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Preface

Derivative modeling is at the heart of quantitative research and development on
Wall Street. Practitioners (i.e., Wall Street trading desk quants) and academics

alike spend much research, money, and time developing efficient models for pricing,
hedging, and trading equity and fixed income derivatives. Many of these models in-
volve complicated algorithms and numerical methods that require lots of computa-
tional power. For instance, the HJM lattice for pricing fixed income derivatives
often requires coding a nonrecombining bushy tree that cannot be easily traversed
and grows exponential in time and memory.

C++ is often the programming language of choice for implementing these mod-
els due to the language’s object-oriented features, speed, and reusability. However,
often the implementation “how-to” of these models is quite esoteric to the model
creators and developers due to their algorithmic complexity. Most journal articles
and white papers that discuss derivative models provide only a theoretical under-
standing of them as well as their mathematical derivations. While many research
papers provide numerical results, few supply the details for how to implement the
model, if for no other reason than to allow readers to replicate and validate their re-
sults. There are several reasons for this.

It is often the general nature of academics who publish leading research to be
pedantic, writing at a level geared for their academic peers, rather than to practi-
tioners. This often leads to papers that spend much time providing mathematical
formulas and proofs as opposed to discussions of practical applications and imple-
mentations. Few if any of these published papers discuss in detail how these deriva-
tive models are to be correctly and efficiently implemented for practical use in the
real world. After all, what good is a model if it cannot be used in practice in re-
search and trading environments?

Another reason for the lack of implementation discussions is that many top
quant researchers and professors, often with doctorates in mathematics and physics,
spend their time developing the mathematical and theoretical underpinnings of the
models and leave the actual code implementations to their graduate research stu-
dents. Graduate research students often are given the task of implementing the
models of their advisers as part of collaborative work. Consequently, often only the
numerical results, if any, are provided, usually generated from the code implementa-
tions of the graduate student.1

xiii

1There are instances where code is provided by the graduate research student. In the paper
“Fast Greeks in Forward LIBOR Models” by P. Glasserman and Z. Zhao, the code is given
at www-1.gsb.columbia.edu/faculty/pglasserman/Other/get_code.html and is discussed in
Chapter 13 of this book.

andrey
tr-soft-org



However, as is more often the case, the code developed by quant researchers
and programmers working on Wall Street trading desks is highly valuable and pro-
prietary to the Wall Street institutions just as the Windows operating system code is
proprietary to Microsoft and not the developers who work on it. The code is the
powerful engine that gives trading desks their competitive advantage over other
players in the market. If Wall Street trading desks have a proprietary model that al-
lows them to capture arbitrage opportunities based on “mispricings” between de-
rivative market prices and their theoretical model values, then if this code was
readily available to all market participants, the model would be exploited by all
those using it, quickly eliminating the profit opportunity and removing the compet-
itive edge of the institution where it was developed.

Similarly, professors and researchers who own the code for the models they de-
velop often are unwilling to release it to the public because keeping it in-house can
lead to lucrative consulting contracts with Wall Street institutions and companies
that want to contract them to implement and license use of their proprietary model.
For example, GFI Group, Inc., states on its web site that two top researchers, John
Hull and Alan White, have assisted the company in its development of software for
credit derivatives pricing using the Hull-White credit model.

When I was a graduate student in the Financial Engineering Program at the
University of Michigan, the theory and mathematical derivations of the models
were taught and emphasized. An understanding of stochastic calculus, stochastic
processes, partial differential equations, and probability theory was emphasized
and was a prerequisite for being able to model, price, and hedge complicated deriv-
atives securities. Since students were assumed to know how to program in C and
use Excel, little emphasis was made on efficient coding implementation. At the
time, our code was written on Sun Sparc workstations. Upon graduating and com-
pleting several other graduate degrees in mathematics and computer science, being
able to program became more important than actually understanding the theory
behind the models because Wall Street positions for developing code and models to
support trading desks require excellent programming skills. However, since one
cannot usually program efficient models without an understanding of the theoreti-
cal and mathematical intricacies behind them, both an understanding of the theory
and being able to program well are necessary. In fact, throughout the book, the the-
ory and mathematical derivations of some of the models are based on the work and
lectures of Dr. Vadim Linetsky, who taught the financial engineering courses.2

Over time the University of Michigan Financial Engineering Program has been
modified to include more practical coding exercises through use of real-time Reuters
data feeds. Other well-known financial engineering, mathematical finance, and com-
putational finance programs, such as those at the University of California–Berkley,

xiv PREFACE

2Dr. Vadim Linetsky is now an associate professor at Northwestern University in the Depart-
ment of Industrial Engineering and Management Sciences. He teaches financial engineering
courses similar to the ones he taught at the University of Michigan.
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the University of Chicago, and Carnegie-Mellon, respectively, may start to adapt
their curricula, if they have not done so already, to place more emphasis on the prac-
tical implementation and coding of models as many of their graduates head to Wall
Street to work in quantitative research and trading development groups.

I felt that since no book bridged the gap between the two and because such a
book would have helped me both in school and afterward on the job as a quantita-
tive developer, I should write such a book so as to help others. Such a book was an
enormous undertaking and required contacting many of the model developers of
some of the more complicated models to try to understand how they implemented
them and in some cases to even obtain their code. In those cases where I was not
able to get model details or code from an author, I was able to verify the accuracy
and robustness of the code I developed by being able to reproduce numerical results
of the models in published papers and books.

Modeling Derivatives in C++ is the first book to provide the source code for
most models used for pricing equity and fixed income derivatives. The objective of
the book is to fill the large gap that has existed between theory and practice of the
quantitative finance field. Readers will learn how to correctly code in C++ many de-
rivatives models used by research and trading desks. The book bridges the gap be-
tween theory and practice by providing both the theory and mathematical
derivations behind the models as well as the actual working code implementations
of these models. While there have been other books that have helped bridge this
gap such as Clewlow and Strickland’s Implementing Derivatives Models (John Wi-
ley & Sons, 1998a), they provide only pseudocode and do not emphasize robust
and efficient object-oriented code that is reusable. The assumption that readers can
easily or correctly translate pseudocode, which may have complex embedded sub-
routines of numerical computations that is needed, often is mistaken. Sometimes,
readers learn by analyzing and reviewing the complete and working code, which is
what this book attempts to accomplish. However, Implementing Derivatives Mod-
els does contain useful model discussions and pseudocode implementations, some
of which are implemented and built upon in this book using C++, such as the hedge
control variate method discussed in Chapter 2 and the alternating direction implicit
method discussed in Chapter 5.

Modeling Derivatives in C++ goes several steps beyond just providing C++
code; it discusses inefficiencies in some of the implementations and how they can be
improved with more robust object-oriented implementations by providing code
from the QuantLib, an open source quantitative pricing library, as well as by pro-
viding alternative implementations. For instance, three separate implementations
are given for the Hull-White model to show readers different coding approaches.
The book contains hundreds of classes, and there is a complete pricing engine li-
brary on the CD-ROM accompanying this book, which includes the code discussed
and given in the book. QuantPro, an MFC Windows application, for pricing many
equity and fixed income derivatives using the models discussed in the book, as well
as for simulating derivatives trades, is also provided on the CD-ROM.

It is the goal of the book that readers will be able to write their own models in
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C++ and then be able to adapt some of the coded models in this book to their own
pricing libraries and perhaps even use to trade. Most important, the book is in-
tended to guide readers through the complexities and intricacies of the theory and
of applying it in practice. The book is aimed at advanced undergraduate students
well as graduate (MBA and Ph.D.) students in financial economics, computer sci-
ence, financial engineering, computational finance, and business as well as Wall
Street practitioners working in a quantitative research or trading group who need a
comprehensive reference guide for implementing their models.

Readers should have a basic understanding of stochastic calculus, probability
theory, linear algebra, partial differential equation (PDEs), and stochastic
processes. For those readers who may be lacking the background in some of this
material or need to review, the appendixes provide a review of some of this mater-
ial. Due to the comprehensiveness of the book, it can be used by professors as ei-
ther a primary text or a supplementary text in their courses.

The chapters are grouped into two main sections: The first focuses on the pric-
ing of equity derivatives and comprises Chapter 1 to Chapter 9, and the second
part focuses on the pricing of interest rate derivatives: Chapter 10 to Chapter 14.

Chapter 1 focuses on the derivation and foundations of the Black-Scholes
model for asset pricing in the risk-neutral world. The Black-Scholes partial dif-
ferential equation describes the evolution of all derivatives whose payoff is a
function on a single underlying asset following geometric Brownian motion
(GBM) and time.

Chapter 2 discusses Monte Carlo methods for valuation of European as well as
path-dependent derivatives. Various random number generators for pseudoran-
dom, quasi-random (deterministic), Sobol, and Faure sequences are discussed. Vari-
ance reduction techniques using control variates and antithetics are discussed to
overcome the computational inefficiency of the Monte Carlo method in its basic
form, which typically requires hundreds of thousands of simulations to achieve
good accuracy.

Chapter 3 discusses the binomial tree model for pricing European and Ameri-
can equity options. The binomial tree is shown to be a two-state discrete approxi-
mation to continuous GBM: The mean and variance of the binomial model match
the mean and variance of the lognormal distribution underlying GBM. Further-
more, the binomial model can be adapted to incorporate time-varying volatility, to
pricing path-dependent options, and to pricing derivatives depending on more than
one asset with two-variable binomial trees.

Chapter 4 generalizes binomial trees to the more flexible and widely used trino-
mial trees, which approximate GBM diffusion processes with three states. It also
discusses implied trees, which are trees constructed to fit observable market prices.
Thus, this method builds trees implied by the market.

Chapter 5 discusses finite-difference methods, numerical methods (actually, ex-
tensions of the trinomial method) for discretizing PDEs that (path-dependent) de-
rivatives with complex payoffs must satisfy and then solving them over a state-time
lattice. The explicit, implicit, and Crank-Nicolson finite-difference methods are dis-
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cussed as well as the alternating direction implicit method for pricing options that
depend on multiple-state variables.

Chapter 6 discusses pricing exotic options including Asian, lookback, and bar-
rier options.

Chapter 7 discusses stochastic volatility models that are used to capture volatil-
ity skews and smiles observed in the options markets. Since the constant volatility
assumption of Black-Scholes is not valid in the real world, alternative models such
as the constant elasticity of variance (CEV), jump diffusion, and multifactor sto-
chastic volatility models can each be used to fit pricing model parameters to observ-
able option market quotes.

Chapter 8 focuses on statistical models for volatility estimation including
GARCH models. Chapter 9 deals with stochastic multifactor models for pricing de-
rivatives like basket options.

Chapter 10 begins the second part of the book and focuses on fixed income
models. The chapter discusses single-factor short rate models including the 
Vasicek, Hull-White (HW), Black-Derman-Toy (BDT), and Cox-Ingersoll-Ross
(CIR) models.

Chapter 11 focuses on tree-building procedures for the short rate models dis-
cussed in Chapter 10. It shows how to calibrate the BDT and HW models initially
to the yield curve and then to both the yield and volatility curves, and explains how
to price discount bonds, bond options, and swaptions with the models.

Chapter 12 discusses two-factor models as well as the HJM model for pricing
fixed income derivatives.

Chapter 13 provides an in-depth discussion of the LIBOR market model (also
known as the Brace-Gatarek-Musiela/Jamshidian (BGM/J) model, showing how to
calibrate the model to cap and swaption volatilites for pricing. Correlation struc-
tures and stochastic extensions of the model are also discussed. The chapter shows
the difference and inconsistencies between the LIBOR forward-rate model (LFM)
for pricing caps and the Libor swap model (LSM) for pricing swaptions and swaps.

Chapter 14 discusses exotic interest rate derivatives. Bermudan swaptions,
range notes, index-amortizing swaps, trigger swaps, and quantos are discussed
along with pricing models and implementations for them. Gaussian quadrature is
also discussed as a useful tool for evaluating certain numerical integrals used in de-
rivatives pricing such as those for spread options and quantos.

Appendix A contains a probability review of important probability concepts
used throughout the book. Appendix B contains a stochastic calculus review of
Brownian motion, stochastic integrals, and Ito’s formula. Appendix C contains a
discussion of the fast Fourier transform (FFT) method, a powerful numerical tech-
nique for valuation of higher-dimensional integrals. Appendix D discusses build-
ing models, pricing engines, and calibrating models in practice with a focus on
building robust models. Appendix E contains some useful code routines including
the random number generator for generating uniform deviates for Monte Carlo
simulation from Press et al., Numerical Recipes in C (1992). Appendix F shows
the mathematical details for solving the Black-Scholes PDE using Green’s function.
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(Appendixes A and B can be found at the end of the book; Appendixes C through
F are available as PDFs on the CD-ROM.)

It is my hope and intention that readers will get a lot of value from this book
and that it will help them in both their academic studies as well as at work on their
jobs. I hope that readers enjoy it as much as I enjoyed writing it. Finally, while I
have attempted to be quite complete in the topics covered, the book does not cover
everything. In particular, mortgage-backed securities and credit derivatives are not
discussed. They will, however, be included in my next undertaking.

JUSTIN LONDON

Chicago, Illinois
October 2004
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CHAPTER 1
Black-Scholes and 

Pricing Fundamentals

This chapter discusses the most important concepts in derivatives models, includ-
ing risk-neutral pricing and no-arbitrage pricing. We derive the renowned Black-

Scholes formula using these concepts. We also discuss fundamental formulas and
techniques used for pricing derivatives in general, as well as those needed for the re-
mainder of this book. In section 1.1, we discuss forward contracts, the most basic
and fundamental derivative contract. In section 1.2, we derive the Black-Scholes
partial differential equation (PDE). In section 1.3, we discuss the concept of risk-
neutral pricing and derive Black-Scholes equations for European calls and puts us-
ing risk-neutral pricing. In section 1.4, we provide a simple implementation for
pricing these European calls and puts. In section 1.5, we discuss the pricing of
American options. In section 1.6, we discuss fundamental pricing formulas for de-
rivatives in general. In section 1.7, we discuss the important change of numeraire
technique—useful for changing asset dynamics and changing drifts. In section 1.8,
Girsanov’s theorem and the Radon-Nikodym derivative are discussed for changing
probability measures to equivalent martingale measures. In section 1.9, we discuss
the T-forward measure, a useful measure for pricing many derivatives; and finally,
in section 1.10, we discuss considerations for choosing a numeraire in pricing. (A
probability review is provided in Appendix A at the back of the book and a sto-
chastic calculus review is provided in Appendix B.)

1.1 FORWARD CONTRACTS

A security whose value is contingent on the value of an underlying security or
macroeconomic variable such as an interest rate or commodity like oil is known as
a derivative since the security “derives” its value and is contingent on the value of
the underlying asset. Derivatives are known as contingent claims. The simplest de-
rivative and most fundamental financial transaction is a forward contract, which is
an agreement between two parties to buy or sell an asset, such as a foreign currency,
at a certain time T > 0 for a certain delivery price, K, set at the contract inception t0.

1



Forward contracts are traded over-the-counter (OTC). Standardized exchange-
traded contracts, such as those on the Chicago Mercantile Exchange, are known as
futures.

In a forward contract, there are two parties, usually two financial institutions
or a financial institution and its customer: One party agrees to buy the asset in the
forward contract at maturity, time T, and is said to be long, and the counterparty
agrees to sell the asset to the buyer at T and is said to be short. The contract is set-
tled at maturity T: The short delivers the asset to the long in return for a cash
amount K.

If the price of the asset in the spot market at T is ST , then the payoff, fT , from
the long position at T is:

fT = ST – K (1.1)

since the long receives an asset worth ST and pays the delivery price K. Conversely,
the payoff from the short position is:

fT = K – ST (1.2)

since the short receives the amount K and delivers an asset worth ST in exchange.
Let’s use some notation to help in the pricing analysis over time. Let St, 0 ≤ t ≤

T be the current underlying price at time t, let ft,T be the present value of a forward
contract at time t maturing at time T, let Ft,T be the forward price at time t, and let
r be the risk-free rate per annum (with continuous compounding). The forward
price is such a delivery price K that makes the present value of a forward contract
equal to zero, f0,T = 0:

K = F0,T = S0e
r(T–t0 ) (1.3)

We can show that this must be the forward price using an absence of arbitrage
argument: If F0,T > S0e

r(T–t0 ), we can create a synthetic forward position and arbi-
trage an actual forward contract against this synthetic forward. At time t0, we can
borrow S0 dollars for a period of T – t0 at the risk-free rate r; we can then use these
dollars to buy the asset at the spot price S0; and finally, we take a short position in
the forward contract with delivery price F0,T . At time T, we (1) sell the asset for the
forward price F0,T and (2) use an amount er(T–t0 )S0 of the proceeds to repay the loan
with accrued interest. This yields an arbitrage profit of F0,T – S0e

r(T–t0 ). Similarly, as-
suming F0,T < S0e

r(T–t0 ), we do the reverse transaction: At time t, we go long the for-
ward contract and short the synthetic forward position—we invest the proceeds S0
at rate r, and at time T buy the spot asset at F0,T , earning an arbitrage profit of
S0e

r(T–t0 ) – F0,T . Thus, in the absence of arbitrage we have shown that equation (1.3)
must hold. The absence of arbitrage is equivalent to the impossibility of investing
zero dollars today and receiving a nonnegative amount tomorrow that is positive
with positive probability. Thus, two portfolios having the same payoff at a given
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future date T must have the same price today. Moreover, by constructing a portfo-
lio of securities having the same instantaneous return as that of a riskless invest-
ment—that is, a money market account (MMA)—the portfolio instantaneous
return must be the risk-free rate. Investors are then said to be risk-neutral: They ex-
pect that all investments with no risk (i.e., uncertainty) should earn the risk-free
rate. Investors can always remove systematic (market) risk from the portfolio by
holding securities that can be hedged against one another.

We can also show that F0,T = S0e
r(T–t0 ) by using risk-neutral pricing and calculat-

ing the present value (PV) directly:

f0,T = e–r(T–t0 )Et0
[ST – K] = e–r(T–t0 )(er(T–t0 )S0 – K) = 0 (1.4)

where Et 0
is the expectation operator at time t0. Thus, K = F0,T = er(T–t0 )S0. The risk-

free rate is used as both an expected growth rate of the asset Et 0
[ST] = er(T–t0 )S0 and

the discount rate.
We can also calculate the present value of a seasoned forward position at some

time t after inception, known as marking to market. At some time t after inception,
0 < t < T, the PV is generally different from zero:

ft,T = e–r(T–t)Et [ST – K] = St – e–r(T–t)K = St – er(T–t0 )S0 (1.5)

= St – F0,t = e–r(T–t)[Ft,T – F0,T] (1.6)

Thus, the present value of a seasoned forward contract can be valued by taking the
difference between the forward price at time t and the forward price at time 0 and
discounting back to get the PV. If t = 0 (i.e., today), then the present value of the
forward contract is 0, which is what we would expect. It is important to note that
the arbitrage-free and risk-neutral arguments are valid only for traded assets. For-
wards on commodities that are held for consumption purposes cannot be valued by
these arguments.

These arguments can be used to value a forward on an asset providing a known
cash income such as coupon bonds or stocks with discrete dividend payments. Let
I0 be the PV at time t0 of all income to be received from the asset between times t0
and T (discounting at the risk-free rate). It is left as an exercise for the reader to
show that K = F0,T = er(T–t0 )(S0 – I0) and that at 0 < t < T the present value is ft,T =
e–r(T–t)Et[(ST – IT) – K] = St – It – e–r(T–t)K. If the asset pays a continuous known divi-
dend yield q, then the growth and discount rates are e(r–q)(T–t) and e–(r–q)(T–t), respec-
tively. If the underlying asset is a foreign currency, then we can view the yield q as
the foreign risk-free rate rf so that the growth and discount rates of the underlying
currency S0 are e(r–rf)(T–t) and e–(r–rf)(T–t), respectively, and the price of a forward con-
tract on S0 (i.e., British pounds) at time 0 is F0,T = S0e

(r–rf)(T–t).
Forward contracts and futures contracts are relatively straightforward to value

given that the underlying is a traded asset and all variables are known at time t0: the
price of the underlying, the risk-free rate, the time to contract expiration, T, and

1.1 Forward Contracts 3



any cash flows that will occur between t0 and T. Most derivatives are not easy to
value because of the stochastic nature of the underlying variables. In most cases, the
underlying factors of a derivative contract are not even traded assets (i.e., volatility
and interest rates). Interest rates in a simple model are assumed constant. In actual-
ity, rates fluctuate and one must estimate and consider the evolution of the term
structure of rates. Moreover, underlying assets such as stocks, bonds, and foreign
currencies follow stochastic (diffusion) processes that must be considered in any re-
alistic financial model.

Throughout this book, we incorporate the stochastic nature of financial vari-
ables into all of our models, and our implementations incorporate time evolution.
Initially, we assume time-homogenous variables (i.e., constant interest rates), but
eventually we relax this assumption and assume variables are a function not only of
time, but also of other underlying factors. We begin our examination of derivative
models by examining and deriving the most fundamental and ubiquitous pricing
model, Black-Scholes.

1.2 BLACK-SCHOLES PARTIAL DIFFERENTIAL EQUATION

Consider a riskless asset (a money market account or bank account), At, started at
time 0 that grows with the constant continuously compounded risk-free rate of re-
turn r. The value of our money market account (MMA) at time t is:

At = er(T–t) (1.7)

and it is a solution to a stochastic differential equation (SDE) with zero diffusion
coefficient:

dAt = rAtdt (1.8)

subject to A0 = $1. Equation (1.8) states that an infinitesimal change in our MMA
value, dAt, must be equal to the risk-free rate earned over the change in time, dt. If
we know that value of our MMA at t > 0, then at time T > t, the value is:

At = A0e
r(T–t) (1.9)

As will be shown, the MMA serves as a good numeraire, any positive non-
dividend-paying asset, when we need to change measures to get an equivalent mar-
tingale measure for risk-neutral pricing of many derivatives (as we discuss in
section 1.10).

Now suppose that St is the price at time t of a risky stock that pays no divi-
dends (we extend to the case with dividends later). We model its time evolution by
some diffusion process with Brownian motion (see Appendix B for a discussion
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of Brownian motion). But which one to select? The price process we select must
satisfy three requirements:

1. The price should always be greater than or equal to zero. That is, our diffusion
must have a natural boundary at zero. This immediately rules out arithmetic
Brownian motion as a candidate for the realistic stock price process since arith-
metic Brownian motion can have negative values.

2. If the stock price hits zero, corporate bankruptcy takes place. Once bankruptcy
occurs, S = 0; the price can never rise above zero again. So zero should be an
absorbing (cemetery) boundary.

3. The expected percentage return required by investors from a stock should be
independent of the stock’s price. Indeed, risk-averse investors will require some
rate of return m = r + re on the stock, where re is the required excess return over
and above the risk-free rate r that investors require to compensate for taking
the risk of holding the stock (risk premium). We will assume initially that this
excess return is constant over time.

These restrictions limit the choice of our stochastic model to:

dSt = mStdt + b(St, t)dzt (1.10)

where m is the drift coefficient, which in this case is the constant expected rate of
return on the stock (in the real world) and b(St, t) is some diffusion coefficient,
and zt is a Wiener process—that is, zt ~ N(0,1). If b = 0, then it is the SDE for the
risk-free asset. For any risky asset, b cannot be zero. Since we require that zero is
an absorbing boundary for the stock price process, we impose an extra restriction
on b: b(0, t) = 0. Thus, if the stock ever hits zero, it will never rise above zero
again (both the drift and diffusion terms are equal to zero in this state, and there
is nothing to lift it out of zero). Thus, we can parameterize our diffusion coeffi-
cient as follows:

b(S, t) = σ(S, t)S (1.11)

where σ is any positive function of S and t, or possibly some other stochastic vari-
ables influencing the stock. It is referred to as the volatility of the stock price and is
a measure of variability or uncertainty in stock price movements. Clearly, the sim-
plest choice is a constant volatility process:

dSt = mStdt + σStdzt

or:

dS = mSdt + σSdz (1.12)
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where we have dropped the time subscript for ease of notation. Here, m and σ are
the constant instantaneous expected rate of return on the stock (drift rate) and
volatility of the stock price, respectively.

It turns out that this choice of constant volatility, although not entirely realis-
tic, as we will see, is very robust and leads to a tractable model. The process is
called geometric Brownian motion (geometric refers to the multiplicative nature of
fluctuations). The assumption of constant volatility is reasonable as a first approxi-
mation. It means that the variance of the percentage return in a short period of
time, dt, is the same regardless of the stock price. Then σ2dt is the variance of the
proportional change in the stock price in time dt, and σ2S2dt is the variance of the
actual change in the stock price, S, during dt.

The SDE in equation (1.12) can be integrated in closed form. Indeed, suppose
we know the stock price S at time t, St, and we are interested in the price ST at time
T. We will solve the SDE subject to this initial condition by first introducing a new
variable, x:

x = f(S) = lnS (1.13)

Ito’s lemma (see Appendix B) tells us that any function f of S follows a diffusion
process:

(1.14)

In the case of the logarithmic function we have:

(1.15)

or

dx = µdt + σdz

where µ = m – σ2/2.
Hence, a logarithm of the stock price follows an arithmetic Brownian motion

with the drift rate µ = m – σ2/2 and diffusion coefficient σ. This SDE can be imme-
diately integrated to yield:

(1.16)x x mT T= + −








 +σ τ σ τε

2

2

dx m dt dz= −








 +σ σ

2

2

df
df
dt

mS
df
dS

S
d f

dS
dt S

df
dS

dz= + +








 +1

2
2 2

2

2
σ σ

6 BLACK-SCHOLES AND PRICING FUNDAMENTALS



where we have made use of the fact that 

and ε is a standard normal deviate. Thus, since x = lnS, then:

(1.17)

or

(1.18)

This is a closed-form solution to the Brownian motion SDE. We can now find the
transition probability density (the probability distribution function of ST at T given
S at t). Given x at t, xT is normally distributed:

(1.19)

or:

(1.20)

where µ = m – σ2/2. Then lnST is also normally distributed:

or:

(1.21)

(Note that dxT = dST /dS.) This is the lognormal distribution.
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We can now calculate the moments of the lognormal distribution around zero.
We need to calculate the mean and variance by taking expectations:

(1.22)

where Et, S is the expectation operator taken over S at time t. However, we can actu-
ally calculate the moments without calculating the integral. Since ST = exp(xT ), we
need to calculate the expectation:

Mn(0) = Et, x[e
nx T] (1.23)

Since xT is normally distributed, we can use the characteristic function of the nor-
mal distribution to help calculate expectations:

(1.24)

Substituting iλ → n and recalling that x = lnS and µ = m – σ2/2, we have:

(1.25)

(1.26)

In particular, the mean:

Et,S[ST] = emτS (1.27)

and the variance is:

Vart, S = S2 [e2mr+σ2τ – e2mr] = S2e2mr[eσ2τ – 1]

We will use these moments when we need to match moments to the binomial distri-
bution when we value options using binomial and trinomial trees (lattices). We al-
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ready made use of equation (1.27) when we calculated the present value of forward
contracts in equation (1.5).

We now have the framework to price options on stocks. Consider a derivative
security fT = F(ST ) at time T. Suppose that the underlying asset follows a geometric
Brownian motion with drift as in equation (1.12). Suppose we construct a portfolio
Π containing a short position in one option f and a certain number of shares ∆:

Π = ∆S – f (1.28)

Note that we fix the number of shares at the beginning of the interval dt and hold it
fixed through dt. From Ito’s lemma, a change in the portfolio value is given by:

(1.29)

(1.30)

(1.31)

where we have made use of equation (1.14) for df. Note that we do not have to differ-
entiate ∆ since this is just the number of shares we keep fixed through this infinitesimal
time interval dt. Let’s select the number of shares to hold (the hedge ratio) ∆ so that:

(1.32)

This selection makes our portfolio instantaneously riskless—the term with the
Wiener process dz (risk) falls out of equation (1.31). However, the portfolio is risk-
less only instantaneously for an infinitesimal time period dt since we have fixed our
hedge ratio ∆. To keep the portfolio riskless through the next time period dt, we
will need to rebalance—to change the delta to reflect the changing stock price.

Since our portfolio is now instantaneously riskless (over an infinitesimal time
period dt), its rate of return must be equal to the risk-free rate r (otherwise, there is
a clear arbitrage opportunity). The interest that accrues on our portfolio during an
infinitesimal time period dt is:

dΠ = rΠdt (1.33)

The drift of the process for the portfolio must be equal to r:
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or:

(1.35)

Consequently, the option price f must satisfy the partial differential equations
(PDEs) as a consequence of the no-arbitrage assumption. This is the Black-Scholes
equation. Mathematically, this is a diffusion or heat equation.

1.3 RISK-NEUTRAL PRICING

We can also analyze equation (1.35) in the context of a risk-neutral world. We can
rewrite (1.35) as

(1.36)

where Ds, t is the generator of the risk-neutral price process:

(1.37)

Note that the true drift rate m (the drift of the real-world price process) falls out of
the equation, and the risk-neutral drift rate equal to the risk-free rate r takes its
place. The risk-neutral price process (the stock price process in a risk-neutral
world—a world where all investors are risk-neutral) is:

dS = rSdt + σSdz (1.38)

At the same time, the discount rate is also risk-neutral. Note also that the delta, or
hedge ratio, depends on both time and the underlying price:

(1.39)

As t and S change, we need to rebalance our portfolio at each (infinitely small) time
step. Thus, we must use a dynamic trading strategy where we adjust our delta over
a given ∆t. Otherwise, the hedge will leak and we will not replicate the derivative
exactly. Moreover, the portfolio is not risk-free so that in fact we need to differenti-
ate the delta when calculating the change in our portfolio. Thus, we need to adjust
∆ as soon as S changes to be fully hedged.

We will show that the option price must also satisfy equation (1.35) via an en-
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tire dynamic trading strategy replicating the option from time 0 to maturity T. Sup-
pose there are only three securities traded in our world: a stock; a European option
on the stock expiring at time T and paying off an amount at maturity equal to
F(ST), where F is a given payoff function and ST is the stock price at T; and a risk-
free money market account A. We start at time 0. The stock price is S0, and the
quoted option price is f0. We also set up a money market account at time 0 with one
share priced at A0 = $1. At time 0, we set up our portfolio as follows: We (1) sell
one option (short) for f0; (2) buy ∆0 shares of stock; and (3) sell short N0 shares of
the money market account (this is equivalent to borrowing N0 dollars at the risk-
free money market rate r, since the MMA shares are worth $1 at time 0). The value
of our portfolio at time 0 is:

Π0 = ∆0S0 – N0 – f0 (1.40)

We will actively trade in shares of stock and the MMA by rebalancing our portfo-
lio every infinitesimal time increment dt by changing both ∆t and Nt at every in-
stant in time. We will keep our short option position unchanged all the way to
maturity T. At some intermediate time t (t is our running time parameter), our
portfolio is worth:

Πt = ∆tSt – Nt At – ft (1.41)

where ∆t is the number of shares of stock held at time t in our portfolio, St is the
stock price at t, Nt is the number of shares of the money market account we are
short at t, At is the money market share price at t, ft is the quoted (market) option
price at t, At = ert. NtAt is the total dollar value of our debt at time t (our short po-
sition in the MMA).

A pair of stochastic processes {(∆t, Nt), 0 ≤ t ≤ T} that is a sequence of trading
decisions is a dynamic trading strategy: The ∆t and Nt, viewed as functions of time,
are stochastic processes since we do not know their values at the beginning of our
future trading decisions. We will make our trading decisions based on our observa-
tions of the stock price process in equation (1.12). Thus, our decisions ∆t = ∆(St, t)
and Nt = N(St, t) are functions of the stock price and time.

After a small time increment dt, the value of our portfolio changes according
to:

dΠt = ∆tdS – NtdAt – dft + d∆t (St + dSt) – dNt (At + dAt) (1.42)

where dAt is the change in the value of one share of the money market account over
dt—see equation (1.8); d∆t is the change in the number of (long) shares of stock
made during dt; dSt is the change in the stock price given by the SDE in equation

1.3 Risk-Neutral Pricing 11
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(1.12); and dNt is the change in the number of (short) shares of the money market
account we made during dt. More generally, we can define the portfolio as a linear
combination of the assets in the portfolio,

Πt = a(t)St + b(t)At + c(t)f (1.43)

weighted by the position held in each security where a(t) = ∆t, b(t) = –Nt, and c(t)
= –1. Thus, taking the differentials on both sides of equation (1.43) will yield
equation (1.42).

DEFINITION. A dynamic trading strategy φ ≡ {(∆t, Nt), 0 ≤ t ≤ T} is said to be self-
financing if no capital is added to or withdrawn from the portfolio Πt after the ini-
tial setup at time 0. That is, we are only reallocating the capital between our long
position in the stock and the short position in the money market account (borrow-
ing). If we buy more stock, we short more shares of the MMA to borrow the
money to fund the stock purchase. If we sell some shares of the stock, then we use
the proceeds to reduce our debt (buy back some shares in the MMA we sold short).
The self-financing condition is equivalent to the following:

(1.44)

which can occur if and only if

d∆t(St + dSt) – dNt(At + dAt) = 0 (1.45)

Indeed, the first term in equation (1.45), known as the balance equation, is the
change in the total dollar capital invested in the stock. The second term is the
change in our debt (short position in the MMA). The equality means that we real-
locate the capital between the stock and the MMA without adding to or withdraw-
ing from the portfolio. Hence, the portfolio is self-financing. That is, for any
self-financing strategy, the terms coming from differentiating the weights ∆t and Nt

cancel out.
The total profit/loss (P/L) from the trading strategy at time T (maturity of

the option) is given by the sum of all individual P/Ls over each time increment
dt.

(1.46)
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(1.47)

where f(St, T) = F(ST) is the payoff from the option—that is, F(ST) = max(ST – K, 0)
for a standard European call option; f(S0, 0) is the initial option price at t = 0;

is the P/L from all stock trades. In the limit of infinitesimal time changes it 
is given by the stochastic Ito integral1 (limit of the sum; see Appendix B for a 
derivation);

is the P/L from all money market account trades (this is a standard integral over
time since the price of one share of the money market account is not stochastic).

We now want to find such a self-financing dynamic trading strategy φ ≡ {(∆t, Nt ),
0 ≤ t ≤ T} such that it exactly replicates an option with the given payoff F(ST ). If
such a strategy does exist, we call it a replicating strategy.

DEFINITION. If such a self-financing strategy exists using a finite number of
securities then the contingent claim (i.e., option) is said to be attainable. We
wish to find such a trading strategy φ that its P/L at time T always exactly
matches the option payoff F(ST) for every possible terminal stock price ST ∈(0,∞).
If such a trading strategy does exist that matches the option payoff in all possible
states of the world, the no-arbitrage principle requires that the fair value of the
option ft at any time t, 0 ≤ t ≤ T, should equal the value of the replicating portfo-
lio (∆tSt – Nt At) at time t:

∆tSt – NtAt – ft = 0 (1.48)

From Ito’s lemma we can express the process for the option’s price:

df = mf fdt + σf fdz (1.49)
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where mf and σf are, respectively, the instantaneous expected rate of return on
the option and the instantaneous volatility of the option. From equation (1.14),
we know:

(1.50)

and

(1.51)

Equation (1.50) states that the drift rate is equal to the rate of return on the option,
that is, the drift coefficient divided by the option price. From equation (1.48), we
have for an infinitesimal time increment dt,

∆tdS – NtdA – dft = 0

and

mf fdt + σf fdz – ∆mSdt – ∆σSdz + rNAdt = 0 (1.52)

Recall that NA = ∆S – f. Substituting this into equation (1.52), we get

((mf – r)f – ∆S(m – r))dt + (σf f – ∆σS)dz = 0 (1.53)

This can be true if and only if:

(1.54)

and

or

(1.55)
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Equation (1.54) expresses the delta (the hedge ratio) as the ratio of the actual price
volatility of the option to the actual price volatility of the stock. Equation (1.55) is
the central relation of arbitrage pricing theory. It is known as the market price of risk
and is fundamental to general derivatives pricing since it is used to change probability
measures in one stochastic process to an equivalent martingale measure in another
process according to Girsanov’s theorem discussed in section 1.8. Note, however, we
have already made use of Girsanov’s theorem when we moved from the real-world
asset price dynamics in equation (1.12) to the risk-neutral one in equation (1.38).
Changing measures allowed us to use the risk-free rate r for the drift instead of m,
which is unobservable. The market price of risk relates the risk premium required by
investors in the option to the option’s volatility, the stock’s volatility, and the risk pre-
mium on the stock. What does it tell us about the fair (arbitrage-free) price of the op-
tion? Substitute the expression for mf and σf from Ito’s lemma into equation (1.50):

The two terms with m cancel out and we arrive at the Black-Scholes PDE:

(1.56)

To summarize: (1) To prevent arbitrage, the fair price of the option f = f(S, t)
must satisfy the Black-Scholes PDE subject to the payoff condition. (2) There exists
a unique dynamic replicating strategy {(∆t, Nt), 0 ≤ t ≤ T} with the P/L matching the
option’s payoff in all states of the world. The weights in the replicating portfolio are:

where f = f(S, t) is the fair (arbitrage-free) price of the option—a unique solution to
the Black-Scholes PDE subject to the payoff condition. In practice, the option can-
not be replicated exactly due to transaction costs, which we are assuming to be 0.

