the total dollars from winning trades

totalLossDollars the total dollars from losing trades

profitFactor the profit factor (win/loss)

averageRiskPercent the average percent risk per trade

averageWinPercent the average percent win of the winning trades

averageLossPercent the average percent loss of the losing trade

averageTradePercent the average percent profit per trade

percentProfitFactor the profit factor percent (win percent / loss
percent)

totalTrades the total trades not including zero size trades

winCount the total winning trades, including break even

lossCount the total losing trades

winningMonths the total number of winning months

losingMonths the total number of losing months

monthCount the total number of months

roundTurnCount the number of round turns

earnedInterest the total earned interest

marginInterest the total margin interest

totalSlippage the total slippage

totalCommissions the total commission

totalCarry the total cost of carry

www.forex-warex.com

Trading Blox Builder's Guide712

© 2013, Trading Blox, LLC. All rights reserved.

monteCarloConfidenceReturn

monteCarloConfidenceMAR

monteCarloConfidenceSharpe

monteCarloConfidenceRSquared

monteCarloConfidenceDrawdown

monteCarloConfidenceDrawdown2

monteCarloConfidenceDrawdown3

monteCarloConfidenceDrawdownLength

monteCarloConfidenceDrawdownLength2

monteCarloConfidenceDrawdownLength3

www.forex-warex.com

Part 5 – Trading Objects Reference 713

© 2013, Trading Blox, LLC. All rights reserved.

11.6 Trade Properties

Test level closed trade details for all the instruments in all of the systems in the test suite.

Trades from each of the systems can be reported with the test property "tradeSystem" trade details
can be associated with each system in a suite.

Properties: Description:

averageTradeDuration Average trade duration of all trades in the test,
computed using the tradeDaysInTrade property

savedTradeCount Number of trades saved by the WF process from one
OOS test to the next.

test.tradeCommission[]

tradeBarsInTrade[] Number of bars between entry and exit

tradeCommission[]

tradeCount Number of prior trades including zero size trades.
Used to index the following properties:

tradeCustomValue[] Custom value as set through scripting

tradeDaysInTrade[] Number of days between entry and exit (includes
weekends and holidays)

tradeDirection[] Direction as a description of LONG or SHORT text.

tradeDollarsPerPoint[] Dollars per point on the entry day

tradeEntryBPV[] Entry BPV of the instrument

tradeEntryDate[] Entry date

tradeEntryFill[] Entry fill price

tradeEntryOrder[] Entry order price

tradeEntryRisk[] Entry risk as a percent of entry day trading equity

tradeEntryStop[] Initial entry day stop, if used

tradeEntryTime[] Entry time

tradeExitDate[] Exit date

tradeExitFill[] Exit fill price

tradeExitOrder[] Exit order price

tradeExitTime[] Exit time

tradeMaxAdverseExcursion[] Maximum Adverse excursion of the trade

tradeMaxFavorableExcursion[] Maximum Favorable excursion of the trade

tradeMinFavorableExcursion[] Minimum Favorable excursion of the trade

tradePositionReferenceID[] Position Reference value.

tradeProfit[] Closed out profit including Slippage and Commission

tradeProfitPercent[] Profit as a percent of entry day trading equity

tradeQuantity[] Quantity in shares or contracts

tradeRuleLabel[] Rule label as set through scripting

www.forex-warex.com

Trading Blox Builder's Guide714

© 2013, Trading Blox, LLC. All rights reserved.

tradeSymbol[] Symbol for the instrument for this trade

tradeSystem[] System index for the trade

tradeUnitNumber[] Unit number for the trade

Trade Indexing:
Properties listed with a '[]' following them require an indexed using a number which determines
which trade is reported. When the value of the index is 1, the trade reported will be latest, or most
recent trade will be reported first. When the index value is stepped beginning at the value of the
number of the trades, then the oldest trade detail will be reported first.

Most Recent Trade Reported First:

Example:

' Report Sytem & Trade count data
PRINT "------------------------------------"
PRINT "testStart",",",test.testStart
PRINT "testEnd",",",test.testEnd
PRINT "systemCount",",",test.systemCount
PRINT "totalTrades",",",test.totalTrades
PRINT
' Create Column Header Titles
PRINT "Trade#",",","System#",",","Symbol",",","Date"

' Loop through all the trades generated
' by the systems in the suite
For x = 1 TO test.totalTrades STEP 1
 ' Report Trade#, System#, and trade symbol
 PRINT x,",",_
 test.tradeSystem[x],",",_
 test.tradeSymbol[x],",",_
 test.tradeEntryDate[x]
Next ' x

Returns:

www.forex-warex.com

Part 5 – Trading Objects Reference 715

© 2013, Trading Blox, LLC. All rights reserved.