The solution to the PDE in equation (1.56) if C = f(S, t) is a call option such
that the payoff at T is max(ST – X) is (see Appendix E in the CD-ROM for a de-
tailed derivation of the solution to the Black-Scholes PDE):

C(S, t) = SN(d1) – Xe –r τ N(d2) (1.57)

where N(·) is the cumulative normal distribution,
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and

where τ = T – t. If P = f(S, t) is a put option with a payoff at T of max(X – ST) then

P(S, t) = Xe–r τ N(–d2) – SN(–d1) (1.58)

Note that ∆ = N (d1) for a call and N (–d1) for a put. If the stock pays a continuous
dividend yield q, then the formula for a call option becomes:

C(S, t) = Se–qτN(d1) – Xe–r τN(d2) (1.59)

where

and

A put option on a stock paying a continuous dividend yield is priced analogously:

P(S, t) = Xe–r τ N(–d2) – Se–qτ N(–d1) (1.60)

There is an important relationship between European calls and puts, known as
put-call parity:

C(S, t) + Xe–r τ = P(S, t) + Se–qτ (1.61)

If this relationship does not hold, then arbitrage opportunities may exist de-
pending on transaction costs. As an example, if we assume there are zero transac-
tion costs and C(S, t) + Xe–r τ > P(S, t) + Se–qτ, then we can sell the call short
(receiving the call premium C), borrow an amount Xe–r τ, go long one put option,
and purchase Se–qτ shares of the underlying security with the amount borrowed. If
the call option expires in-the-money, S > X, the put expires worthless, but we give
the stock to the call buyer (who exercises the call against us) and receive X, which
is used to pay of the loan. We make a profit of C – P. If the call expires out-of-the-
money, then we exercise the put option, selling the stock we are long for X, which
is used to pay off the loan. We get to keep the premium we received for selling the
call short, and make a profit of C – P. Thus, in the absence of arbitrage, put-call
parity must hold.
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There is an intuitive meaning behind the Black-Scholes formula. The first
term in equation (1.57), SN(d1), is the stock price multiplied times the probability
the stock price will finish in-the-money—thus, it is the expected value of receiving
the stock if and only if ST > X, while the second term, Xe–rTN(d2), is the dis-
counted strike price multiplied by the probability that the stock finishes in-the-
money—it is the present value of paying the strike price if and only if ST > X.
There is another useful interpretation of the formula based on portfolio replica-
tion. As we have shown, a call option, C, is equivalent to a portfolio that is long
delta shares of the stock, ∆S, and short the money market account (or equiva-
lently, risk-free bonds) so that C = ∆S – B. Consequently, the first term in the
Black-Scholes formula, SN(d1), is the amount invested in the stock, and the sec-
ond term, Xe–rTN(d2), is the amount borrowed.

It is important to note that the asset price process that led to the Black-Scholes
formula has an important property: Possible percentage changes in the asset price
over any period do not depend on the level of the initial asset price. In fact, changes
in the asset price over any time interval are independent and identically distributed
(i.i.d.) to the changes in any other time interval. Thus, the Black-Scholes world as-
sumes a stationary process of the asset price dynamics—it is independent of time.
Since the drift term under geometric Brownian motion (GBM) is deterministic (i.e.,
all variables are known at time t) and has a zero expectation if the asset is valued in
a risk-neutral world under an equivalent martingale measure, then the only uncer-
tain component is from the diffusion term with the Wiener process z(t). But the
Wiener term is normally distributed with mean zero and variance dt, and changes
in Wiener processes—that is, z(t + ∆t) – z(t)—have i.i.d. increments so that the price
process has i.i.d. percentage change increments.2

The price process that generates the Black-Scholes model also has the impor-
tant property that the sizes of asset price changes are small over a very small time
interval so that there are no large jumps over this time interval. This assumption is
relaxed in alternative models to the Black-Scholes such as the jump diffusion
volatility model.

1.4 BLACK-SCHOLES AND DIFFUSION PROCESS IMPLEMENTATION

Since we are interested in implementing an option pricing model, we can now de-
fine an Option class since we know what attributes compose an option—underly-
ing security price, strike, maturity, volatility, risk-free rate, and dividend yield. We
will use this class throughout the book and build on it by adding functionality and
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implementing more methods. First, we want to define new diffusion process classes
including a BlackScholesProcess and an OrnsteinUhlenbeckProcess that will be
useful as well when we start to approximate them with trees and lattices later in the
book. These classes contain methods to compute means (expectations) and vari-
ances of the process.

typedef double Time;
typedef double Rate;

/**********************************************************************************
General diffusion process classes
This class describes a stochastic process governed by dx(t) = mu(t, x(t))dt +
sigma(t, x(t))dz(t).
**********************************************************************************/
class DiffusionProcess
{

public:
DiffusionProcess(double x0) : x0_(x0) {}
virtual ∼DiffusionProcess() {}

double x0() const { return x0_; }

// returns the drift part of the equation, i.e. mu(t, x_t)
virtual double drift(Time t, double x) const = 0;

// returns the diffusion part of the equation, i.e. sigma(t,x_t)
virtual double diffusion(Time t, double x) const = 0;

// returns the expectation of the process after a time interval
// returns E(x_{t_0 + delta t} | x_{t_0} = x_0) since it is Markov.
// By default, it returns the Euler approximation defined by
// x_0 + mu(t_0, x_0) delta t.
virtual double expectation(Time t0, double x0, Time dt) const {

return x0 + drift(t0, x0)*dt;
}

// returns the variance of the process after a time interval
// returns Var(x_{t_0 + Delta t} | x_{t_0} = x_0).
// By default, it returns the Euler approximation defined by
// sigma(t_0, x_0)^2 \Delta t .
virtual double variance(Time t0, double x0, Time dt) const {

double sigma = diffusion(t0, x0);
return sigma*sigma*dt;

}
private:

double x0_;
};

/**********************************************************************************
Black-Scholes diffusion process class
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This class describes the stochastic process governed by dS = (r – 0.5{sigma^2}) dt
+ sigmadz(t).
**********************************************************************************/
class BlackScholesProcess : public DiffusionProcess
{

public:
BlackScholesProcess(Rate rate, double volatility, double s0 = 0.0)

: DiffusionProcess(s0), r_(rate), sigma_(volatility) {}

double drift(Time t, double x) const {
return r_ – 0.5*sigma_*sigma_;

}
double diffusion(Time t, double x) const {

return sigma_;
}

private:
double r_, sigma_;

};

/**********************************************************************************
Ornstein-Uhlenbeck process class
This class describes the Ornstein-Uhlenbeck process governed by dx = -a x(t) dt +
sigma dz(t).
**********************************************************************************/
class OrnsteinUhlenbeckProcess : public DiffusionProcess
{

public:
OrnsteinUhlenbeckProcess(double speed, double vol, double x0 = 0.0)

: DiffusionProcess(x0), speed_(speed), volatility_(vol) {}

double drift(Time t, double x) const {
return – speed_*x;

}
double diffusion(Time t, double x) const {

return volatility_;
}
double expectation(Time t0, double x0, Time dt) const {

return x0*exp(-speed_*dt);
}
double variance(Time t0, double x0, Time dt) const {

return 0.5*volatility_*volatility_/speed_* (1.0 – exp(-2.0*speed_*dt));
}

private:
double speed_, volatility_;

};

/**********************************************************************************
Square-root process class
This class describes a square-root process governed by dx = a (b – x_t) dt + \sigma
sqrt{x_t} dW_t.
**********************************************************************************/
class SquareRootProcess : public DiffusionProcess
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{
public:

SquareRootProcess(double b, double a, double sigma, double x0 = 0)
: DiffusionProcess(x0), mean_(b), speed_(a), volatility_(sigma) {}

double drift(Time t, double x) const {
return speed_*(mean_ – x);

}
double diffusion(Time t, double x) const {

return volatility_*sqrt(x);
}

private:
double mean_, speed_, volatility_;

};

Next we define an Instrument class that will serve as the abstract parent for all
derivative securities:

/**********************************************************************************
Abstract Instrument class
This class is purely abstract and defines the interface of concrete instruments
which will be derived from this one. It implements the Observable interface
**********************************************************************************/
class Instrument : public Patterns::Observer, public Patterns::Observable
{

public:
Instrument(const std::string& isinCode, const std::string& description)

: NPV_(0.0), isExpired_(false), isinCode_(isinCode),
description_(description), calculated(false) {}

virtual ∼Instrument() {}

// inline definitions
// returns the ISIN code of the instrument, when given.
inline std::string isinCode() const {

return isinCode_;
}
// returns a brief textual description of the instrument.
inline std::string description() const {

return description_;
}
// returns the net present value of the instrument.
inline double NPV() const {

calculate();
return (isExpired_ ? 0.0 : NPV_);

}
// returns whether the instrument is still tradable.
inline bool isExpired() const {

calculate();
return isExpired_;

}
// updates dependent instrument classes
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inline void update() {
calculated = false;
notifyObservers();

}
/*

This method forces the recalculation of the instrument value and other results
which would otherwise be cached. It is not declared as const since it needs to
call the non-const notifyObservers method. Explicit invocation of this method
is not necessary if the instrument registered itself as observer with the
structures on which such results depend.

*/
inline void recalculate() {

performCalculations();
calculated = true;
notifyObservers();

}
/*
This method performs all needed calculations by calling the performCalculations
method.

Instruments cache the results of the previous calculation. Such results will be
returned upon later invocations of calculate. The results depend on arguments
such as term structures which could change between invocations; the instrument
must register itself as observer of such objects for the calculations to be
performed again when they change.

This method should not be redefined in derived classes. The method does not
modify the structure of the instrument and is therefore declared as constant.
Temporary variables are declared as mutable.
*/
inline double calculate() const {

if (!calculated)
performCalculations();

calculated = true;
return 0.0;

}
protected:

// This method must implement any calculations which must be
// (re)done in order to calculate the NPV of the instrument.
virtual void performCalculations() const = 0;

// The value of these attributes must be set in the body of the
// performCalculations method.
mutable double NPV_;
mutable bool isExpired_;

private:
std::string isinCode_, description_; // description of instrument
mutable bool calculated; // tracks if instrument was calculated

};
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The Instrument class implements the Observable interface that allows all (de-
pendent) subclasses to be notified and updated if observed changes are made to
their parent class. (See Appendix D in the CD-ROM for interface definition.)

We now define a generic Option class that subclasses Instrument (i.e., Option
is a subclass of Instrument). Other classes that Option uses can be seen in the
source code on the CD-ROM that comes with the book.

class Option : public Instrument
{

public:
enum Exercise { European = ‘E’, American = ‘A’ };
enum Type { Call = ‘C’, Put = ‘P’ };
Option();
Option(double price, double strike, double vol, double rate, double div, double

T, char type, char exercise);
Option(const Handle<PricingEngine>& engine);
virtual ∼Option() {}
friend class OptionGreeks;
void setPricingEngine(const Handle<PricingEngine>& engine);
virtual void performCalculations() const;
virtual void setupEngine() const = 0; // set up pricing engine
virtual double calculate() const = 0; // compute price

// option greeks
class OptionGreeks
{

public:
StatUtility util; // statistical utility class
OptionGreeks() {}
double calcVega(double price, double strike, double rate, double div,

double vol, double T);
double calcDelta(double price, double strike, double rate, double div,

double vol, double T, char type);
double calcGamma(double price, double strike, double rate, double div,

double vol, double T);
double calcRho(double price, double strike, double rate, double div,

double vol, double T, char type);
double calcTheta(double price, double strike, double rate, double div,

double vol, double T, char type);
private:

// Greek sensitivities
double delta; // delta
double gamma; // gamma
double theta; // theta
double vega; // vega
double rho; // rho

};
protected:

double strike_; // strike price
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double rate_; // interest rate
double T_; // maturity
double price_; // underlying asset
double vol_; // volatility
double dividend_; // dividend yield
char type_; // option type ‘C’all or ‘P’ut
char exercise_; // exercise type ‘E’uropean and ‘A’merican
Handle<PricingEngine> engine_; // pricing engine
OptionGreeks og; // option greeks
StatUtility util; // statistical utility class
MatrixUtil mu; // matrix utility class

};

The class has the following method definitions:

// default constructor
Option::Option()

: price_(50.0), strike_(50.0), rate_(0.06), dividend_(0.0), T_(1), type_(‘C’),
exercise_(‘E’)

{}

// overloaded constructor
Option::Option(double price, double strike, double vol, double rate, double div,

double T, char type, char exercise)
: price_(price), strike_(strike), vol_(vol), rate_(rate), dividend_(div), T_(T),

type_(type), exercise_(exercise)
{}

/*********************************************************************************/
calcDelta : calculates delta (sensitivity to the underlying stock price)
[in] : double price : stock price

double strike : strike price
double rate : interest rate
double div : dividend yield
double vol : volatility
double T : time to maturity
char type : ‘C’all or ‘P’ut

[out]: double : delta
**********************************************************************************/
double Option::OptionGreeks::calcDelta(double price, double strike, double rate,

double div, double vol, double T, char type)
{

double d1, delta;

d1 = (log(price/strike) + (rate – div + (vol*vol/2))*T)/(vol*sqrt(T));
if (type == ‘C’)

delta = exp(-div*T)*util.normalCalcPrime(d1);
else
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delta = exp(-div*T)*(util.normalCalc(d1) – 1);

return delta;
}

/**********************************************************************************
calcVega : calculates vega (sensitivity to volatility)
[in] :  double price : stock price

double strike : strike price
double rate : interest rate
double div : dividend yield
double vol : volatility
double T : time to maturity

[out]:  double : vega
**********************************************************************************/
double Option::OptionGreeks::calcVega(double price, double strike, double rate,

double div, double vol, double T, double t)
{

double d1, vega, normalPrime;

d1 = (log(price/strike) + (rate – div + (vol*vol/2))*T)/(vol*sqrt(T));
normalPrime = util.normalCalcPrime(d1);
vega = (normalPrime*exp(-div*T))*price*sqrt(T);

return vega;
}

/**********************************************************************************
calcGamma : calculates gamma (sensitivity to the change in delta)
[in] :  double price : stock price

double strike : strike price
double rate : interest rate
double div : dividend yield
double vol : volatility
double T : time to maturity

[out]:  double : gamma
**********************************************************************************/
double Option::OptionGreeks::calcGamma(double price, double strike, double rate,

double div, double vol, double T)
{

double d1, gamma, normalPrime;

d1 = (log(price/strike) + (rate – div + (vol*vol)/2)*T)/(vol*sqrt(T));
normalPrime = util.normalCalcPrime(d1);
gamma = (normalPrime*exp(-div*T))/(price*vol*sqrt(T));

return gamma;
}

/**********************************************************************************
calcDelta : calculates rho (sensitivity to the risk-free rate)
[in] :  double price : stock price

double strike : strike price
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double rate : interest rate
double div : dividend yield
double vol : volatility
double T : time to maturity
char type : ‘C’all or ‘P’ut

[out]:  double : rho
**********************************************************************************/
double Option::OptionGreeks::calcRho(double price, double strike, double rate,

double div, double vol, double T, char type)
{

double d1 = (log(price/strike) + (rate – div + (vol*vol)/2)*T)/(vol*sqrt(T));
double d2 = d1 – vol*sqrt(T);
double rho = 0.0;

if (type == ‘C’)
rho = strike*T*exp(-rate*T)*util.normalCalc(d2);

else
rho = -strike*T*exp(-rate*T)*util.normalCalc(-d2);

return rho;
}

/*********************************************************************************/
calcTheta : calculates theta (sensitivity to time to maturity)
[in] :  double price : stock price

double strike : strike price
double rate : interest rate
double div : dividend yield
double vol : volatility
double T : time to maturity
char type : ‘C’all or ‘P’ut

[out]:  double : theta
**********************************************************************************/
double Option::OptionGreeks::calcTheta(double price, double strike, double rate,

double div, double vol, double T, char type)
{

double d1 = (log(price/strike) + (rate – div + (vol*vol)/2)*T)/(vol*sqrt(T));
double d2 = d1 – vol*sqrt(T);
double theta = 0.0;
if (type == ‘C’)

theta = (-price*util.normalCalc(d1)*vol*exp(-div*T))/(2*sqrt(T)) +
div*price*util.normalCalc(d1)*exp(-div*T) -
rate*strike*exp(-rate*T)*util.normalCalc(d2);

else
theta = (-price*util.normalCalc(d1)*vol*exp(-div*T))/(2*sqrt(T)) –

div*price*util.normalCalc(-d1)*exp(-div*T) +
rate*strike*exp(-rate*T)*util.normalCalc(-d2);

return theta;
}

// overloaded constructor
Option::Option(const Handle<PricingEngine>& engine)
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: engine_(engine) {
QL_REQUIRE(!engine_.isNull(), “Option::Option : null pricing engine not

allowed”);
}

/**********************************************************************************
setPricingEngine : initializes pricing engine
[in] : Handle<PricingEngine>& engine : pricing engine
[out]: void
**********************************************************************************/
void Option::setPricingEngine(const Handle<PricingEngine>& engine)
{

QL_REQUIRE(!engine.isNull(), “Option::setPricingEngine : null pricing engine not
allowed”);

engine_ = engine;
// this will trigger recalculation and notify observers
update();
setupEngine();

}

/**********************************************************************************
performCalculations : calculates and stores price of security
[in] : none
[out]: void
**********************************************************************************/
void Option::performCalculations() const
{

setupEngine();
engine_->calculate();
const OptionValue* results = dynamic_cast<const OptionValue*>(engine_-

>results());
QL_ENSURE(results != 0, “Option::performCalculations : no results returned from

option pricer”);
NPV_ = results->value;

}

We can now define a plain-vanilla option class for computing Black-Scholes
option prices:

// Vanilla option (no discrete dividends, no barriers) on a single asset
class VanillaOption : public Option
{

public:
VanillaOption() { }
VanillaOption(double price, double strike, double rate, double div, double vol,

double T,
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Option::Type type, Option::Exercise exercise, const Handle<PricingEngine>&
engine);

double impliedVolatility(double targetValue, double accuracy = 1.0e-4,
Size maxEvaluations = 100, double minVol = 1.0e-4, double maxVol = 4.0)

const;
double delta() const; // get delta
double gamma() const; // get gamma
double theta() const; // get theta
double vega() const; // get vega
double rho() const; // get rho

protected:
void setupEngine() const;
void performCalculations() const;
virtual double calculate() const { return NPV_; }
Date exerciseDate_; // exercise Date
RelinkableHandle<TermStructure> riskFreeRate; // spot rate term structure
// results
mutable double delta_, gamma_, theta_, vega_, rho_, dividendRho_;
// arguments
Option::Type type_;
Option::Exercise exercise_;
double underlying_; // underlying price
double strike_; // strike price
double dividendYield_; // dividend yield
double riskFreeRate_; // spot risk-free rate
double maturity_; // time to maturity (years)
double volatility_; // volatility

private:
// helper class for implied volatility calculation
class ImpliedVolHelper : public ObjectiveFunction
{

public:
StatUtility util;

ImpliedVolHelper(const Handle<PricingEngine>& engine, double targetValue);
std::map<int,double> calcImpliedVols(double price, std::vector<double>

opPrices,
std::vector<int>strikes, double rate, double dividend, double T,

Option::Type type);

std::map<std::pair<double,int>,double> calcImpliedSurface(double price,
std::vector<double> opPrices, std::vector<int>strikes,

std::vector<double> T, std::map<double,double> rates, double dividend,
Option::Type type);

double operator()(double x) const;
private:

Handle<PricingEngine> engine_;
double targetValue_;
const OptionValue* results_;

};
};
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We can now define a BlackScholesOption class that inherits from the Vanilla
Option, which can provide the methods to compute European option values:

// Black-Scholes-Merton option
class BlackScholesOption : public VanillaOption {

public:
BlackScholesOption() { }
BlackScholesOption(Option::Type type, double underlying, double strike, double

dividendYield, double riskFreeRate, double residualTime, double volatility);
virtual ∼BlackScholesOption() {}
// modifiers
virtual void setVolatility(double newVolatility);
virtual void setRiskFreeRate(double newRate);
virtual void setDividendYield(double newDividendYield);
double calcBSCallPrice(double price, double strike, double vol, double rate,

double div, double T);
double calcBSPutPrice(double vol, double rate, double div, double strike,

double price, double T);
protected:

Option::Type type_;
Option::Exercise exercise_;
double underlying_;
double strike_;
double dividendYield_;
double riskFreeRate_;
double residualTime_;
double volatility_;
double value_;

};

Since we know the values of a European call and a European put using Black-
Scholes we can write the code to implement calcBSCallPrice() and calcBSPut-
Price(). We will make use of Hull’s approximation of the cumulative normal
distribution.3

/**********************************************************************************
normalCalc : computes cumulative normal distribution probabilities
[in] double d : critical value argument
[out]: double : probability
**********************************************************************************/
double StatUtility::normalCalc(double d)
{
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const double a1 = 0.319381530;
const double a2 = -0.356563782;
const double a3 = 1.781477937;
const double a4 = -1.821255978;
const double a5 = 1.330274429;
const double gamma = 0.2316419;
const double k1 = 1/(1 + gamma*d);
const double k2 = 1/(1 – gamma*d);
const double normalprime = (1/(sqrt(2*PI)))*exp(-d*d/2);
double value = 0.0;
double h = 0.0;

if (d >= 0)
value = 1- normalprime*(a1*k1 + a2*pow(k1,2) + a3*pow(k1,3) + a4*pow(k1,4) +

a5*pow(k1,5));
else

value = normalprime*(a1*k2 + a2*pow(k2,2) + a3*pow(k2,3) + a4*pow(k2,4) +
a5*pow(k2,5));

return value;
}

/**********************************************************************************
calcBSCall Price : calculates Black Scholes call price
[in] :  double vol : volatility

double rate : interest rate
double div : dividend yield
double strike : strike price
double price : stock price
double T : time to maturity

[out]:  double : call price
**********************************************************************************/
double BlackScholesModel::calcBSCallPrice(double vol, double rate, double div,

double strike, double price, double T)
{

double prob1;
double prob2;
double d1, d2;
double callprice;
d1 = (log(price/strike) + (rate – dividend + (vol)*(vol)/2)*T)/(vol*sqrt(T));
d2 = d1 – vol*sqrt(T);

prob1 = normalCalc(d1);
prob2 = normalCalc(d2);
callprice = price*exp(-div*T)*prob1 – strike*exp(-rate*T)*prob2;

return callprice;
}

/**********************************************************************************
calcBSPutPrice : calculates Black Scholes put price
[in] : double vol : volatility
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double rate : interest rate
double div : dividend yield
double strike : strike price
double price : stock price
double T : time to maturity

[out]:  double : put price
**********************************************************************************/
double BlackScholesModel::calcBSPutPrice(double vol, double rate, double div,

double strike, double price, double T)
{

double prob1;
double prob2;
double putprice;
double d1, d2;

d1 = (log(price/strike) + (rate – div + (vol)*(vol)/2)*T)/(vol*sqrt(T));
d2 = d1 – vol*sqrt(T);

prob1 = normalCalc(-d1);
prob2 = normalCalc(-d2);
putprice = strike*exp(-rate*T)*prob2 – price*exp(-div*T)*prob1;

return putprice;
}

1.5 AMERICAN OPTIONS

While the Black-Scholes option pricing model can be used to price European op-
tions, it cannot be used to price American options since it cannot account for the
early exercise feature. With the valuation problem of European options, we know
which boundary conditions to use and where to apply them. However, with the val-
uation problem of American options, we do not know a priori where to apply
boundary conditions and so have a free boundary Sf . The valuation of American
options is more complicated since we have to determine not only the option value,
but also, for each value of S, whether to exercise early. In general, at each time t,
there is a particular value of S that delineates the boundary Sf between the early ex-
ercise region and the holding region. Consequently, lattice methods and finite dif-
ference schemes must be used to price American options. The Black-Scholes PDE
was derived through arbitrage arguments. This argument is only partially valid for
American options.

As before, we can set up a delta-hedged portfolio between the underlying asset
and the money market account to synthetically replicate the option. However, be-
cause the option is American, it is not necessarily possible for positions in the repli-
cated option to be both long and short since there are times when it is optimal to
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exercise the option so that the writer of an option may be exercised against early.4

Consequently, the arbitrage arguments used for the European option no longer lead
to a unique value for the return on the portfolio. It turns out that the price of an
American put option P satisfies only the Black-Scholes PDE inequality:

When it is optimal to hold the option (not exercise), the equality holds, and when it
is optimal to exercise early, strict inequality holds. To see why this is true, suppose
we have an American put option. If we plug the put payoff P = X – S into the pre-
ceding equation we get –rX < 0. It turns out the price of an American call option on
a non-dividend-paying asset satisfies the Black-Scholes PDE with equality, but satis-
fies an inequality if the option is on a dividend-paying asset.

The American put problem can be written as a free boundary problem. For each
time t, we divide the asset price axis into two distinct regions. The first, 0 ≤ S < Sf , is
the early exercise region so that for P = X – S,

The other region, Sf < S < ∞, is where early exercise is not optimal so that for 
P > X – S,

The boundary conditions at S = Sf (t) are that P and its slope (delta) are 
continuous:

The payoff boundary condition determines the option value on the free boundary,
and the slope determines the location of the free boundary. Since we do not know a
priori where Sf is, an additional condition is required to determine it. Arbitrage ar-
guments show that the gradient of f should be continuous. Thus, the condition
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(∂P/∂S)(Sf (t), t) = –1 helps us determine it. Arbitrage arguments show why the slope
cannot be greater or less than –1.5

Since an American option gives us the right to exercise early then it should be
worth more than a European option that does not gives us that right. Consider that
we can exercise an American put early and invest the proceeds in a money market
account earning the risk-free rate, which we cannot do with a European put. We
know then that an American option should be worth at least as much as a Euro-
pean option. For an American call value CAmerican, we know that

CAmerican ≥ CEuropean ≥ max(S – X, 0)

and for an American put value PAmerican,

PAmerican ≥ PEuropean ≥ max(X – S, 0)

In fact, equation (1.57) gives the value of an American call option on a non-dividend-
paying stock since an American option on a non-dividend-paying stock satisfies the
Black-Scholes PDE. There are no exact analytic formulas for the value of an Amer-
ican put option on a non-dividend-paying stock, so numerical procedures have to
be used.

For an American call option on dividends, the price must satisfy the Black-
Scholes PDE inequality:

where q is the dividend yield and we assume r > q > 0. At the optimal exercise
boundary S = Sf , we have the free boundary conditions:

Only if C > S – X does the American call price satisfy the PDE with equality at the
boundary S = Sf . Note that C = S – X is not a solution and therefore does not satisfy
the equality; that is, plugging the payoff in the PDE results in rX – qS < 0. Local
analysis of the free boundary shows that as t → T,
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where ξ0 = 0.9034 . . . is a “universal constant” of call option pricing and is the
solution of a transcendental equation; see Wilmott, Howison, and Dewynne
(1995) for the derivation details. Moreover, an exact numerical procedure for cal-
culating values of American calls on dividend-paying stocks is given by Roll,
Geske, and Whaley.6

1.6 FUNDAMENTAL PRICING FORMULAS

Any attainable contingent claim with a payoff HT at time T > t can be priced in a
risk-neutral world by assuming the existence of a risk-neutral measure Q. Denote
by πt the price of a derivative at time t. Then the value of πt can be given by the risk-
neutral expectation:

(1.62)

where the expectation is conditional on ℑt, the sigma field (information set) gener-
ated up to time t.

There is a fundamental relationship between the absence of arbitrage and the
mathematical property of the existence of a probability measure known as the
equivalent martingale measure (or risk-neutral measure or risk-adjusted measure).

DEFINITION. An equivalent martingale measure Q is a probability measure on
the probability space (Ω, ℑ) where Ω is the event set and ℑ is a filtration, that is, an
increasing sequence of sigma algebras included in ℑ : ℑ0, ℑ1, . . . , ℑn,

7 such that:

■ Q0 and Q are equivalent measures where Q0(A) = 0 if and only if Q(A) = 0, for
every A ∈ ℑ.

■ The Radon-Nikodym derivative dQ/dQ0 belongs to L2(Ω, ℑ, Q0); that is, it is
square integrable with respect to Q0.

■ The discounted asset process S/B(0,·) is a Q-martingale, that is, EQ (S(t)/B(0, t)|
ℑu) = S(u)/B(0, u), for 0 ≤ u ≤ t ≤ T, with EQ denoting expectation under Q and
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The following proposition, proved by Harrison and Pliska (1981), provides the
mathematical relationship of the unique no-arbitrage price associated with any at-
tainable contingent claim:

PROPOSITION. Assume there exists an equivalent martingale measure Q and let
H be an attainable contingent claim. Then, for each time t, 0 ≤ t ≤ T, there exists a
unique price πt associated with H, that is,

πt = EQ (D(t, T)H|ℑt) (1.63)

This result generalizes that of Black and Scholes (1973) to the pricing of any claim,
which may be path-dependent.

DEFINITION. A financial market is complete if and only if every contingent claim
is attainable.

Harrison and Pliska (1983) proved that a financial market is (arbitrage-free
and) complete if and only if there exists a unique equivalent martingale measure.
Thus, the existence of a unique equivalent martingale measure both makes mar-
kets arbitrage-free and allows for the derivation of a unique price associated with
any contingent claim.8 Consequently, the following three results characterize no-
arbitrage pricing by martingales:

1. The market is arbitrage-free if (and only if) there exists a martingale measure.
2. The market is complete if and only if the martingale measure is unique.
3. In an arbitrage-free market, not necessarily complete, the price of any attain-

able claim is uniquely given either by the value of the associated replicating
strategy or by the risk-neutral expectation of the discounted claim payoff under
any of the equivalent (risk-neutral) martingale measures.9

We see that a self-replicating strategy must yield the same price as the dis-
counted claim payoff under a risk-neutral measure if and only if there is to be an
absence of arbitrage. Equation (1.63) gives the unique no-arbitrage price of an at-
tainable contingent claim H under a given equivalent martingale measure Q. How-
ever, Geman et al. (1995) noted that an equivalent martingale measure is “not
necessarily the most natural and convenient measure for pricing the claim H.”10 For
example, under stochastic interest rates, the presence of the stochastic discount fac-
tor D(t, T) can considerably complicate the calculation of the expectation. In such
cases, a change of numeraire can help simplify the calculation. Jamshidian (1989)
uses the change of numeraire approach to compute bond-option prices under the
Vasicek (1977) model.
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1.7 CHANGE OF NUMERAIRE

Geman et al. (1995) introduced the concept of a numeraire, which is defined as any
positive non-dividend-paying asset. A numeraire N is identifiable with a self-financing
strategy φ ≡ {(∆T , Nt), 0 ≤ t ≤ T} in that Nt = Vt(φ), where V is the market value of
the portfolio φ, for each t. Thus, a numeraire is a reference asset chosen so as to
normalize all other asset prices Sk, k = 0, . . . , n, with respect to it so that relative
prices Sk/N are considered rather than the asset prices themselves.

PROPOSITION. Let φ be a trading strategy and let N be a numeraire. Then, φ is
self-financing if and only if

(1.64)

where S
~

i = Si/N. This proposition can be extended to any numeraire, so that any
self-financing strategy remains self-financing after a change of numeraire. The self-
financing condition

implies that:11

so that an attainable claim is also attainable under any numeraire.
PROPOSITION. Assume there exists a numeraire N and a probability measure

QN, equivalent to the initial measure Q0, such that the price of any traded asset X
(without intermediate payments) relative to N is a martingale under QN; that is,12

Let U be an arbitrary numeraire. Then there exists a probability measure QU,
equivalent to the initial Q0, so that the price of any attainable claim X normalized
by U is a martingale under QU; that is,
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DEFINITION. The Radon-Nikodym derivative defining the measure QU is given
by13

(1.65)

By definition of QN, we know that for any tradable asset Z,

(1.66)

By definition of the Radon-Nikodym derivative, we know also that for all Z,

(1.67)

By comparing the right-hand sides of equations (1.66) and (1.67) (both equal
Z0/N0), we get equation (1.65). To see this, note:

When it is necessary to compute the expected value of an integrable random vari-
able X, it may be useful to switch from one measure Q

~
to another equivalent mea-

sure Q:

where the tilde on the expectation denotes the expectation under the measure Q
~
.

Thus, the expectation under the new measure is the expectation of the random vari-
able X multiplied by the Radon-Nikodym derivative. When dealing with condi-
tional expectations, it can be shown that:
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When changing from a first numeraire N (associated with a measure QN) to a
second numeraire U (associated with a measure QU), we also change the drift in the
dynamics of the asset. Following Brigo and Mercurio,14 we can make use of the fol-
lowing proposition to characterize the change in drift:

PROPOSITION. Assume that the two numeraires S and U evolve under QU ac-
cording to

dS(t) = ( . . . )dt + σS(t)CdzU(t)
dU(t) = ( . . . )dt + σU(t)CdzU(t)

where both σS(t) and σU(t) are 1 × vectors, zU is an n-dimensional standard Brown-
ian motion, and C is a variance-covariance matrix of the Brownian motions such
that CC′ = ρ. Then, the drift of the process X under the numeraire U is:

(1.68)

We can also make use of the following proposition provided by Brigo and Mercurio
(2001a):

PROPOSITION. If we assume “level-proportional” functional forms for volatili-
ties, that is,

σS(t) = vS(t)S(t)
σU(t) = vU(t)U(t)

σ(Xt, t) = diag(Xt)diag(vX(t))

where the v’s are deterministic 1 × n-vector functions of time, and diag(Xt) de-
notes the diagonal matrix whose diagonal elements are the entries of vectors X.
Then we get

where the quadratic covariation and the logarithms, when applied to vectors, are
meant to act componentwise. In the “fully lognormal” case, where the drift of X
under QS is deterministically level proportional, that is,
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with mS a deterministic n × 1 vector, it turns out that the drift under the new mea-
sure QU is of the same type; that is,

µU(Xt) = diag(Xt)m
U(t)

where

which is often written as:

mU(t) = mS(t) – (dln Xt)(d ln(St /Ut )) (1.69)

1.8 GIRSANOV’S THEOREM

We now give Girsanov’s theorem, a fundamental theorem when we need to change
the drift of a stochastic differential equation. Consider an SDE,

dx(t) = µ(x(t), t)dt + σ(x(t), t)dz(t)

under the measure Q. Let there be a new drift µ~ (x(t),t), and assume

is bounded. Define the measure Q
~

by

(1.70)
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As we have seen, by defining a new probability measure Q
~

via a suitable
Radon-Nikodym derivative, we can change the drift of the SDE in terms of the dif-
ference of the new drift minus the given drift. A classic example of the application
of Girsanov’s theorem is when one moves from the real-world asset price dynam-
ics of:

dx(t) = µx(t)dt + σx(t)dz(t)

to the risk-neutral dynamics of:

Using Girsanov’s theorem, we get:

The expectation term contains geometric Brownian motion if we define the process
Y(t) = ez(t). Since z(t) is normal with mean 0 and variance t, its moment-generating
function is given by:

so that:

We can now evaluate the expectation:

which shows the equivalence between Q
~

and Q; that is, Q
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as noted from (1.55) is known as the market price of risk. Girsanov’s theorem al-
lows for a change in measure via the Radon-Nikodym derivative, which can be ex-
pressed in terms of the market price of risk:

We can also write the Brownian process z~:

If the market price of risk is not time-homogenous, that is,

then we use

In interest rate derivative pricing, Girsanov’s theorem plays an important role
when changing measures. In the Vasicek model (discussed in Chapter 10), for ex-
ample, the market price of risk can have the functional form

λ(t) = λr(t)

so that the Girsanov change of measure is:

Under this formulation, the short rate process is tractable under both risk-neutral
and objective measures. Tractability under the risk-neutral measure Q allows
computations of the expected payoff so that claims can be priced in a simplified
manner in the risk-neutral world. Tractability under the objective measure is use-
ful for estimation of the objective parameters a, r–, λ, and σ, since historical ob-
servations of interest rate data in the real world are made under the objective
measure Q

~
. Historical (daily) series of interest rate data are collected for estimation
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purposes. The statistical properties of the data also characterize the distribution of
the interest rate process under the objective measure. However, the market price of
risk can also be chosen to be constant—that is, λ(t) = λ—as well, while still retain-
ing tractability. Similarly, in the Cox-Ingersoll-Ross (CIR) model (see Chapter 10),
the market price of risk is assumed to have the following functional form:

so that the change of measure is:

1.9 THE FORWARD MEASURE

A useful numeraire to use is the zero-coupon bond whose maturity T coincides with
that of the derivative to price. The T-maturity zero-coupon bond simplifies deriva-
tives pricing since ST = P(T, T) = 1. Thus, pricing the derivative involves computing
the expectation of the payoff, which in turn involves dividing by 1. We denote by QT

the T-forward risk-adjusted measure (or just T-forward measure), the measure asso-
ciated with the bond maturing at time T. The related expectation is denoted ET.

The T-forward measure is useful because a forward rate spanning a time inter-
val up to T is a martingale under the measure; that is,15

(1.71)

for each 0 ≤ t ≤ S ≤ T. In particular, the forward rate spanning the interval [S, T ] is
the QT—the expectation of the future simply compounded spot rate, R(S, T), at
time S for the maturity T; that is,

(1.72)

for each 0 ≤ t ≤ S ≤ T.
PROOF. To see this, note that from the definition of a simply compounded for-

ward rate16
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where τ(S, T) is the year fraction from S to T, so that

is the price of a traded asset since it is a multiple of the difference of two bonds.
Thus, by definition of the T-forward measure,

is a martingale under the measure. The relation indicated in equation (1.70) then
follows since F(S; S, T) = R(S, T).

Equation (1.70) can be extended to instantaneous rates as well. The expected
value of any future instantaneous spot interest rate is related to the instantaneous
forward rate, under the T-forward measure:

for each 0 ≤ t ≤ T.
PROOF. Let hT = r(T) and using the risk-neutral valuation formula shown in

equation (1.63) we get17

1.10 THE CHOICE OF NUMERAIRE

In pricing derivatives, a payoff h(ST) is given that depends on an underlying vari-
able S, such as a stock price, an interest rate, an exchange rate, or a commodity
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price, at time T. Typically, pricing such a payoff amounts to computing the risk-
neutral expectation

The risk-neutral numeraire is the money market (bank) account:

By using equation (1.66) for pricing under a new numeraire N, we obtain18

As an example, suppose the payoff h(ST) is that of a European call option with ma-
turity T and strike X, and written on a unit-principal zero-coupon bond P(T, S) with
maturity S > T. Under the risk-neutral measure (using the bank-account numeraire):

Suppose we change the measure from the bank-account numeraire B(t) to the
zero-coupon bond P(t, T) (the T-bond numeraire) such that:

Then we need to change the underlying probability measure to the T-forward mea-
sure QT defined by the Radon-Nikodym derivative:19

(1.73)
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Note P(T, T) = B(0) = E[dQT/dQ] = 1, so that the price of at time t of the deriv-
ative is:

Thus, the value of the bond call option on the zero-coupon bond is:

The preceding expectation reduces to a Black-like formula if P(T, S) has a lognor-
mal distribution conditional on ℑt under the T-forward measure. Note that we can
go back to the original bank-account (i.e., MMA) measure by evaluating

In general, a numeraire should be chosen so that S(t)Nt is a tradable asset. If so,
then (S(t)Nt)/Nt = S(t) is a martingale under the measure QN. This eliminates the
drift for the dynamics of S:

dS(t) = σ(t)S(t)dz(t)

and simplifies computing expected values of functions of S. Moreover, under a mar-
tingale measure, one can use lognormal dynamics:
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CHAPTER 2
Monte Carlo Simulation

In this chapter we discuss Monte Carlo simulation, a technique for pricing many
types of derivatives when closed-form analytical solutions are not available as well

as for pricing (complex) path-dependent derivatives and for simulating multifactor
stochastic diffusion processes. The technique was first used by Boyle (1977).1 In its
basic form, Monte Carlo simulation is computationally inefficient. A large number
of simulations (i.e., 100,000) generally are required to achieve a high degree of pric-
ing accuracy. However, its efficiency can be improved using control variates and
quasi-random numbers (deterministic sequences).

In section 2.1, we describe the general Monte Carlo framework. In section 2.2,
we discuss simulating sample paths and how to generate normal deviates to simu-
late Brownian motion. In section 2.3, correlated deviates and how to generate them
are discussed. In section 2.4, quasi-random sequences are discussed as an improve-
ment over pseudorandom number generators. In section 2.5, variance reduction and
control variate techniques are discussed as means for improving Monte Carlo esti-
mates. In section 2.6, a Monte Carlo implementation is provided. In section 2.7, we
discuss hedge control variates—an improved control variate technique that uses the
Greek hedge statistics as variates. In section 2.8, we discuss Monte Carlo simulation
for valuation of path-dependent securities such as Asian options. In section 2.9, we
discuss the Brownian bridge technique for simulating long-term horizon paths. In
section 2.10, we discuss simulating jump-diffusion and constant elasticity of vari-
ance processes by generating Poisson and gamma deviates. Finally, in section 2.11,
we give a more robust object-oriented implementation of the Monte Carlo method.

2.1 MONTE CARLO

We are interested in actually implementing the model in equation (1.18) using a
Monte Carlo simulation. Suppose we wish to simulate a sample path of geometric
Brownian motion process for the stock price. We divide the time interval T – t into

45

1Boyle (1977), 323–338.



N equal time steps ∆t = (T – t)/N and simulate a path {S(ti), i = 0, 1, . . . , N} start-
ing at the known state (initial price) S0 at time t0. Since we already found an exact
solution to the stochastic differential equation (SDE) in equation (1.8), we know
that over a time step ∆t the stock price changes according to:

(2.1)

where εi+1 is a standard normal deviate and µ = m – σ 2/2. Note that the term in
the drift coefficient, σ 2τ /2, came from the square of the Wiener increment,
(σ2/2)∆tε2

i+1. We know that the variance of this random variable is of the second or-
der in ∆t and we can assume that it is a deterministic quantity equal to its mean. If
the stock pays a dividend, then the discretization becomes

(2.2)

where q is the dividend yield, so that µ = m – q – (σ 2 /2).
It is important to note that we cannot use equation (2.2) directly since m is un-

observable in the real world as it depends on the risk preferences of investors. Thus,
we let m = r, the risk-free rate, so that µ = r – q – σ2/2 and we are now pricing in the
risk-neutral world. Equation (2.1) holds if we assume the log of the stock price fol-
lows an arithmetic Brownian motion as in (1.15). This is an exact approximation
to the continuous-time process. This approximation matches the mean and vari-
ance of the lognormal distribution exactly. Indeed,

The term inside the expectation operator is the moment-generating function of the
standard normal. Thus,

(2.3)

which is the same mean as the lognormal distribution in continuous time. The same
holds true for the variance (the exercise is left to the reader). The only problem with
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the exact solution is that there is some computational overhead since one needs to
call the exponential function every time. Note that

In many cases, an exact solution to an SDE cannot be found, and a first- or second-
order Euler approximation can be used. If we expand equation (2.1) into a Taylor
series and keep only the terms of the first order in ∆t, we have:

(2.4)

The differences between using the exact simulation in equation (2.1) and the first-
order approximation in (2.4) is O(∆t2).

One could also use a higher-order approximation scheme for SDEs such as a
Milstein approximation. For simplicity, assume that the drift and the diffusion co-
efficients depend on the state variable only and not on time; that is, dxi = µ(xi)dt +
σ(xi)dzt. The Milstein approximation is given by

(2.5)

and prime indicates a derivative with respect to x.

2.2 GENERATING SAMPLE PATHS AND NORMAL DEVIATES

To generate sample paths you need to generate a sequence of standard normal devi-
ates {ε1, ε2, . . . , εN}. First it is necessary to generate uniform random numbers from
0 to 1, {ξ1, ξ2, . . . , ξN} and then transform them into standard normal deviates. The
graph in Figure 2.1 shows a plot of some simulated asset price paths using Monte
Carlo simulation. The path are computed by equation (2.1) and are driven by the
random standard normal deviates.2
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No deterministic random number generators built into computer compilers are
capable of producing true random numbers. These algorithms produce pseudoran-
dom numbers usually generated from the internal computer clock. The algorithms
are based on huge deterministic sequences of numbers though you provide a seed to
tell the algorithm where in the sequence to start.

There are two serious problems that can occur with pseudorandom number
generators: (1) The number of trials in simulation performed is larger than the size
of the sequence or cycle of the random number generator, and (2) serial correlation
between the numbers exists. Thus, in practice, pseudorandom number generators
are not good enough for simulations for many runs since they have cycles not long
enough and/or may produce “random” numbers with serial correlation.

To solve this problem and generate uniform random numbers, we will use the
random number generator, ran1, found in Press et al., Numerical Recipes in C
(1992). The function uses a Box-Muller transformation (described later) to ensure
that a randomly generated number, using the ran1 function, will lie in a unit circle.
In turn, gasdev generates a Gaussian (normal) deviate from the uniform random
number generated in ran1 and takes a pointer to a long integer, which is the address
of an arbitrary seed number.3

In the early days of simulation, one approach to generating a standard normal,
N(0, 1), deviate was to use the central limit theorem. Note that

provided U1, . . . , Un are independent uniform (0, 1) random variables. Setting n
= 12 yields
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FIGURE 2.1 Simulated Asset Price Paths

3While the algorithm is good for research and projects, it is not good enough to use in commer-
cial systems. It has been shown to produce subtle statistical biases if a sequence of “standard
normal deviates” is generated with it. For commercial system, a Mersenne Twister generator
can be used.



This convolution method is quite fast, but is not exact.
The most commonly used exact algorithms for generating normal random

variables is to generate them in pairs. The reason is that the bivariate normal
density for two independent normal random variables having mean zero and
unit variance:

has a particularly nice structure in polar coordinates. Specifically, suppose (N1, N2)
is such a pair of normal random variables. Then, (N1, N2) can be expressed in polar
coordinates as:

(N1, N2) = Rcosθ, Rsinθ

where θ (0 ≤ θ ≤ 2π) is the angular component (in radians) and R is the radial com-
ponent. Due to the spherical symmetry of such a bivariate normal density, θ is nor-
mally distributed on [0, 2π] and independent of R. Furthermore,

where χ2(2) is a chi-square random variable with two degrees of freedom. Since a
χ2(2) random variable has the same distribution as 2X, where X is exponential with
parameter 1—that is, X ∼ e–(x–1)—we can utilize the following algorithm, known as
the Box-Muller algorithm:

1. Generate two independent uniform (0, 1) random variates U1 and U2.

2.

This can be a bit slow because of the cosine and sine calculation that needs to be
performed. A variant (that is typically fast) is the polar rejection (transformation)
method. This method also involves an acceptance-rejection procedure. Generate
two independent uniform (0, 1) random variates U1 and U2.

1. Set V1 = 2U1 – 1 and V2 = 2U2 – 1.

2.

3. If W > 1, return to step 1. Otherwise, set
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These algorithms generate pairs of independent N(0, 1) random variates. To gener-
ate N(µ, σ2) random variates, use the following relationship:

N(µ, σ2) ∼ µ + σN(0, 1)

2.3 GENERATING CORRELATED NORMAL RANDOM VARIABLES

In many Monte Carlo simulations, especially in simulations of multivariate (multi-
factor) diffusion processes and multidimensional stochastic simulations (i.e., spread
option models), correlation between the variates exists and must be considered
since the underlying factors themselves are correlated. For example, in a stochastic
volatility model, the underlying asset and its stochastic volatility are correlated, and
this correlation must be captured in the correlation between variates driving the
diffusion process of the underlying asset and the diffusion process of its volatility.
In general, any model with multivariate normal random variables has a correla-
tion/covariance matrix that exists. Such correlation/covariance matrix can be used
to generate the joint probability distributions between the random variables.

Suppose that we wish to generate a random variable X that is multivariate
normal with mean vector µ and covariance Σ. Suppose furthermore that X is a
two-dimensional vector, with mean vector and covariance matrix:

(2.6)

Here, µ= E(Xi), σ2
i = Var(Xi), and ρ is the correlation between X1 and X2. We now

describe a means of generating X1 and X2 from a pair of independent N(0, 1) ran-
dom variables N1 and N2. Note that we may express X1 in terms of N1 as follows:

X1 = µ1 + σ1N1

For X2, we try to write it in the form:

X2 = µ2 + aN1 + bN2

Recall that since N1 is independent of N2,

Var(X2) = E[(X2 – µ2)
2] = a2 + b2 = σ2

2

Also,

Cov(X1, X2) = E[(X1 – µ1)(X2 – µ2)] = aσ1 – ρσ1σ2
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Solving these two equations, we get

In other words,

(2.7)

or in matrix notation, X = µ + LN where L is lower triangular. Thus, by generating
a pair of independent N(0, 1) random variables, we can obtain X via the preceding
affine transformation. That methodology works in general (for X having more than
2 components). In general, X can be written in the form

X = µ + LN (2.8)

where N has the same number of components as does X (i.e., same vector size) and
consists of N(0, 1) random variables. To connect the matrix L to Σ , observe that

Σ = E[(X – µ)(X – µ)′] = E[(LN)(LN)′] = E[(LN)(N′L′)]

Since N consists of N(0, 1) random variables, E[NN′] = I, the identity matrix,4 and
we can write Σ as

Σ = E[(LL′)] = I (2.9)

Let L = Σ1/2 so that L is a “square root” of Σ. Furthermore, because Σ is symmetric
and positive semidefinite, L can always be chosen to be a lower triangular matrix
with real entries. Writing

Σ = LL′ (2.10)

is called the Cholesky factorization5 of Σ. Clearly, the key to generating X is the
computation of the Cholesky factor L. Thus, to produce correlated variables from
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uncorrelated (independent) ones, we need to find an L that solves the matrix equa-
tion (2.10).

We can use a Cholesky decomposition for n = 3 deviates. Suppose z1, z2, and z3
are random samples from three independent normal distributions with the follow-
ing correlation structure:

where ρij = ρji since ρ is symmetric. Random deviates with this correlation struc-
ture are

x1 = z1

(2.11)

where

so that

(2.12)

An alternative approach to generating n correlated deviates, zi, i = 1, . . . , n,
that are jointly normally distributed with mean zero and variance 1 with infin-
itesimal increments dzi, is to use principal component analysis6 to write their 
correlation/covariance matrix, Σ as
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where � is the matrix of n eigenvectors vi’s, i = 1, . . . , n, and Λ is the matrix of n
associated eigenvectors λi’s, �:

This is the eigensystem representation of the covariance matrix of the correlated
variables. Since the eigenvectors are linear combinations of the correlated variables
that give independent variables, we can invert this relationship to obtain the linear
combinations of independent variables that reproduce the original covariance ma-
trix. Since the transpose of � is equal to its inverse (the eigenvectors of � are or-
thogonal to each other), the rows of � represent the proportions of a set of n
independent Brownian motions dwi, i = 1, . . . , n, which when linearly combined
reproduce the original correlated Brownian motions. The eigenvalues represent the
variances of the independent Brownian motions. Thus, we can reproduce the corre-
lated Brownian motions dzi from the linear combination of the independent
Brownian motions dwi:

This method is used extensively when pricing multivariate diffusion processes such
as a stochastic volatility spread option (see section 7.10 and Chapter 9) where cor-
related deviates must be generated.

The following is the code that will generate the preceding procedure for four
correlated deviates.

class MatrixUtil
{

public:
/******************************************************************************
genCorrelatedDeviates : computes 4 correlated deviates for Monte Carlo

simulation
[in]:  const SymmetricMatrix& R : (symmetric) correlation matrix

double dt : time step size
double z[] : array to store correlated deviates

[out]: double z[] : array of correlated deviates
******************************************************************************/
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double* genCorrelatedDeviates(const SymmetricMatrix& R, double dt, double z[])
{

int i, j;
double sum[4] = {0.0};
double deviate = 0.0; // standard normal deviate
int m = R.Nrows(); // number of rows in correlation 

// matrix
std::vector<double> dz; // vector of correlated deviates
std::vector<double> eigenValue; // vector of eigenvalues
std::vector<double> eigenVector[4]; // array of vector of 

// eigenvectors
std::vector<double>::iterator eigenVecIter; // vector iterator 
double lambda[4] = {0.0}; // stores eigenvalues of 

// correlation matrix R
double dw[4] = {0.0}; // stores correlated deviates
DiagonalMatrix D(m); // diagonal matrix
Matrix V(m,m); // m x n matrix
D = genEigenValues(R); // get eigenvalues
V = genEigenVectors(R); // get eigenvectors

// store eigenvalues
for (i = 0; i < m; i++)
{

eigenValue.push_back(D.element(i,i));
lambda[i] = D.element(i,i);

}

// stores rows of eigenvectors so that we can compute
// dz[i] = v[i][1]*sqrt(eigenvalue[1])*dw1 + v[i][2]*sqrt(eigenvalue[2])*dw2 
// + . . .
for (i = 0; i < m; i++)
{

for (j = 0; j < m; j++)
{

eigenVector[i].push_back(V.element(i,j));
}

}

srand(0); // initialize random number generator
long seed = (long) rand() % 100; // generate seed
long *idum = &seed;

// generate uncorrelated deviates
for (i = 0; i < m; i++)
{

deviate = util.NormalDeviate(idum);
dw[i] = deviate*sqrt(dt);

}

// generate correlated deviates
for (i = 0; i < m; i++)
{

eigenVecIter = eigenVector[i].begin();
for (j = 0; j < m; j++)
{
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sum[i] += (*eigenVecIter)*sqrt(lambda[j])*dw[j];
eigenVecIter++;

}
z[i] = sum[i];

}
return z;

}

// other defined methods . . .
};

The code for generating correlated deviates from a Cholesky decomposition is:

#include “newmatap.h”
#include <vector>
#include <math.h>
#include “Constants.h”
#include “StatUtility.h”
class MatrixUtil
{

public:
/************************************************************************
genCorrelatedDeviatesCholesky : computes correlated deviates from a 

Cholesky decomposition
[in]:  SymmetricMatrix& R : correlation matrix

double dt : step size
double z[] : correlated deviates array to be returned

[out]: double z[] : array of correlated deviates
/***********************************************************************/
double* genCorrelatedDeviatesCholesky(const SymmetricMatrix& R, double dt,

double z[])
{

int m = R.Nrows(); // number of rows
int n = R.Ncols(); // number of columns
Matrix lb(m,n); // lower-banded (lb) matrix
StatUtil util; // Statistical utility class
double deviate = 0.0; // standard normal deviate
double dw[4] = {0.0}; // stores deviate*sqrt(dt)
double sum = 0.0;
long seed = 0; // seed for RNG
long* idum = 0; // stores address of seed
int i, j;

lb = Cholesky(R); // calls Cholesky routine in NEWMAT library

srand(time(0)); // initialize RNG
seed = (long) rand() % 100; // generate seed
idum = &seed; // store address of seed
// generate uncorrelated deviates
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for (i = 0; i < m; i++)
{

deviate = util.gasdev(idum); // generate normal (gaussian) deviate
dw[i] = deviate*sqrt(dt);

}

// generate correlated deviates
for (i = 0; i < m; i++)
{

sum = 0;
for (j = 0; j < m; j++)
{

sum += lb.element(i,j)*dw[j];
}
z[i] = sum;

}
return z;

}
. . .

};

The code makes use of a good matrix library, Newmat, written by R. B.
Davies.7 The matrix library contains many matrix manipulation and computational
routines such as the computation of the eigenvectors and eigenvalues from a given
(symmetric) matrix like the covariance/correlation matrix �. However, such a co-
variance/correlation matrix that is passed into the method genCorrelatedDeviates
needs to be known a priori. One can make assumptions about what these will be or
try to estimate them from historical data. For example, if one wants to estimate the
correlation between the deviates of a stock and its volatility, one could use the esti-
mated historical correlation. However, because correlation estimates are time-vary-
ing and unstable, one must use caution when inputting a specified correlation
matrix at different times.

2.4 QUASI-RANDOM SEQUENCES

A quasi-random sequence, also called a low-discrepancy sequence, is a determinis-
tic sequence of representative samples from a probability distribution. Quasi-random
number generators (RNGs) differ from pseudo-RNGs in that pseudo-RNGs try to
generate realistic random numbers, while quasi-generators create numbers that are
evenly spaced in an interval—they have a more uniform discrepancy than pseudo-
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RNGs.8 For M simulations, quasi-random sequences have a standard error propor-
tional to 1/M, which is much smaller for large M than the standard error of
pseudo-RNGs, which is proportional to 

Moreover, for a discrepancy of n points, Dn, low-discrepancy sequences have a dis-
crepancy in the order of O((logn)d/n) while a uniform random number sequence
has a discrepancy in the order of

Thus, quasi-RNGs are more efficient than pseudorandom numbers. Figure 2.2
shows how 2,000 quasi-random values are uniformly distributed while the 2,000
pseudorandom values are not.

As can be seen, the problem with pseudorandom numbers is that clumpiness
occurs, which biases the results. A very large number of samples is needed to make
the bias negligible. On the other hand, quasi-random numbers or low-discrepancy
sequences are designed to appear random, but not clumpy. In fact, a quasi-random
sample is not independent from previous samples. It “remembers” the previous
samples and tries to position itself away from all previous samples so that points
are more uniformly distributed, and thus have a low discrepancy. This characteris-
tic of low-discrepancy sequences yields fast convergence in Monte Carlo simulation
and is why they are preferred to pseudorandom numbers.

Two well-known low-discrepancy sequences are Sobol (1967) and Faure
(1982).9 The Sobol method generates numbers between 0 and 1 from a set of bi-
nary fractions of length w bits called direction numbers Vi, i = 1, . . . , w. The jth
number Xj is generated by doing a bitwise exclusive-or (XOR) of all the direction

O n1/( )

1/ M
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numbers so that the ith bit of the number is nonzero. The effect is such that the
bits toggle on and off at different rates. The kth bit switches once in 2k–1 steps so
that the least significant bit switches the fastest, and the most significant bit
switches the slowest.

Each different “Sobol sequence (or component of an n-dimensional sequence)
is based on a different primitive polynomial over the integers modulo 2, that is, a
polynomial whose coefficients are either 0 or 1, and which generates a maximal
length shift register sequence.”10 Following Press et al. (1992), suppose P is such a
polynomial, of degree q,

P = xq + a1x
q–1 + a2x

q–2 + . . . + aq–1x + 1

Define a sequence of integers Mi by the q-term recurrence relation,

Mi = 2a1Mi–1 ⊕ 22a2Mi–2 ⊕ Λ ⊕ 2q–1 Mi–q+1aq–1 ⊕ (2qMi–q ± Mi–q)

The bitwise XOR operator is denoted ⊕. The starting values for this recurrence are
that M1, . . . , Mq can be arbitrary odd integers less than 2, . . . , 2q, respectively.
Then, the direction numbers Vi are given by11

Vi = Mi /2
i i = 1, . . . , w
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The following is code to compute a Sobol sequence.12 The methods are an in-
line part of the StatUtility class that contains methods for aiding in numerical and
statistical computations.

#include <time.h>

#define GRAY(n) (n ^ ( n >> 1 )) // for Sobol sequence
#define MAXDIM 5
#define VMAX 30

struct sobolp
{

double sequence[MAXDIM];
int x[MAXDIM];
int v[MAXDIM][VMAX];
double RECIPD;
int _dim;    // dimension of the sample space
int _skip;
unsigned long _nextn;
unsigned long cur_seed;

};

class StatUtility
{

public:
/************************************************************************
sobolp_generateSamples : generates a Sobol sequence
[in]:  struct sobolp* config : pointer to Sobol structure

double* samples : pointer to sample values
[out]: void
************************************************************************/
inline void sobolp_generateSamples(struct sobolp* config, double* samples)
{

int i;
nextSobol(config, config->cur_seed);
config->cur_seed++;
for(i = 0; i < config->_dim; i++ )

samples[i] = config->sequence[i];
}

/******************************************************************************
nextSobolNoSeed : generates the next Sobol seed number to 

generate the next Sobol value
[in]: struct sobolp* config : pointer to Sobol structure
[out]: void
******************************************************************************/
inline static void nextSobolNoSeed(struct sobolp* config)
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{
int c = 1;
int i;
int save = config->_nextn;
while((save %2) == 1)
{

c += 1;
save = save /2;

}
for(i=0;i<config->_dim;i++)
{

config->x[i] = config->x[i]^(config->v[i][c-1]<< (VMAX-c));
config->sequence[i] = config->x[i]*config->RECIPD;

}
config->_nextn += 1;

}

/******************************************************************************
sobolp_init : initializes the Sobol algorithm
[in]:   sobolp* config : pointer to Sobol

int dim : dimension of the sample spaces
unsigned long seed : seed for Sobol number generator

[out] : void
******************************************************************************/
inline void sobolp_init(struct sobolp* config, int dim, unsigned long seed)
{

int d[MAXDIM], POLY[MAXDIM];
int save;
int m,i,j,k;

config->_dim = dim;
config->_nextn = 0;
config->RECIPD = 1.0 / pow( 2.0, VMAX );
config->cur_seed = seed;

POLY[0] = 3; d[0] = 1; // x + 1
POLY[1] = 7; d[1] = 2; // x^2 + x + 1
POLY[2] = 11; d[2] = 3; // x^3 + x + 1
POLY[3] = 19; d[3] = 4; // x^4 + x + 1
POLY[4] = 37; d[4] = 5; // x^5 + x^2 + 1

for(i = 0; i < config->_dim; i++ )
for(j = 0; j < d[i]; j++ )

config->v[i][j] = 1;

for( i = 0; i < config->_dim; i++ )
{

for( j = d[i]; j < VMAX; j++ )
{

config->v[i][j] = config->v[i][j-d[i]];
save = POLY[i];
m = pow( 2, d[i] );
for( k = d[i]; k > 0; k-- )
{

config->v[i][j] = config->v[i][j] ^ m*(save%2)*config->v[i][j-k];
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save = save/2;
m = m/2;

}
}

}

for( i = 0; i < config->_dim; i++ )
config->x[i]=0;

config->_skip = pow( 2, 6 );

for( i = 1; i <= config->_skip; i++ )
nextSobolNoSeed(config);

}
};

Another Sobol implementation is given in Appendix E from Numerical Recipes
in C by Press et al. (1992), which is actually faster since there are fewer method
calls. Here is a Monte Carlo implementation using the Sobol sequence:

/*********************************************************************************/

MonteCarloSobol : values a European call option using Faure sequence for 
variance reduction

[in]:   double price : asset price
double strike : strike price
double vol : volatility
double rate : risk-free rate
double div : dividend yield
double T : option maturity
char type : type of option
long N : number of time steps
long M : number of simulations

[out] : double : call price
**********************************************************************************/
double MonteCarloMethod::MonteCarloSobol(double price, double strike, double vol,

double rate, double div, double T, char type, long N, long M)
{

int i, j;
double sum1 = 0.0; // sum of payoffs
double sum2 = 0.0; // sum of squared payoffs
double value = 0.0; // stores value of option for each simulation
double S1 = price; // stock price for +deviate
double S2 = price; // stock price for -deviate
double lnS1 = log(price); // log of the initial stock price for +deviate
double lnS2 = log(price); // log of the initial stock price for -deviate
double SD; // standard deviation
double SE; // standard error
long dim = N; // dimension of Sobol sequence
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double dt = T/N; // time step
double mu = rate - div - 0.5*vol*vol;// drift
double rands[5]; // stores random variables
cout.precision(4); // output decimal format precision
int cnt = 0; // counter
struct sobolp sp; // Sobol sequence structure
srand(time(0)); // initialize RNG
long seed = (long) rand() % 100; // generate seed

// initialize Sobol sequnce
util.sobolp_init(&sp,dim,seed);

for (i = 0; i < M; i++)
{

// initalize stock price for the next simulation
lnS1 = log(price);
lnS2 = log(price);

for (j = 0; j < N; j++)
{

// generate Sobol samples
util.sobolp_generateSamples(&sp,rands);

// generate path and antithetic path
lnS1 = lnS1 + mu*dt + vol*sqrt(dt)*rands[cnt];
lnS2 = lnS2 = mu*dt + vol*sqrt(dt)*(-rands[cnt]);

// keep track of Sobol number to use
if ((cnt + 1) % N == 0)

cnt = 0;
else

cnt++;
}

// convert back to lognormal random variables
S1 = exp(lnS1);
S2 = exp(lnS2);

if (type == ‘C’)
value = 0.5*(max(0, S1 - strike) + max(0, S2 - strike));

else
value = 0.5*(max(0, strike - S1) + max(0,strike - S2));

sum1 = sum1 + value;
sum2 = sum2 + value*value;

}

// compute standard deviation
SD = sqrt((exp(-2*rate*T)/(M-1))*(sum2 - (sum1*sum1)/M));
cout << “stddev ” << “ ” < SD < endl;

// compute standard error
SE = SD/sqrt(M_);
cout << “stdderr ” << “ ” << SE << endl;

return exp(-rate*T)*sum1/M;
}
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The number of time steps to be used along each path should equal the dimen-
sion of the Sobol sequence.

In a Monte Carlo simulation, the number of time steps N is the dimension of a
low-discrepancy sequence, that is, the number of independent quasi-random num-
bers to be generated simultaneously. The quasi-random numbers are generated si-
multaneously so that the samples and increments along the path are independent
and identically distributed. Let xk, k = 1, . . . , N, be N quasi-random numbers.
Then the Faure sequence of length M (the number of simulations) is defined by

(2.13)

where m is the number of digits in the p representation of M, that is,

(2.14)

and p is the smallest prime number greater than or equal to N.13 The “int” operator
denotes the integer part of the expression in brackets and % denotes the modulo
operator that is the remainder after division.

The following is code to implement a Faure sequence. The function generate-
Faure is an inline function in the StatUtility class. Other helper inline utility func-
tions are also provided.

class StatUtility
{

public:
/*****************************************************************************/
generateFaure M : generates a Faure sequence of length M
[in] long N : number of time steps

long M : number of simulations
[out]: vector<double> X : the Faure sequence
******************************************************************************/
inline vector<double> generateFaure(long N, long M)
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{
int p = generatePrime(N);
int l, q, k;
long v1, v2, v3;
long value = 0;
long a[250][250] = {0};
int m = (int) (log(M)/log(p));
if (m == 0)

m = 1;
long x[] = {0};
unsigned long fact = 0;

for (k = 1; k <= N; k++) // number of time steps
{

for (l = 0; l <= m; l++)
{

value = pow(p,l+1);
a[0][l] = (int)((M % value)/p);

for (q = l; q <= m; q++)
{

v1 = factorial(q);
v2 = factorial(q-l);
v3 = factorial(l);
fact = v1/(v2*v3);

value = fact*a[k-1][q] % p;
a[k][l] = a[k][l] + value;

}
x[k] = x[k] + a[k][l]/pow(p,l+1);

}
X.push_back((double)x[k]);

}
return X;

}

/******************************************************************************
factorial : computes the factorial of a number
[in]: N : number to factorialize
[out]: N!
******************************************************************************/
inline long factorial(long N)
{
if ((N == 1) || (N == 0))

return 1;
else

return N*factorial(N-1);
}

/*****************************************************************************/
generatePrime: This function computes the smallest prime greater than or equal

to N
[in]: long N : find prime >= N
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[out]: prime >= N
/*****************************************************************************/
inline long generatePrime(long N)
{

long i = N;
bool flag = false;

do
{

// check if number is prime
if ((i % 2 != 0) && (i % 3 != 0) && (i % 4 != 0) && (i % 5 != 0)

&& (i % 7 != 0) && (i % 8 != 0) && (i % 9 != 0))
flag = true;

else
i++;

}
while (flag != true);

return i;
}

/*****************************************************************************/
polarRejection
This function computes two standard deviates using polar rejection

(transformation) method Returns the first deviate and stores the second
deviates in a vector Y so that is can be used for another call rather than
throwing it away.

[in]:  double y : seed value
int i : ith standard deviate

[out]: Y[i] : ith standard normal deviate in Y
******************************************************************************/
inline double polarRejection(double y, int i)
{

double w = 0.0;
double x1, x2, z1, z2, c;
double temp = 0.0;
double *idum = &y;

do
{

x1 = gasdev((long*)idum);
x2 = gasdev((long*)idum);
w = x1*x1 + x2*x2;

}
while (w >= 1);

c = sqrt(-2*(log(w)/w));
z1 = c*x1;
Y.push_back(z1);
z2 = c*x2;
Y.push_back(z2);

return Y[i];
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}
. . . // other methods
. . .

};

The following is a Monte Carlo implementation using the Faure sequence to
value a European call option with maturity T.

/*********************************************************************************/
MonteCarloFaureQuasiRandom : values a European call option using Faure sequence for

variance reduction
[in]:   double S : asset price

double X : strike price
double vol : volatility
double rate : risk-free rate
double div : dividend yield
double T : option maturity
long N : number of time steps
long M: : number of simulations

[out] : double : callValue
**********************************************************************************/
double MonteCarloMethod::MonteCarloFaureQuasiRandom (double S, double X, double

vol, double rate, double div, double T, long N, long M)
{

int i, j, k;
double dt = T/N; // step step
double mudt = (rate - div - 0.5*vol*vol)*dt; // drift
double voldt = vol*sqrt(dt); // diffusion term
double sum = 0.0;
double sum1 = 0.0;
double lnSt, lnSt1, St, St1;
double lnS = log(S);
double deviate = 0.0;
double callValue = 0.0;I
double SD = 0.0; // standard deviation
double SE = 0.0; // standard error
vector<double> x; // stores Faure sequence
cout.setf(ios::showpoint);
cout.precision(3);

k = 0;
for (i = 1; i <= M; i++)
{

// generate Faure sequence
x = util.generateFaure(N,M);

// initialize log asset prices for next simulation path
lnSt = lnS;
lnSt1 = lnS;
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for (j = 0; j < N; j++)
{

// get standard normal deviate using polar rejection method
deviate = util.polarRejection(x[j],k);

nSt = lnSt + mudt + voldt*deviate;

// compute antithetic
lnSt1 = lnSt1 + mudt + voldt*(-deviate);
// increment index to retrieve deviate stored in vector Y in polar rejection

method
k++;

}
St = exp(lnSt);
St1 = exp(lnSt1);

callValue = 0.5*(max(0, St - X) + max(0,St1-X));
sum = sum + callValue;
sum1 = sum1 + callValue*callValue;

}

callValue = exp(-rate*T)*(sum/M)
SD = sqrt(exp(-2*rate*T)*(sum1/M) - callValue*callValue);
cout << “stdev = ” << SD << endl;

SE = SD/sqrt(M-1);
cout << “stderr = ” << SE << endl;

return callValue;
}

2.5 VARIANCE REDUCTION AND CONTROL VARIATE TECHNIQUES

Suppose we can simulate an independent and identically distributed (i.i.d.) se-
quence { f *i , i = 1, . . . , M, where each f *i has expectation f and variance σ 2. An esti-
mator of f based on M simulations is then the sample mean:

(2.15)

By the central limit theorem, for large M this sample mean is approximately nor-
mally distributed with mean f and standard deviation

σ / M
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The estimate of the option’s price converges to the true option’s price f with the
standard error

The 95 percent confidence interval is

Convergence of the crude Monte Carlo is slow to the order of

To increase the accuracy 10 times, we need to run 100 times more simulations of
sample paths. On the other hand, decreasing the variance σ2 by a factor of 10
does as much for error reduction as increasing the number of simulations by a
factor of 100.

The simplest variance reduction procedure is use of antithetic variates. For
each path simulated with ε k

i (denoted as the ith deviate, i = 1 . . . N on the kth path,
k = 1 . . . M) an identical path is simulated with –ε k

i . The payoff Fk for the path is
calculated with ε k

i , and also the payoff F
^

k for the path with –εk
i. Then the average is

taken:

Although εk
i ’s are samples from a standard normal distribution with mean 0, in a

sample you will get some nonzero mean. The antithetic variates procedure corrects
this bias by averaging out the deviations and centers the mean at 0.

Another variance reduction technique is to use control variates. Control vari-
ates are random variables, whose expected value (mean) that we know is correlated
with the variable we are trying to estimate (i.e., the derivative security we want to
value).14 The principle underlying this technique is to “use what you know.” Sup-
pose you are trying to simulate an estimate for the price of a complex security. Sup-
pose also that you know a closed-form analytical formula for the price of a similar,
but simpler, security. The price of the complex security can be represented as:

fcomplex = fsimple + (fcomplex – fsimple) (2.16)

1
2

( ˆ )F Fk k+

1/ M

f M f f M− ( ) < < + ( )1 96 1 96. / * . /σ σ

σ / M
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Since you know the price fsimple from the closed-form formula, you need only esti-
mate the difference ε* = (fcomplex – fsimple) via simulation:

f*complex = fsimple + ε* (2.17)

Since the securities are similar, the difference ε* is small relative to the value fsimple,
we can find the bulk of the value of our complex security exactly without errors,
and our errors are in the relatively smaller estimate of the difference in ε*.

As an example for practical use of control variates, we use arithmetic and geo-
metric Asian options. We know the analytical formula for the price of a geometric
Asian option (see Chapter 5), but in practice we are most interested in the price of
an arithmetic Asian option. There is no simple analytical formula for arithmetic
Asian options. We note that the price of otherwise identical arithmetic and geomet-
ric Asian options are rather close. Thus, we can represent the price of an arithmetic
Asian option as:

f*arithmetic = f*geometric + ε*

We evaluate this technique in section 2.8.

2.6 MONTE CARLO IMPLEMENTATION

The best way to simulate geometric Brownian motion (GBM) of the underlying as-
set (random variable) is to use the process for the natural logarithm of the variable,
which follows arithmetic Brownian motion (ABM) and is normally distributed. Let
x(t) = ln(S(t)). Then we have

(2.18)

Equation (2.18) can be discretized by changing the infinitesimal changes dx, dt, and
dz into small discrete changes ∆x, ∆t, and ∆z:

(2.19)

This representation involves no approximation since it is actually the solution of
the SDE in equation (2.8), which can be be written as

(2.20)x t t x t r q t z t t z t( ) ( ) ( ) ( ( ) ( ))+ = + − − + + −∆ ∆ ∆1
2

2σ σ

∆ ∆ ∆x r q t z= − − +( )
1
2

2σ σ

dx t r q dt dz t( ) ( ) ( )= − − +1
2

2σ σ
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We can write equation (2.20) in terms of the underlying asset price S:

(2.21)

where z(t) is standard Brownian motion. The random increment z(t + ∆t) – z(t) has
mean zero and variance ∆t. It can be simulated by random samples of

where ε is a standard deviate drawn from a standard normal distribution. Dividing
up the time to maturity (the time period over which we want to simulate), T, into N
time steps, each time step is of size ∆t = T/N. Consequently, we can generate values
of S(t) at the end of these intervals, ti = i∆t, i = 1, . . . , N using equation (2.20) by
computing:

(2.22)

then computing:

S(ti) = exp(x(ti)) i = 1, . . . ,N (2.23)

for each time step of each of the M simulations, and then finally computing the
payoff max(0, S(T) – X) at maturity (i.e., the final time step on a given path). To
obtain an estimate C^ of the call price, C we take the discounted average of all the
simulated payoffs.

(2.24)

Note that to compute a European call estimate under GBM we can let N = 1.
Moreover, since we have a closed-form solution—equation (2.21)—to the underly-
ing SDE, samples of S(T) can be found directly without simulating the entire path.
In general, however, N > 1, since there are many types of derivatives (i.e., path-
dependent options), where only an approximate discretization of the SDE to the
continuous SDE can be used by taking small time steps.

The following code implements the Monte Carlo simulation under the risk-
neutral process in equation (2.23). It uses the antithetic variates to reduce the
variance.
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/*********************************************************************************/
MonteCarloAntithetic : values a European call option using antithetic variates
[in]:   double price : asset price

double strike : strike price
double vol : volatility
double rate : risk-free rate
double div : dividend yield
double T : option maturity
long N : number of time steps
long M : number of simulations

[out]   double value call value
**********************************************************************************/
double MonteCarloMethod::MonteCarloAntithetic (double price, double strike, double

vol, double rate, double div, double T, long M, long N, char type)
{

int i, j;
double deviate; // standard normal deviate
double sum1 = 0.0; // sum of payoffs
double sum2 = 0.0; // sum of squared payoffs
double value = 0.0; // value of option
double S1 = price; // stock price for +deviate
double S2 = price; // stock price for -deviate
double lnS1 = log(price); // log of the initial stock price for 

// +deviate
double lnS2 = log(price); // log of the initial stock price for 

// -deviate
double SD; // standard deviation
double SE; // standard error
double deltat = (double) T/N; // time step
double mu = rate - div - 0.5*vol*vol; // drift

srand(time(0)); // initialize RNG
long seed = (long) rand() % 100; // generate seed
long* idum = &seed; // store seed address

cout.setf(ios::showpoint);
cout.precision(4);

for (i = 0; i < M; i++)
{

// initalize stock price for the next simulation
lnS1 = log(price);
lnS2 = log(price);

for (j = 0; j < N; j++)
{

deviate = util.gasdev(idum);

// simulate paths
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lnS1 = lnS1 + mu*deltat + vol*sqrt(deltat)*deviate;
lnS2 = lnS2 + mu*deltat + vol*sqrt(deltat)*(-deviate);

}

// convert back to lognormal random variables

S1 = exp(lnS1);
S2 = exp(lnS2);

if (type == ‘C’)
value = 0.5*(max(0, S1 - strike) + max(0,S2 - strike));

else // if put
value = 0.5*(max(0, strike - S1) + max(0, strike - S2));

sum1 = sum1 + value;
sum2 = sum2 + value*value;

}

value = exp(-rate*T)*sum1/M
cout << “value = ” << value << endl;

// compute standard deviation
SD = sqrt((exp(-2*rate*T)/(M-1))*(sum2 - (sum1*sum1)/M));
cout << “ stdev = ” << SD << endl;
// compute standard error
SE = SD/sqrt(M);
cout << “ stderr = ” << SE << endl;

return value;
}

Suppose we want to calculate the price of European call option in a Black-
Scholes world with antithetic variance reduction where S = 50, X = 50, r = 5.5 per-
cent, q = 2 percent, T = 0.75 (9 months), and σ = 0.20. We make the following
method call to MonteCarloAntithetic with M = 100, 1,000, 10,000, and 100,000
(changing M in the method call) simulations, and N = 10 time steps.