Oldest or first Trade Execute shown First:

 Example:

' Report Sytem & Trade count data
PRINT "------------------------------------"
PRINT "testStart",",",test.testStart
PRINT "testEnd",",",test.testEnd
PRINT "systemCount",",",test.systemCount
PRINT "totalTrades",",",test.totalTrades
PRINT
' Create Column Header Titles
PRINT "Trade#",",","System#",",","Symbol",",","Date"

' Loop through all the trades generated
' by the systems in the suite
For x = test.totalTrades TO 1 STEP -1
 ' Report Trade#, System#, and trade symbol
 PRINT x,",",_
 test.tradeSystem[x],",",_
 test.tradeSymbol[x],",",_
 test.tradeEntryDate[x]
Next ' x

Returns:

www.forex-warex.com

Common Questions

Part

VI

www.forex-warex.com

Part 6 – Common Questions 717

© 2013, Trading Blox, LLC. All rights reserved.

Part 6 – Common Questions

Visit the Documentations page on the website for current PDF, Help File, or Web Based versions of
these manuals.

Documentation Webpage

www.forex-warex.com

http://www.tradingblox.com/tblox/?page_id=252

Trading Blox Builder's Guide718

© 2013, Trading Blox, LLC. All rights reserved.

Section 1 – The Life of a Test

1) Test Start

The Start date of the test is when the blox scripts will start running, and if the indicators are primed the
instruments will start trading.

2) Test End Date

The End date of the test is when the system will close all open positions and calculate the summary
results for the test.

If you are generating orders, the open positions will not be closed but will be displayed on the Order
Generation Report. Orders will be generated for the day after the test end date.

3) Indicator and Lookback Priming

On the Start Date, if you have enough data, all your instrument indicators will be primed and ready for
use. If you don't have enough data, such as when you set the start date near or even before the
beginning of the data, then each instrument will start trading when it is primed.

The priming for each indicator is determined by the overall prime bars required for the system. The
prime bars is determined by adding the max required bars for indicator priming to the max required
bars for lookback parameters.

So if you have a simple moving average indicator that uses a parameter with value 20, the indicator
priming bars will be 20. If in addition you have another lookback type parameter with value 10, then the
total priming required will be 30 bars.

Here is an example, where simpleMovingAverage is defined as a 20 day moving average, and
lookbackParameter is a lookback parameter with value 10:

simpleMovingAverage[lookbackParameter]

www.forex-warex.com

Part 6 – Common Questions 719

© 2013, Trading Blox, LLC. All rights reserved.

Section 2 – How Stops Work

There's a few different things to know about how stops work in Trading Blox.

How do I enter an order with a stop?
Use a broker order like the following:

broker.EnterLongOnOpen(exitStop) - Buy on the open with an optional stop price

broker.EnterShortOnOpen(exitStop) - Sell on the open with an optional stop price

broker.EnterLongOnStop(entryStop, exitStop) - Buy on a stop with an optional exit stop price

broker.EnterShortOnStop(entryStop, exitStop) - Sell on a stop with an optional exit stop price

broker.EnterLongAtLimit(entryLimit, exitStop) - Buy at the limit with an optional stop price

broker.EnterShortAtLimit(entryLimit, exitStop) - Sell at the given limit with an optional stop price

The entryStop or entryLimit (where applicable) is the basic stop or limit order. The exitStop, which is
available to all these orders, is a protective stop. Let's say the broker enters long at $11 with an exitStop
of $10. If the prices drops below $10 on the day of entry, the position will automatically be exited. But
check the Entry Day Retracement Percent for details on whether an entry day stop will be exited based
on the low or the close of the day. Note that stops placed in this manner are for the day of entry only.
Be sure to place the stops in the Exit Script each day to hold the stop for the duration of the trade.

Do I have to set stops?
No, exitStop is optional for all broker orders. Some reversal systems are always in the market and don't
use stops However, remember that risk calculations are done using these stops. If you have no stops,
Trading Blox assumes undefined risk. Using Blocks like the Fixed Fractional Money Manager, which is
calculated using the entryRisk, will result in no trades.

I set a protective stop for my order and the price went below it on the next bar. My position
was not exited.
The protective stop as placed with an entry order is saved with the instrument, but only placed for the
day of entry. See the following question.

Can I keep my protective stop "active" during the duration of my position?
Yes! The protective stop is stored as instrument.unitExitStop. You must enter a broker order every day
to "hold" this stop. You could use an order like the following:

broker.ExitAllUnitsOnStop(instrument.unitExitStop)

Many of our built-in systems use this method of "holding" stops.

Can I change my stop once it is set?
The function instrument.setExitStop() will set a new stop.

instrument.SetExitStop(unitNumber, stopPrice) - Sets a new stop price for a particular unit. This value
is used to calculate risk at the end of the day. If you just have one unit on, you do not need to enter a
unitNumber.

instrument.SetExitStop(newStopPrice)

www.forex-warex.com

Trading Blox Builder's Guide720

© 2013, Trading Blox, LLC. All rights reserved.

broker.ExitAllUnitsOnStop(instrument.unitExitStop)

What script should I change my stops in?
The "Adjust Stops" script is the best place. The stops are then used in the days risk and other
calculations.
We usually place all entry broker orders in the entry script, and exit broker orders in the exit script. But
you can 'set' the stop in the Adjust Stops script.

What if I have multiple units?
Use the same function - you can enter a different stop for each unit:

instrument.SetExitStop(unitNumber, stopPrice)

www.forex-warex.com

Part 6 – Common Questions 721

© 2013, Trading Blox, LLC. All rights reserved.

Section 3 – Shortcut Keys

Trading Blox Main Screen Shortcut Keys:

Keys Operation

F2 Display Active Portfolio

F3 Open System Editor

F4 Open Code Editor (Builder Version Only)

F5 Execute Simulation Test

F7 Execute Positions and Orders Report

Note:
Laptop keyboards often require the user use the keyboards function key (Fn) to enable the F-
key action listed in the table.

Trading Blox Builder Editor & Integrated Debugger Shortcut Keys:

Keys Use-In Operation:

Control + S Editor Save

Control + A Editor Select All

Control + C Editor Copy Selected Text

Control + X Editor Cut Selected Text

Control + Z Editor Undo (multiple levels supported)

Control + Y Editor Redo

Control + V Editor Paste copied or cut text

Control + F Editor Find

Control + G Editor Find Again (same direction)

Shift + Control
+ G

Editor Find Again (reverse direction)

Control + H Editor Replace

Escape Exit the editor. Prompts to save if changes were made

F5 Debug Run to the next Breakpoint

F9 Both Toggle a breakpoint on the current line (In Code Editor Builder
Version Only)

Shift + F9 Both Clear all breakpoints

F10 Debug

F11 Debug Step through each line of code

Debugger - Add-Items :
1. Ability to Watch variables in the debugger. Double click or use F8 to add to watch screen.

2. Debugger now shows the current value and the past four indexed values for series variables.

www.forex-warex.com

Trading Blox Builder's Guide722

© 2013, Trading Blox, LLC. All rights reserved.

3. Debugger can now STEP Into other functions and scripts. Use F11 to enable STEP into, use
F10 to disable STEP into.

4. Use F11 to start a test in debug mode.

www.forex-warex.com

Index 723

© 2013, Trading Blox, LLC. All rights reserved.

Index
- A -
AbortParameterRun 409

AbortTest 409

activeStatus 548

addLine 409

addLineSeries 409

Auto-Priming 700

averageVolume 548

- B -
bar 548

barsSinceEntry 409

Basic Money Manager 52

bigPointValue 548

Block Object 216

Blox

Working with 72

Boolean 144

Breakpoint 407

Broker

Entry Orders 429

Exit Orders 450

brokerSymbol 548

- C -
close 548

Comments 165

Commodity Channel Index 298

Common Questions 717

How Stops Work 719

Shortcut Keys 721

The Start and End Dates 718

Comparison 348

Constants 142

conversionRate 548

Correlation Functions 558

Add Closely Correlated 559

Add Loosely Correlated 559

Reset Closely Correlated 558

Reset Loosely Correlated 558

Correlation Properties 560

currency 548

currencyBorrowRate 548

currencyDate 548

currencyLendRate 548

currencyTime 548

currentBar 548

CurrentDate 190

currentDay 157, 409, 680

currentDrawdown 409

currentOpenEquity 409

currentParameterRun 409

currentParameterTest 409

currentPositionProfit 409

currentPositionQuantity 409

currentPositionRisk 409

currentPositionUnits 409

CurrentTime 191

currentWeek 548

- D -
Data Access Properties 548

Data Function

Add Commission 553

GetDateTimeIndex 554

GetDayIndex 555

Price Format 556

Real Price 556

Round Tick 557

Round Tick Down 557

www.forex-warex.com

Trading Blox Builder's Guide724

© 2013, Trading Blox, LLC. All rights reserved.