Table 2.1 summarizes the results. Notice that as the number of simulations in-
creases, both the standard deviation and standard error decrease. Moreover, as the
number of simulations increases by a factor of 10, the standard error decreases by
approximately a factor of 3. The Black-Scholes price is $4.03. Thus, increasing the
number of simulations narrows the confidence interval of the estimate since the
standard error decreases.

Monte Carlo is used extensively for simulating outcomes—that is, profit and
losses (P/L)—of dynamic trading strategies. A single sample diffusion path is simu-
lated, and the dynamic trading strategy is executed over this path. The P/L is then
calculated. Then, the process is repeated M times for M sample paths. The mean is
an estimate of the expected P/L from the trading strategy. A standard deviation of
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P/Ls around this mean tells you how stable the trading strategy is. Monte Carlo is
used extensively in risk and portfolio management to compute value at risk (VaR)
of a portfolio. A confidence level is chosen—for example, 95 percent or 99 percent;
the underlying factors of each security are simulated, and the P/L of each position
in each security is calculated based on the realization of the simulated factor values.
The process is repeated for each security M times and then, based on the simulated
P/L probability distribution generated by the aggregated P/L of all securities in the
portfolio, the VaR can be computed by looking at the P/L value that lies to the left
of confidence level of the P/L probability distribution. Figure 2.3 shows a simulated
stock return distribution generated from Monte Carlo.

As a practical application, suppose we want to implement a dynamic replica-
tion strategy {(∆t, Nt), 0 ≤t ≤ T} of going long a stock and going short a call option
on the stock. We know from equation (1.48) that the option price at time t is ft = ∆t

St – NtAt. The following code implements a dynamic replication strategy on a call
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TABLE 2.1 Simulation Results

Number of Simulations Monte Carlo Call Price Standard Deviation Standard Error

100 3.935 3.458 0.360
1,000 4.013 3.200 0.101
10,000 4.057 3.153 0.032
100,000 4.037 3.093 0.010

FIGURE 2.3 Simulated Stock Return
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option. We are always rebalancing between our long equity position and short po-
sition in the money market account (to finance our stock purchases) so that the
strategy is self-financing.

/**********************************************************************************
dynamicReplication : synthetically replicates option using stock and money

market account
[in]:   double price : stock price

double strike : strike price
double vol : volatility
double rate : interest rate
double div : dividend yield
double T : option maturity
char type : ‘C’all or ‘P’ut
long M : number of simulations
long N : number of time steps

[out]   double : synthetic option price
**********************************************************************************/
double MonteCarloMethod::dynamicReplication(double price, double strike, double

vol, double rate, double div, double T, char type, long M, long N)
{

// initialize variables
int i, j;
double S = 0.0; // stock price
double lnS; // log of S
double delta; // delta of option
double totalStockShares = 0; // total shares of stock
double totalMMAShares = 0.0; // total number of MMA shares
double numShares = 1.0; // number of shares bought or sold at time t
double numMMA = 0.0; // number of MMA shares bought at time t
double MMAValue = 0.0; // value of money market account at time t
double totalMMAValue; // = MMAValue*totalMMAShares
double d1 = 0.0; // used to calculate delta
double portValue = 0.0; // portfolio value
double deviate = 0.0; // normal deviates used for Monte Carlo
double temp = 0.0; // temp variable to hold delta value
double totalStockValue = 0.0; // total stock value
long seed = -1; // initial seed value
long* idum = 0; // used for gasdev function
double dt = T/M; // step size
double mu = 0.0; // drift

StatUtility util;
// initial states
d1 = (log(price/strike) + (rate - div + (vol)*(vol)/2)*(T))/(vol*sqrt(T));
delta = util.normalCalc(d1);
numShares = delta; // number of shares
totalStockValue = numShares*price;
MMAValue = numShares*price; // initialize value of money market account
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numMMA = numShares;
totalMMAValue = numMMA*price;
totalMMAShares = numMMA;
totalStockShares = numShares;
temp = delta;
portValue = totalStockValue - totalMMAValue;

srand(unsigned(0));
seed = (long) rand() % 100;
idum = &seed;

for (i = 0; i < M; i++)
{

// initialize starting price
lnS = log(price);

// do simulations on each path
for (j = 0; j < N; j++)
{

deviate = util.gasdev(idum);
lnS  = lnS + (rate - div - 0.5*vol*vol)*dt + vol*sqrt(dt)*deviate;

}

S = exp(lnS);
MMAValue = MMAValue*exp(rate*dt);

// compute current delta
if (i != M-1)
{

d1 = (log(price/strike) + (rate - div + (vol)*(vol)/2)*(T-i*dt))/(vol*sqrt(T-
i*dt));

delta = util.normalCalc(d1);
}
else

delta = 1.0;

// adjust total delta
delta = delta - temp;

if (S >= price)
{

// buy shares
temp = delta;
numShares = delta;
totalStockShares = totalStockShares + numShares;
totalStockValue = totalStockShares*price;

// finance purchase of stock by selling shares (borrowing) from MMA
numMMA = numShares;
totalMMAShares = totalMMAShares + numMMA;

MMAValue = MMAValue + numMMA*price;
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totalMMAValue = MMAValue*totalMMAShares;
portValue = totalStockValue - totalMMAValue;

}
else
{

// sell shares
temp = delta;
numShares = delta;
totalStockShares = totalStockShares - numShares;
totalStockValue = totalStockShares*price;

// buy back the money market shares shorted
numMMA = -numShares;
totalMMAShares = totalMMAShares + numMMA;
MMAValue = MMAValue + numMMA*price;
totalMMAValue = MMAValue*totalMMAShares;
portValue = totalStockValue - totalMMAValue;

}
}
std::cout << “final cost: ” << totalMMAValue - totalStockValue << endl;

return totalMMAValue – totalStockValue;
}

2.7 HEDGE CONTROL VARIATES

Clewlow and Carverhill (1994) developed the general approach of using hedges
(Greeks) as control variates. Because the payoff of a hedged portfolio has a lower
standard deviation than the payoff of an unhedged one, using delta and gamma
hedges can reduce the volatility of the value of the portfolio. Consider the case of
writing a European call option with maturity T. We can replicate the payoff by sell-
ing the option, investing the premium in a savings account, and rebalancing the
holding in the asset at discrete interval times ti =1, . . . , N, with resultant cash flows
placed into and out of the savings account (when selling and buying shares, respec-
tively) so as to maintain a self-financing portfolio.15 A delta hedge consists of hold-
ing ∆ = ∂C/∂S shares in the underlying asset, which is rebalanced at the discrete time
intervals. While the hedge is not perfect due to discrete rebalancing, it is quite good
with frequent rebalancing.

At time T, the hedge consists of the savings account and the asset, which
closely replicates the payoff of the option. This can be expressed as
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where ∂Ct–1
/∂S = ∂CtN

/∂S = 0 (the hedge does not exist before t0 and the asset is as-
sumed to be liquidated from the previous rebalancing date into cash at maturity).
Following Clewlow and Strickland (1998a), the first term is the premium received for
writing the option, inflated at the risk-free rate up to the maturity time T, the second
term represents the cash flows from rebalancing the hedge at each date ti, and the
third term on the right-hand side is the payoff of the option CT and the hedging error
η. The expression in square brackets is the delta hedge. Equation (2.25) can be
rewritten (expand the terms in the brackets and group like delta terms ∂Cti

/∂S) as

(2.26)

The delta hedge (term in brackets) is called a delta-based martingale control variate 
cv1 and can be expressed as

(2.27)

Thus, because cv1 is a martingale, its mean is zero. Rearranging equation (2.26),
we get

(2.28)

which, as Clewlow and Strickland suggest, can be interpreted as meaning that the
expectation of the payoff plus the hedge is equal to the initial premium inflated to
the maturity date at the risk-free rate of interest. As a result, if we simulate the pay-
off and the hedge and compute the mean of these, we can obtain an estimate of the
option value but with a much smaller variance.16 Since cv1 is a random variable
whose mean we know as zero, then cv1 is a suitable control variate.

We can also compute the gamma hedge control variate:

(2.29)
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Let t0 = 0 and assume there are n control variates. Then, in the general case of a
European option with a payoff CT at time T, equation (2.28) can be written as

(2.30)

where the β coefficients are included to account for the sign of the hedge, for errors
in the hedge due to discrete rebalancing, and for having only approximate hedge
sensitivities (i.e., delta, gamma, etc.).17 We can rewrite equation (2.30) in the form

(2.31)

where β0 = C0e
rT is the forward price of the option. Equation (2.31) can be inter-

preted as a linear regression equation where the payoff of the option is regressed
against the control variates. The β’s can be viewed as the regression coefficients that
measure the sensitivity of changes in the control variates to changes in the payoff.
The η represents the noise which comes from discrete rebalancing and imperfect
sensitivities. If we perform M simulations, then we can view the payoffs and control
variates (CT,j, cv1,j, . . . , cvn,j; j = 1, . . . , M) as samples from this regression equation.
Consequently, we can an obtain an estimate of β by least-squares regression. The
least-squares estimate of β is:

β^ = (X′X)′X′Y

where β^ = (β^0, β^1, . . . , β^n), X is M × n matrix whose rows correspond to each simu-
lation and are (1, cv1,j, . . . , cvn,j) and Y is the M × 1 vector of simulated payoffs.
The matrices X′X and X′Y can be computed during the simulation via accumula-
tion

(X′X)i,j,k+1 = (X′X)i,j,k + cvi,j,k+1cvj,k+1

(X′X)i,k+1 = (X′ X)i,k + cvi,k+1CT,k+1

where i and j index the rows and columns of the matrix and k is the time step.
Clewlow and Strickland note that since the payoffs and control variates are not
jointly normally distributed, then β^, the estimate of β, will be biased. This is espe-
cially important for the forward price of the option, β0, as we do not want the esti-
mate for option price to be biased. To overcome this problem, Clewlow and
Strickland suggest precomputing the βk’s, k = 1, . . . , N, by the least-squares regres-
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sion or fixing them at some appropriate value for the type of hedge. Thus, by keep-
ing the βk’s fixed, all options can be valued by taking the mean of the hedged port-
folio under a different set of simulated paths.18

The following is the code for Monte Carlo valuation of a European call option
using antithetic, delta, and gamma-based control variates:

/**********************************************************************************
MonteCarloADG : values a European Call option using Monte Carlo with antithetic,

delta, and gamma control variates. Adapted from Clewlow and Strickland (1998a)
[in]:   double S : asset price

double X : strike price
double vol : volatility
double rate : risk-free rate
double div : dividend yield
double T : option maturity
long N : number of time steps
long M : number of simulations

[out] : double callValue
**********************************************************************************/
double MonteCarloMethod::MonteCarloADG(double S, double X, double vol, double rate,

double div, double T, long N, long M)
{

int i, j;
double dt = T/N;
double mudt = (rate - div - 0.5*vol*vol)*dt;
double voldt = vol*sqrt(dt);
double erddt = exp((rate - div)*dt); // helps compute E[Si] efficiently
double egamma = exp((2*(rate - div) // helps compute gamma control variate

+ vol*vol)*dt)-2*erddt + 1; 
double beta1 = -1; // fixed beta coefficent on delta control 

// variate
double beta2 = -0.5; // fixed gamma coefficient of gamma control 

// variate
double sum = 0.0; // summation of call values
double sum1 = 0.0; // summation of squared call values
double t; // current time
double St, St1; // stock prices at current time
double Stn, Stn1; // stock prices at next time step
double CT; // call value at maturity at end of 

// simulation path
double cv1; // delta control variate
double cv2; // gamma control variate
double delta, gamma; // delta and gamma of positive antithetic
double delta1, gamma1; // delta and gamma of negative antithetic
double deviate; // standard deviate
double SD; // standard deviation
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double SE; // standard error

srand(time(0)); // initialize RNG
long seed = (long) rand() % 100; // seed for random number generator
long *idum = &seed; // used for generating standard normal 

// deviate
double callValue; // call value

cout.setf(ios::showpoint); // output format
cout.precision(4); // set output decimal precision

for (i = 1; i <= M; i++)
{

// initialize variables for simulation
St = S;
St1 = S;
cv1 = 0;
cv2 = 0;

for (j = 1; j <= N; j++)
{

// compute hedge sensitivities
t = (j-1)*dt;
delta = og.calcDelta(St,X,rate,div,vol,T,t);
delta1 = og.calcDelta(St1,X,rate,div,vol,T,t);
gamma = og.calcGamma(St,X,rate,div,vol,T,t);
gamma1 = og.calcGamma(St1,X,rate,div,vol,T,t);

// generate gaussian deviate
deviate = util.gasdev(idum);

// evolve asset price
Stn = St*exp(mudt + voldt*deviate);
Stn1 = St1*exp(mudt + voldt*(-deviate));

// accumulate control deviates
cv1 = cv1 + delta*(Stn - St*erddt) + delta1*(Stn1 - St1*erddt);
cv2 = cv2 + gamma*((Stn - St)*(Stn - St) - pow(St,2*egamma))

+ gamma1*((Stn1 - St1)*(Stn1 - St1) - pow(St1,2*egamma));
St = Stn;
St1 = Stn1;

}

// compute value with antithetic and control variates
CT = 0.5*(max(0,St - X) + max(0, St1 - X) + beta1*cv1 + beta2*cv2);
sum = sum + CT;
sum1 = sum1 + CT*CT;

}

callValue = exp(-rate*T)*(sum/M);
cout << “value = ” << callValue << endl;

SD = sqrt((sum1 - sum1*sum1/M)*exp(-2*rate*T)/(M-1));
cout << “stddev = ” << SD << endl;
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SE = SD/sqrt(M);
cout << “stderr = ” << SE << endl;

return callValue;
}

The functions to calculate delta and gamma control variates in the preceding code
are given in the Option::OptionGreeks class in Chapter 1.

Monte Carlo is also well suited for valuation of spread options and basket op-
tions (options on a portfolio of assets). Consider two stocks, S1 and S2, that each
follow the risk-neutral price processes:

dS1 = (r – q1)S1dt + σ1S1dz1

and

dS2 = (r – q2)S2dt + σ2S2dz2

where dz1dz2 = ρdt. Price paths follow a two-dimensional discretized geometric
Brownian motion that can be simulated according to:

and

for i = 0, 1, . . . , N, where ε1,i+1 and ε2, i+1 are samples from the standard normal.
The same seed is used for all simulations. The following code is an implementation
to value a European spread call (or put) option with payoff

e–r(T–t)EQ[max(S1(T) – S2(T) – X,0 | ℑt]

for a call and

e–r(T–t)EQ[max(X – S1(T) + S2(T),0) | ℑt]

for a put.
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/*********************************************************************************/
calcMCEuroSpreadOption : computes the value of a European spread option
[in]    double price1 : price of asset 1

double price2 : price of asset 2
double strike : strike price
double rate : risk-free rate
double vol1 : volatility of asset 1
double vol2 : volatility of asset 2
double div1 : dividend yield of asset 1
double div2 : dividend yield of asset 2
double rho : correlation of dz1 and dz2
double T : maturity of option
char type : option type (C)all or (P)ut
long M : number of simulations
long N : number of time steps

[out] : double : price of spread option
**********************************************************************************/
double SpreadOption::calcMCEuroSpreadOption(double price1, double price2, double

strike, double rate, double vol1, double vol2, double div1, double div2, double
rho, double T, char type, int M, int N)

{
int i, j;
double dt = T/N; // size of time step
double mu1 = (rate - div1 - 0.5*vol1*vol1); // drift for stock price 1
double mu2 = (rate - div2 - 0.5*vol2*vol2); // drift for stock price 2
double srho = sqrt(1 - rho*rho); // square root of 1 – rho*rho
double sum1 = 0.0; // sum of all the call values on 

// stock 1 at time T
double sum2 = 0.0; // sum of all the call values on 

// stock 2 at time T
double S1 = 0.0; // stock price 1
double S2 = 0.0; // stock price 2
double deviate1 = 0.0; // deviate for stock price 1
double deviate2 = 0.0 // deviate for stock price 2
double z1 = 0.0; // correlated deviate for stock 

// price 1
double z2 = 0.0; // correlated deviate for stock 

// price 2
double CT = 0.0; // option price at maturity
double SD = 0.0; // standard deviate of price
double SE = 0.0; // standard error of price
double value = 0.0; // spread option price

srand(time(0)); // initialize RNG
long seed = (long) rand() % 100; // generate seed
long* idum = &seed;
N = 1; // no path dependency

for (i = 0; i < M; i++)
{

// initialize prices for each simulation
S1 = price1;
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S2 = price2;

for (j = 0; j < N; j++)
{

// generate deviates
deviate1 = util.gasdev(idum);
deviate2 = util.gasdev(idum);

// calculate correlated deviates
z1 = deviate1;
z2 = rho*deviate1 + srho*deviate2;
S1 = S1*exp(mu1*dt + vol1*z1*sqrt(dt));
S2 = S2*exp(mu2*dt + vol2*z2*sqrt(dt));

}

if (type == ‘C’)
CT = max(S1 - S2 - strike, 0);

else
CT = max(strike - S1 + S2,0);

sum1 = sum1 + CT;
sum2 = sum2 + CT*CT;

}

value = exp(-rate*T)*(sum1/M);
SD = sqrt((sum2 - sum1*sum1/M)*exp(-2*rate*T)/(M-1));
SE = SD/sqrt(M);

return value;
}

Suppose S1 = 50, S2 = 50, X = 1, r = 0.06, q1 = 2 percent, q2 = 3 percent, σ1 = 30
percent, σ2 = 20 percent, T = 0.5. Figure 2.4 shows a plot of call and put spread op-
tion prices as a function of correlation ρ = –1, –0.9, . . . , 0.9, 1, for M = 100,000
simulations. Note that since the option is European, we can speed the computation
by using only N = 1 time step.

Notice that as correlation increases, the option price (monotonically) decreases
for both call and put spread options. When ρ = 1, the second random factor ε2,i can-
cels out of the second geometric Brownian equation for S2. Consequently, both S1
and S2 are being driven by only one (the same) source of randomness or uncertainty
ε1,i. Thus, z1,i and z2,i move in the same direction so that random movements of both
assets occur in the same direction and make the spread S1 – S2 decrease since the
same direction movements are offset. However, when ρ = –1 the randomness of +ε1,i
in the equation of the first asset is offset by –ε1,i in the equation of the second asset,
and so movements in one direction of one asset are magnified by movements in the
opposite direction of the other asset. Thus, a widening of the spread S1 – S2 occurs,
making the option worth more. Other numerical techniques for valuing spread op-
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tions include a two-variable binomial method (see section 3.10), fast Fourier trans-
form (FFT) methods (see Appendix C in the CD-ROM), and Gaussian quadrature
(see section 14.10).

2.8 PATH-DEPENDENT VALUATION

To price a path-dependent derivative by Monte Carlo, meaning the payoff is depen-
dent on the entire path taken by the underlying security, we need to estimate the
conditional expectation. Suppose we want to price a European-style claim of the
underlying process; that is, the payoff

fT = F({St, 0 ≤ t ≤ T})

depends on the entire path from 0 to T. The risk-neutral pricing formula gives the
price of the security at time 0 as a discounted expectation:

(2.32)

The expectation is calculated over all possible paths of the risk-neutral process from
0 to T started at (S, 0). We can estimate this expectation in the following steps:

1. Divide the path into N time steps ∆t, and simulate M sample paths of the risk-
neutral diffusion process.

f e E F S t TrT
S

Q
t0 0 0= ≤ ≤−
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FIGURE 2.4 Call and Put Spread Option Prices
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2. Calculate the terminal payoff for each path. The payoff on the kth path, {Sk
i, i =

0, 1, . . . , N}, k = 1, 2, . . . , M (i—time counter on a give path; k—counts dif-
ferent paths): F(Sk

0, Sk
1, . . . , Sk

N ).
3. Discount with the risk-free rate r.
4. The crude Monte Carlo estimate f* of the security price is just an average of all

the discounted payoffs over M sample paths generated:

(2.33)

f*0 is a Monte Carlo estimate of the N-dimensional integral:

(2.34)

where

is the risk-neutral probability density (i.e., lognormal distribution density) of Si+1
given Si. Monte Carlo simulation is used to calculate these multidimensional inte-
grals involving integration over multiple points on the path.

Suppose we want to price an Asian option (Chapter 6), an option whose
value depends on the average price of the underlying security over the life of the
option, by simulation. We generate M sample paths {Sk

i , i = 0, 1, . . . , N}, k = 1,
2, . . . , M, index i counts time points on a given path, index k counts paths, 
ti = i∆t,

Compute the average price Ak for each path:
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Estimate the option price:

(2.35)

To reduce variance, always use antithetic variates. Note that it is not necessary to
save all the prices on the path and then compute the average price. The average
price can be computed efficiently by the recurrent relation:

where Aj is the average price between time t0 and tj. One updates the average at
each time step. This saves computing time and memory.

We can create an AsianOption class the inherits from the Option class because
an Asian option is an option; that is, it is a subclass (derived) from an Option.

class AsianOption : public Option
{

public:
AsianOption(double price, double strike, double vol, double rate, double div,

double T);
AsianOption() : value_(0.0) {}
∼AsianOption() {}
// modified Black Scholes pricing formula
double calcBSAsianPrice(double price, double strike, double vol, double rate,

double div, double T, char type);

// calculate arithemic ave. Asian option using Monte Carlo (MCA)
double calcMCAAsianPrice(double price, double strike, double vol, double rate,

double div, double T, char type, int M, int N);

// calculate geometric ave. Asian option using Monte Carlo (MCG)
double calcMCGAsianPrice(double price, double strike, double vol, double rate,

double div, double T, char type, int M, int N);
virtual void setupEngine() const { }
virtual double calculate() const { return value_ ; }

private:
double volA; // Arithmetic ave. volatility for modified Black-Scholes formula
double qA; // Arithmetic ave. dividend yield for modified Black-Scholes 

// formula
double value_; // Asian option price

};
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The following is a Monte Carlo implementation to price an Asian option using
geometric averaging on a stock with S = 45, X = 42, σ = 20 percent, r = 5.5 percent,
q = 1.5 percent, and T = 1 using M = 1,000 simulations with N = 10 time steps
(equally spaced fixing times) so that ti – ti–1 = T/N = ∆t for all i = 1, . . . , N. We
make the following call:

void main()
{

cout.setf(ios::showpoint);
cout.precision(4);

AsianOption ao;
double price = ao.calcMCGAsianPrice(45,42,0.20,0.055,0.015,1,‘C’);
cout << “Geometric Asian price = ” << price << endl;

}

The function implementation is:

/**********************************************************************************
calcMCGAsianPrice: computes the price of a geometric Asian option using Monte Carlo

simulation
[in]:  double price : initial stock price

double strike : strike price
double vol : volatility
double rate : risk-free rate
double div : dividend yield
double T : time to maturity
char type : (C)all or (P)ut
int M : number of simulations
int N : number of time steps

[out]   double : price of geometric Asian option
**********************************************************************************/
double AsianOption::calcMCGAsianPrice(double price, double strike, double vol,

double rate, double div, double T, char type, long M, long N)
{

// initialize variables
int i, j;
double G = 0.0; // price of geometric average Asian option
double mu = 0.0; // drift
double deviate; // normal deviate
double S = 0.0; // stock price
double sum = 0.0; // sum of payoffs
double sum2 = 0.0; // sum of squared payoffs
double product = 0.0; // product of stock prices
double payoff = 0.0; // option payoff
double deltat = 0.0; // step size

2.8 Path-Dependent Valuation 87



double stddev = 0.0; // standard deviation
double stderror = 0.0; // standard error
deltat = T/N; // compute change in step size
mu = rate - div - 0.5*vol*vol; // compute drift
cout.precision(4); // set output decimal format

srand(time(0)); // initialize RNG
long seed = (long) rand() % 100; // generate random number generator
long *idum = &seed; // store address of seed

// for each simulation
for (i = 0; i <= M; i++)
{

S = price;
product = 1;

for (j = 0; j < N; j++)
{

deviate = util.gasdev(idum);
S = S*exp(mu*deltat + vol*sqrt(deltat)*deviate);
product *= S;

}

// compute geometric average
G = pow(product,(double)1/N);
if (type == ‘C’)

payoff = max(G – strike,0);
else

payoff = max(strike – G,0);

sum += payoff;

sum2 += payoff*payoff;
}
value_ = exp(-rate*T)*(sum/M);
stddev = sqrt((sum2 - sum*sum/M)*exp(-2*rate*T)/(M-1));
stderror = stddev/sqrt(M);

return value_;
}

The price of the geometric average Asian call is $5.76 with a standard devia-
tion of 5.00 and a standard error of 0.50. We now price an arithmetic Asian price
option using the same values for the geometric average Asian call.

/*********************************************************************************/
calcMCAsianPrice : computes the price of an arithmetic Asian option using Monte

Carlo simulation
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[in]:   double price : initial stock price
double strike : strike price
double vol : stock volatility
double rate : risk-free rate
double div : dividend yield
double T : time to maturity
char type : (C)all or (P)ut
int M : number of simulations
int N : number of time steps

[out]:  double : price of arithmetic Asian option
**********************************************************************************/
double AsianOption::calcMCAAsianPrice(double price, double strike, double vol,

double rate, double div, double T, char type, int M, int N)
{

// initialize variables
double A = 0.0; // arithmetic average
double mu = 0.0; // drift
int i, j;
double deviate; // normal deviate
double stddev = 0.0; // standard deviation
double stderror = 0.0; // standard error
double S = 0.0; // stock price
double sum = 0.0; // sum of payoffs
double sum1 = 0.0; // sum of stock prices
double sum2 = 0.0; // sum of squared payoffs
double payoff = 0.0; // payoff of option
deltat = T/N; // step size
mu = rate - div - 0.5*vol*vol; // compute drift
cout.precision(4); // set output decimal format

srand(time(0)); // initializer RNG
long seed = (long) rand() % 100; // generate seed
long *idum = &seed;

// for each simulation
for (i = 0; i <= M; i++)

{
// reinitialize for each simulation
S = price;
sum1 = 0;

for (j = 0; j <N; j++)
{

deviate = util.gasdev(idum);
S = S*exp(mu*deltat + vol*sqrt(deltat)*deviate);
sum1 += S;

}
A = sum1/N;

if (type == ‘C’)
payoff = max(A - strike, 0);

else
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payoff = max(strike – A,0);

sum += payoff;
sum2 += payoff*payoff;

}

value_= exp(-rate*T)*(sum/M);
cout << value = “ << value_ <<endl;

stddev = sqrt((sum2 - sum*sum/M)*exp(-2*rate*T)/(M-1));
stderror = stddev/sqrt(M);
cout << “ stddev = ” << stddev << “ ” << “stderror ” << stderror << endl;

return value_;
}

The price of the arithmetic average is approximately $5.90 with a standard de-
viation of 5.134 and a standard error of 0.514. It is not surprising that the arith-
metic average is higher than the geometric average price since arithmetic average of
a series of values is always greater than or equal to the geometric average of a series
of values.

As discussed, the geometric average option makes a good control variate for
the arithmetic average option. It lowers the standard deviation, and thus standard
error, of the estimate. The following is an implementation for pricing an arithmetic
average option using a geometric average control variate:

/*********************************************************************************/
calcMCGAsianPrice : computes the price of an geometric Asian option with a

control variate using Monte Carlo simulation
[in]:   double price : initial stock price

double strike : strike price
double vol : stock volatility
double rate : risk-free rate
double div : dividend yield
double T : time to maturity
char type : (C)all or (P)ut
int M : number of simulations
int N : number of time steps

[out]:  double : price of geometic Asian option with a control variate
**********************************************************************************/
double AsianOption::calcMCAAsianGCV(double price, double strike, double vol, double

rate, double div, double T, char type, int M, int N)
{

// initialize variables
int i, j;
double geo = 0.0; // geometric average
double ave = 0.0; // arithmetic average
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double mu = 0.0; // drift
double stddev = 0.0; // standard deviation
double stderror = 0.0; // standard error
double deviate; // standard deviate
double S = 0.0; // stock price
double sum = 0.0; // sum of payoffs
double sum1 = 0.0; // sum of squared payoffs
double product = 0.0; // product of stock prices
double payoff = 0.0; // option payoff
double dt = T/N; // step size

cout.precision(4); // set output decimal format

srand(time(0)); // initialize RNG
long seed = (long) rand() % 100; // generate seed
long* idum = &seed; // store address of seed

mu = rate - div - 0.5*vol*vol; // drift

// simulation
for (i = 0; i <= M; i++)
{

// initialize for each simulation
S = price;
product = 1;
sum = 0;
sum1 = 0;

for (j = 0; j < N; j++)
{

deviate = util.gasdev(idum);
S = S*exp(mu*deltat + vol*sqrt(dt)*deviate);
sum = sum + S;
product *= S;

}

ave = sum/N; // calculate arithmetic average
geo = pow(product,(double)1/N); // calculate geometric average

if (type == ‘C’)
payoff = max(0, (ave - strike) - (geo - strike));

else
payoff = max(0, (strike - ave) - (strike - geo));

sum += payoff;
sum1 += payoff*payoff;

}

value_ = exp(-rate*T)*(sum/M) +
calcMCGAsianPrice(price,strike,vol,rate,div,T,‘C’);

cout << value = “ << value_ <<endl;

stddev = sqrt((sum1 - sum*sum/M)*exp(-2*rate*T)/(M-1));
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stderror = stddev/sqrt(M);
cout << “ stddev = ” << stddev << “ ” << “stderror ” << stderror << endl;

return value_;
}

The arithmetic price is approximately $5.90 with a standard deviation of 0.185
and a standard error of 0.019. Table 2.2 summarizes the Monte Carlo results of the
Asian option using different methods using M = 1,000 simulations and N = 10 time
steps per path. Note how much smaller the standard error is using the control vari-
ate technique than using the arithmetic average Monte Carlo.

2.9 BROWNIAN BRIDGE TECHNIQUE

In order to capture path-dependencies, it may be necessary to simulate the values
that a stochastic factor (i.e., an interest rate) can take at many points over a time
horizon. While (unconditional) Monte Carlo can be used to estimate values over
short time horizons, a more robust method needs to be used to simulate values over
longer time horizons that may be conditional on a final state being reached. A
Brownian bridge is a stochastic process that evolves over time conditional on reach-
ing a given final state at a given final time. The Brownian bridge, suggested by
Caflisch and Moskowitz (1995), can be used to generate Brownian motion at a
specified number of time points between a given initial and a final state. Intuitively,
a Brownian bridge is a stochastic interpolation between the initial state and the fi-
nal state so that simulated paths are consistent with the initial and final states.
Brownian bridges are useful for stress testing because they can be used to generate
paths that lead to extreme and unlikely final states (stress scenarios).

Suppose the final condition of the stochastic factor, say a stock price, is S(t) = ST

at time T. Suppose that S(t) follows the SDE:

dS(t) = µS(t)dt + σS(t)dZ(t) (2.36)
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TABLE 2.2 Monte Carlo Results of the Asian Option

Monte Carlo Estimate Standard Deviation Standard Error

Arithmetic average $5.898 5.134 0.514
Geometric average $5.760 5.000 0.500
Geometric control variate $5.898 0.185 0.019



where Z(t) is Brownian motion (a Wiener process). The solution to equation (2.36)
is given by

(2.37)

so that S(t) is lognormally distributed. The drift µ and volatility σ can be estimated
from historical data. For generating price paths, one could use Monte Carlo simu-
lation using equation (2.1). In the case of long-term simulations, the model itself
poses a problem. Over a long period of time the drift dominates the volatility such
that small errors in the drift lead to large differences in the future price distribution,
whereas for short-term simulations the volatility dominates the drift so that the ef-
fects of the drift are negligible. Moreover, other assumptions of price behavior over
short-term horizons—like successive one-day returns that have the same volatility
and are independent of one another, which implies that the variance of returns is a
linear function of time or that stock price returns follow a random walk—do not
hold over long-term horizons. However, a Brownian bridge can be used to over-
come these problems.

The final condition at time T leads to a final condition for the Brownian mo-
tion at time T, which can be deduced from equation (2.37):

Mathematically, the paths of the Wiener process that end up at the same value z(T)
are defined by a (one-dimensional) Brownian bridge B(t) ,t ∈ [0, T] defined by

(2.38)

where z(0) = 0 and Z*(t) is a Wiener process that is independent of Z(t). We can
write (2.38) as

(2.39)

When simulating the Brownian bridge, we have to construct this independent
Wiener process along some appropriate time steps within the time interval of inter-
est, 0 = t0 < t1 < . . . < tn = T, by setting
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where ε ∼ N(0,1) are standard normally distributed deviates and where we assume
the intervals ti+1 – ti , i = 0, . . . , n – 1 are the same length.

The Brownian bridge now replaces the Wiener process Z(t) for 0 < t < T in
(2.37),

(2.40)

As can be seen from equation (2.40), the drift term µ drops out (the drift of the
Brownian bridge is determined by the given initial and final states), which solves
the problem of having to estimate the drift. Thus, only the volatility needs to be es-
timated. This advantage comes at the cost of having to estimate the final probabil-
ity distribution of the price at time T. The probability distribution implicitly
incorporates the drift of the price evolution. However, since the drift is unknown
(the drift could be any more or less complicated term) there is no need for the stan-
dard deviation of the estimated probability distribution to be consistent with the
volatility of the Brownian bridge.

The Brownian bridge construction first generates Z(T), and then using this
value and Z(0) = 0, generates Z(T/2). It generates Z(T/4) using Z(0) and Z(T/2),
and it generates Z(3T/4) using Z(T/2) and Z(T). The construction proceeds recur-
sively filling in the midpoints of the subintervals.19 Consequently, the sampled
Brownian path is generated by determining its values at T, T/2, T/4, 3T/4, . . . . ,
(n – 1)T/n, using a vector of generated standard normal deviates ε = {ε1, ε2, . . . , εn}
according to:
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The Brownian bridge can be generalized to include time intervals of unequal
lengths. For tj+1 = tj + ∆t, j = 0, . . . , n – 1, ∆t = T/n, we can simulate a future
value Z(tk), k > j, given the value Z(tj), according to

(2.41)

where ε ∼ N(0,1) are standard normally distributed deviates.20 We can simulate
Z(ti) at any intermediate point tj < ti < tk, given the values Z(tj) and Z(tk), according
to the Brownian bridge formula:

(2.42)

where ε ∼ N(0,1) and γ = (i – j)/(k – j).
We give the following BrownianBridge implementation adapted from Jäckel

(2002):

class BrownianBridge
{

public:
BrownianBridge(unsigned long numberOfSteps);
virtual ∼BrownianBridge() {};
void buildPath(vector<double>& theWienerProcessPath, const vector<double>&

gaussianVariates);
void generateDeviates(unsigned long numberOfSteps);

private:
unsigned long numberOfSteps;
vector<unsigned long> leftIndex;
vector<unsigned long> rightIndex;
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vector<unsigned long> bridgeIndex;
vector<double> leftWeight;
vector<double> rightWeight;
vector<double> stddev;
vector<double> normalVariates;
StatUtility util;

};

The class has the following method definitions:

/**********************************************************************************
BrownianBridge   : Constructor , initializes Brownian bridge

[in] numberOfSteps: number of steps on path
[out] none
**********************************************************************************/
BrownianBridge::BrownianBridge(unsigned long numberOfSteps):

numberOfSteps(numberOfSteps), leftIndex(numberOfSteps), 
rightIndex(numberOfSteps), bridgeIndex(numberOfSteps), 
leftWeight(numberOfSteps), rightWeight(numberOfSteps), stddev(numberOfSteps)

{

vector<unsigned long> map(numberOfSteps);
unsigned long i, j, k, l;

// map is used to indicated which points are already constructed. If map[i] is 
// zero, path point i is yet unconstructed. map[i] - 1 is the index of the 
// variate that constructs the path point i.
map[numberOfSteps-1] = 1; // the first point in the construction is 

// the global step
bridgeIndex[0] = numberOfSteps - 1; // bridge index
stddev[0] = sqrt(numberOfSteps); // the standard deviation of the global 

// step
leftWeight[0] = rightWeight[0] = 0; // global step to the last point in time

for (j = 0, i = 0; i < numberOfSteps; ++i)
{

while (map[j])
++j; // find the next unpopulated entry in the 

// map
k = j;
while ((!map[k])) // find the next unpopulated entry in the 

++k; // map from there

l = j + ((k - 1 - j) >> 1); // l is now the index of the point to 
// be constructed next
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map[l] = i;
bridgeIndex[i] = l; // the ith gaussian variate to be used to set point l
leftIndex[i] = j; // point j-1 is the left strut of the bridge for 

// point l
rightIndex[i] = k; // point k is the right strut of the bridge
leftWeight[i] = (k - l)/(k + 1- j);
rightWeight[i] = (l + 1 - j)/(k+ 1- j);
stddev[i] = sqrt(((l + 1 - j)*(k-1))/(k+1-j));
j = k + 1;

if (j >= numberOfSteps)
j = 0;  // wrap around

}
}

/**********************************************************************************
buildPath: builds a path using a Brownian bridge
[in] path : simulated Brownian path
[in] normalVariates : vector of normal deviates
[out] none
**********************************************************************************/
void BrownianBridge::buildPath(vector<double>& path, const vector<double>&

normalVariates)
{

assert(normalVariates.size() == numberOfSteps && path.size() == numberOfSteps);
unsigned long i, j, k, l;

path[numberOfSteps - 1] = stddev[0]*normalVariates[0];

for (i = 1; i < numberOfSteps; i++)
{

j = leftIndex[i];
k = rightIndex[i];
l = bridgeIndex[i];
if (j)

path[l] = leftWeight[i]*path[j-1] + rightWeight[i]*path[k] +
stddev[i]*normalVariates[i];

else
path[l] = rightWeight[i]*path[k] + stddev[i]*normalVariates[i];

}
}

/**********************************************************************************
generateDeviates: generates a sequences of normal random deviates
[in] numberOfSteps: number of steps per path (= number of deviates needed per path)
[out] none
**********************************************************************************/
void BrownianBridge::generateDeviates(unsigned long numberOfSteps)
{

double deviate = 0.0;
srand(time(0)); // initialize RNG
long seed = (long) rand(); // generate random seed
long* idum = &seed;
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for (int i=0; i < numberOfSteps; i++)
{

deviate = util.gasdev(idum);
normalVariates.push_back(deviate);

}
}

It has been thought by many researchers that the Brownian bridge speeds up
the convergence of quasi–Monte Carlo by reducing the deterministic error bound
more than the standard discretization approach, which uses a Cholesky decomposi-
tion of the covariance matrix C into AA′ to generate uncorrelated deviates. The
choice of the matrix A in the Cholesky decomposition affects quasi–Monte Carlo
convergence since the decomposition can be thought of as a change in the integrand
or as a change in sample points.21 Thus, the deterministic error bound of quasi–
Monte Carlo depends on the integrand and on the discrepancy of the sample points
and one should consider both factors when choosing A.22 The Brownian bridge re-
sults in a matrix B such that C = BB′, where B is different from that of A in the
Cholesky decomposition and is thought to reduce the deterministic error bound
more than A.