Data Function

Round Tick Up 557

Data Functions 553

dataLoadedBars 409, 548

dataVendorID 548

date 548

Date Functions 176

DateToJulian 179

DayMonthYearToDate 180

DayOfMonth 181

DayOfWeek 182

DayOfWeekName 183

DaysInMonth 184

JulianToDate 186

Month 188

MonthName 189

SystemDate 190

SystemTime 191

WeekNumberISO 193

Year 195

Day 48

dayClose 548

dayHigh 548

dayIndex 548

dayLow 548

dayNumber 409

dayOpen 548

dayVolume 548

Debugger 407

defaultAverageTrueRange 548

deliveryMonth 409, 548

deliveryMonthLetter 548

Dema 298

description 548

displayDigits 548

dividend 548

Dominant Cycle 298

Dominant Cycle Highest 298

Dominant Cycle Lowest 298

Dominant Cycle Phase 298

- E -
Ehlers Lead Sinewave 298

Ehlers Nonlinear Ma 298

Ehlers Sinewave 298

Ehlers Zero Lag Ema 298

Email Manager

EmailConnect 518

EmailConnectSSL 519

EmailDisconnect 524

EmailSend 521

EmailSendHTML 522

endBar 548

endDate 548

EnterLongOnStopOpen 409

EnterLongStopOpenOnly 409

EnterShortOnStopOpen 409

EnterShortStopOpenOnly 409

Entry Orders

EnterLongAtLimit 441

EnterLongAtLimitClose 448

EnterLongAtLimitOpen 434

EnterLongOnClose 443

EnterLongOnOpen 431

EnterLongOnStop 439

EnterLongOnStopClose 446

EnterLongOnStopOpen 433

EnterShortAtLimit 442

EnterShortAtLimitClose 449

EnterShortAtLimitOpen 437

EnterShortOnClose 444

EnterShortOnOpen 432

EnterShortOnStop 440

EnterShortOnStopClose 447

EnterShortOnStopOpen 435

Entry Scripts

Entry Order Filled 121

Entry Orders 114

equityDrawdown 409

www.forex-warex.com

Index 725

© 2013, Trading Blox, LLC. All rights reserved.

exchange 548

Exit Orders

ExitAllUnitsAtLimit 460

ExitAllUnitsAtLimitClose 466

ExitAllUnitsAtLimitOpen 455

ExitAllUnitsOnClose 462

ExitAllUnitsOnOpen 452

ExitAllUnitsOnStop 458

ExitAllUnitsOnStopClose 464

ExitAllUnitsOnStopOpen 454

ExitUnitAtLimit 461

ExitUnitAtLimitClose 467

ExitUnitAtLimitOpen 457

ExitUnitOnClose 463

ExitUnitOnOpen 453

ExitUnitOnStop 459

ExitUnitOnStopClose 465

ExitUnitOnStopOpen 456

Exit Scripts

Exit Order Filled 120

Exit Orders 113

extraData1 548

extraData8 548

- F -
FALSE 144, 700

FAMA 298

File Functions

CopyFile 198

CreateDirectory 199

DeleteFile 199

EditFile 200

FileExists 200

MoveFile 201

OpenFile 201

OpenFileDialog 202

SaveFileDialog 203

FileManager

Close 528

EndOfFile 531

OpenAppend 532

OpenRead 533

OpenWrite 535

ReadLine 538

WriteLine 540

WriteString 542

fileName 548

firstDataLoadedDate 548

Fixed Fractional Money Manager 52

Floating 144

folder 548

forexBaseBorrowRate 548

forexBaseLendRate 548

forexPipSize 548

forexPipSpread 548

forexQuoteBorrowRate 548

forexQuoteLendRate 548

futuresMonth 409

- G -
General Functions

BuildDividendFiles 205

ColorBackground 223

ColorCrossHair 223

ColorCustom1 223

ColorCustom2 223

ColorCustom3 223

ColorCustom4 223

ColorDownBar 223

ColorDownCandle 223

ColorGrid 223

ColorLongTrade 223

ColorShortTrade 223

ColorTradeEntry 223

ColorTradeExit 223

ColorTradeStop 223

ColorUpBar 223

ColorUpCandle 223

FileVersion 205

FileVersionNumerical 205

GetRegistryKey 205

License Name 214

LicenseName 205

www.forex-warex.com

Trading Blox Builder's Guide726

© 2013, Trading Blox, LLC. All rights reserved.

General Functions

LineNumber 205

LoadUnadjustedClose 223

LoadVolume 223

Message Box 217

MessageBox 205

NumberOfExtraDataFields 223

PlaySound 205, 221

Preference Items 223

ProcessDailyBars 223

ProcessMonthlyBars 223

ProcessWeekends 223

ProcessWeeklyBars 223

ProductVersion 205

ProductVersionNumerical 205

RaiseNegativeDataSeries 223

SetRegistryKey 205

YearsOfPrimingData 223

generatingOrders 409

Getting Started 2

Adding Money Management 52

Creating a System 4

Tutorial 4, 52

What are blox? 3

Group Properties 562

GSS 698

- H -
high 548

Historic Volatility 298

Historical Trade Properties 564

- I -
Indicators 286

Accessing 295

Basic 286

Calculated 292

Custom 294

Invalid Items 292

Valid Items 292

inPortfolio 548

Instantaneous Trendline 298

Instantaneous Trendline Alternate 298

Instrument 144

Instrument Loading 566

Load By Long Rank 569

Load By Short Rank 570

Load External Data 570

Load IPV From File 572

Load Symbol 567

instrumentCount 409

Integer 144

intradayData 548

isForex 548

isFuture 548

isPrimed 548

isStock 548

- J -
julianDate 548

- K -
Kaufman Adaptive Moving Average 298

Keywords

Abort 399, 691, 692

Assert 399

Break 399

DO 397

ELSE 402

End 691, 692

ENDIF 402

ENDWHILE 405

FOR 400

IF 402

LOOP 397

NEXT 400

Stop 399, 691, 692

THEN 402

UNTIL 397

www.forex-warex.com

Index 727

© 2013, Trading Blox, LLC. All rights reserved.

Keywords

WHILE 397, 405

- L -
Laguerre Moving Average 298

lastBarOfDay 548

lastDataLoadedDate 548

lastDayOfMonth 548

lastDayOfWeek 548

lastDayOfYear 548

lastTradingInstrument 548

LoadPortfolioInstrument 409

LoadSymbol 409

low 548

- M -
MAMA 298

margin 548

Mathematical Comparison 348

Mathematical Functions 227

Absolute Value 228

Arc Cosine 230

Arc Sine 230

Arc Tangent 231

Arc Tangent XY 231

Average 231

CAGR 232

Correlation 234

Correlation Log 234

Cosine 235

Degrees to Radians 235

ema function 236

Exponents 237

Hypotenuse 239

IfThenElse 239

IsUndefined 240

Log 241

Max 241

Min 241, 244

Radians to Degrees 242

Random 242

RandomDouble 243

RandomSeed 243

Round 244

Sine 247

Square Root 247

Standard Deviation 247

Standard Deviation Log 248

sumValues 248

Tangent 249

minimumTick 548

minimumVolume 548

Momentum 298

Money 144

Money Manager Scripts

Unit Size 115

monthClose 548

monthHigh 548

monthIndex 548

monthLow 548

monthOpen 548

Multi-Money Manager 52

- N -
nativeBPV 548

negativeAdjustment 548

- O -
Objects 413

alternateBroker 425

AlternateOrder 592

alternateSystem 664, 698

Block 418

Broker 425

Email Manager 517

FileManager 525

Instrument 544

Name 418

www.forex-warex.com

Trading Blox Builder's Guide728

© 2013, Trading Blox, LLC. All rights reserved.

Objects 413

Order 592

Script 643

ScriptName 418

System 664

Test 677

On Balance Volume 298

On-Stop 48

open 548

openEquity 409

openInterest 548

Operators 347

Order Functions

Reject 623

SetClearingIntent 622

SetCustomValue 626

SetFillPrice 628

SetLimitPrice 622

SetOrderReportMessage 630

SetQuantity 632

SetRuleLabel 634

SetSortValue 636

SetStopPrice 640

SetTimeInForce 622

Order Properties 596

orderGenerationBar 409

Orders

Entry Orders 429

Exit Orders 450

orderSortValue 548

OtherExpense 678

- P -
Parameters 349

Percent 144

Percent R 298

Percent Rank 298

Placing Orders 425

Portfolio Manager Scripts

Filter Portfolio 109

Rank Instruments 108

Position Functions 575

Set Exit Limit 576

Set Exit Stop 576

Set Unit Custom Value 575

Position Properties 578

positionInstruments 409

Positon Adjustment Functions 468

Adjust Position At Limit 471

Adjust Position On Close 468

Adjust Position On Open 469

Adjust Position On Stop 470

Price 144

priorityIndex 409, 548

- R -
Range 298

Ranking Functions 580

Set Long Ranking Value 581

Set Short Ranking Value 582

Ranking Properties 583

rankInstruments 409

Rate of Change 298

Registry Keys

GetRegistryKey 212

SetRegistryKey 225

resultsReportPath 680

Risk Manager Scripts

Adjust Instrument Risk 128

Can Add Unit 116

Can Fill Order 119

Compute Instrument Risk 126

Compute Risk Adjustment 127

Initialize Risk Management 125

roundLot 548

- S -
savedWFProfit 548

www.forex-warex.com

Index 729

© 2013, Trading Blox, LLC. All rights reserved.

Scripts 104

After Instrument Day 130

After Simulation 133

After Test Script 132

After Trading Day 131

Basic Scripts 78

Before Instrument Day 111

Before Simulation 106

Before Test 107

Before Trading Day 110

Common to Many Blox 103

Entry Blox Scripts 89

Exit Blox Scripts 90

Money Manager Blox Scripts 91

Portfolio Manager Blox Scripts 88

Risk Manager Blox Scripts 92

Update Indicators Blox Scripts 93

Working with 75

Selector 144

Series 144, 157

SetReturnValue 409

SetSeriesValues 382

SetStringReturnValue 409

setxAxisLabels 409

Simons Historic Volatility 298

Simulation Loop

Comprehensive 81

sortInstruments 409

startBar 548

startDate 548

StartingEquity 678

startWeek 548

Statements 395

Assignment 396

DO 397

Error 399

FOR 400

IF 402

Print 404

VARIABLES 144

WHILE 397, 405

stockSplitRatio 548

STRING 144, 250, 285

String Functions

ASCII 252

ASCIIToCharacters 253

Concatenate 250

FindString 254

FormatString 255

GetField 261

GetFieldCount 262

GetFieldNumber 263

LeftCharacters 265

LowerCase 264

MiddleCharacters 266

RemoveCommasBetweenQuotes 267

RemoveNonDigits 269

ReplaceString 270

RightCharacters 271

StringLength 272

TrimLeftSpaces 273

TrimRightSpaces 274

TrimSpaces 275

ucase 276

symbol 548

System

Correlation 359

Correlation Log 360

Portfolio Instrument Access 668

System Functions 667

System Properties 673

systemClosedEquity 548

systemOpenEquity 548

Systems

Working with 69

systemTotalEquity 548

- T -
Tema 298

Test

CreateStringArray 688

Equity Properties 678

www.forex-warex.com

Trading Blox Builder's Guide730

© 2013, Trading Blox, LLC. All rights reserved.