Some researchers believe that in high-dimension (i.e., greater than 50) finance
problems where it is necessary to evaluate integrals with Gaussian weights, the first
coordinates of low-discrepancy points will be more uniformly distributed than the
rest. It is believed that points sampled from the multidimensional Gaussian distrib-
ution used to evolve the Brownian bridge will result in an integrand that depends
more on the presumably more uniform coordinates of these samples, and thus lead
to faster convergence. Moreover, the Brownian bridge is thought to reduce the di-
mensionality of the problem. However, Papageorgiou (2001) shows that the
Brownian bridge, which uses points from the same low-discrepancy sequence (i.e.,
Faure or Sobol) as a standard discretization but uses a different matrix covariance
decomposition, can actually lead to worse convergence errors for both high- and
low-dimension quasi–Monte Carlo integrals. Consequently, it is not clear that the
Brownian bridge consistently outperforms the standard discretization method in
quasi–Monte Carlo.

2.10 JUMP-DIFFUSION PROCESS AND CONSTANT ELASTICITY OF
VARIANCE DIFFUSION MODEL

Certain types of stochastic processes are best modeled using random “jumps”
drawn from a Poisson process such as the default time of a bond issuer or even a
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stock price that jumps from unexpected market news. Such a jump-diffusion
process, proposed by Merton (1973),23 can be modeled as:

(2.43)

where µ is the expected return from the asset, λ is the rate (intensity) at which
jumps occur, κ is the average jump size measured as a proportional increase in the
asset price, and λκ is the average growth rate from the jumps. Thus, the expected
growth rate from the geometric Brownian motion of the asset is µ – λκ. Also, ∆ is
the volatility of the asset that follows geometric Brownian motion, dz is a Brownian
motion process, and dq is the Poisson process generating the jumps (dz and dq are
assumed to be independent processes).

Jump-diffusion processes yield fatter tails, and thus capture more realistic asset
return distribution dynamics than continuous lognormal diffusion processes, since
jumps can be either positive or negative. Merton made the important assumption
that the jump factor of the asset’s return represents nonsystematic risk that can be
hedged away. Consequently, a Black-Scholes type of portfolio must earn the risk-
free rate since the uncertainty arising from geometric Brownian motion can be
eliminated.24

We can implement a jump-diffusion process using Monte Carlo to value a Eu-
ropean call option:

/*********************************************************************************/
JumpModel : values a European call option using a jump-diffusion

process
[in]:   double price: : asset price

double strike : strike price
double vol : volatility
double rate : risk-free rate
double div : dividend yield
double T : option maturity
int N : number of time steps
int M : number of simulations
double lambda : rate (intensity) of jumps
double kappa : average jump sized measured as a proportional increase in

the stock price
[out] : double callValue
**********************************************************************************/
double MonteCarlo::JumpDiffusion(double price, double strike, double vol, double

rate, double div, double T, int M, int N, double lambda, double kappa)
{

dS
S

dt dz dq= − + +( )µ λκ σ
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int i, j;
double dt; // time increment, (yrs)
double deviate = 0.0; // standard normal deviate
double deviate1 = 0.0; // Poisson deviate
double payoff = 0.0; // option payoff
double sum = 0.0; // sum payoffs
double S = price; // store stock price
double mu = rate - div - lambda*kappa; // expected return
long seed; // seed for random number generator
long* idum = 0; // identifies address of seed
StatUtility util; // statistic utility class

srand(time(0)); // initialize random number generator
seed = (long) rand() % 100; // generate seed
idum = &seed;
dt = T/N; // time step

for (i = 0; i < M; i++)
{

// initialize stock price for each simulation
S = price;

for(j = 0; j < N; j++)
{

deviate = util.gasdev(idum); // generate gaussian deviate
deviate1 = util.poisson(lambda); // generate Poisson deviate

S = S*exp(mu*dt+ vol*sqrt(dt)*deviate + sqrt(dt)*deviate1);
}
payoff = max(S – strike, 0);
sum += payoff;

}
return exp(-rate*T)*(sum/M);

}

To generate a Poisson random variable from a Poisson process with rate λ, we
need to simulate the number of events or arrivals that have occurred over a given
time interval [0, t]. Let N(t) be the number of arrivals over this time period. If the
interarrival times are independent random variables and exponentially distributed
with rate λ, then N(t) has a Poisson distribution with mean λt. To simulate a Pois-
son process, we perform the following steps:

1. Set n = 0, Tn = 0.
2. Generate the random deviate ξ from an exponential (λ) distribution.
3. Set n = n + 1, Tn = Tn–1 + ξ.
4. Return to step 2.
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Then, Tn is the time at which the nth “jump” arrives. To generate a Poisson random
variable, we let

Then

where Ui is the ith uniform (0, 1) deviate. Thus, by generating successive i.i.d. uni-
form (0, 1) random variables until such times as their product is less than e–λ, we
can generate a Poisson (λ) random variable. The Poisson random variable is one
less than the number of uniform factors required to make the product less than e–λ.
The code to generate the Poisson random variable is given as an in-line function of
a statistical Utility class:

class Utility
{

. . .
inline int poisson(double lambda)
{

assert (lambda > 0. );

double a = exp( -lambda );
double b = 1;

// initialize random number generator
srand(0);
long seed = (long) rand() % 100;
long* idum = &seed;

for (int i = 0; b >= a; i++ )
b *= gasdev(idum);

return i - 1;
}
. . .

};

In the simplest case of Merton’s jump-diffusion model, the logarithm of the size
of the proportional jump has a normal distribution with a mean of –0.5δ2 and a
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standard deviation of δ. In this case, a closed-form solution for European call op-
tion C exists:

where λ– = λ(1 + κ) and Cn is the nth Black-Scholes option price with the instanta-
neous variance rate

and risk-free rate r– = r – λκ + ln(1 + κ)(n/t).
Another popular alternative model used in simulation is the constant elasticity

of variance (CEV) diffusion model proposed by Cox and Ross.25 In the CEV
model, the instantaneous volatility of the stock price σ(t, S) has the form σS–α for
some α where 0 ≤ α ≤ 1. If α = 1, the CEV model simplifies to the absolute diffu-
sion model where the volatility is inversely proportional to the stock price. The
CEV model captures the financial leverage effect that occurs as firms have fixed
costs to pay regardless of their firm’s operating performance.26 Volatility increases
as the stock price decreases since the firm’s fixed costs do not change but operating
performance may have declined, leading to more uncertainty about the firm’s abil-
ity to pay these obligations. The CEV process, which can be simulated by Monte
Carlo, is given by

dS = µSdt + σS1–α dz (2.44)

This family of processes has the property that the elasticity of variance is constant,
that is, (∂σ/∂S)(S/σ) = –α. While the model is easy to apply, it has the weakness that
stock prices can become negative. A closed-form solution for an American call un-
der a CEV process is given by Cox and Rubinstein (1985), which utilizes the
gamma density function and the gamma distribution function into computation.27

2.11 OBJECT-ORIENTED MONTE CARLO APPROACH

We conclude this chapter by providing a Monte Carlo object-oriented implementa-
tion28 that is more robust since the functionality of generating the price paths
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through a path generator class is separate from the path pricer that computes the
values, and thus prices, of the derivative along each path. Finally, we use an aggre-
gator (statistics) class that provides the statistics, discounted average (expected
value), and standard deviation from the sum of all prices of all the paths. We first
define a new Monte Carlo method class:

#include “handle.h”
typdef size_t Size;
typdef double Time;

namespace QuantLib 
{

namespace MonteCarlo
{

// General purpose Monte Carlo model for path samples
/* Any Monte Carlo which uses path samples has three main components,
namely,
- S, a sample accumulator,
- PG, a path generator,
- PP, a path pricer.
MonteCarloModel<S, PG, PP> puts together these three elements.
The constructor accepts two safe references, i.e. two smart
pointers, one to a path generator and the other to a path pricer.
In case of control variate technique the user should provide the
additional control option, namely the option path pricer and the
option value.

The minimal interfaces for the classes S, PG, and PP are:
class S
{

void add(VALUE_TYPE sample, double weight) const;
};
class PG
{

Sample<PATH_TYPE> next() const;
};
class PP :: unary_function<PATH_TYPE, VALUE_TYPE>
{

VALUE_TYPE operator()(PATH_TYPE &) const;
};

*/
template<class S, class PG, class PP>
class MonteCarloModel
{

public:
typedef typename PG::sample_type sample_type;
typedef typename PP::result_type result_type;
MonteCarloModel(const Handle<PG>& pathGenerator,
const Handle<PP>& pathPricer,
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const S& sampleAccumulator,
const Handle<PP>& cvPathPricer = Handle<PP>(),
result_type cvOptionValue = result_type());
void addSamples(Size samples);
const S& sampleAccumulator(void) const;

private:
Handle<PG> pathGenerator_; // path generator
Handle<PP> pathPricer_; // path pricer
S sampleAccumulator_; // sample accumulator
Handle<PP> cvPathPricer_; // control variate path price
result_type cvOptionValue_; // control variate option value
bool isControlVariate_;

};

// inline definitions
template<class S, class PG, class PP>
inline MonteCarloModel<S, PG, PP>::MonteCarloModel(

const Handle<PG>& pathGenerator,
const Handle<PP>& pathPricer, const S& sampleAccumulator,
const Handle<PP>& cvPathPricer,
MonteCarloModel<S, PG, PP>::result_type cvOptionValue

: pathGenerator_(pathGenerator), pathPricer_(pathPricer),
sampleAccumulator_(sampleAccumulator), cvPathPricer_(cvPathPricer),
cvOptionValue_(cvOptionValue)

{
if (cvPathPricer_.isNull())

isControlVariate_= false; // no control variates
else

isControlVariate_= true; // use control variates
}

template<class S, class PG, class PP>
inline void MonteCarloModel<S, PG, PP>::addSamples(Size samples)
{

for(Size j = 1; j <= samples; j++)
{

sample_type path = pathGenerator_->next();
result_type price = (*pathPricer_)(path.value);
if (isControlVariate_)

price += cvOptionValue_-(*cvPathPricer_)(path.value);
sampleAccumulator_.add(price, path.weight);

}
}

template<class S, class PG, class PP>
inline const S& MonteCarloModel<S, PG, PP>::sampleAccumulator() const {

return sampleAccumulator_;
}

}
}
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We next define a PathGenerator class that generates all the paths:

#include “ql/MonteCarlo/path.h”
#include “ql/RandomNumbers/randomarraygenerator.h”
#include “ql/diffusionprocess.h”

namespace QuantLib {

namespace MonteCarlo {

/******************************************************************************
Generates random paths from a random number generator
******************************************************************************/
template <class RNG>
class PathGenerator {

public:
typedef Sample<Path> sample_type;
// constructors
PathGenerator(double drift,

double variance,
Time length,
Size timeSteps,
long seed = 0);

// warning the initial time is assumed to be zero
// and must not be included in the passed vector 
PathGenerator(double drift,

double variance,
const std::vector<Time>& times,
long seed = 0);

PathGenerator(const std::vector<double>& drift,
const std::vector<double>& variance,
const std::vector<Time>& times,
long seed = 0)

private:
mutable Sample<Path> next_;
Handle<RandomNumbers::RandomArrayGenerator<RNG> > generator_;

};

template <class RNG>
PathGenerator<RNG>::PathGenerator(double drift, double variance,

Time length, Size timeSteps, long seed): next_(Path(timeSteps),1.0)
{

QL_REQUIRE(timeSteps > 0, “PathGenerator: Time steps(“ +
IntegerFormatter::toString(timeSteps) + “) must be greater than zero”);
QL_REQUIRE(length > 0, “PathGenerator: length must be > 0”);

Time dt = length/timeSteps;

for (Size i=0; i<timeSteps; i++)
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{
next_.value.times()[i] = (i+1)*dt;

}

next_.value.drift() = Array(timeSteps, drift*dt);

QL_REQUIRE(variance >= 0.0, “PathGenerator: negative variance”);

generator_ = Handle<RandomNumbers::RandomArrayGenerator<RNG> >(
new RandomNumbers::RandomArrayGenerator<RNG>(
Array(timeSteps, variance*dt), seed));

}

template <class RNG>
PathGenerator<RNG>::PathGenerator(double drift, double variance,

const std::vector<Time>& times, long seed)
: next_(Path(times.size()),1.0) 

{
QL_REQUIRE(variance >= 0.0, “PathGenerator: negative variance”);
QL_REQUIRE(times.size() > 0, “PathGenerator: no times given”);
QL_REQUIRE(times[0] >= 0.0, “PathGenerator: first time(“ +

DoubleFormatter::toString(times[0]) + ”) must be non negative”);

Array variancePerTime(times.size());
Time dt = times[0];
next_.value.drift()[0] = drift*dt;
variancePerTime[0] = variance*dt;
for(Size i = 1; i < times.size(); i++) 
{

// check current time is greater than previous time
QL_REQUIRE(times[i] >= times[i-1],

“MultiPathGenerator: time(“ + IntegerFormatter::toString(i-1)+”)=
” + DoubleFormatter::toString(times[i1])
“ is later than time(“ + IntegerFormatter::toString(i) + ”)=” +

DoubleFormatter::toString(times[i]));

dt = times[i] - times[i-1];
next_.value.drift()[i] = drift*dt;
variancePerTime[i] = variance*dt;

}
next_.value.times() = times;

generator_ = Handle<RandomNumbers::RandomArrayGenerator<RNG> >(
new RandomNumbers::RandomArrayGenerator<RNG>(variancePerTime,
seed));

}

template <class RNG> PathGenerator<RNG>::PathGenerator(
const std::vector<double>& drift,
const std::vector<double>& variance,
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const std::vector<Time>& times, long seed) : next_(Path(times.size()),1.0)
{

// data validity check
QL_REQUIRE(times.size() > 0, “PathGenerator: no times given”);
QL_REQUIRE(times[0] >= 0.0, “PathGenerator: first time(“ +

DoubleFormatter::toString(times[0]) + ”) must be non negative”);
QL_REQUIRE(variance.size()==times.size(),

“PathGenerator: mismatch between variance and time arrays”);
QL_REQUIRE(drift.size()==times.size(),

“PathGenerator: mismatch between drift and time arrays”);

Array variancePerTime(times.size());
double dt = times[0];
next_.value.drift()[0] = drift[0]*dt;

QL_REQUIRE(variance[0] >= 0.0, “PathGenerator: negative variance”);
variancePerTime[0] = variance[0]*dt;

for(Size i = 1; i < times.size(); i++)
{

QL_REQUIRE(times[i] >= times[i-1], “MultiPathGenerator: time(“ +
IntegerFormatter::toString(i-1)+”)=” +
DoubleFormatter::toString(times[i-1]) + “ is later than time(“ +

IntegerFormatter::toString(i) + ”)=” +
DoubleFormatter::toString(times[i]));

dt = times[i] - times[i-1];
next_.value.drift()[i] = drift[i]*dt;

QL_REQUIRE(variance[i] >= 0.0, “PathGenerator: negative variance”);
variancePerTime[i] = variance[i]*dt;

}
next_.value.times() = times;

generator_ = Handle<RandomNumbers::RandomArrayGenerator<RNG> >(
new RandomNumbers::RandomArrayGenerator<RNG>(variancePerTime,
seed));

}

template <class RNG> inline const typename PathGenerator<RNG>::sample_type&
PathGenerator<RNG>::next() const
{

const Sample<Array>& sample = generator_->next();
next_.weight = sample.weight;
next_.value.diffusion() = sample.value;
return next_;

}

}
}
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We next define a Path class that contains methods for handling computations
of the drift and diffusion terms along each path:

namespace QuantLib
{

namespace MonteCarlo
{

/******************************************************************************
Path class for handling computations of drift and diffusion terms along a path
single factor random walk.
******************************************************************************/
class Path
{

public:
Path(Size size);
Path(const std::vector<Time>& times, const Array& drift, const Array&

diffusion);
// inspectors
double operator[](int i) const;
Size size() const;
// read/write access to components
const std::vector<Time>& times() const;
std::vector<Time>& times();
const Array& drift() const;
Array& drift();
const Array& diffusion() const;
Array& diffusion();
private:
std::vector<Time> times_; // vector of time instances
Array drift_;
Array diffusion_;

};

// inline definitions

inline Path::Path(Size size)
: times_(size), drift_(size), diffusion_(size) {}

inline Path::Path(const std::vector<Time>& times, const Array& drift, const
Array& diffusion)
: times_(times), drift_(drift), diffusion_(diffusion)

{

QL_REQUIRE(drift_.size() == diffusion_.size(),
“Path: drift and diffusion have different size”);

QL_REQUIRE(times_.size() == drift_.size(),
“Path: times and drift have different size”);

}
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// overloaded [] operator
inline double Path::operator[](int i) const
{

return drift_[i] + diffusion_[i];
}
inline Size Path::size() const {

return drift_.size();
}
inline const std::vector<Time>& Path::times() const
{

return times_;
}
inline std::vector<Time>& Path::times()
{

return times_;
}
inline const Array& Path::drift() const
{

return drift_;
}
inline Array& Path::drift()
{

return drift_;
}
inline const Array& Path::diffusion() const
{

return diffusion_;
}
inline Array& Path::diffusion()
{

return diffusion_;
}

}
}

Next we define the Monte Carlo pricer class McPricer for pricing derivatives
along each path:

namespace QuantLib
{

namespace Pricers
{

/*****************************************************************************/
Base class for Monte Carlo pricers
Deriving a class from McPricer gives an easy way to write
a Monte Carlo Pricer.
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See McEuropean as example of one factor pricer,
Basket as example of multi factor pricer.
******************************************************************************/
template<class S, class PG, class PP>
class McPricer
{

public:
virtual ∼McPricer() {}
// add samples until the required tolerance is reached
double value(double tolerance, Size maxSample = QL_MAX_INT) const;
// simulate a fixed number of samples
double valueWithSamples(Size samples) const;
// error Estimated of the samples simulated so far
double errorEstimate() const;
// access to the sample accumulator for more statistics
const S& sampleAccumulator(void) const;
protected:
McPricer() {}
mutable Handle<MonteCarlo::MonteCarloModel<S, PG, PP>> mcModel_;
static const Size minSample_;

};

template<class S, class PG, class PP>
const Size McPricer<S, PG, PP>::minSample_ = 100;

// inline definitions
/******************************************************************************
value : add samples until the required tolerance is reached
[in] : none
[out]: double mean : mean of sample
******************************************************************************/
template<class S, class PG, class PP>
inline double McPricer<S, PG, PP>::value(double tolerance, Size maxSamples)

const
{

Size sampleNumber = mcModel_->sampleAccumulator().samples();
if (sampleNumber<minSample_)
{

mcModel_->addSamples(minSample_-sampleNumber);
sampleNumber = mcModel_->sampleAccumulator().samples();

}

Size nextBatch;
double order;
double result = mcModel_->sampleAccumulator().mean();
double accuracy = mcModel_->sampleAccumulator().errorEstimate()/result;
while (accuracy > tolerance)
{

// conservative estimate of how many samples are needed
order = accuracy*accuracy/tolerance/tolerance;
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nextBatch = Size(max(sampleNumber*order*0.8-sampleNumber,
double(minSample_)));

// do not exceed maxSamples
nextBatch = min(nextBatch, maxSamples-sampleNumber);

QL_REQUIRE(nextBatch>0, “max number of samples exceeded”);

sampleNumber += nextBatch;
mcModel_->addSamples(nextBatch);
result = mcModel_->sampleAccumulator().mean();
accuracy = mcModel_->sampleAccumulator().errorEstimate()/result;

}
return result;

}

/******************************************************************************
valueWithSamples    : simulate a fixed number of samples
[in] : Size samples : number of data points
[out]: double mean
******************************************************************************/
template<class S, class PG, class PP>
inline double McPricer<S, PG, PP>::valueWithSamples(Size samples) const
{

QL_REQUIRE(samples>=minSample_,
“number of requested samples (“ + IntegerFormatter::toString(samples) + ”)
lower than minSample_ (“+ IntegerFormatter::toString(minSample_) + ”)”);

Size sampleNumber = mcModel_->sampleAccumulator().samples();

QL_REQUIRE(samples>=sampleNumber,
“number of already simulated samples (“ +

IntegerFormatter::toString(sampleNumber) + ”)
greater than requested samples (“ + IntegerFormatter::toString(samples) +

”)”);

mcModel_->addSamples(samples-sampleNumber);

return mcModel_->sampleAccumulator().mean();
}

/******************************************************************************
errorEstimate : error Estimated of the samples simulated so far
[in] : none
[out]: double error
******************************************************************************/
template<class S, class PG, class PP>
inline double McPricer<S, PG, PP>::errorEstimate() const
{

Size sampleNumber = mcModel_->sampleAccumulator().samples();

QL_REQUIRE(sampleNumber>=minSample_, “number of simulated samples lower than
minSample_”);
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return mcModel_->sampleAccumulator().errorEstimate();
}

/******************************************************************************
sampleAccumulator: simulate a fixed number of samples
[in] : none
[out]: Math::Statistics object
******************************************************************************/
template<class S, class PG, class PP>
inline const S& McPricer<S, PG, PP>::sampleAccumulator() const
{

return mcModel_->sampleAccumulator();
}

}
}

The sample size is taken from a Sample structure:

namespace QuantLib
{

namespace MonteCarlo
{

// weighted sample
template <class T>
struct Sample
{

public:
Sample(const T& value, double weight) : value(value), weight(weight) {}
T value;
double weight;

};
}

}

We define the following Monte Carlo typedefs:

namespace QuantLib
{

namespace MonteCarlo
{

// default choice for Gaussian path generator.
typedef PathGenerator<RandomNumbers::GaussianRandomGenerator>

GaussianPathGenerator;

// default choice for Gaussian multi-path generator.
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Typedef MultiPathGenerator<RandomNumbers::RandomArrayGenerator<
RandomNumbers::GaussianRandomGenerator> > GaussianMultiPathGenerator;

// default choice for one-factor Monte Carlo model.
typedef MonteCarloModel<Math::Statistics, GaussianPathGenerator,

PathPricer<Path> >
OneFactorMonteCarloOption;

// default choice for multi-factor Monte Carlo model.
typedef MonteCarloModel<Math::Statistics, GaussianMultiPathGenerator,

PathPricer<MultiPath> >
MultiFactorMonteCarloOption;

}
}

As an example for pricing options using Monte Carlo, we define the European-
PathPricer class, which prices European options along each path:

#include “PathPricer.h”
#include “Path.h”

namespace QuantLib
{

namespace MonteCarlo
{

// path pricer for European options
class EuropeanPathPricer : public PathPricer<Path>
{

public:
EuropeanPathPricer(Option::Type type, double underlying, double strike,

DiscountFactor discount, bool useAntitheticVariance);
double operator()(const Path& path) const;

private:
Option::Type type_;
double underlying_, strike_;

};
}

}

The class has the following method definitions:

#include “EuropeanPathPricer.h”
#include “SingleAssetOption.h”
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using QuantLib::Pricers::ExercisePayoff;

namespace QuantLib
{

namespace MonteCarlo
{
/********************************************************************************
EuropeanPathPricer constructor
[in]: Option:Type : option type
double underlying : underlying asset
double strike : strike price
DiscountFactor discount : discount factor
bool useAntitheticVariance : flag for using
********************************************************************************/
EuropeanPathPricer::EuropeanPathPricer(Option::Type type,

double underlying, double strike, DiscountFactor discount,
bool useAntitheticVariance)
: PathPricer<Path>(discount, useAntitheticVariance), type_(type),
underlying_(underlying), strike_(strike)

{
QL_REQUIRE(underlying>0.0, “EuropeanPathPricer:” “underlying less/equal zero

not allowed”);
QL_REQUIRE(strike>0.0,

“EuropeanPathPricer: “
“strike less/equal zero not allowed”);

}

/********************************************************************************
operator() : operator for pricing option on a path
[in]: Path& path: path instance
[out]: double : discounted value (price of option)
********************************************************************************/
double EuropeanPathPricer::operator()(const Path& path) const 
{

Size n = path.size();
QL_REQUIRE(n>0, “EuropeanPathPricer: the path cannot be empty”);

double log_drift = 0.0, log_random = 0.0;
for (Size i = 0; i < n; i++)
{

log_drift += path.drift()[i];
log_random += path.diffusion()[i];

}

if (useAntitheticVariance_)
return (

ExercisePayoff(type_, underlying_ *exp(log_drift+log_random), strike_) +
ExercisePayoff(type_, underlying_ *exp(log_drift-log_random), strike_))

*discount_/2.0;
else
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return ExercisePayoff(type_, underlying_ *exp(log_drift+log_random), strike_)
*discount_;

}
}

}

Each Pricer has an abstract PathPricer base class that prices using the path
given:

#include “ql/option.h”
#include “ql/types.h”
#include <functional>

namespace QuantLib
{

namespace MonteCarlo
{

// base class for path pricers
// Given a path the value of an option is returned on that path.
template<class PathType, class ValueType=double>
class PathPricer : public std::unary_function<PathType, ValueType>
{

public:
PathPricer(DiscountFactor discount, bool useAntitheticVariance);
virtual ∼PathPricer() {}
virtual ValueType operator()(const PathType& path) const=0;

protected:
DiscountFactor discount_;
bool useAntitheticVariance_;

};

template<class P,class V>
PathPricer<P,V>::PathPricer(DiscountFactor discount, bool

useAntitheticVariance)
: discount_(discount), useAntitheticVariance_(useAntitheticVariance)

{

QL_REQUIRE(discount_ <= 1.0 && discount_ > 0.0, “PathPricer: discount must be
positive”);

}
}

}
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The EuropeanPathPricer is used in the McEuropean class that does the actual
pricing:

#include “ql/option.h”
#include “ql/types.h”
#include “ql/Pricers/mcpricer.h”
#include “ql/MonteCarlo/mctypedefs.h”

namespace QuantLib
{

namespace Pricers
{

// European Monte Carlo pricer
class McEuropean : public McPricer<Math::Statistics, 

MonteCarlo::GaussianPathGenerator, MonteCarlo::PathPricer<MonteCarlo::Path> >
{

public:
McEuropean(Option::Type type,

double underlying,
double strike,
Spread dividendYield,
Rate riskFreeRate,
double residualTime,
double volatility,
bool antitheticVariance,
long seed=0);

};
}

}

The class has the following method definitions:

#include “ql/Pricers/mceuropean.h”
#include “ql/MonteCarlo/europeanpathpricer.h”

namespace QuantLib
{

namespace Pricers
{

using Math::Statistics;
using MonteCarlo::Path;
using MonteCarlo::GaussianPathGenerator;
using MonteCarlo::PathPricer;
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using MonteCarlo::MonteCarloModel;
using MonteCarlo::EuropeanPathPricer;

McEuropean::McEuropean(Option::Type type,
double underlying, double strike, Spread dividendYield,
Rate riskFreeRate, double residualTime, double volatility,
bool antitheticVariance, long seed)

{

// Initialize the path generator
double mu = riskFreeRate – dividendYield - 0.5 * volatility * volatility;

Handle<GaussianPathGenerator> pathGenerator(
new GaussianPathGenerator(mu, volatility*volatility, residualTime, 1,

seed));

// Initialize the pricer on the single Path
Handle<PathPricer<Path> > euroPathPricer(

new EuropeanPathPricer(type, underlying, strike, exp(-
riskFreeRate*residualTime), antitheticVariance));

// Initialize the one-factor Monte Carlo
mcModel_ = Handle<MonteCarloModel<Statistics, GaussianPathGenerator,

PathPricer<Path> > > (
new MonteCarloModel<Statistics, GaussianPathGenerator, PathPricer<Path> >

(pathGenerator, euroPathPricer, Statistics()));
}

}
}

Finally, we can use the Statistics class that aggregates the results of the Monte
Carlo and provides the statistics:

namespace QuantLib
{

namespace Math
{

/*****************************************************************************/
Statistic tool
It can accumulate a set of data and return statistic quantities
as mean, variance, std. deviation, skewness, and kurtosis.
******************************************************************************/
class Statistics
{

public:
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Statistics();
// inspectors

// number of samples collected
Size samples() const;

// sum of data weights
double weightSum() const;

// returns the mean, defined as
// x_mean = {sum w_i x_i}/{sum w_i}.
double mean() const;

// returns the variance, defined as
// N/N-1*x- x_mean^2.
double variance() const;

// returns the standard deviation sigma, defined as the
// square root of the variance.
double standardDeviation() const;

// returns the downside variance, defined as
// N/N-1 *sum_{i=1}^{N}
// theta*x_i^{2}}{sum_{i=1}^{N} w_i},
// where theta = 0 if x > 0 and theta =1 if x <0
double downsideVariance() const;

// returns the downside deviation, defined as the
// square root of the downside variance.
double downsideDeviation() const;

// returns the error estimate epsilon, defined as the
// square root of the ratio of the variance to the number of
// samples.
double errorEstimate() const;

// returns the skewness, defined as
// [ \frac{N^2}{(N-1)(N-2)} \frac{\left\langle \left(
// x-\langle x \rangle \right)^3 \right\rangle}{\sigma^3}. ]
// The above evaluates to 0 for a Gaussian distribution.
double skewness() const;

// returns the excess kurtosis, defined as
// N(N+1)/(N-1)(N-2)(N-3)
// \frac{\left\langle \left( x-\langle x \rangle \right)^4
// \right\rangle}{\sigma^4} - \frac{3(N-1)^2}{(N-2)(N-3)}.
// The above evaluates to 0 for a Gaussian distribution.
double kurtosis() const;

/* returns the minimum sample value */
double min() const;

/* returns the maximum sample value */
double max() const;
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// name Modifiers
// adds a datum to the set, possibly with a weight
void add(double value, double weight = 1.0);

// adds a sequence of data to the set
template <class DataIterator>
void addSequence(DataIterator begin, DataIterator end)
{

for (; begin!=end;++begin)
add(*begin);

}

// adds a sequence of data to the set, each with its weight
template <class DataIterator, class WeightIterator>
void addSequence(DataIterator begin, DataIterator end, WeightIterator

wbegin)
{

for (;begin!=end;++begin,++wbegin)
add(*begin, *wbegin);

}
// resets the data to a null set
void reset();

private:
Size sampleNumber_;
double sampleWeight_;
double sum_, quadraticSum_, downsideQuadraticSum_, cubicSum_,

fourthPowerSum_;
double min_, max_;

};

// inline definitions
/* pre weights must be positive or null */
inline void Statistics::add(double value, double weight)
{

QL_REQUIRE(weight>=0.0,
“Statistics::add : negative weight (“ +
DoubleFormatter::toString(weight) + ”) not allowed”);

Size oldSamples = sampleNumber_;
sampleNumber_++;
QL_ENSURE(sampleNumber_ > oldSamples, “Statistics::add : maximum number of

samples reached”);

sampleWeight_ += weight;

double temp = weight*value;
sum_ += temp;
temp *= value;
quadraticSum_ += temp;
downsideQuadraticSum_ += value < 0.0 ? temp : 0.0;
temp *= value;
cubicSum_ += temp;
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temp *= value;
fourthPowerSum_ += temp;
min_= min(value, min_);
max_= max(value, max_);

}

inline Size Statistics::samples() const
{

return sampleNumber_;
}

inline double Statistics::weightSum() const
{

return sampleWeight_;
}

inline double Statistics::mean() const
{

QL_REQUIRE(sampleWeight_>0.0, “Stat::mean() : sampleWeight_=0, insufficient”);
return sum_/sampleWeight_;

}

inline double Statistics::variance() const
{

QL_REQUIRE(sampleWeight_>0.0, “Stat::variance() : sampleWeight_=0,
insufficient”);

QL_REQUIRE(sampleNumber_>1, “Stat::variance() : sample number <=1,
insufficient”);

double v = (sampleNumber_/(sampleNumber_-1.0)) *(quadraticSum_ -
sum_*sum_/sampleWeight_)/sampleWeight_;

if (fabs(v) <= 1.0e-6)
v = 0.0;

QL_ENSURE(v >= 0.0, “Statistics: negative variance (“ +
DoubleFormatter::toString(v,20) + “)”);

return v;
}

inline double Statistics::standardDeviation() const
{

return QL_SQRT(variance());
}

inline double Statistics::downsideVariance() const
{

QL_REQUIRE(sampleWeight_>0.0, “Stat::variance() : sampleWeight_=0,
insufficient”);
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QL_REQUIRE(sampleNumber_>1, “Stat::variance() : sample number <=1,
insufficient”);

return sampleNumber_/(sampleNumber_-1.0)*
downsideQuadraticSum_ /sampleWeight_;

}

inline double Statistics::downsideDeviation() const
{

return sqrt(downsideVariance());
}

inline double Statistics::errorEstimate() const
{

double var = variance();
QL_REQUIRE(samples() > 0, “Statistics: zero samples are not sufficient”);
return QL_SQRT(var/samples());

}

inline double Statistics::skewness() const
{

QL_REQUIRE(sampleNumber_>2, “Stat::skewness() : sample number <=2,
insufficient”);

double s = standardDeviation();
if (s==0.0) 

return 0.0;

double m = mean();

return sampleNumber_*sampleNumber_/ ((sampleNumber_-1.0)*(sampleNumber_-
2.0)*s*s*s)*(cubicSum_-3.0*m*quadraticSum_+2.0*m*m*sum_)/sampleWeight_;

}

inline double Statistics::kurtosis() const
{

QL_REQUIRE(sampleNumber_>3, “Stat::kurtosis() : sample number <=3,
insufficient”);

double m = mean();
double v = variance();

if (v==0)
return - 3.0*(sampleNumber_-1.0)*(sampleNumber_-1.0) / ((sampleNumber_-

2.0)*(sampleNumber_-3.0));

double kurt = sampleNumber_*sampleNumber_*(sampleNumber_+1.0) /
((sampleNumber_-1.0)*(sampleNumber_-2.0) * (sampleNumber_-3.0)*v*v) *
(fourthPowerSum_ - 4.0*m*cubicSum_ + 6.0*m*m*quadraticSum_
-3.0*m*m*m*sum_)/sampleWeight_ -3.0*(sampleNumber_-1.0)*
(sampleNumber_-1.0) / ((sampleNumber_-2.0)*(sampleNumber_-3.0));
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return kurt;
}

inline double Statistics::min() const
{

QL_REQUIRE(sampleNumber_>0, “Stat::min_() : empty sample”);
return min_;

}

inline double Statistics::max() const
{

QL_REQUIRE(sampleNumber_>0, “Stat::max_() : empty sample”);
return max_;

}
}

}

To actually price a European option, we can use the following code segment:

. . .
method =“MC (crude)”;
bool antitheticVariance = false;
McEuropean mcEur(Option::Call, underlying, strike, dividendYield, riskFreeRate,

maturity, volatility, antitheticVariance);
// use an error tolerance of 0.002%
value = mcEur.value(0.02);
estimatedError = mcEur.errorEstimate();
discrepancy = QL_FABS(value-rightValue);
relativeDiscrepancy = discrepancy/rightValue;
// print out results
std::cout << method << “\t”

<< DoubleFormatter::toString(value, 4) << “\t”
<< DoubleFormatter::toString(estimatedError, 4) << “\t\t”
<< DoubleFormatter::toString(discrepancy, 6) << “\t”
<< DoubleFormatter::toString(relativeDiscrepancy, 6)
<< std::endl;

where we pass the option type, underlying price, strike price, dividend yield, risk-
free rate, option maturity, volatility, and “antitheticVariance” Boolean flag into the
McEuropean class constructor.
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CHAPTER 3
Binomial Trees

I n this chapter, we discuss approximating diffusion processes by two-state lattices
known as binomial trees. Binomial trees are useful for pricing a variety of Euro-

pean-style and American-style derivatives. In section 3.1, we discuss the general bi-
nomial tree framework. In section 3.2, we discuss the Cox-Ross-Rubinstein (CRR)
binomial tree. In section 3.3, we discuss the Jarrow-Rudd (JR) binomial tree while
in section 3.4 we discuss general binomial trees. In section 3.5, we discuss binomial
diffusion processes that incorporate dividend payments. In section 3.6, we discuss
using binomial trees to price derivatives with American exercise features. In section
3.7, CRR and JR binomial tree implementations are provided. In section 3.8, we
discuss computing hedge sensitivities from binomial trees. In section 3.9, we discuss
binomial models with time-varying volatility. In section 3.10, we discuss two-state
binomial processes that are constructed using quadrinomial trees (binomial trees
with four branches at each node). Finally, in section 3.11, we show how convertible
bonds can be priced using a binomial tree.