Test

General Properties 680

GetStringArrayElement 688

SetStringArrayElement 688

SortStringArray 688

String Array Functions 688

Test Statistics 710

Trade Properties 713

Test Functions 689

Abort Simulation 691

Abort Test 692

Add Statistic 693

GetSteppedParameter 696

Set Alternate System 698

Set Auto Priming 700

Set Generating Orders 707

SetSilentTestRun 708

Update Other Expenses 709

testClosedEquity 548

testOpenEquity 548

testTotalEquity 409, 548

time 548

Time Function

Hour 185

Minute 187

Time Functions

TimeDiff 192

totalEquity 409

totalInstruments 409

TotalMargin 678

totalParameterRuns 409

totalParameterTests 409

totalPositionProfit 409

totalPositionRisk 409

totalPositions 409

totalPositionSize 409

totalUnits 409

Trade Control Functions 585

Allow All Trades 588

Allow Long Trades 586

Allow Short Trades 587

Deny All Trades 591

Deny Long Trades 589

Deny Short Trades 590

Trade Control Properties 584

tradeDayOpen 548

tradeOrder 409

tradesOnTradeBar 548

tradesOnTradeDate 548

Trading Blox 86

Auxiliary Blox Reference 93

Entry Blox Reference 89

Exit Blox Reference 90

Money Manager Blox Reference 91

Portfolio Manager Blox Reference 88

Risk Manager Blox Reference 92

Trading Blox Architecture

Blox 65

Indicators 65

Parameters 65

Process Flow 79

Scripts 65

Simulation Loop 80

Suites 65

Systems 65

Trading Objects 65

Units 65

Variables 65

Working with Systems, Blox and Scripts 69

Trading Objects 413

tradingBars 409

tradingMonths 548

Trend Vigor 298

TRUE 144, 700

True High 298

True Low 298

True Range 298

TYPE 144, 283

Type Conversion Functions 277

AsFloating 278

AsInteger 279

www.forex-warex.com

Index 731

© 2013, Trading Blox, LLC. All rights reserved.

Type Conversion Functions 277

AsString 281

IsFloating 283

IsInteger 284

IsString 285

- U -
unadjustedClose 548

unAdjustedVolume 548

unitBarsSinceEntry 409

unitCustomValue 578

Update Indicators Scripts

Update Indicators 118

Used for Lookback 700

usedMargin 548

- V -
Variables 168

Average 358

Block Permanent Variables 351

Cross Over 363

GetSeriesSize 368

Highest 368

HighestBar 369

Instrument Permanent Variables 353

Lowest 370

LowestBar 371

Median 372

Naming Variables 166

RegressionEnd 372

RegressionSlope 373

RegressionValue 375

RSI 375

Scope 163

Series Functions 357, 358, 363, 368, 369,
370, 371, 372, 373, 375, 376, 381, 382, 385,
387, 388, 389, 390, 391, 392, 393

Series Indexing 365

SetSeriesColorStyle 376

SetSeriesSize 381

SetSeriesValues 382

SortSeries 385

SortSeriesDual 387

Standard Deviation 388

Standard Deviation Log 389

Sum 390

Swing High 390

Swing High Bars 391

Swing Low 392

Swing Low Bars 393

The VARIABLES Statement 144

volume 548

- W -
weekClose 548

weekHigh 548

weekIndex 548

weekLow 548

weekOpen 548

Weighted Moving Average 298

- X -
xAxis 409

- Z -
ZScore 298

www.forex-warex.com

	Getting Started Tutorial
	What Are Blox?
	Creating a New System
	1. New System Blox
	2. Adding Parameters
	3. Adding Indicator
	4. Entering Code
	5. Building A System
	6. Creating A Suite

	Improving a New System
	Protective Position Pricing
	Copy System Items
	Protective Exit Orders
	Entry Order Protection
	Active Order Protection
	Order Sizing
	Trading Risk
	Money Management

	Trading Blox Architecture
	Working with Systems, Blox & Scripts
	Working with Systems
	Working with Blox
	Working with Scripts
	Basic Scripts

	Process Flow
	Simulation Loop
	Comprehensive Simulation Loop

	Blox Module Reference
	Blox Types
	Portfolio Manager
	Entry
	Exit
	Money Manager
	Risk Manager
	Auxiliary

	Blox Script Access
	Blox Script Timing
	Global Script Timing
	Script Section Type Details
	Scripts Common to Many Blox
	Script Section Descriptions
	Before Simulation
	Before Test
	Rank Instruments
	Filter Portfolio
	Before Trading Day
	Before Instrument Day
	Before Bar
	Exit Orders
	Entry Orders
	Unit Size
	Can Add Unit
	Before Order Execution
	Update Indicators
	Can Fill Order
	Exit Order Filled
	Entry Order Filled
	After Instrument Open
	After Bar
	Adjust Stops
	Initialize Risk Management
	Compute Instrument Risk
	Compute Risk Adjustment
	Adjust Instrument Risk
	After Instrument Day
	After Trading Day
	After Test
	After Simulation

	Blox Basic Language Reference
	Basic Keywords
	Colors
	Constants Reference
	Data Groups and Types
	Boolean
	Floating
	Instrument - BPV
	Integer
	Money
	Percent
	Price
	Selector
	Series
	Numeric Series
	String Series

	String

	Data Scope Reference
	Data Script Comments
	Data Variable Names
	Data Variables
	FunctionReference
	Custom Functions
	Custom User Functions

	Date Time Functions
	ChartTime
	DateToJulian
	DayMonthYearToDate
	DayOfMonth
	DayOfWeek
	DayOfWeekName
	DaysInMonth
	Hour
	JulianToDate
	Minute
	Month
	MonthName
	SystemDate
	SystemTime
	TimeDiff
	WeekNumberISO
	Year

	File & Disk Functions
	ClearLogWindow
	CloseLogWindow
	CopyFile
	CreateDirectory
	DeleteFile
	EditFile
	Extract
	FileExists
	FileSize
	MoveFile
	OpenFile
	OpenFileDialog
	OpenLogWindow
	SaveFileDialog

	General
	BuildDividendFiles
	ColorRGB
	FileVersion
	FileVersionNumerical
	GetRegistryKey
	LicenseName
	LineNumber
	Message Box
	PlaySound
	Preference Items
	ProductVersion
	ProductVersionNumerical
	SetRegistryKey

	Mathematical Functions
	AbsoluteValue
	ArcCosine
	ArcSine
	ArcTangent
	ArcTangentXY
	Average
	CAGR
	Ceiling
	Correlation
	CorrelationLog
	Cosine
	DegreesToRadians
	EMA
	Exponent
	Floor
	Hypotenuse
	IfThenElse
	IsUndefined
	Log
	Max
	Min
	RadiansToDegrees
	Random
	RandomDouble
	RandomSeed
	Round
	Sign
	Sine
	Square Root
	StandardDeviation
	StandardDeviationLog
	SumValues
	Tangent

	String Functions
	ASCII
	ASCIIToCharacters
	FindString
	FormatString
	GetField
	GetFieldCount
	GetFieldNumber
	LowerCase
	LeftCharacters
	MiddleCharacters
	RemoveCommasBetweenQuotes
	RemoveNonDigits
	ReplaceString
	RightCharacters
	StringLength
	TrimLeftSpaces
	TrimRightSpaces
	TrimSpaces
	UpperCase

	Type Conversion Functions
	AsFloating
	AsInteger
	AsSeries
	AsString
	IsFloating
	IsInteger
	IsString

	Indicator Reference
	Basic Indicators
	Creating Indicators
	Calculated Indicators
	Custom Indicators
	Indicator Access

	Indicator Pack 1
	Indicator Pack 1 Indicators
	Average Trend Channel
	Chaiken Money Flow
	Commodity Channel Index
	Kaufman Adaptive Moving Average
	Keltner Channel
	Trend Vigor

	Indicator Pack 1 Series Functions
	EhlersZeroLagEma
	InstantaneousTrendLine
	MarketNoise
	MedianAbsoluteDeviation
	Momentum
	MRO
	Percentile
	PercentRank
	RateOfChange
	SpearmanCorrelation
	SpearmanCorrelationSync
	SpearmanLogCorrelation
	SpearmanLogCorrelationSync
	WMA - Weighted M-Avg.
	Z-Score
	ValueChart

	Operator Reference
	Comparison

	Permanent Variables
	Data Parameter Reference
	Block Permanent Variables
	Instrument Permanent Variables

	Series Functions
	Average
	Correlation
	CorrelationLog
	CorrelationLogSynch
	CorrelationSynch
	CrossOver
	Data Series Indexing
	GetReference
	GetSeriesSize
	Highest
	HighestBar
	Lowest
	LowestBar
	Median
	RegressionEnd
	RegressionSlope
	RegressionValue
	RSI
	SetSeriesColorStyle
	SetSeriesSize
	SetSeriesValues
	SortSeries
	SortSeriesDual
	StandardDeviation
	StandardDeviationLog
	Sum
	SwingHigh
	SwingHighBars
	SwingLow
	SwingLowBars

	Statement Reference
	Assignment
	DO
	ERROR
	FOR
	IF
	PRINT
	WHILE

	Trouble Shooting Script Problems
	Debugger
	Auto-Keyword Changes

	Trading Objects Reference
	Alternate Objects
	AlternateBroker Object
	AlternateOrder Object
	AlternateSystem Object