3.1 USE OF BINOMIAL TREES

We can model diffusion processes using binomial trees. Suppose we have a stock
price at time t = 0 with initial value S0. The stock price can move up with probabil-
ity p and down with probability 1 – p. Over one time period, ∆t, if the stock price
moves up, the value is Su where u = eσ∆t; and if it moves down, the value is Sd where
d = 1/u = e–σ∆t. We know that in a risk-neutral world, investors expect to earn the
risk-free rate on riskless portfolios. Thus,

pSu + (1 – p)Sd = Ser∆t (3.1)

Solving for p, we find
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We can extend this analysis to a multiperiod binomial model. Let τ = T – t = N∆t
where N is the number of time periods (there are N + 1 nodes at time step N and N
+ 1 different terminal prices and payoffs). Thus, there are 2N possible price paths
from (t, S) to (T, ST). Node (i, j) denotes the jth node at the ith time step. The price
Sij at the node (i, j) is given by:

Si,j = S0u
jdi–j i = 0, . . . , N, j = 0, . . . , i (3.2)

where i is the number of time steps to the node (i, j) and j is the number of up
moves to the node (i, j). The payoff after N periods, denoted fN,j, is

fN,j = F(S0u
jdi–j) (3.3)

We can use backward induction to price European options. The price of an option
at node (i, j) over one period, ∆t, is given by:

(3.4)

The value of the option at node (i, j) is found by taking the expected value of the
option at time i + 1. The option will be worth either fi+1,j+1 with probability p or fi+1,j
with probability 1 – p. We discount this value back by the risk-free rate since we
want the present value of this future expected payoff. The multiperiod binomial
valuation formula for European options is:

(3.5)

where fN,j = F(SN,j) = F(S0u
jdN–j) is the payoff in state j at expiration N and pN,j is the

risk-neutral binomial probability to end up in state (N, j):

(3.6)

We now need to link the binomial price process with the Black-Scholes geometric
Brownian motion process so that the binomial model is consistent with it. We have
two models to describe the asset price dynamics, a discrete-time multiplicative bi-
nomial model with parameters (u, d, p, r) and the continuous-time Black-Scholes-
Merton model with parameters (σ, r). In the limit of infinitesimally small time
steps, N → ∞ and ∆t → 0, the binomial option pricing formula must converge to
the Black-Scholes option pricing formula:
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for the two formulations to be consistent. This requires that the distribution of the
terminal stock price in the binomial model converge to the lognormal distribution
as ∆t → 0.

PROPOSITION. The distribution of the terminal stock price in the binomial
model with parameters (u, d, p, r) converges to the Black-Scholes lognormal distri-
bution with parameters (σ, r) as ∆t → 0 if and only if:

(3.8)

and

(3.9)

PROOF. The proof is based on the central limit theorem. In the Black-Scholes
model (BSM), the terminal stock price is a random variable 

where ε is a standard normal random variable. The continuously compounded re-
turn over the time period τ is a normal random variable:

(3.10)

On the other hand, consider a binomial model where τ = T – t is divided into a
large number N of time steps. The return over the entire time period τ is a sum of
individual returns over each time step ∆t,

where the η i’s are i.i.d. random variables that can take two values: either ln u
with probability p or ln d with probability 1 – p. The mean m and variance s2 of
η i are:

m = p ln u + (1 – p)ln d
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and

(3.11)

Now, the central limit theorem states that for a large N, the distribution of the sum
η of N i.i.d. random variables ηi is approximately normal with mean mN and vari-
ance s2N. Further, the binomial model converges to the Black-Scholes model if and
only if:

(3.12)

and we have

Noting that ∆t = τ/N we can rewrite the above two limits as: m = p ln (u/d) + ln d =
µ∆t + o(∆t) and s2 = p(1 – p)(ln(u/d))2 = σ2∆t + o(∆t).

We can prove this more formally. By starting at the expiration date and work-
ing backward, we can find the valuation of a call option at any period n. Since we
assume the stock price follows a multiplicative binomial probability distribution,
we have

(3.13)

Let a denote the minimum number of upward moves that the stock must make over
the next n periods for the call to finish in-the-money. Thus, a is the smallest non-
negative integer such that Suadn-a > K. Taking the natural logarithms of both sides
of the inequality, we get:
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X

Sd
u
d

n
=

































log

log

C r
n

j n j
p p Su d Xbinomial

n

j

n
j n j j n j=

−






− −[ ]










−

=

− −∑ !
!( )!

( ) max ,
0

1 0  

mN s NN N−>∞ −>∞ →  →µτ σ τ and 2 2

η µτ σ τεi
N

i

N
−>∞

=

 → +∑
1

s p u p d p u p d

p u p d p u p d p p u d

p p u d

p p
u
d

2 2 2 2

2 2 2 2 2 2

2

2

1 1

1 1 2 1

1

1

= + − − + −

= + − − − − − −

= − −

= −













(ln ) ( )(ln ) ( ln ( )ln )

(ln ) ( )(ln ) (ln ) ( ) (ln ) ( )ln ln

( )(ln ln )

( ) ln

126 BINOMIAL TREES



Thus, a is the smallest nonnegative integer greater than (X /Sdn)/log(u/d). For all j < a,
max[0, Sujdn–j – X] = 0 and for all j ≥ a, max[0, Sujdn–j – X] = Sujdn–j – X. Therefore,

(3.15)

Note that if a > n, the call will finish out-of-the-money even if the stock moves up-
ward every period, so its current value must be zero.

We can rewrite equation (3.15) as:

(3.16)

The second parenthesized term is the complementary binomial distribution func-
tion Φ[a; n, p]. The first parenthesized term is also a complementary binomial dis-
tribution function Φ[a; n, p′ ], where

p′ ≡ (u/r)p and 1 – p′ = (d/r)(1 – p) (3.17)

The term p′ is a probability since 0 < p′ < 1. Note that p < (r/u) and

(3.18)

Consequently, from equation (3.16), we can define the binomial option pricing for-
mula for a call option:

C = SΦ[a; n, p′] – Xr–nΦ[a; n, p] (3.19)

where p = (r – d)/(u – d), p′ = (u/r)p, and a is the smallest nonnegative integer
greater than log(X/Sdn)/log(u/d). If a > n, C = 0.

Following Cox and Rubinstein (1985), we can now show that the binomial
formula in equation (3.19) converges to the Black-Scholes formula, equation
(1.57), and that the multiplicative binomial probability distribution of the stock
price converges to the lognormal distribution. To show convergence of the distribu-
tions, we need to show that as
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The complementary binomial distribution function Φ[a; n, p] is the proba-
bility that the sum of n random variables, each of which can take on the value 
1 with probability p and 0 with probability 1 – p, will be greater than or equal
to a. We know that the random value of this sum, j, has mean np and standard
deviation

Thus,

(3.20)

If we consider our binomial model of the stock price that in each period moves up
with probability p to Su and down with probability 1 – p to Sd, then over n peri-
ods, we have S

~
= Su jdn–j so that

log(S
~
/S) = j log(u/d) + n log d (3.21)

The mean and variance of the continuously compounded rate of return of this
stock are:

µ~p = p log(u/d) + log d and σ~ 2
p = p(1 – p)(log(u/d))2 (3.22)

Using the equalities in equations (3.21) and (3.22) we can derive the following
relationship:

(3.23)

It is known from the binomial formula that

a – 1 = log(K/Sdn)/log(u/d) – ε = (log(X/S) – n log d)/log(u/d) – ε

where ε ∈ (0, 1). Using this and the equations in (3.22), with some algebra, we can
show:

(3.24)
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Consequently, we get the following result:

(3.25)

We can use the central limit theorem. However, we must first check that the third
moment, an initial condition of the central limit theorem,1 tends to 0 as n → ∞. We
must show

is satisfied as n → ∞. Recall that p = (r~ – d) / (u – d), and that

and

Making the appropriate substitutions, it can be shown that

so that the third moment goes to 0 as n → ∞. Thus, we are justified in using the cen-
tral limit theorem. In equation (3.25), we need to evaluate u~pn, σ2

pn, and log(u/d) as
n → ∞. In the limiting case where n → ∞, we have
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1The initial condition of the central limit theorem states roughly that higher-order moments
of the distributions, such as how it is skewed, become less and less important relative to the
standard deviation as n → ∞.



Using the central limit theorem, we can write:

We have:

(3.26)

From the symmetry of the standard normal distribution, 1 – N(z) = N(–z). There-
fore, as n → ∞,

A similar argument holds for Φ[a; n, p], which completes the proof of convergence
of the binomial option pricing formula to the Black-Scholes as the number of time
steps tends to infinity, that is, as we divide the time to maturity into more and more
subintervals.

We call a given binomial model (u, d, p, r) consistent with the Black-Scholes
model (σ, r) if the two relations just given are satisfied. Clearly, an infinite number
of binomial models are consistent with any given continuous-time Black-Scholes
model. First, we have two relations for three unknowns (u, d, p) relating them to
(σ, r). Second, the two relations are required to hold only in the first order in ∆t;
higher-order terms o(∆t) become irrelevant in the limit ∆t → 0.

The convergence of the binomial model to the Black-Scholes model requires
mean and variance of the return distributions for a single period ∆t to match up to
the higher-order terms. To speed up the convergence, we can strengthen this, and
require that the mean and variance of the stock price distribution at the end of the
period ∆t match exactly the mean and variance of the lognormal distribution.

Consider a time period ∆t in the Black-Scholes model. The price at the end of
the period is a lognormal random variable (in the risk-neutral world)

where µ = r – σ2/2 with mean

EQ
t,S[St+∆t] = er∆tS (3.27)

and variance

VQ
t,S [St+∆t] = e2r∆t(eσ2∆t – 1)S2 (3.28)
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where the expectation and variance of the future price is taken at time t over the
stock price process with risk-neutral probability measure Q. At the same time, in
the binomial model the price at the end of a single period ∆t is a random variable
with two possible states Su and Sd with probability p and 1 – p.

Et,S
binomial[St+∆t] = (pu + (1 – p)d)S (3.29)

Et,S
binomial [S2

t+∆t] = pu2 + (1 – p)d2)S2 (3.30)

For the underlying price at the end of the period to have the same mean and vari-
ance in both the multiplicative binomial and the Black-Scholes models, the follow-
ing two identities must hold where the moments are matched.

pu + (1 – p)d = er∆t (3.31)

pu2 + (1 – p)d2 = e(2r+σ2)∆t (3.32)

Equation (3.31) can be solved for

the same probability we derived from equation (3.1). Equation (3.32) provides the
link between u and d in the binomial model and the volatility σ in the Black-Scholes
model. Substitution of p into equation (3.32) yields:

er∆t(u + d) – du = e(2r+σ2)∆t (3.33)

To solve for u and d in terms of r and σ we need an additional equation since
we have one equation in two unknowns. There are several choices for a second
equation: (1) Cox-Ross-Rubinstein (CRR) approach, (2) Jarrow-Rudd approach,
and (3) a general approach.

3.2 COX-ROSS-RUBINSTEIN BINOMIAL TREE

Cox, Ross, and Rubinstein, in their original model, assume the identity ud = 1 so
that u = 1/d. Substituting this identity for u and d into equation (3.33), we get d 2 –
2Ad + 1 = 0 where

A e er t r t= +− +1
2

2

( )( )∆ ∆σ

p
e d
u d

r t

= −
−

∆
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The solutions for u and d are

(3.34)

and

(3.35)

Thus, we have specified all of the parameters u, d, and p in terms of the risk-free
rate r and volatility σ. If we linearize the preceding solution for u and d and keep
only the terms of the first order in ∆t we have:

One easily sees that ud = 1. Terms of higher orders in ∆t can be added without vio-
lating the relations since they become infinitesimally small as ∆t → 0. Thus, we can
use the more common form of

and

The CRR has traditionally been the most widely used version of the binomial
model. This is an approximation to the exact solution with u in equation (3.34) and
d in equation (3.35). In the limit ∆t → 0, both the binomial and Black-Scholes con-
verge to the same limit. But the exact version of the binomial tree converges faster
since the mean and variance are matched exactly as in equations (3.31) and (3.32).

3.3 JARROW-RUDD BINOMIAL TREE

Jarrow and Rudd choose equal probabilities for up and down price movements;
that is, p = 1 – p = 1/2. Substituting this into the two moment-matching equations
in (3.31) and (3.32) we get

u + d = 2er∆t (3.36)

u2 + d2 = 2e(2r+σ2)∆t (3.37)
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The exact solution to these equations yields:

(3.38)

(3.39)

An approximate solution keeping only the lower-order terms is:

and

The higher-order terms can be added since they tend to zero as ∆t → 0 and main-
tain the convergence to the BSM. The most popular choice for the Jarrow-Rudd
(JR) binomial tree is:

(3.40)

and

(3.41)

where

The difference between the CRR and JR trees is that the CRR tree is symmetric
since ud = 1 (a down movement following an up movement brings us back to the
original price S), but the up and down probabilities are not equal. In the JR tree,
the probabilities are equal, but the tree is skewed since ud = e2µ∆t.

3.4 GENERAL TREE

Assume ud =e2ν∆t where v is some scalar. Then the following is a possible solution:

(3.42)u ev t t= +∆ ∆σ

µ σ= −r
1
2

2

d e t t= −µ σ∆ ∆

u e t t= +µ σ∆ ∆

d r t t= + −1 ∆ ∆σ

u r t t= + +1 ∆ ∆σ

d e er t t= − −∆ ∆( )1 1
2σ

u e er t t= + −∆ ∆( )1 1
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and

(3.43)

where the probabilities of an up and down movement are

respectively. The CRR and JR choices are v = 0 and v = µ, respectively. It is im-
portant to note that the CRR and JR formulations are good only over small time
intervals: Arbitrarily large time steps cannot be used. We can solve this problem
by reformulating the problem in terms of the natural logarithm of the asset price.2

We know that the continuous-time risk-neutral process of geometric Brownian
motion is:

dx = µdt + σdz

where x = lnS and

The variable x can go up to ∆ xu = x + ∆x with probability pu or down to ∆xd =
x – ∆x with probability pd = 1 – pu. This is described as the additive binomial
process as opposed to the multiplicative binomial process.3 We must equate the
mean and variance of the additive binomial process for x to the mean and vari-
ance of the continuous-time process over the time interval ∆t. Thus, we get the
following equations:4

E[∆x] = pu∆xu + pd ∆xd = µ∆t

E[∆x2] = pu∆x2
u + pd ∆x2

d = σ2∆t + µ2∆t2

(3.44)

Equations (3.44) with equal probabilities yield

(3.45)
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Solving (3.45) gives

(3.46)

Assuming equal jump sizes in (3.44) gives

pu(∆x) + pd(∆x) = µ∆t

pu∆x2 + pd∆x2 = σ2∆t + µ2∆t2
(3.47)

Solving (3.47) we get

(3.48)

This last solution was proposed by Trigeorgis (1991). It has on average slightly bet-
ter accuracy than the CRR and JR models.

3.5 DIVIDEND PAYMENTS

The CRR, JR, and general binomial trees can be extended to the case where the
underlying security pays continuous dividends with a constant dividend yield q.
The growth rate of the asset price becomes r – q, and it is necessary to substitute
r → r – q into the formulas. Thus, in the CRR model, the probability of an up
movement becomes

In the JR model, the up and down movements are as in equations (3.40) and (3.41)
except µ = r – q – σ2/2. If the time i∆t is after the stock goes ex-dividend, the nodes
correspond to the stock prices

S0(1 – q)u jd i–j j = 0, 1, . . . , i (3.49)
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If there are several known dividend yields during the life of the option, then the
nodes at time i∆t correspond to

S0(1 – qi )u
jd i–j

where qi is the total dividend yield associated with all ex-dividend dates between
time zero and time i∆t.

If the stock pays a known dollar dividend, a more realistic assumption, then
the tree does not recombine, assuming the volatility, σ, is constant. This means
that the number of nodes that have to be evaluated can become quite large, espe-
cially if there are several dividend dates. Hull (1997) describes an approach 
that will allow the tree to recombine so that there are i + 1 nodes at time i rather
than 2i.

Hull supposes that a stock price has two components: an uncertain part and
a part that is the present value of all future dividends during the life of the op-
tion. Assume there is only one ex-dividend date, τ, during the life of the option
where i∆t ≤ τ ≤ (i + 1)∆t. Let S

~
be the uncertain component at time i∆t such that

S
~

= S when i∆t > τ and S
~

= S – De–r(τ–i∆t) when i∆t ≤ τ, where D is the dividend
payment in dollars. Define σ~ as the volatility of S

~
and assume σ~ is constant. The

parameters p, u, and d can be calculated as before using CRR, JR, or the general
approach. With σ replaced by σ~, we can build the tree and have it recombine for
S
~
. We can use a linear transformation and convert the tree into another tree that

models S by adding the present value of future dividends (if any) to the stock
price at each node. Thus, at time i∆t, the nodes on the tree correspond to the
stock prices

S*u jdi–j + De-r(τ–i∆t) j = 0, 1, . . . i (3.50)

when i∆t < t and

S*u jdi–j j = 0, 1, . . . i (3.51)

when i∆t ≥ τ.
If we have dividends, then we must ensure that the risk-neutral probabilities

must be positive:

(3.52)
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It is necessary to check that the choices for u and d are consistent with these restric-
tions. To prevent negative or zero probabilities, the CRR tree must satisfy

or equivalently,

(3.54)

The JR model has the advantage that the probabilities are always 0.5 > 0 and thus
positive for all values of the parameters.

3.6 AMERICAN EXERCISE

Binomial trees can be extended to the case of American-style options with early ex-
ercise in the presence of dividends. Suppose F(ST) is the terminal payoff. If the op-
tion is exercised at time t before the final maturity date T, the option holder
receives the payoff F(ST ). To value an American option, we need to evaluate
whether early exercise is optimal at each node. Thus, we need to run the dynamic
programming algorithm on the tree starting at the final (maturity) nodes:

fi,j = max(F(Sujdi–j),e–r∆t[pfi+1,j+1 + (1 – p)fi+1,j]) (3.55)

In the case of a call option, at each node we evaluate

fi,j = max(Sujdi–j – X, e–r∆t[pfi+1,j+1 + (1 – p)fi+1,j]) (3.56)

where X is the strike price. In the case of a put, we evaluate

fi,j = max(X – Sujdi–j, e–r∆t[pfi+1,j+1 + (1 – p)fi+1,j]) (3.57)

We can extend the model to price American-style options on foreign currencies (FX
options), stock indexes, and options on futures by letting r → r – rf where rf is the
foreign risk-free rate, r → r – q where q is the dividend yield on the index, and r →
q (r = q), respectively. Thus, for an FX option, the up probability is
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3.6 American Exercise 137



3.7 BINOMIAL TREE IMPLEMENTATION

The following is an implementation of the CRR model on an American option.

/**********************************************************************************
buildBinomialTreeCRRAmerican : computes the value of an American option using

backwards induction in a CRR binomial tree
[in]:   double price :  asset price

double strike :  strike price
double rate :  risk-free interest rate
double div :  dividend yield
double vol :  volatility
double T :  time to maturity
int N :  number of time steps
char exercise :  ‘E’uropean or ‘A’merican
char type :  ‘C’all or ‘P’ut

[out]:  double :  value of American option
**********************************************************************************/
double CRRBinomialTree::buildBinomialTreeCRRAmerican(double price, double strike,

double rate, double div, double vol, double T, int N, char type)
{

int i,j;
double prob; // probability of up movement
double S[200][200] = {0.0}; // stock price at node i,j
double c[200][200] = {0.0}; // call price at node i, j
double a;
double num = 0.0;
double up = 0.0;
double down = 0.0;
double dt = 0.0;

dt = T/N; // time step size
up = exp(vol*sqrt(dt)); // up movement
down = 1/up; // down movement
a = exp((rate-div)*dt); // growth rate in prob
prob = (a – down)/(up – down);

// compute stock price at each node
// initialize call prices
for (i = 0; i <= N; i++)
{

for (j = 0; j <= i; j++)
{

S[i][j] = price*(pow(up,j))*(pow(down,i-j));
c[i][j] = 0;

}
}
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// compute terminal payoffs
for (j = N; j >= 0; j--)
{

if (type == ‘C’)
c[N][j] = max(S[N][j]-strike,0);

else
c[N][j] = max(strike-S[N][j],0);

}

// work backwards
for (i = N-1; i >= 0; i--)
{

for (j = i; j >= 0; j--)
{

c[i][j] = exp(-rate*dt)*(prob*(c[i+1][j+1]) + (1- prob)*(c[i+1][j]));
if (type == ‘C’)

c[i][j] = max(S[i][j] – strike,c[i][j]);
else

c[i][j] = max(strike – S[i][j],c[i][j]);
}

}

return c[0][0];
}

Suppose we let the initial stock price S0 = 33.75, X = 35, σ = 15 percent, r = 5.5
percent, q = 0 percent, and T = 9 months (0.75 years). The code will generate the
prices and option prices of the tree shown in Figure 3.1 (we assume N = 4 time
steps so that ∆t = T/N = 0.75/4 ≅ 0.188 years. The stock price is the top value in
each node, and the option price is the bottom value.

The price of the call option is $1.87. This is close to the BSM price of $1.83,
which shows that the two models price consistently (as N → ∞ and ∆t→ 0, the bi-
nomial price will converge to the BSM price). This shows that an American call op-
tion on a non-dividend-paying stock is worth the same as the corresponding
European call option. It is never optimal to exercise an American call option early
due to the insurance it provides: Once the option has been exercised and the exer-
cise price has been exchanged for the stock price, the insurance vanishes.

The tree for a put with the same parameters is shown in Figure 3.2.
The price of the American put is $1.71. As the number of time steps increases

and thus ∆t → 0, the American put price approaches the (European) BSM price, as
Table 3.1 shows.5
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Roll, Geske, and Whaley closed-form analytical solution for American-style options can be
used. See Hull (1996), page 259.



Figure 3.3 shows the put price as a function of only up to 25 time steps. As can
be seen, while the price converges slowly, Figure 3.4 shows that at about 75 time
steps (large N), the binomial price converges to the European Black-Scholes price of
$1.633.

3.8 COMPUTING HEDGE STATISTICS

It is often necessary to compute hedge statistics of an option: delta, gamma, vega,
theta, and rho. Their computations can be approximated by finite difference ratios
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FIGURE 3.1 Tree for a Call Option
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FIGURE 3.2 Tree for a Put Option
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TABLE 3.1 American/European Put Prices

N (Number of American Put (European)
Time Steps) Price Black-Scholes Model

4 $1.712 $1.663
10 $1.697 $1.663
20 $1.678 $1.663
80 $1.664 $1.663

100 $1.663 $1.663



in a binomial tree. Delta, the change in the option price as the price of the underly-
ing asset changes, can be estimated as
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FIGURE 3.3 American Put Option Prices Computed with Binomial Tree
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Using the American put example in the preceding section, we can compute delta:

Gamma can be computed as

(3.59)

Vega, rho, and theta can be computed by recomputation of the option price for
small changes in the volatility, risk-free rate, and time to maturity, respectively:

(3.60)

(3.61)

(3.62)

where, for example, C(σ + ∆σ) is the value computed with ∆σ, a small fraction of σ
(i.e., ∆σ = 0.001σ). Thus, we can compute vega, rho, and theta as:

Thus, a 1 percent or 0.01 increase in volatility (from 15 percent to 16 percent) in-
creases the value of the option by approximately 0.10. A 1 percent or 0.01 increase
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in the risk-free rate (from 5.5 percent to 6.5 percent) decreases the value of the op-
tion by approximately 0.091. A 1 percent increase in the time to maturity increases
the option price by 0.667.

3.9 BINOMIAL MODEL WITH TIME-VARYING VOLATILITY

In practice, models with time-varying volatility are used since the assumption of
constant volatility is not realistic. Option pricing models must be consistent with
observed implied volatilities from market prices of options. The binomial model
can be adapted to time-varying volatility by fixing the space step ∆x and varying
the probabilities pi , time steps ∆ti, interest rate ri, and volatilities σi where subscript
i is the time step. We can rewrite equation (3.30) as

pi∆ x – (1 – pi)∆x = µi∆ti

pi∆x2 + (1 – pi)∆x2 = σ2
i∆ti + µ2

i ∆t2
i (3.63)

which yields

(3.64)

Set ∆ x to

where

(3.65)

Then ∆– t will be approximately the average time step that is obtained when the tree
is built.6 When implementing this approach with just constant volatility, but vari-
able time steps, the time steps can be stored in an array or vector t so that the time
step between two times, ∆ti , can be calculated as t[i + 1] – t[i].
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3.10 TWO-VARIABLE BINOMIAL PROCESS

The binomial model can be extended to price options whose payoffs depend on
more than one asset such as a spread option. A multidimensional binomial tree can
be built to model the joint evolution of more than one asset. Derivatives that de-
pend on more than one asset have to factor in correlation between the assets. In a
simple two-variable model such as a spread option between two stocks S1 and S2,
we assume that both stocks follow correlated GBMs:

dS1 = (r – q1)S1dt + σ1S1dz1

dS2 = (r – q2)S1dt + σ2S2dz2

where S1 and S1 have correlated Brownian motions ρ; that is, dz1dz2 = ρdt. Instead
of two branches at each node, we now have four based on the four different possi-
ble price movements. If we assume a multiplicative two-variable binomial process,
we get the branches at each node shown in Figure 3.5.

If we work in terms of the logarithms of the asset prices, the model is simplified
as with the single-asset binomial tree, and we get the additive two-variable bino-
mial process shown in Figure 3.6, where the x1 = lnS1 and x2 = lnS2 follow the fol-
lowing processes:

dx1 = µ1dt + σ1dz1

dx2 = µ2dt + σ2dz2

with drifts µ1 = r – q1 – 0.5σ 2
1 and µ2 = r – q2 – 0.5σ 2

2. If we allow equal up and
down jump sizes, we can compute their expectations and the probabilities so that
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FIGURE 3.5 Multiplicative Two-Variable Binomial Process
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the means and variances of the risk-neutral process are matched. Following
Clewlow and Strickland, we get7

E[∆x1] = (puu + pud)∆x1 – (pdu + pdd)∆x1 = µ1∆t

(3.66)

and the sum of the probabilities is 1:

puu + pud + pdu + pdd = 1

The solution to the system of equations is
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FIGURE 3.6 Additive Two-Variable Binomial Process
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(3.67)

Nodes in the binomial tree are referenced by (i, j, k), which references the node at
time step i, level j of asset 1, and level k of asset 2 so that

S1, i, j,k = S1 exp(j∆x1) and S2,i,j,k = S2 exp(k∆x2)

Since the tree has two asset prices at each time step, nodes are separated by two
space steps and the space indexes step by two. The following is an implementation
of a spread option using the additive binomial tree.

/**********************************************************************************
buildTwoVarBinomialTree : computes the value of an American spread option using a 2

variable binomial tree
[in]:  double S1 : asset price 1

double S2 : asset price 2
double strike : strike price of spread option
double rate : risk-free interest rate
double div1 : dividend yield of asset 1
double div2 : dividend yield of asset 2
double rho : correlation of asset 1 and asset 2
double vol1 : volatility of asset 1
double vol2 : volatility of asset 2
double T : time to maturity
int N : number of time steps
char exercise : ‘E’uropean or ‘A’merican
char type : ‘C’all or ‘P’ut

[out]: double : value of spread option
**********************************************************************************/
double TwoDimBinomialTree::buildTwoVarBinomialTree (double S1, double S2, double

strike, double rate, double div1, double div2, double rho, double vol1, double
vol2, double T, int N, char exercise, char type)

{
double dt = T/N; // time step
double mu1 = rate – div1 – 0.5*vol1*vol1; // drift for stock 1
double mu2 = rate – div2 – 0.5*vol2*vol2; // drift for stock 2
double dx1 = vol1*sqrt(dt); // state step for stock 1
double dx2 = vol2*sqrt(dt); // state step for stock 2
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double puu, pud, pdu, pdd, dx; // probabilities
double S1t[100] = { 0.0 }; // array of stock price 1
double S2t[100] = { 0.0 }; // array of stock price 2
double c[100][100] = { 0.0 }; // call price at time step i and node j
int i,j,k;

// compute probabilities
puu = ((dx1*dx2 + (dx2*mu1 + dx1*mu2 + rho*vol1*vol2)*dt)/(4*dx1*dx2));
pud = ((dx1*dx2 + (dx2*mu1 – dx1*mu2 – rho*vol1*vol2)*dt)/(4*dx1*dx2));
pdu = ((dx1*dx2 + (-dx2*mu1 + dx1*mu2 – rho*vol1*vol2)*dt)/(4*dx1*dx2));
pdd = ((dx1*dx2 + (-dx2*mu1 – dx1*mu2 + rho*vol1*vol2)*dt)/(4*dx1*dx2));

// initialize asset prices at maturity
S1t[-N] = S1*exp(-N*dx1);
S2t[-N] = S2*exp(-N*dx2);

// compute stock prices at each node
for (j = -N+1; j <= N; j++)
{

S1t[j] = S1t[j-1]*exp(dx1);
S2t[j] = S2t[j-1]*exp(dx2);

}

// compute early exercise payoff at each node
for (j = -N; j <= N; j += 2)
{

for (k = -N; k <= N; k += 2)
{

if (type == ‘C’)
C[j][k] = max(0.0, S1t[j] – S2t[k] – strike);

else
C[j][k] = max(0.0, strike – St1[j] + St2[k]);

}
}

// step back through the tree applying early exercise
for (i = N-1; i >= 0; i--)
{

for (j = -i; j <= i; j +=2 )
{

for (k = -i; k <= i; k += 2)
{

// compute risk-neutral price
C[j][k] = exp(-rate*T)*(pdd*C[j-1][k-1] + pud*C[j+1][k-1] + pdu*C[j-

1][k+1] + puu*C[j+1][k+1]);

if (exercise == ‘A’)
{

if (type == ‘C’)
C[j][k] = max(C[j][k], S1t[j] – S2t[k] – strike);

else
C[j][k] = max(C[j][k], strike – St1[j] + St2[k]);

148 BINOMIAL TREES



}
}

}
}
return C[0][0];

}

An example, the value of an American spread call option with S1 = 50, S2 = 50,
X = 1, T = 1, r = 0.055, q1 = 0.015, q2 = 0.0, ρ = 0.60, σ1 = 0.25, σ2 = 0.35, with N
= 3 time steps is $4.54. Figure 3.7 shows a plot of the two-variable binomial
method as the number of time steps increases. You can see that the two-variable bi-
nomial method is much less efficient than in the one-variable case and does not
converge to the true theoretical price that can be computed using numerical meth-
ods. In practice, to achieve efficient pricing for more than one variable, implicit dif-
ference methods must be used,8 though other numerical methods exist. In Chapter
7, a two-factor stochastic volatility model for valuing a spread option is shown. A
spread option can be valued using the fast Fourier transform method discussed in
Appendix C on the CD-ROM. Gaussian quadrature, a numerical integration
method discussed in section 14.10, can also be an efficient method for valuing
spread options and other derivatives.
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FIGURE 3.7 Two-Variable Binomial Spread Option
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3.11 VALUATION OF CONVERTIBLE BONDS

A convertible bond is a corporate debt security that can be converted into—that is,
exchanged for—a predetermined number of shares of the issuer’s common stock at
any time prior to the maturity of the bond. It is a hybrid derivative security, part
debt and part equity, whose value is derived from the debt and equity underlying it.
Most convertible bonds are subordinated debt of the issuer that may have callable
and putable provisions that complicate their valuation.

From an investor’s viewpoint, one can think of a convertible bond as a straight
corporate bond (with periodic coupon payments made by the issuer) plus an equity
call option that allows the convertible bondholder to exchange the bond for equity.
From an issuer’s viewpoint, a convertible bond can be seen as equity and a put op-
tion to exchange the equity for a straight bond with a swap to maturity that pays
bond coupons to the investor in exchange for the equity’s dividends. Convertible
bonds can be European or American style. Various features of convertibles make
them attractive to both issuers and investors. Issuers can lower their cost of debt
funding by issuing convertibles compared to issuing straight debt, and an issuer
may not even be able to issue straight debt due to its low credit rating. Convertible
bonds often provide a higher yield than the dividend yield of common stock as well
as offer greater stability of income than common stock.9

Various debt and equity factors as well as specific terms detailed in the bond in-
denture affect the theoretical value of the convertible bond. In addition to factors
that affect all bond prices such as principal amount, coupon amount, and coupon
frequency, convertible bonds are also affected by the conversion ratio, conversion
price, parity, first conversion date, call provisions, put provisions, and stock perfor-
mance call provisions.

The conversion ratio is the number of shares of the underlying stock for which
the convertible bond can be exchanged. This ratio is usually established at issue,
and changed only to account for stock dividends or splits of the underlying shares,
so as to preserve the total equity value that can be exchanged.10 The conversion
price is the principal amount divided by the conversion ratio, which effectively is
the price paid for each underlying share on conversion, assuming the bond princi-
pal is used to pay for the shares received. Parity is the market value of the underly-
ing shares, namely, the conversion ratio multiplied by the current stock price. The
first conversion date is the first date after issue at which the bond can be converted
into equity. Sometimes there is a lockout period after issue during which conversion
is not allowed.

A call provision gives the issuer the right to purchase back the bond at the call
price and is specified in a call schedule, which gives the call price at each future call
date. Usually, convertible bonds are call-protected for a certain amount of time and

150 BINOMIAL TREES

9Derman, Ergener, and Kani (1994), 2.
10Ibid., 8.



become callable only after a certain date. A call provision can be viewed as a call
option sold by the investor to the issuer that reduces the value of the bond com-
pared to an otherwise similar noncallable convertible bond. Stock performance call
provisions are call provisions subject to the constraint that the issuer can exercise
the call only if the underlying stock rises above a certain level, the provisional call
level. These provisions reduce the value of the bond by forcing the investor to con-
vert to equity and give up the remaining value of the option.

Put provisions allow the bondholder to put the bond to the issuer for a specific
cash price on specific dates of the put schedule. A put provision provides extra
downside protection for the convertible bondholder and thus adds value to the
bond. It can be regarded as a put option that has been sold to the investor by the is-
suer, and so increases the value when compared with similar nonputable convert-
ible bonds.

In addition to security-specific features, the value of the convertible bond
also depends on market variables including the common stock price, stock price
volatility, dividend yield, risk-free rate, stock loan rate, and the issuer’s credit
spread. The stock loan rate is the interest rate earned on funds received from
shorting the stock, a rate typically less than the cost of funds since a rebate fee
may have to be paid to the lender.11 The issuer’s credit spread provides informa-
tion about the likelihood of default of payments of a convertible bond’s coupons
and principal, and how this possibility of default affects the value of the convert-
ible.12 Such credit spread is accounted for in the credit-adjusted discount rate
that is used for discounting cash flows when conversion will not occur and the
bond is held.

Convertible bonds can be valued using an n-period binomial tree similar to eq-
uity options. Assume the underlying stock price satisfies the following SDE:

dS = (r(t) – q(t))Sdt + σ(t)Sdz (3.68)

where r(t) is the instantaneous risk-free rate at time t, q(t) is the instantaneous divi-
dend yield, σ(t) is the instantaneous volatility, and dz is a standard Brownian mo-
tion that represents the uncertainty in stock returns over an infinitesimal time dt.
We can approximate this diffusion process with a discrete-time binomial tree with
time steps ∆t.

The formulas for up and down movements from a given stock price S are:

(3.69)S S r t q t t t t tu = − − +
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and

(3.70)

The value of the convertible bond at any node on the convertible tree is given by

V = max(NS, P + I, (min(H, C + I)) (3.71)

where V is the convertible bond value, N is the conversion ratio, S is the stock price
at the node, P is the put value, C is the call value, I is the accrued interest, and H is
the holding value at the node. The holding value is computed from the convertible
bond values Vu and Vd one period later as

where y is the credit-adjusted discount rate. Thus, the holding value of the convert-
ible at a node in the tree is the sum of the present value of the coupons paid over
the next period, plus the expected present value of the convertible at the two nodes
at the end of the period. The probability of conversion p at the node is determined
as follows. If the convertible is put or redeemed, p = 0. If conversion occurs, p = 1.
If the convertible bond is neither put nor converted, p = 0.5(pu + pd), where pu and
pd are the risk-neutral up and down probabilities, respectively. The credit-adjusted
discount rate at the node is defined by:

y = pr + (1 – p)d

where r is the risk-free rate d is the risky rate that includes the credit spread. It is
noted that a convertible with parity much greater than its face value is certain to
convert at some time in the future and so has a credit-adjusted rate equal to the
riskless rate so that coupons are discounted as though they have no default risk.13

The model can be varied, however, to always discount coupons at the risky rate.
The following steps summarize how to construct a binomial tree for valuing

convertible bonds:14

1. Build a Cox-Ross-Rubinstein stock price tree that extends from the valuation
date to the maturity date of the convertible.

2. At maturity, compute the payoff of the convertible bond as the greater of its
fixed-income redemption value and its conversion value. Set the probability of
conversion to one at nodes where it pays to convert, and zero otherwise.
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3. Using backward induction, move backward in time down the tree, one level
at a time. At each node within each level, define the conversion probability
as the average of the probabilities at the two connected future nodes. Calcu-
late the credit-adjusted discount rate at each node using this conversion
probability. Then compute the holding value at each node as the sum of the
cash flows occurring over the next period as the expected bond values of the
two nodes one period in the future, discounted at the credit-adjusted dis-
count rate.

4. Compute the actual convertible value by comparing the holding value at the
node to the values of the call, put, and conversion provisions (if applicable).

5. If the value of the convertible at any node results from the bond being put, set
the conversion probability at that node to zero, because its value is completely
subject to default. If the value at the node results from conversion, set the
node’s conversion probability to one.

On November 11, 2003, suppose we want to value a callable convertible bond
of Charter Communications that matures on June 6, 2006. We can use Bloomberg
to see all listed Charter bond quotes as shown in Figure 3.8.
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FIGURE 3.8 Bond Quotes for Charter Communications
Source: Used with permission from Bloomberg L.P.



The initial Charter Communications stock price on November 11, 2003, is
$4.06, the dividend yield is 0.0, the stock volatility (computed from historical
volatility15) is 0.746, and the time to maturity is 2.57 years. For simplicity, we will
use 2.5 years. The convertible bond has a semiannual coupon of 4.75 percent. It is
also callable. Figure 3.9 shows the call schedule.

As we see, the next call date is June 4, 2004, when it is callable at $101.9 until
June 4, 2005, when it is callable at $100.85. The convertible bond price was issued
on June 30, 2001, at par value of $100. We find the conversion ratio, parity values,
and assume the (interpolated) stock loan rate is equal is to 2.347 percent, which is
also the interpolated 2.5-year risk-free rate obtained from the yield and spread
analysis screen shown in Figure 3.10.
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FIGURE 3.9 Call Schedule
Source: Used with permission from Bloomberg L.P.

15Typically, one uses the 90-day historical volatility as an estimate. However, we could also
try to estimate the (implied) volatility from option prices. We would want to use an option
that has the same maturity as the convertible bond, but if one cannot be found, we should
use the closest available maturity. In this case, Jan 05 calls were listed though for this exam-
ple the 90-day historical volatility on Bloomberg was used.



The 43/4 6/06 Charter Communications convertible bond, which is CC1 rated,
has a credit spread of 908.30 basis points. The convertible bond valuation screen,
shown in Figure 3.11, can be used to obtain the conversion ratio, conversion price,
parity, yield to maturity, yield to call, and other information pertaining to the con-
vertible bond.