	Block
	Group
	Name
	ScriptName
	System
	SystemIndex

	Broker
	Entry Order Functions
	EnterLongOnOpen
	EnterShortOnOpen
	EnterLongOnStopOpen
	EnterLongAtLimitOpen
	EnterShortOnStopOpen
	EnterShortAtLimitOpen
	EnterLongOnStop
	EnterShortOnStop
	EnterLongAtLimit
	EnterShortAtLimit
	EnterLongOnClose
	EnterShortOnClose
	EnterLongOnStopClose
	EnterShortOnStopClose
	EnterLongAtLimitClose
	EnterShortAtLimitClose

	Exit Order Functions
	ExitAllUnitsOnOpen
	ExitUnitOnOpen
	ExitAllUnitsOnStopOpen
	ExitAllUnitsAtLimitOpen
	ExitUnitOnStopOpen
	ExitUnitAtLimitOpen
	ExitAllUnitsOnStop
	ExitUnitOnStop
	ExitAllUnitsAtLimit
	ExitUnitAtLimit
	ExitAllUnitsOnClose
	ExitUnitOnClose
	ExitAllUnitsOnStopClose
	ExitUnitOnStopClose
	ExitAllUnitsAtLimitClose
	ExitUnitAtLimitClose

	Position Adjustment Functions
	AdjustPositionOnClose
	AdjustPositionOnOpen
	AdjustPositionOnStop
	AdjustPositionAtLimit

	Chart
	AddBarLayer
	AddBarSeries
	AddContourLayer
	AddLineLayer
	AddLineSeries
	AddScatter
	Make
	NewPie
	NewXY
	SetAxisTitle
	SetBarGapShape
	SetPlotArea
	SetxAxisDates
	SetxAxisLabels

	Email Manager
	Email Connect
	EmailConnectSSL
	Email Send
	EmailSendHTML
	EmailDisconnect

	File Manager
	Close
	CountLines
	DefaultFolder
	EndOfFile
	OpenAppend
	OpenRead
	OpenWrite
	PartialLine
	ReadLine
	WriteLine
	WriteString

	Instrument
	Data Properties
	DataFunctions
	AddCommission
	Extract
	GetDateTimeIndex
	GetDayIndex
	PriceFormat
	RealPrice
	RoundTick
	RoundTickDown
	RoundTickUp

	Correlation Functions
	ResetCloselyCorrelated
	ResetLooselyCorrelated
	AddCloselyCorrelated
	AddLooselyCorrelated

	Correlation Properties
	Group Properties
	Historical Trade Properties
	Instrument Loading
	LoadSymbol
	LoadByLongRank
	LoadByShortRank
	LoadExternalData
	LoadIPVFromFile

	Position Functions
	SetUnitCustomValue
	SetExitStop
	SetExitLimit

	Position Properties
	Ranking Functions
	SetLongRankingValue
	SetShortRankingValue

	Ranking Properties
	Trade Control Properties
	Trade Control Functions
	AllowLongTrades
	AllowShortTrades
	AllowAllTrades
	DenyLongTrades
	DenyShortTrades
	DenyAllTrades

	Order
	OrderProperties
	blockName
	clearingIntent
	continueProcessing
	customValue
	entryRisk
	executionType
	fillPrice
	isBuy
	isEntry
	limitPrice
	noStopPrice
	orderPrice
	orderReportMessage
	orderType
	position
	quantity
	referenceID
	ruleLabel
	sortValue
	stopPrice
	symbol
	systemBlockName
	timeInForce
	unitNumber

	OrderFunctions
	Reject
	SetClearingIntent
	SetCustomValue
	SetFillPrice
	SetLimitPrice
	SetOrderReportMessage
	SetQuantity
	SetRuleLabel
	SetSortValue
	SetStopPrice
	SetTimeInForce

	Script
	Script Functions
	Execute
	GetSeriesValue
	SetReturnValue
	SetReturnValueList

	Script Properties
	ParameterCount
	ParameterList
	ReturnValue
	ReturnValueList
	SeriesParameterCount
	StringParameterCount
	StringParameterList
	StringReturnValue

	System
	Global Suite System
	System Functions
	Accessing System Portfolio Instruments
	RankInstruments
	SetAccountNumber
	SetAlternateOrder

	System Properties
	orderExists

	Test
	Equity Properties
	General Properties
	OrderReportPath
	ResultsReportPath
	SummaryResultsPath

	Test String Arrays
	Miscellaneous Functions
	AbortSimulation
	AbortTest
	AddStatistic
	CapitalAddsDraws
	GetSteppedParameter
	SetAlternateSystem
	SetAutoPriming
	SetChartSimulationHtml
	SetChartTestHtml
	SetGeneratingOrders
	SetSilentTestRun
	UpdateOtherExpenses

	Test Statistics
	Trade Properties

	Common Questions
	The Life of a Test
	How Stops Work
	Shortcut Keys