We find the conversion ratio is 38.095 and the conversion price is $26.25, as
shown in Figure 3.12.16

Since there are no put provisions, the payoff at each node becomes:

V = max(NS, min(H, C + I))

We will construct a binomial tree with five time steps so that our time steps are ∆t =
2.5/5 = 0.5.
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FIGURE 3.10 Yield and Spread Analysis
Source: Used with permission from Bloomberg L.P.

16The investor will not convert unless the stock price exceeds the conversion price.



To compute the theoretical value we define a ConvertibleBond class:

class ConvertibleBond
{

public:
ConvertibleBond();
virtual ∼ConvertibleBond();
double calcConvertibleBond(double price, double vol, double rate, double

dividend, double T, double principal, double coupon, double frequency, int N,
double conversionRatio, double conversionPrice, double creditSpread);

private:
double S[20][20]; // value of stock price at node i,j
double V[20][20]; // value of convertible bond at node i,j
double cp[20][20]; // conversion probability at node i,j
double creditAdjustedRate; // credit spread at each node i,j
double call[20][20]; // callable value

};
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FIGURE 3.11 Convertible Bond Valuation I
Source: Used with permission from Bloomberg L.P.



We define the calcConvertibleBond method:

/*********************************************************************************/
calcConvertibleBond
computes the value of convertible bond with callable provisions
[in]:   double price : stock price

double vol : stock volatility
vector<double> rates : contains zero-curve rates
double dividend : stock dividend yield
double T : time to maturity of convertible bond
double principal : par value of bond
double couponRate : coupon rate of bond
double frequency : frequency of coupon payments
int N : number of time steps
double conversionRatio : conversion ratio
double conversionPrice : conversion price
double creditSpread : credit spread of issuer
map<int,double> callSchedule : call schedule map of times to call prices

[out]   double
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FIGURE 3.12 Convertible Bond Valuation II
Source: Used with permission from Bloomberg L.P.



/*********************************************************************************/
double ConvertibleBond::calcConvertibleBond(double price, double vol,

vector<double> rates, double dividend, double T, double principal, double
couponRate, double frequency, int N, double conversionRatio, double
conversionPrice, double creditSpread, map<int,double> callSchedule)

{
int i,j;
double up = 0.0; // up movement
double down = 0.0; // down movement
double interest = 0.0; // interest
double H = 0.0; // holding value
double rate = rates[rates.size()-1]; // initial short rate
double dt = T/N; // compute time step
up = exp(vol*sqrt(dt)); // up movement
down = 1/up; // down movement

// build CRR stock tree
for (i = 0; i <= N; i++)
{

for (j = 0; j <= i; j++)
{

S[i][j] = price*(pow(up,j))*(pow(down,i-j));
}

}
interest = principal*coupon*dt; // interest payment

for (j = N; j >= 0; j--)
{

double payment = principal + principal*coupon*dt;
if (S[N][j] >= conversionPrice)

V[N][j] = max(conversionRatio*S[N][j],payment);
else

V[N][j] = payment;

if (V[N][j] == conversionRatio*S[N][j])
cp[N][j] = 1.0;

else
cp[N][j] = 0.0;

}

// work backwards
for (i = N-1; i >= 0; i--)
{

for (j = i; j >= 0; j--)
{

// compute call schedule price at current node
// in practice, we would want to check that the call date coincides exactly 
// with the time step on the tree. However, we are not using enough time 
// steps for them to coincide (N would have to be substantially increased) 
// and just assume that the bond is callable at each time step
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call[i][j] = callSchedule[i];

// compute conversion probability
cp[i][j] = 0.5*(cp[i+1][j+1] + cp[i+1][j]);

// compute credit adjusted discount rate
creditAdjustedRate = cp[i][j]*rates[i] + (1- cp[i][j])*creditSpread;

// compute holding value
H = 0.5*((V[i+1][j+1] + interest)/(1 + creditAdjustedRate*dt) + (V[i+1][j]
+ interest)/(1 + creditAdjustedRate*dt));

// check that stock price exceeds conversion price
if (S[i][j] >= conversionPrice)

V[i][j] = max(conversionRatio*S[i][j],min(H,call[i][j] + interest));
else

V[i][j] = min(H,call[i][j] + interest);
}

}
return V[0][0];

}

We can compute the theoretical value of the 43/4 6/06 Charter Communications
convertible bond now:

void main()
{

double price = 4.06; // initial price
double coupon = 0.0475; // coupon
double frequency = 2; // frequency of payment
double rate = 0.02347; // 2.5 yr risk-free rate
double conversionRatio = 38.095; // conversion ratio
double conversionPrice = 26.25; // conversion price
double vol = 0.746; // stock price volatility
double bondPrice = 100; // maturity redemption value
double divYield = 0.0; // dividend yield
double T = 2.5; // maturity of convertible bond
double creditSpread = 0.9083 // credit spread of Charter
map<int,double> callSchedule; // call schedule
vector<double> rates; // term structure
double value = 0.0; // convertible bond value
int N = 5; // number of time steps

ConvertibleBond cb;

// we could also use a date class to map the call date to call price, i.e.
map<date,double> callSchedule

callSchedule[0] = 103.00; // today November 11, 2003 call value
callSchedule[1] = 101.90; // June 11, 2004
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callSchedule[2] = 101.90; // November 11, 2004
callSchedule[3] = 100.85; // June 11, 2005
callSchedule[4] = 100.85; // November 11, 2005
callSchedule[5] = 100.00; // bond is assumed to be redeemed at maturity for 

// par on June 11, 2006

// instead June 6, 2006 for simplicity
// yield curve
rates.push_back(0.0107); // 6 month
rates.push_back(0.0136); // 1 year
rates.push_back(0.0145); // 1.5 year
rates.push_back(0.0202); // 2 year
rates.push_back(0.02347); // 2.5 year

value = calcConvertibleBond(price,vol,rates,divYield,T,bondPrice,coupon,
frequency,N,conversionRatio, conversionPrice, creditSpread,callSchedule));

cout << “Convertible bond price: ” << value << endl;
}

We find that the theoretical value of $103.678 is in close agreement with the
Bloomberg computed value of $103.641 (see Figure 3.11).17 Note that $103.678 is
the holding value while $105.589 is the call value, which is closer to the invest-
ment value of $105.589 seen in the Bloomberg convertible price behavior screen
(Figure 3.13).

Figure 3.14 shows the convertible tree built to compute the theoretical price.
Currently, the Charter Communications convertible bond is trading at $86.20,
16.9 percent below its theoretical value. As time continues to approach maturity,
the bond should trade closer to its theoretical value, as Figure 3.13 shows. Note
that unless the stock price exceeds the conversion price, the convertible bond
value will be the smaller of either the holding value or the callable price at each
node.

As the tree in Figure 3.14 shows, most likely the bond will be held until ma-
turity where it will be redeemed for its face value (plus accrued interest) by the is-
suer. The convertible bond computations could also be modified to handle
putable provisions.

A formal mathematical valuation of convertible bonds has been described by
Tsiveriotis and Fernandes (1998) that treats the total convertible value as a decom-
position of an equity component and a bond component, E and B, respectively.18
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FIGURE 3.13 Convertible Price Behavior
Source: Used with permission from Bloomberg L.P.

FIGURE 3.14 Convertible Bond Tree for Charter Communications
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They derive the convertible value V(S, t) as a solution of a partial differential equa-
tion where the equity component is discounted at the constant risk-free rate r while
the bond component is discounted at a risky rate—the risk-free rate plus a credit
spread, r + s, due to credit and interest rate risk:

(3.72)

which can be reduced to

(3.73)

subject to the constraints

V ≥ max(Bp, NS)

V ≤ max(Bc, NS)
(3.74)

and boundary conditions

V(S, T) = Z
(3.75)

V(0, t) = Ze–r(T-t)

where Z is the face value of the bond, B is the bond price, Bp is the putable bond
price, and Bc is the callable bond price. To incorporate default risk into the
model, one can set the spread s = p(1 – R) where R is the recovery rate on the
bond upon default and p is the hazard rate (probability of default). If coupon
payments, C(S, t), on the bond are included as well as discrete dividend pay-
ments, D(S, t), we can modify (3.73) by

(3.76)

The problem can be solved numerically as an American option problem using finite
difference methods (see Chapter 5). It can be shown that an increase in the dividend
amount D makes early exercise more likely, while an increase in the coupon pay-
ment makes early exercise less likely.19
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If the decomposition of the total convertible bond price is specified as V = B +
E, the decomposition can be written as a coupled set of equations:20

(3.77)

(3.78)

where L is the linear operator such that

If interest rates are stochastic so that there are two factors (two sources of risk)
where the stock price follows the standard diffusion process in equation (3.68) and
interest rates follow the process

dr = u(r, t)dt + w(r, t)dx

where u(r, t) is the drift term, w is the volatility of the short rate, and the Wiener
processes of the stock and interest rates are correlated by E[dzdx] = ρdt, then using
no-arbitrage arguments and Ito’s lemma, it can be shown that the convertible bond
pricing equation becomes a two-dimensional PDE:

(3.79)

with the same constraints and boundary conditions as in (3.74) and (3.75), where λ
= λ(r, S, t) is the market price of interest rate risk.21 Equation (3.79) can be solved
using numerical methods such as the alternating direction implicit (ADI) difference
method (see section 5.9). The Black-Scholes PDE is a special case when (u = w = s = 0).
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It should finally be noted that Ayache, Forsyth, and Vetzal (2003) have pointed out
inconsistencies in the Tsiveriotis-Fernandes (TF) model that they address and cor-
rect using a linear complementary approach.22 In particular, they show that in the
TF model, if the bond is called the instant before maturity, say T– the bond price is
required to be 0 as part of the boundary condition in equation (3.78), which means
that the solution for B is B = 0 for all t < T– so that the equation for the convertible
bond price reduces to

LV = 0

V(S, T –) = max(S, Z – ε)

for very small ε > 0. Consequently, the hazard rate has no effect on the price, mak-
ing the convertible bond value independent of the credit risk of the issuer, which is
clearly inappropriate.23
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CHAPTER 4
Trinomial Trees

In this chapter, we examine diffusion processes that are approximated by three-
state lattices known as trinomial trees. In section 4.1, we discuss the general move-

ment of assets in a Cox-Ross-Rubinstein (CRR) framework, as well as in a
Jarrow-Rudd (JR) framework. In section 4.2, we examine the JR trinomial tree in
more detail. In section 4.3, we examine the CRR trinomial tree in more detail. In
section 4.4, we discuss the optimal parameter λ for changing branching probabili-
ties. In section 4.5, we provide trinomial tree implementations for the CRR and JR
trees. In section 4.6, we give an implementation for building generic trinomial trees
that approximate various diffusion processes. In section 4.7, we discuss implied
trees that are based on constructing trinomial trees based on Arrow-Debreu state
prices.

4.1 USE OF TRINOMIAL TREES

Trinomial trees are used in practice more than binomial trees since they allow for
three states: up, down, and middle moves. We can approximate diffusions using tri-
nomial random walks with both the CRR and JR trees. We can price both European
and American options with trinomial trees. Let fN,j = F(SN,j) be the payoff at time t.
Then the stock price at node (i, j) in the CRR tree is

Si,j = Su j j = –i, –i + 1, . . . , 0, . . . , i + 1 (4.1)

and in the JR tree:

Si,j = Sujeiµ∆t j = –i, –i + 1, . . . , 0, . . . , i + 1 (4.2)

where

and S = S0,0.

u e t= λσ ∆
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4.2 JARROW-RUDD TRINOMIAL TREE

Consider the Monte Carlo simulation:

where εi+1 is a standard normal variable. We can approximate this standard normal
variable by a discrete random variable ξi+1 with three possible outcomes, +λ, 0, and
–λ, with some probabilities pu, pm, and pd for up, middle, and down price move-
ments, respectively, where λ is some scalar. It approximates the standard normal
distribution by a three-state random variable. In this approximation, we can write
the stock price distribution as

(4.3)

where the up move is

with probability pu, the middle move is M = eµ∆t with probability pm, and the down
move is

The elementary tree structure is shown in Figure 4.1.
We need to determine the probabilities. Clearly, pm = 1 – pu – pd. We need to
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determine the remaining two probabilities. The necessary and sufficient condi-
tion for the tree to recombine is: UD = M 2. That is, an up move followed by a
down move gets us to the same node as two consecutive middle moves. This tree
is not symmetric. The model has a built-in deterministic drift M = eµ∆t and is a
counterpart of the JR binomial tree. We need to find pu and pd so that the three-
state distribution correctly approximates the normal distribution. We will match
mean and variance of the two distributions and solve these two equations for the
probabilities. Let U = ue µ∆ t, D = de µ∆ t, and k = e(σ2∆t)/2. The moment-matching
conditions are:

Et,S
trinomial[St+∆t] = EQ

t,S[St+∆t] = Ser∆t

and

puu + (1 – pu – pd) + pdd = k (4.4)

for the mean and

Et,S
trinomial[(St+∆t)

2] = EQ
t,S[St∆t)

2] = S2e(2 r+σ2)∆t

and

puu
2 + (1 – pu – pd) + pdd

2 = k4 (4.5)

for the variance. We can now solve for the probabilities:

(4.6)

and

(4.7)

where

Thus, we express all the probabilities in terms of u and d. The stretch parameter λ
is still ambiguous in the definition of u and d. However, any choice of λ will pro-
duce a trinomial tree that converges to the Black-Scholes lognormal process (as
long as the probabilities are positive for this particular choice).
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4.3 COX-ROSS-RUBINSTEIN TRINOMIAL TREE

The CRR trinomial tree is obtained by setting M = 1. Thus, as shown in Figure 4.2,
we have a symmetric elementary tree structure where

and pm = 1 – pu – pd. We now have three parameters to determine: λ, pu, and 
pd. We can determine the two probabilities by matching the first two moments 
of the trinomial and lognormal distributions. The first-order approximation re-
sults are:

(4.8)

(4.9)

(4.10)

Note that λ should be chosen so that the probabilities are positive. We can compute
the option value in a trinomial tree as the discounted expectation in a risk-neutral
world by computing:

fi,j = e–r∆t(pufi+1,j+1 + pmfi,+1,j + pdfi+1,j–1) (4.11)
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FIGURE 4.2 Symmetric Elementary Tree Structure
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4.4 OPTIMAL CHOICE OF �

Kamrad and Ritchken (1991) have shown that the value of λ that produces the best
convergence rate is

With this choice of λ we get the CRR trinomial tree with probabilities:

(4.12)

where the up and down movements are

respectively. In the limit ∆t → 0, the probabilities of up, down, and unchanged are
equal to 1/3. If we choose λ = 1, we get the probabilities:

(4.13)

where the up and down movements are

respectively. Notice that this is just the CRR binomial model. If λ < 1, then the mid-
dle probability is negative since 1 – 1/λ2 < 0, and the numerical procedure is unsta-
ble. Thus, the stretch parameter λ should always be greater than 1 to ensure
positive probabilities and numerical stability. The binomial model is right on the
edge of numerical stability with λ = 1.
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4.5 TRINOMIAL TREE IMPLEMENTATIONS

The following code implements an American CRR trinomial tree with .
Suppose we use the trinomial tree to price an at-the-money (ATM) European put
option on a stock priced at $50, strike price of 50, volatility of 20 percent, risk-free
rate of 6 percent, dividend yield of 2.5 percent, and time to maturity of 1 year.
Thus, S = 50, X = 50, σ = 0.20, r = 0.06, q = 0.03, and T = 1. Assume there are N =
4 time steps. The type parameter is either ‘C’ (call) or ‘P’ (put).

/**********************************************************************************
buildTrinomialTreeCRRAmerican : builds a CRR trinomial tree to price American

options
[in]    double price: : initial price of asset

double strike : strike price
double vol : volatility
double div : dividend yield
double rate : risk-free rate
double T : time to maturity
int N : number of time steps
char type : type of option

[out]   double : price of option
**********************************************************************************/
double CRRTrinomialTree::buildTrinomialTreeCRRAmerican(double price, double strike,

double vol, double rate, double div, double T, long N, char type)
{

int i, j;
double pd; // down probability
double pm; // middle probability
double pu; // up probability
double S[250][250]; // stock price at node i, j
double c[250][250]; // call price at node i,j
double up = 0.0; // up movement
double down =0.0; // down movement
double dt = T/N; // time step
double drift = rate - div - 0.5*vol*vol; // drift

pu = 0.33333 + (drift/vol)*sqrt(dt/6);
pd = 0.33333 - (drift/vol)*sqrt(dt/6);
pm = 0.33333;
up = exp(vol*sqrt(3*dt/2));
down = 1/up;

// compute stock prices at each node
for (i = N; i >= 0; i--)
{

for (j = -i; j <= i; j++)
{

λ = 3 2/
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S[i][j] = price*pow(up,j);
}

}

// compute payoffs at the final time step
for (j = N; j >= -N; j--)

{
if (type == ‘C’)

c[N][j] = max(S[N][j] - strike,0);
else

c[N][j] = max(strike - S[N][j],0);
}
// backwards induction
for (i=N-1; i >= 0; i--)
{

for (j=i; j >= -i; j--)
{

if (type == ‘C’)
c[i][j] = max(exp(-rate*dt)*(pu*c[i+1][j+1] + pm*c[i+1][j] + pd*c[i+1][j-

1]), S[i][j] – strike);
else

c[i][j] = max(exp(-rate*dt)*(pu*c[i+1][j+1] + pm*c[i+1][j] + pd*c[i+1][j-
1]), strike - S[i][j]);

}
}
return c[0][0];

}

The trinomial tree that is generated is shown in Figure 4.3. The value of the call
option is $4.51. The price of the call using Black-Scholes is $4.57. The value of the
call will converge closer to the Black-Scholes price as ∆t → 0.

The trinomial trees for each value of λ approach the Black-Scholes price closely
at around N = 100 steps, as shown in Table 4.1. As we will see, the trinomial tree
proves to be equivalent to the explicit finite-difference scheme (see Chapter 5) and
has the same convergence properties.

The scheme becomes unstable if certain stability conditions are not met. For an
explicit finite-difference scheme, it is important to ensure positive probabilities and
that the following stability and convergence condition be satisfied:

(4.14)

Clewlow and Strickland (1998a) suggest that a reasonable range of asset price val-
ues at the maturity of the option is three standard deviations either side of the

∆ ∆x t≥ σ 3
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mean, and a reasonable number of asset price values is 100 (2Nj + 1 = 100).1 Under
these assumptions, the space step required is then

(4.15)∆x T= 6 100σ /
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FIGURE 4.3 Trinomial Tree
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TABLE 4.1 Comparison of Trinomial Trees with Different Lambdas

N λ = λ = λ = 1 Black-Scholes

4 4.506 4.309 4.334 4.568
10 4.542 4.471 4.472 4.568
30 4.558 4.537 4.535 4.568
50 4.560 4.550 4.548 4.568
70 4.561 4.556 4.556 4.568

100 4.560 4.563 4.558 4.568
200 4.563 4.569 4.563 4.568

33 2/



Substituting ∆x in equation (4.14) into (4.15), we get the upper bound on the size
of the time step

(4.16)

Finally, using nSD (for the number of standard deviations) instead of 6 in equation
(4.15) and rearranging, we find that the number of steps required for suitable con-
vergence is:

(4.17)

If we require the ratio of the number of asset values to the number of standard
deviations

to be at least 15 in order to have a good approximation to the asset price distribu-
tion, then we require that N ≥ 675.

Figure 4.4 shows the convergence rate of trinomial trees for N = 1, . . . , 50 time
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FIGURE 4.4 Convergence Comparison of Trinomial and Binomial Trees
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steps for an ATM European call option with S = 50, X = 50, r = 0.055, q = 0.0, σ =
0.25, T = 0.75. Note the convergence rate and stability are very good at about 50
time steps.

4.6 APPROXIMATING DIFFUSION PROCESSES WITH 
TRINOMIAL TREES

In practice, we would want to provide a trinomial tree framework that can approx-
imate different diffusion processes. This can be accomplished by using the drifts
and variances of the diffusion process (see Chapter 1 for DiffusionProcess classes)
in the construction of the tree while containing methods to compute the branching
via a TrinomialBranching helper class that is member of the TrinomialTree class.

#include “qldiffusionprocess.h”
#include “ql/Lattices/tree.h”

namespace QuantLib
{

namespace Lattices
{
/*****************************************************************************
class TrinomialBranching : Recombining trinomial tree class

This class defines a recombining trinomial tree approximating a diffusion. The
diffusion term of the SDE must be independent of the underlying process.

*****************************************************************************/
class TrinomialBranching
{

public:
TrinomialBranching() : probs_(3) {}
virtual ∼TrinomialBranching() {}
inline Size descendant(Size index, Size branch) const {

return (k_[index] - jMin()) - 1 + branch;
}
inline double probability(Size index, Size branch) const {

return probs_[branch][index];
}
inline int jMin() const {

return *std::min_element(k_.begin(), k_.end()) - 1;
}

private:
friend class TrinomialTree;
std::vector<int> k_; // branch k
std::vector<std::vector<double> > probs_; // branching probabilities

};

class TrinomialTree : public Tree
{
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public:
TrinomialTree() { }
TrinomialTree(const Handle<DiffusionProcess>& process,

const TimeGrid& timeGrid,
bool isPositive = false);

double dx(Size i) const { return dx_[i]; }
double underlying(Size i, Size index) const;
const TimeGrid& timeGrid() const { return timeGrid_; }

inline int descendant(int i, int index, int branch) const {
return branchings_[i]->descendant(index, branch);

}

inline double probability(int i, int j, int b) const {
return branchings_[i]->probability(j, b);

}
inline int size(int i) const {

if (i==0)
return 1;

const std::vector<int>& k = branchings_[i-1]->k_;
int jMin = *std::min_element(k.begin(), k.end()) - 1;
int jMax = *std::max_element(k.begin(), k.end()) + 1;

return jMax - jMin + 1;
}
double underlying(int i, int index) const {

if (i==0) return x0_;
const std::vector<int>& k = branchings_[i-1]->k_;
int jMin = *std::min_element(k.begin(), k.end()) - 1;
return x0_ + (jMin*1.0 + index*1.0)*dx(i);

}
protected:

std::vector<Handle<TrinomialBranching> > branchings_;
double x0_;
std::vector<double> dx_; // vector of step sizes
TimeGrid timeGrid_;

};

The class has the following definition of the TrinomialTree constructor:

TrinomialTree::TrinomialTree(const Handle<DiffusionProcess>& process, const
TimeGrid& timeGrid, bool isPositive) : Tree(timeGrid.size()), dx_(1, 0.0),
timeGrid_(timeGrid)

{
x0_ = process->x0();
int nTimeSteps = timeGrid.size() - 1;
int jMin = 0;
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int jMax = 0;

for (int i = 0; i < nTimeSteps; i++)
{

Time t = timeGrid[i];
Time dt = timeGrid.dt(i);

// variance must be independent of x
double v2 = process->variance(t, 0.0, dt);
double v = sqrt(v2);
dx_.push_back(v*sqrt (3.0));

Handle<TrinomialBranching> branching(new TrinomialBranching());
for (int j = jMin; j <= jMax; j++)
{

double x = x0_ + j*dx_[i];
double m = process->expectation(t, x, dt);
int temp = (int)floor ((m-x0_)/dx_[i+1] + 0.5);

if (isPositive)
{

while (x0_+(temp-1)*dx_[i+1] <= 0)
temp++;

}

branching->k_.push_back(temp);
double e = m - (x0_ + temp*dx_[i+1]);
double e2 = e*e;
double e3 = e*sqrt (3.0);

branching->probs_[0].push_back((1.0 + e2/v2 - e3/v)/6.0);
branching->probs_[1].push_back((2.0 - e2/v2)/3.0);
branching->probs_[2].push_back((1.0 + e2/v2 + e3/v)/6.0);

}
branchings_.push_back(branching);

const std::vector<int>& k = branching->k_;
jMin = *std::min_element(k.begin(), k.end()) - 1;
jMax = *std::max_element(k.begin(), k.end()) + 1;

}
}

Notice that inside the constructor, the branching probabilities and state 
values are determined by the expected mean (drift) and variance (diffusion term)
of the diffusion process. Thus, this generic constructor builds a trinomial tree
that approximates various diffusion processes such as an Ornstein-Uhlenbeck
process, Black-Scholes geometric Brownian motion process, and square-root
process.
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We can build a trinomial tree by using the following code:

#include “quantlib.h”
using namespace QuantLib;
using namespace QuantLib::Instruments;
using DayCounters::Actual360;
using TermStructures::PiecewiseFlatForward;
using TermStructures::RateHelper;

void main()
{

try
{

Date todaysDate(20, October, 2003);
Calendar calendar = Calendars::TARGET();
Date settlementDate(19, July, 2004);

// Deposit rates
DayCounter depositDayCounter = Thirty360();

// Instruments used to bootstrap the yield curve:
std::vector<Handle<RateHelper> > instruments;

// Black Scholes diffusion parameters
double rate = 0.06;
double vol = 0.20;
double price = 50;

// List of times that have to be included in the timegrid
std::list<Time> times;

// bootstrapping the yield curve – class definition in Quantlib
Handle<PiecewiseFlatForward> myTermStructure(new

PiecewiseFlatForward(todaysDate, settlementDate, instruments,
depositDayCounter));

const std::vector<Time> termTimes = myTermStructure->times();
for (int i = 0; i < termTimes.size(); i++)

times.push_back(termTimes[i]);

times.sort();
times.unique();

// Building time-grid
TimeGrid grid(times, 30);

// define Black Scholes diffusion process
Handle<DiffusionProcess> bsd (new BlackScholesProcess(rate, vol,price));

// build trinomial tree to approximate Black Scholes diffusion process
Handle<TrinomialTree> trinomialTree (new TrinomialTree(bsd,grid,true));
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}
catch (const char* s)
{

std::cout << s << std::endl;
}

}

4.7 IMPLIED TREES

The implied trees approach is a way that practitioners have tried to build trees
that price options consistent with actual market prices of European options. Im-
plied trees can be considered a generalization of binomial and trinomial trees. Im-
plied trees are based on the work of Derman and Kani (1994); Derman, Kani,
and Ergener (1995); and Dupire (1994). Such trees try to incorporate the volatil-
ity smiles and maturity effects of options that can be implied from such market
prices. Exchange-traded European option market prices contain important infor-
mation about market expectations of the future. Practitioners incorporate market
information into the tree by making constant parameters such as probabilities
time-dependent and to “imply these time-dependent parameters such that the tree
returns the market prices of the standard options.”2

Implied trees are constructed using forward induction. Each node in the tree
has the calculated price today of an instrument that pays off a dollar in the future if
node (i, j) is reached at time step i and zero otherwise. Such prices are called state
prices or Arrow-Debreu securities, denoted at node (i, j) by Qi,j. As before, we de-
note i as the time step and j as the level of the asset price relative to the initial asset
price so that at node (i, j) we have t = i∆t and Si,j = exp(j∆x). The price of a Euro-
pean call with strike price X and maturity date N∆t in the tree is:

(4.18)

We would like to compute the state prices for the nodes at time step N in the tree so
that they are consistent with the prices of standard European call and put options.
Following Clewlow and Strickland, if we start at the highest node in the tree (N, N)
at time step N, then the price of a European call with a strike equal to the level of
the asset price at the next node below, SN,N–1, and with a maturity date at time step
N, is:

C(SN,N–1, N∆t) = (SN,N – SN,N–1)QN,N (4.19)

C S X t S X QN j N j
j N

N

( , , ) max( , ), ,   ∆ = −
=−
∑ 0
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because for all the nodes below (N, N) the payoff of the call option is zero. We can
solve for QN,N at node (N, N) in terms of the known call price, asset price, and
strike price. For a European option with a strike price equal to the asset price SN,N–2
at node (N, N–2), its price is given by:

C(SN,N–2, N∆t) = (SN,N–1 – SN,N–2)QN,N–1 + (SN,N – SN,N–2)QN,N

The only unknown quantity is QN,N–1 since QN,N has already been computed using
equation (4.19). We can continue to work down the nodes at time step N to the
middle of the tree computing the state prices. In general, for node (N, j), the option
price is given by

where all quantities are known except QN, j. When the central node is reached,
namely QN,0, the same process can be used for the bottom nodes in the tree; that is
–N ≤ j < 0, using put option prices due to numerical errors that accumulate from
the iterative process with call options. In general, for node (i, j), the state price is
given by:

(4.20)

We want to compute the transitional probabilities given the state prices at every
node in the tree. We can use no-arbitrage relationships that must hold at each node.
Following Clewlow and Strickland, the first no-arbitrage relationship is that the
discounted expected value of a one-period pure discount bond must be equal to the
discount factor over the next time step:

e–r∆t(pd,i,j + pm,i,j + pu,i,j) = e–r∆t (4.21)

which is equivalent to the requirement that the transitional probabilities sum to 1:

pd,i,j + pm,i,j + pu,i,j = 1 (4.22)

The second condition is that the asset price at node (i, j) must be equal to its local
discounted expected value over the next time step:

Si,j = e–r∆t(pd,i,jSi+1,j–1 + pm,i,jSi+1,j + pu,i,jSi+1,j+1) (4.23)
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Third, we get the forward evolution equation for the Arrow-Debreu state prices at
node (i + 1, j + 1):

Qi+1,j+1 = e–r∆t(pd,i, j+2Qi, j+2 + pm,i, j+1Qi, j+1 + pu,i,jQi,j) (4.24)

We can rearrange equation (4.24) to find pu,i, j directly:

(4.25)

Equations (4.22) and (4.23) can be solved simultaneously for pm,i,j and pd,i,j:

(4.26)

pd,i,j = 1 – pm,i,j – pu,i,j (4.27)

At the highest node (i, i) at time step i, equation (4.25) reduces to

(4.28)

and we can determine pm,i,j and pd,i,j. At node (i, i – 1) equation (4.26) reduces to

(4.29)

Equations (4.26) and (4.27) can be used to obtain pm,i,j–1 and pd,i–1. We can solve for
the transitional probabilities by starting at the top of the tree and iteratively work-
ing downward until the lowest node of the tree. However, due to numerical errors
that build up from the iterative calculations (the transitional probabilities we ob-
tain depend on previously computed transitional probabilities), we stop at the cen-
tral node and determine the probabilities for the lower nodes in the tree by working
up from the bottom node to the central node. Thus, for the lower half of the tree,
one obtains pd,i,j directly from the evolution of the state prices in equation (4.24).
Then pm,i,j and pu,i,j are determined by solving the remaining two equations simulta-
neously. Thus, equations (4.25) to (4.29) become
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(4.30)

(4.31)

pu,i,j = 1 – pm,i,j – pd,i,j (4.32)

(4.33)

(4.34)

Since the implied tree method is an explicit difference scheme, it is necessary to
ensure that the transitional probabilities remain in position and that the stability
condition
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FIGURE 4.5 Schematic Representation of an Implied Binomial Tree
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be satisfied at every node. A robust way to ensure that the transitional probabilities
remain positive and that the stability condition is satisfied is to set the space step as

where σmax is the maximum implied volatility obtained from the standard options
to which the tree is being calibrated. Clewlow and Strickland (1998a) show how
implied trees can be used to price American puts as well as exotic path-dependent
options like barrier and lookback options.

Figure 4.5 shows a schematic representation of an implied binomial tree. No-
tice that in the implied binomial tree the node spacing varies with market level and
time, as specified by the local volatility function σ(S, t) implied from implied
volatilities of quoted option prices.

∆ ∆x t= σmax 3
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CHAPTER 5
Finite-Difference Methods

We discuss numerical methods known as finite-difference methods for pricing de-
rivatives by approximating the diffusion process that the derivative must fol-

low. Finite-difference methods are a means for generating numerical solutions to
partial differential equations and linear complementary (free boundary) problems
such as those used to price American options. Finite-difference schemes are useful
for valuation of derivatives when closed-form analytical solutions do not exist or
for solutions to complicated multifactor (multidimensional) models. By discretizing
the continuous-time partial differential equation that the derivative security must
follow, it is possible to approximate the evolution of the derivative and therefore the
present value of the security.

In section 5.1, we discuss explicit finite-difference methods where the value at
any time instant can be explicitly determined from its previous values in different
states (up, down, middle) at the previous time instant. In section 5.2, an explicit dif-
ference method implementation is given. In section 5.3, the implicit difference
method is discussed where the derivative value at any time instant is determined im-
plicitly from its values in different states (up, down, middle) at the next time instant.
In section 5.4, the LU decomposition is discussed for use in solving linear systems of
implicit difference equations. In section 5.5, an implicit difference method imple-
mentation is given. In section 5.6, more robust object-oriented implementations of
finite-difference methods are provided. In section 5.7, iterative methods, another
technique for solving implicit difference schemes, is discussed. In section 5.8, the
Crank-Nicolson scheme, a scheme that combines both explicit and implicit scheme
features, is discussed. In section 5.9, we discuss the alternating direction implicit
(ADI) method, an extended finite-difference method used for handling multifactor
models.

5.1 EXPLICIT DIFFERENCE METHODS

Binomial and trinomial trees work well for pricing European and American op-
tions. However, there are alternative numerical methods that can be used to value
these standard options as well as more complex derivatives with nonlinear payoffs

183



such as exotic options. Finite-difference methods are used to price derivatives by
solving the differential equation in conjunction with the initial asset price condition
and boundary value condition(s) (i.e., payoffs) that the derivative must also satisfy.
The differential equation is converted into a system of difference equations that are
solved iteratively. Consider the Black-Scholes PDE:

(5.1)

subject to the payoff condition f(ST , T) = (ST – X)+. We can extend the trinomial
tree approach by creating a rectangular grid or lattice by adding extra nodes
above and below the tree so that we have 2Nj + 1, Nj ≥ N, nodes at every time
step i rather than 2i + 1. In a similar manner to trinomial trees, when implement-
ing finite-difference methods, we divide space and time into discrete intervals, ∆t
and ∆x, which generates the lattice. We add boundary conditions to the grid,
which determines option prices as a function of the asset price for high and low
values so that ∂f/∂S = 1 for S large and ∂f/∂S = 0 for S small. We can simplify the
Black-Scholes PDE by replacing the PDE with finite differences. Thus, we can dis-
cretize the PDE to develop a numerical finite-difference scheme. First, we simplify
the PDE; let x = ln(S) so that

where µ = r – q. To get rid of the rf term on the left-hand side, let u(x, t) be a new
function: u(x, t) = er(T–t)f(ex, t). The term u is a forward price of the option f and sat-
isfies the PDE:

(5.2)

We will discretize this PDE by taking the central difference of the state variable, x,
and the forward difference of the time variable t. Denote ui, j = u(xj, ti), ti = i∆t, and
xj = j∆x. Substituting the finite differences into the PDE:

(5.3)
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Rearranging terms, we have the recurrent relation for the forward option price:

(5.4)

where

(5.5)

Note that p~u + p~m + p~d = 1. Denote α = ∆t/(∆x)2 and β = µ∆t/∆x. We can rewrite
equations (5.5)

The relationship of trinomial trees to finite-difference discretizations of the
Black-Scholes PDE can be seen as follows. Substitute the present value of the 
option fi, j = e–r(T–ti )ui, j into equation (5.4). We arrive at the backward induction 
relationship:

(5.6)

This is similar to the backward induction to the trinomial tree in equation
(4.11). This is equivalent to the discounted expectation of the forward option
price (under a risk-neutral measure). Thus, we have shown that the explicit finite-
difference scheme is equivalent to approximating the diffusion process by a dis-
crete trinomial process.

Figure 5.1 shows a schematic view of the explicit finite-difference discretization.

f e p f p f p fi j
r t

u i j m i j d i j, , , ,˜ ˜ ˜= + +( )−
+ + + + −

∆
1 1 1 1 1

˜ ( )

˜

˜ ( )

p

p

p

u

m

d

= +

= −

= −

1
2

1

1
2

2

2

2

σ α β

σ α

σ α β

˜

˜

˜

p
t

x

t
x

p
t

x

p
t

x

t
x

u

m

d

= +

= −

= −

σ µ

σ

σ µ

2

2

2

2

2

2

2 2

1

2 2

∆
∆

∆
∆

∆
∆

∆
∆

∆
∆

u p u p u p ui j u i j m i j d i j, , , ,˜ ˜ ˜= + ++ + + + −1 1 1 1 1

5.1 Explicit Difference Methods 185



5.2 EXPLICIT FINITE-DIFFERENCE IMPLEMENTATION

Consider the following explicit difference class:

class ExplicitDiffMethod : public FiniteDifferenceMethod
{

public:
ExplicitDiffMethod() {}
ExplicitDiffMethod(long N, long M);
∼ExplicitDiffMethod() {}
virtual void solve() {}
double explicitDiffEuropean(double price, double strike, double rate, double

div, double volatility, double T, int N, int M, char type, char bc);
double explicitDiffAmerican(double price, double strike, double rate, double

div, double volatility, double T, int N, int M, char type, char bc);
private:

long N_; // number of time steps
long M_; // number of space steps

};

where:

// Generic finite difference model
class FiniteDifferenceMethod
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{
public:

enum MethodType { ExplicitDifference, ImplicitDifference,
AlternatingDirectImplicit, SOR, ProjectedSOR, CrankNicolson };

enum BoundaryConditions { Dirichlet, Neumann };
virtual void solve() const { }
// constructor
FiniteDifferenceMethod() { }
virtual ∼FiniteDifferenceMethod() { }

};

The following is an implementation of an explicit finite-difference scheme. N is
the total number of time steps where each time step is ∆t = T/N and |M| is the total
number of state movements (in either direction from the initial state at time 0)
where the state variable is Sj, j = –M . . . –1, 0, 1, . . . M.

/**********************************************************************************
explicitDiffAmerican : values an American option using the explicit difference 

method
[in]: double price : asset price

double strike : strike price
double vol : volatility 
double rate : risk-free rate
double div : dividend yield
double T : time to maturity
int N : number of time steps
int M : number of space steps
char type : (C)all or (P)ut
char bc : boundary conditions (D)irichlet or (N)eumann

[out] double : option price

**********************************************************************************/
double ExplicitDiffMethod::explicitDiffAmerican(double price, double strike, double

vol, double rate, double div, double T, int N, int M, char type, char bc)
{

int i, j;
double dt = T/N;
double drift = rate - div - 0.5*(vol*vol);
double dx = vol*sqrt(3*dt/2);
double pu, pm, pd;
double C[150][150] = {0.0}; // stores option prices
double S[150][150] = {0.0}; // stores asset prices
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pu = (vol*vol*dt)/(2*dx*dx) + (drift*dt)/(2*dx);
pm = 1.0 - (vol*vol*dt)/(dx*dx);
pd = (vol*vol*dt)/(2*dx*dx) - (drift*dt)/(2*dx);

// initialize asset prices at maturity
for (j = -M; j <= M; j++)
{

S[N][j] = price*exp(j*dx);
}

if (type == ‘C’)
{

// compute payoff at maturity
for (j = -M; j <= M; j++)

C[N][j] = max(S[N][j] - strike,0);

// boundary conditions for high and low asset prices
for (i = 0; i < N; i++)
{

if (bc == ‘D’)
{

C[i][-M] = 0.0;
C[i][M] = max(S[N][M] - strike,0);

}
else
{

C[i][M] = C[i][M-1] + (S[i][M] - S[i][M-1]);
C[i][-M] = C[i][-M+1];

}
}

for (i = N-1; i >= 0; i--)
{

for (j = M-1; j >= -(M-1); j--)
{

C[i][j] = pu*C[i+1][j+1] + pm*C[i+1][j] + pd*C[i+1][j-1];
C[i][j] = max(S[N][j] - strike, C[i][j]);

}
}

}
else //if (type == ‘P’)
{

// boundary conditions for high and low asset prices
for (i = 0; i < N; i++)
{

C[i][0] = strike;
C[i][M] = 0;

}
for (j = -M; j <= M; j++)
{

C[N][j] = max(strike - S[N][j],0);
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}

for (j = -M; j <= M; j++)
{

C[N][j] = max(strike - S[N][j],0);
}
// boundary conditions for high and low asset prices
for (i = 0; i < N; i++)
{

if (bc == ‘D’)
{

C[i][-M] = strike;
C[i][M] = max(0,strike - S[N][j]);

}
else // Neumann bc
{

C[i][M] = C[i][M-1];
C[i][-M] = C[i][-M+1] + (S[i][-M] - S[i][-M+1]);

}
}

for (i = N-1; i >= 0; i--)
{

for (j = M-1; j >= -M; j--)
{

C[i][j] = pu*C[i+1][j+1] + pm*C[i+1][j] + pd*C[i+1][j-1];
C[i][j] = max(strike - S[N][j], C[i][j]);

}
}

}
return C[0][0];

}

Suppose we want to price the same ATM American-style call option we priced
earlier in the trinomial tree: S = 50, X = 50, σ = 0.20, r = 0.06, q = 0.03, N = 4, M =
5, and T = 1. Figure 5.2 shows the lattice that is generated. The value of the call op-
tion marching backward from the maturity date T = 1 is $4.76.

Figure 5.3 shows a convergence comparison of the explicit difference method
with the trinomial method using the parameters as before.

As shown, the explicit difference method provides a rough approximation to
the trinomial prices though differences exist due to errors from convergence condi-
tions that need to be satisfied in order to have a good approximation to the trino-
mial diffusion process (see section 4.5). Note that all trinomial tree methods
(different lambdas) quickly converge to one another while the explicit difference
schemes (different lambdas) converge to each another. As N → ∞, however, the ex-
plicit difference schemes will converge to the trinomial diffusion process.
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FIGURE 5.2 Lattice for ATM American-Style Call Option
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5.3 IMPLICIT DIFFERENCE METHOD

If the backward difference,

is used instead of the forward difference for the time derivative, ∂f/∂t, in equation
(5.3), we will get an implicit difference scheme in which ui+1,j is implicitly dependent
on ui,j+1, ui,j, and ui,j–1.

(5.7)

where the probabilities p~u, p~m, and p~d are defined in equation (5.5). If we substitute
the present value of the option fi, j = e–r(T–ti)ui, j into equation (5.7), we get the risk-
neutral expected value:

(5.8)

If fi,j is a put option, then when the stock price is zero, we get the boundary condition:

fi,–M = X i = 0, 1, . . . , N (5.9)

The value of the option tends to zero as the stock price tends to infinity. We may
use the boundary condition:

fi,M = 0 i = 0, 1, . . . , N (5.10)

The value of the put at maturity (time T) is:

fN, j = max(X – Sj , 0) j = –M, . . . , –1, 0, 1, . . . , M (5.11)

Figure 5.4 is a schematic view of an implicit finite-difference discretization.
Equations (5.9), (5.10), and (5.11) define the value of the put option along the

boundaries of the grid. To solve for the value of f at all other points we use equa-
tion (5.8). First, the points corresponding to T – ∆t are solved. Equation (5.8) with
i = N – 1 yields 2M – 1 linear simultaneous equations:

(5.12)

Unlike the explicit finite-difference method, each equation cannot be solved indi-
vidually for the option values at time step i. These equations must be considered

f e p p f p f j M MN j
r t

u N j m N j d N j, , , ,˜ ˜ ˜ , ,= + +( ) = − + +−
− + − − −

∆      . . .  1 1 1 1 1 1 1

f e p f p f p fi j
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u i j m i j d i j+
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with the boundary conditions. The system of equations can be rewritten as a tridi-
agonal matrix form. We can rewrite equation (5.7) as:

(5.13)

(5.13)

where the (probability) elements of the matrix in (5.13) are given in equation (5.5).
Let βU be the upper boundary (for a put βU = 0 if S is much larger than X) and

βL be a lower boundary (for a put βL = X if S = 0) when the asset price reaches the
high and low points, respectively. Then ui+1,–M = βL and ui+1,M = βU. However, we will
be using the partial derivatives (Neumann boundary conditions) of the option price
at the boundaries when we use finite-difference schemes. Note that uN, j = f(S) =
max(S – X, 0) for a call and max(X – S, 0) for a put option j = –M, . . . , M. We can
rewrite equations (5.13) as:

Mui = bi+1 i = 0, 1, . . . , N – 1 (5.14)
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FIGURE 5.4 Implicit Finite-Difference Scheme

x(j)

u(i, j)

t(i)

u(i + 1, j + 1)

u(i + 1, j)

u(i + 1, j – 1)



which can be solved for ui since M is nonsingular; that is, it can be inverted:

ui = M–1bi+1 (5.15)

where M–1 is the inverse of M. Making use of the boundary conditions, we can
solve (5.15) iteratively starting at time i = N – 1 and solving for uN–1 (we know bN

since they are given by the boundary conditions in (5.9), (5.10), and (5.11). Once
we solve for uN–1 at time i = N – 1, we can use it to solve for uN–2 at time i = N – 2
since bN–1 = uN–1. Thus, we can solve for each ui, i = N – 1, . . . , 0, sequentially
working backward starting from time i = N – 1 until we solve for u0, which gives us
a vector solution of option prices.

Since M is tridiagonal (i.e., only the diagonal, superdiagonal, and subdiagonal
entries are nonzero), we do not have to store all the zeros, but just the nonzero ele-
ments. The inverse of M, M–1, is not tridiagonal and requires a lot more storage
than M.

We can rewrite the system of equations in (5.13) as:

(5.16)

(5.16)

where

(5.17)

and

(5.18)

Solving (5.17) and (5.18) from bottom to top, we get:

ui, M = u*i+1, M, ui, j = u*i+1, j – p*j,dui, j+1 i = 0 . . . N – 1, j = –M + 1, . . . , M – 1 (5.19)
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We could also use an LU decomposition to solve for ui in (5.14) without having to
invert M.

5.4 LU DECOMPOSITION METHOD

In an LU decomposition, we decompose the matrix M into a product of a lower
triangular matrix L and an upper triangular matrix U, namely M = LU, of the
form:

(5.20)

In order to determine the quantities vj , yj, and zj, j = –M + 1, . . . , M – 1, we
multiply the two matrices on the right-hand side of equation (5.20) and set the re-
sult to the left-hand side. After some simple calculations:

yM = pm

(5.21)

The only quantities we need to calculate and store are the yj. j = –M + 2, . . . , M – 1.
We can rewrite the original problem in Mui = bi +1 as L(Uui) = bi+1, i = 0, . . . , N – 1,
which may be broken down into two simpler subproblems:

Lqi = bi, Uui+1 = qi (5.22)

y p
p p
y

j M M

z p v
p
y

j M M

j m
u d

j

j d j
u

j

= − = − + −

= = = − +

−1
1 1

1

             . . .  

            . . .  

, ,

, , ,

p p

p p p

p p p

p p p

p p p

p p

m d

u m d

u m d

u m d

u m d

u d

                      

                               

                              

                        

                                

                                   

                        

0 0

0 0

0 0 0

0

0

0 0

K K K

O O O

M

K K K


















































=

−

−

− +

1 0 0 0

1

0 1 0

1

0

0 1

1

2

1

                              

           0                           

              

                               

                                     

                                    

                      

K K

M

M O M

O O

M O O M

K K K

v

v

v

v

M

M

M

M





































− −

− −

− +

−

                                   

                                

        0                       

                                   

                                   

y z

y z

y z

z

y

M M

M M

M M

M

M

0 0

0 0

0

0 0

0 0 0

1 1

2 2

1

K

M

M

O O O

M

M

K K

194 FINITE-DIFFERENCE METHODS

...
...

...



Where qi is an intermediate vector. We eliminate the vj from L and the zj from U us-
ing (5.21), the solution procedure is to solve two subproblems:

(5.23)

(5.23)

and

(5.24)

(5.24)

The intermediate quantities qi, j are found by forward substitution. We can read off
the value of qi,M directly, while any other equation in the system relates only qi, j and
qi, j–1. If we solve the system in decreasing i-incidental order, we have qi, j available at
the time available we have to solve for qi, j+1. Consequently, we can find qi, j:

(5.25)

Solving (5.24) for the ui, j (once we find the intermediate qi, j) is achieved through back-
ward substitution. We can read ui+1,–M directly (it is the value of the boundary), and if
we solve in increasing i-incidental order we can find all of the ui, j in the same manner:
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At the boundary, we get conditions

ui, M – ui, M–1 = βU (5.27)

ui,–M+1 – ui,–M = βL (5.28)

βU and βL are the derivatives at the boundary so that

βU = Si,M – Si,M–1, βL = 0

for a call and

βU = 0, βL = –1 · (Si,–M+1 – Si,–M)

for a put.

5.5 IMPLICIT DIFFERENCE METHOD IMPLEMENTATION

Consider an implicit difference class that inherits from a finite-difference class:

class ImplicitDiffMethod : public FiniteDifferenceMethod
{

public:
ImplicitDiffMethod();
ImplicitDiffMethod(long N, long M);
∼ImplicitDiffMethod() {}
double implicitDiffEuropean(double price, double strike, double vol,

double rate, double div, double T, long N, long M, char type, char bc);
double implicitDiffAmerican(double price, double strike, double vol,

double rate, double div, double T, long N, long M, char type, char bc);
void solveTridiagonalAmer(double strike, long N, long M, double pu, double pm,

double pd, double *d, double *c1, double *d1, char type);
void solveTridiagonalEuro(double strike, long N, long M, double pu, double pm,

double pd, double *d, double *c1, double *d1, char type);
private:

long N_; // number of time steps
long M_; // number of state steps
double C[200][200]; // stores option prices
double S[200][200]; // stores asset prices

};
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The following is an implementation of the implicit finite-difference method of
the same put option we valued with the explicit finite-difference method.

/**********************************************************************************
implicitDiffAmerican: values an American option using the implicit difference 

method
[in]: double price : asset price

double strike : strike price
double vol : volatility
double rate : risk-free rate
double div : dividend yield
double T : maturity
int N : number of time steps
int M : number of space steps
char type: (C)all or (P)ut
char bc: boundary conditions (D)irichlet or (N)eumann

[out]: option price
**********************************************************************************/
double ImplicitDiffMethod::implicitDiffAmerican(double price, double strike, double

vol, double rate, double div, double T, long N, long M, char type, char bc)
{

double c1[350] = {0.0}; // array to store values in 
// tridiagonal system

double d[350] = {0.0};
double d1[350] = {0.0};
double x[350] = {0.0};
double dx = 0.0; // space size
double drift = rate - div - vol*vol/2; // drift
double pu, pm, pd; // risk neutral probabilities
int i, j;

double dt = T/N;
dx = vol*sqrt(3*dt/2);

pu = -0.5*dt*((vol*vol)/(dx*dx) + drift/dx);
pm = 1 + dt*((vol*vol)/(dx*dx)) + rate*dt;
pd = -0.5*dt*((vol*vol)/(dx*dx) - drift/dx);

for (j = -M; j <= M; j++)
{

S[N][j] = price*exp(j*dx);
S[0][j] = price;

}

for (i = 1; i < N; i++)
{

for (j = -M; j <= M; j++)
{

S[i][j] = S[i-1][j]*exp(j*dx);
}
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}

// calculate payoffs
if (type == ‘P’)
{

for (j = -M; j <= M; j++)
{

C[N][j] = max(strike - S[N][j],0);
}

// calculate boundary conditions
for (i = 0; i < N; i++)
{

if (bc == ‘D’) // Dirichlet boundary conditions
{

C[i][-M] = strike;
C[i][M] = max(strike - S[i][M],0);

}
else // Neumann boundary conditions
{

C[i][-M] = C[i][-M+1] + (S[i][-M] - S[i][-M+1]);
C[i][M] = C[i][M-1];

}
}

}
else // if type == ‘C’
{

// calculate boundary condition at maturity
for (j = -M; j <= M; j++)
{

C[N][j] = max(S[N][j] - strike,0);
}

// calculate boundary conditions on grid
for (i = 0; i < N; i++)
{

if (bc == ‘D’) // Dirichlet boundary conditions
{

C[i][-M] = 0;
C[i][M] = max(S[i][M] - strike,0);

}
else // Neumann boundary condition
{

C[i][-M] = C[i][-M+1];
C[i][M] = C[i][M-1] + (S[i][M] - S[i][M-1]);

}
}

}
solveTridiagonalAmer(strike,N,M,pu,pm,pd,d,c1,d1,type);

return C[0][1];
}
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The following is the implementation of the method to solve the system of equa-
tions in the tridiagonal matrix in (5.16) using a LU decomposition.

/*********************************************************************************/
solveTridiagonalAmer: solves a tridiagonal system with American exercise conditions
[in]:  double strike : strike price

long N : number of time steps
long M : number of space steps
double pu : up probability
double pm : middle probability
double pd : down probability
double *d, *c1, *d1: stores elements of tridiagonal matrix
char type : (C)all or (P)ut

[out]: option price
**********************************************************************************/
void ImplicitDiffMethod::solveTridiagonalAmer(double strike, long N, long M, double

pu, double pm, double pd, double *d, double *c1, double *d1, char type)
{

int i,j;

for (j = -M; j <= M; j++)
d[j] = C[N][j];

d1[-M] = d[-M]/pm;
c1[-M] = pd/pm;

c1[-M+1] = pd/pm;
d1[-M+1] = d[-M+1]/pm;

for (j = -M+1; j <= M-2; j++)
c1[j+1] = pd/(pm - pu*c1[j]);

for (j = -M+1; j <= M-1; j++)
d1[j+1] = (d[j+1] - pu*d1[j])/(pm - pu*c1[j]);

for (i = N-1; i >= 0; i--)
{

for (j = -M+1; j <= M-1; j++)
{

if (i != N-1)
d[j] = C[i+1][-j];

if (j == -M+1)
{

d1[-M+1] = d[-M+1]/pm;
}
d1[j+1] = (d[j+1] - pu*d1[j])/(pm - pu*c1[j]);
C[i][-j] = d1[-j] - c1[-j]*C[i][-j+1];
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// check early exercise condition
if (type ==‘P’)
{

if (C[i][-j] < strike - S[N][-j])
C[i][-j] = strike - S[N][-j];

}
else
{

if (C[i][-j] < S[N][-j] - strike)
C[i][-j] = S[N][-j] - strike;

}
}

}
}

Suppose we price an ATM American-style put with S = 50, X = 50, σ = 0.20,
r = 0.06, q = 0.03, N = 4, M = 5, and T = 1. Then, we generate the lattice shown in
Figure 5.5. The option price is $3.77. If we increase N and M, the price estimate
gets better since ∆t → 0. Suppose N = 5 and M = 5. Then, we generate the lattice
shown in Figure 5.6.

Figure 5.7 shows a plot of the implicit difference scheme as a function of time
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FIGURE 5.5 Lattice for ATM American-Style Put Option (N = 4)
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FIGURE 5.6 Lattice for Put Option (n = 5)
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steps (equal to the number of space steps, i.e., N = M) for the European and Amer-
ican put with the same parameters as used earlier.

Figure 5.8 is the lattice for an American call option with the same parameters
as the put.

5.6 OBJECT-ORIENTED FINITE-DIFFERENCE IMPLEMENTATION

In order to provide more robustness and flexibility to the implementation, we
need to make several important changes. First, the previous implementation can
only handle small grid sizes. Memory needs to be allocated for both the option
price and the asset price at each node. It is limited by the use of predefined array
dimensions, which in turn are limited by system memory. In fact, the previous
implementation cannot handle the memory requirements for larger-dimension
grids (i.e., a 200 × 800 grid) often used in practice. Moreover, it is not efficient
to statically allocate arrays of large dimensions as it uses too much memory from
the heap, as opposed to dynamically allocating memory from the stack. Even if
we could statically allocate memory for very large (double) array sizes, we
would have to change the dimension sizes in the array declarations each time we
wanted to change them, which is not practical. While dynamically allocated
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FIGURE 5.8 Lattice for American Call Option
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double arrays could be used to create an N × M grid (array) to hold option and
asset values, for example,

double** C = (double **) new double[N*sizeof(double*)]; // for option price
double** S = (double **) new double[(N*sizeof(double*)] // for asset price
for(i= 0; i < N;i++)
{

C[i]= (double *) new double[(M * sizeof(double)];
S[i] = (double *) new double[(M * sizeof(double)];

}

or even a struct could be used to hold the values, that is,

struct
{

double price;
double optionPrice;

} nodeValues;

and then memory could be dynamically allocated,

nodeValues** nodePtr = (nodeValues**) malloc(N*sizeof(nodeValues*));
for(i= 0; i < N;i++)
{

nodePtr[i]= (nodeValues) malloc(M*sizeof(nodeValues));
}

there are still serious memory management issues with such an approach, especially
for more than two dimensions. A more efficient and practical solution is to use an
Array class that contains methods and operations to manipulate arrays (see source
code for implementation details) and which can manage the memory. For example,

typedef size_t Size;

class Array
{

public:
// creates the array with the given dimension
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explicit Array(Size size = 0);
// creates the array and fills it with values
Array(Size size, double value);
// brief creates the array and fills it according to
// a_{0} = value, a_{i}=a_{i-1}+increment

Array(Size size, double value, double increment);
Array(const Array& from);
template <class Iter> Array(const VectorialExpression<Iter>& e)

: pointer_(0), n_(0), bufferSize_(0) { allocate_(e.size()); copy_(e); }
∼Array();
Array& operator=(const Array& from);
template <class Iter> Array& operator=(

const VectorialExpression<Iter>& e) {
resize_(e.size()); copy_(e); return *this;

}

Array& operator+=(const Array&);
Array& operator+=(double);
Array& operator-=(const Array&);
Array& operator-=(double);
Array& operator*=(const Array&);
Array& operator*=(double);
Array& operator/=(const Array&);
Array& operator/=(double);
template <class Iter> Array& operator+=(

const VectorialExpression<Iter>& e) {
QL_REQUIRE(size() == e.size(), “adding arrays with different sizes”);

iterator i = begin(), j = end();
while (i != j) { *i += *e; ++i; ++e; }
return *this;

}
template <class Iter> Array& operator-=( const VectorialExpression<Iter>& e) {

QL_REQUIRE(size() == e.size(), “subtracting arrays with different sizes”);
iterator i = begin(), j = end();
while (i != j) { *i -= *e; ++i; ++e; }
return *this;

}
template <class Iter> Array& operator*=( const VectorialExpression<Iter>& e) {

QL_REQUIRE(size() == e.size(), “multiplying arrays with different sizes”);
iterator i = begin(), j = end();
while (i != j) { *i *= *e; ++i; ++e; }
return *this;

}
template <class Iter> Array& operator/=( const VectorialExpression<Iter>& e) {

QL_REQUIRE(size() == e.size(), “dividing arrays with different sizes”);
iterator i = begin(), j = end();
while (i != j) { *i /= *e; ++i; ++e; }
return *this;

}
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// name Element access
double operator[](Size) const;
// read-write
double& operator[](Size);
// dimension of the array
Size size() const

typedef double* iterator;
typedef const double* const_iterator;
typedef QL_REVERSE_ITERATOR(double*,double) reverse_iterator;
typedef QL_REVERSE_ITERATOR(double*,double) const_reverse_iterator;
// name Iterator access
const_iterator begin() const;
iterator begin();
const_iterator end() const;
iterator end();
const_reverse_iterator rbegin() const;
reverse_iterator rbegin();
const_reverse_iterator rend() const;
reverse_iterator rend();

private:
void allocate_(Size size);
void resize_(Size size);
void copy_(const Array& from) {

std::copy(from.begin(),from.end(),begin());
}
template <class Iter> void copy_( const VectorialExpression<Iter>& e) {

iterator i = begin(), j = end();
while (i != j) {

*i = *e;
++i; ++e;

}
}
double* pointer_;
Size n_, bufferSize_;

};

The class has the following method definitions:

// inline definitions
/**********************************************************************************
Array: Constructor
[in] Size size: size of array
**********************************************************************************/
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inline Array::Array(Size size) : pointer_(0), n_(0), bufferSize_(0)
{

if (size > 0)
allocate_(size);

}

/******************************************************************************
Array: Constructor
[in] Size size: size of array
******************************************************************************/
inline Array::Array(Size size, double value) : pointer_(0), n_(0),

bufferSize_(0)
{

if (size > 0)
allocate_(size);

std::fill(begin(),end(),value);
}

/******************************************************************************
Array: Constructor
[in] Size size : size of array

double value : value to initialize array
double increment : increments value

******************************************************************************/
inline Array::Array(Size size, double value, double increment)

: pointer_(0), n_(0), bufferSize_(0)
{

if (size > 0)
allocate_(size);

for (iterator i=begin(); i!=end(); i++,value+=increment)
*i = value;

}

/******************************************************************************
Array: Constructor
[in] Size size : size of array

double value : value to initialize array
double increment : increments value

******************************************************************************/
inline Array::Array(const Array& from)

: pointer_(0), n_(0), bufferSize_(0)
{

allocate_(from.size());
copy_(from);

}

/******************************************************************************
Array: Destructor
Delete allocated memory and clean up
******************************************************************************/
inline Array::∼Array()
{

if (pointer_ != 0 && bufferSize_ != 0)
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delete[] pointer_;
pointer_ = 0;
n_ = bufferSize_ = 0;

}

/******************************************************************************
operator= : overloaded assignment operator
Copies the elements of one array to another
[in] Array from : array to copy from
[out] Array&: copy of array
******************************************************************************/
inline Array& Array::operator=(const Array& from)
{

if (this != &from)
{

resize_(from.size());
copy_(from);

}
return *this;

}

/******************************************************************************
operator+ : overloaded assignment operator
Copies the elements of one array to another
[in] Array from : array to add to
[out] Array&: sum of arrays
******************************************************************************/
inline Array& Array::operator+=(const Array& v)
{

QL_REQUIRE(n_ == v.n_, “arrays with different sizes cannot be added”);
std::transform(begin(),end(),v.begin(),begin(),std::plus<double>());
return *this;

}

inline Array& Array::operator+=(double x)
{

std::transform(begin(),end(),begin(), std::bind2nd(std::plus<double>(),x));
return *this;

}

inline Array& Array::operator-=(const Array& v) {
QL_REQUIRE(n_ == v.n_,”arrays with different sizes cannot be subtracted”);
std::transform(begin(),end(),v.begin(),begin(),std::minus<double>());
return *this;

}

inline Array& Array::operator-=(double x)
{

std::transform(begin(),end(),begin(),std::bind2nd(std::minus<double>(),
x));

return *this;
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}

inline Array& Array::operator*=(const Array& v)
{

QL_REQUIRE(n_ == v.n_, “arrays with different sizes cannot be multiplied”);
std::transform(begin(),end(),v.begin(),begin(), std::multiplies<double>());
return *this;

}

inline Array& Array::operator*=(double x)
{

std::transform(begin(),end(),begin(),
std::bind2nd(std::multiplies<double>(),x));

return *this;
}

inline Array& Array::operator/=(const Array& v)
{

QL_REQUIRE(n_ == v.n_, “arrays with different sizes cannot be divided”);
std::transform(begin(),end(),v.begin(),begin(), std::divides<double>());
return *this;

}

inline Array& Array::operator/=(double x)
{

std::transform(begin(),end(),begin(),
std::bind2nd(std::divides<double>(),x));

return *this;
}

inline double Array::operator[](Size i) const {
QL_REQUIRE(i<n_, “array cannot be accessed out of range”);
return pointer_[i];

}

inline double& Array::operator[](Size i) {
QL_REQUIRE(i<n_, “array cannot be accessed out of range”);
return pointer_[i];

}

inline Size Array::size() const {
return n_;

}
inline void Array::resize_(Size size) {

if (size != n_)
{

if (size <= bufferSize_)
{

n_ = size;
} else {

Array temp(size);
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std::copy(begin(),end(),temp.begin());
allocate_(size);
copy_(temp);

}
}

}
inline Array::const_iterator Array::begin() const {

return pointer_;
}
inline Array::iterator Array::begin() {

return pointer_;
}
inline Array::const_iterator Array::end() const {

return pointer_+n_;
}
inline Array::iterator Array::end() {

return pointer_+n_;
}
inline Array::reverse_iterator Array::rbegin() {

return reverse_iterator(end());
}
inline Array::reverse_iterator Array::rend() {

return reverse_iterator(begin());
}
inline void Array::allocate_(Size size)
{

if (pointer_ != 0 && bufferSize_ != 0)
delete[] pointer_;

if (size <= 0)
{

pointer_ = 0;
}
else
{

n_ = size;
bufferSize_ = size+size/10+10;
try
{

pointer_ = new double[bufferSize_];
}
catch ( . . . ) {

pointer_ = 0;
}
if (pointer_ == 0)
{

n_ = bufferSize_ = size;
try
{

pointer_ = new double[bufferSize_];
}
catch ( . . . )
{
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pointer_ = 0;
}
if (pointer_ == 0)
{

n_ = bufferSize_ = 0;
throw “Out Of Memory Error Array”;

}
}

}
}

We can then create a Grid class for handling the spacial steps and a TimeGrid
class for handling the time steps. The TimeGrid will give us a finer granularity over
the spacing and number of time steps.

// spatial grid class
class Grid : public Array
{
public:

Grid(double center, double dx, int steps);
};

// time grid class
class TimeGrid : public std::vector<double>
{

public:
TimeGrid() {}
// Regularly spaced time-grid
TimeGrid(double end, int steps);
// double grid with mandatory time-points (regularly spaced between them)
TimeGrid(const std::list<double>& times, int steps);
int findIndex(double t) const;
double dt(int i) const;

};

// inline definitions
inline Grid::Grid(double center, double dx, int steps) : Array(steps)
{

for (int i=0; i<steps; i++)
(*this)[i] = center + (i - steps/2.0)*dx;

}

inline TimeGrid::TimeGrid(double end, int steps)
{

double dt = end/steps;
for (int i=0; i<=steps; i++)

push_back(dt*i);
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}

inline TimeGrid::TimeGrid(const std::list<double>& times, int steps) :
std::vector<double>(0)

{
double last = times.back();
double dtMax;
// The resulting timegrid have points at times listed in the input
// list. Between these points, there are inner-points which are
// regularly spaced.
if (steps == 0)
{

std::vector<double> diff;
std::back_insert_iterator<std::vector<double> > ii(diff);
std::adjacent_difference(times.begin(), times.end(), ii);
if (diff.front()==0.0)

diff.erase(diff.begin());
dtMax = *(std::min_element(diff.begin(), diff.end()));

}
else
{

dtMax = last/steps;
}

double periodBegin = 0.0;
std::list<double>::const_iterator t;
for (t = times.begin(); t != times.end(); t++)
{

double periodEnd = *t;
if (periodBegin >= periodEnd)

continue;
int nSteps = (int)((periodEnd - periodBegin)/dtMax + 1.0);
double dt = (periodEnd - periodBegin)/nSteps;
for (int n=0; n<nSteps; n++)

push_back(periodBegin + n*dt);
periodBegin = periodEnd;

}
push_back(periodBegin); // Note periodBegin = periodEnd

}

inline int TimeGrid::findIndex(double t) const
{

const_iterator result = std::find(begin(), end(), t);
QL_REQUIRE(result!=end(), “Using inadequate tree”);
return result - begin();

}

inline double TimeGrid::dt(int i) const
{

return (*this)[i+1] - (*this)[i];
}
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Second, it would be useful to create a generic Tridiagonal Operator class for
manipulating and solving tridiagonal linear systems for many types of finite differ-
ence schemes—explicit methods, implicit methods, Crank-Nicolson scheme, and so
on. Consider the following TridiagonalOperator class:

class TridiagonalOperator
{

// unary operators
friend TridiagonalOperator operator+(const TridiagonalOperator&);
friend TridiagonalOperator operator-(const TridiagonalOperator&);
// binary operators
friend TridiagonalOperator operator+(const TridiagonalOperator&, const

TridiagonalOperator&);
friend TridiagonalOperator operator-(const TridiagonalOperator&, const

TridiagonalOperator&);
friend TridiagonalOperator operator*(double, const TridiagonalOperator&);
friend TridiagonalOperator operator*(const TridiagonalOperator&, double);
friend TridiagonalOperator operator/(const TridiagonalOperator&, double);

public:
typedef Array arrayType;
// constructors
TridiagonalOperator(Size size = 0);
TridiagonalOperator(const Array& low, const Array& mid, const Array& high);
TridiagonalOperator(const TridiagonalOperator& L);
TridiagonalOperator& operator=(const TridiagonalOperator& L);
// apply operator to a given array
Array applyTo(const Array& v) const;
// solve linear system for a given right-hand side
Array solveFor(const Array& rhs) const;
// solve linear system with SOR approach.,m
Array SOR(const Array& rhs, double tol) const;
// identity instance
static TridiagonalOperator identity(Size size);
Size size() const;
bool isdoubleDependent();
void setFirstRow(double, double);
void setMidRow(Size, double, double, double);
void setMidRows(double, double, double);
void setLastRow(double, double);
void setdouble(double t);
void setTime(double t) { time_ = t; }
bool isTimeDependent() { return isTimeDependent_; }
// encapsulation of double-setting logic
class doubleSetter {

public:
virtual ∼doubleSetter() {}
virtual void setdouble(double t, TridiagonalOperator& L) const = 0;

};
protected:

Array diagonal_, belowDiagonal_, aboveDiagonal_;
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Handle<doubleSetter> doubleSetter_;
double time_;
bool isTimeDependent_;

};
inline TridiagonalOperator::TridiagonalOperator(const TridiagonalOperator& L)
{

belowDiagonal_ = L.belowDiagonal_;
diagonal_ = L.diagonal_;
aboveDiagonal_ = L.aboveDiagonal_;
doubleSetter_ = L.doubleSetter_;

}

/**********************************************************************************
operator=                 : overloaded assignment operator
Copies the elements of one Tridiagonal operator to another
[in] Array from           : array to copy from
[out] TridiagonalOperator&: copy of tridiagonal operator
**********************************************************************************/
inline TridiagonalOperator& TridiagonalOperator::operator=( const

TridiagonalOperator& L)
{

belowDiagonal_ = L.belowDiagonal_;
diagonal_ = L.diagonal_;
aboveDiagonal_ = L.aboveDiagonal_;
doubleSetter_ = L.doubleSetter_;
return *this;

}

inline Size TridiagonalOperator::size() const
{

return diagonal_.size();
}

inline bool TridiagonalOperator::isdoubleDependent()
{

return !doubleSetter_.isNull();
}

// set values of first row of matrix
inline void TridiagonalOperator::setFirstRow(double valB, double valC)
{

diagonal_[0] = valB;
aboveDiagonal_[0] = valC;

}

// set values of middle row of matrix
inline void TridiagonalOperator::setMidRow(Size i, double valA, double valB, double

valC) {
QL_REQUIRE(i>=1 && i<=size()-2, “out of range in TridiagonalSystem::setMidRow”);
belowDiagonal_[i-1] = valA;
diagonal_[i] = valB;
aboveDiagonal_[i] = valC;

}

// set values of middle rows of matrix
inline void TridiagonalOperator::setMidRows(double valA, double valB, double valC)
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{
for (int i=1; i<=size()-2; i++)
{

belowDiagonal_[i-1] = valA;
diagonal_[i] = valB;
aboveDiagonal_[i] = valC;

}
}

inline void TridiagonalOperator::setLastRow(double valA, double valB)
{

belowDiagonal_[size()-2] = valA;
diagonal_[size()-1] = valB;

}

inline void TridiagonalOperator::setdouble(double t)
{

if (!doubleSetter_.isNull())
doubleSetter_->setdouble(t,*this);

}

inline TridiagonalOperator operator+(const TridiagonalOperator& D)
{

return D;
}

inline TridiagonalOperator operator-(const TridiagonalOperator& D)
{

Array low = -D.belowDiagonal_, mid = -D.diagonal_,
high = -D.aboveDiagonal_;
TridiagonalOperator result(low,mid,high);
return result;

}

inline TridiagonalOperator operator+(const TridiagonalOperator& D1,
const TridiagonalOperator& D2)

{
Array low = D1.belowDiagonal_+D2.belowDiagonal_,
mid = D1.diagonal_+D2.diagonal_,
high = D1.aboveDiagonal_+D2.aboveDiagonal_;
TridiagonalOperator result(low,mid,high);
return result;

}

inline TridiagonalOperator operator-(const TridiagonalOperator& D1,
const TridiagonalOperator& D2)

{
Array low = D1.belowDiagonal_-D2.belowDiagonal_,
mid = D1.diagonal_-D2.diagonal_,
high = D1.aboveDiagonal_-D2.aboveDiagonal_;
TridiagonalOperator result(low,mid,high);
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return result;
}

inline TridiagonalOperator operator*(double a,
const TridiagonalOperator& D)

{
Array low = D.belowDiagonal_*a, mid = D.diagonal_*a,
high = D.aboveDiagonal_*a;
TridiagonalOperator result(low,mid,high);
return result;

}

inline TridiagonalOperator operator*(const TridiagonalOperator& D, double a)
{

Array low = D.belowDiagonal_*a, mid = D.diagonal_*a,
high = D.aboveDiagonal_*a;
TridiagonalOperator result(low,mid,high);
return result;

}

inline TridiagonalOperator operator/(const TridiagonalOperator& D, double a)
{

Array low = D.belowDiagonal_/a, mid = D.diagonal_/a,
high = D.aboveDiagonal_/a;
TridiagonalOperator result(low,mid,high);
return result;

}

The other method definitions are:

TridiagonalOperator::TridiagonalOperator(Size size)
{

if (size>=3) {
diagonal_ = Array(size);
lowerDiagonal_ = Array(size-1);
upperDiagonal_ = Array(size-1);

} else if (size==0) {
diagonal_ = Array(0);
lowerDiagonal_ = Array(0);
upperDiagonal_ = Array(0);

} else {
throw Error(“invalid size for tridiagonal operator” “(must be null or >= 3)”);

}
}

/**********************************************************************************
TridiagonalOperator: constructor
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**********************************************************************************/
TridiagonalOperator::TridiagonalOperator(

const Array& low, const Array& mid, const Array& high)
: diagonal_(mid), lowerDiagonal_(low), upperDiagonal_(high) {
QL_ENSURE(low.size() == mid.size()-1, “wrong size for lower diagonal vector”);
QL_ENSURE(high.size() == mid.size()-1, “wrong size for upper diagonal vector”);

}

/**********************************************************************************
applyTo : applies tridiagonal operator to grid points
[in]: Array& v: : grid points
[out]: Array : results of operation
**********************************************************************************/
Array TridiagonalOperator::applyTo(const Array& v) const {

QL_REQUIRE(v.size()==size(),
“TridiagonalOperator::applyTo: vector of the wrong size (“ +
IntegerFormatter::toString(v.size()) + “instead of “ +
IntegerFormatter::toString(size()) + “)” );

Array result(size());

// matricial product
result[0] = diagonal_[0]*v[0] + upperDiagonal_[0]*v[1];
for (Size j=1;j<=size()-2;j++)

result[j] = lowerDiagonal_[j-1]*v[j-1]+ diagonal_[j]*v[j] +
upperDiagonal_[j]*v[j+1];

result[size()-1] = lowerDiagonal_[size()-2]*v[size()-2] + diagonal_[size()-1]*
v[size()-1];

return result;
}

/**********************************************************************************
solve for : solves the tridiagonal system
[in]: Array& rhs: : rhs of system
[out]: Array : solution of rhs of tridiagonal system
**********************************************************************************/
Array TridiagonalOperator::solveFor(const Array& rhs) const {

QL_REQUIRE(rhs.size()==size(),
“TridiagonalOperator::solveFor: rhs has the wrong size”);

Array result(size()), tmp(size());

double bet=diagonal_[0];
QL_REQUIRE(bet != 0.0, “TridiagonalOperator::solveFor: division by zero”);

result[0] = rhs[0]/bet;
Size j;
for (j=1;j<=size()-1;j++)
{

tmp[j]=upperDiagonal_[j-1]/bet;
bet=diagonal_[j]-lowerDiagonal_[j-1]*tmp[j];
QL_ENSURE(bet != 0.0, “TridiagonalOperator::solveFor: division by zero”);
result[j] = (rhs[j]-lowerDiagonal_[j-1]*result[j-1])/bet;
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}

// cannot be j>=0 with Size j
for (j=size()-2;j>0;j--)

result[j] -= tmp[j+1]*result[j+1];
result[0] -= tmp[1]*result[1];

return result;
}

The class contains overloaded operators to manipulate elements along the diag-
onals of any tridiagonal matrix.

We can also improve the finite-difference scheme by creating a generic abstract
template class for boundary conditions that can in turn be used for subclassing
into, say, Dirichlet or Neumann boundary classes.

// Abstract boundary condition class for finite difference problems
template <class Operator>
class BoundaryCondition
{

public:
// types and enumerations
typedef Operator operatorType;
typedef typename Operator::arrayType arrayType;
enum Side { None, Upper, Lower };
// destructor
virtual ∼BoundaryCondition() {}
// interface
// This method modifies an operator L before it is
// applied to an array u so that v = Lu will
// satisfy the given condition.
virtual void applyBeforeApplying(operatorType&) const = 0;
// This method modifies an array u so that it satisfies
// the given condition.
virtual void applyAfterApplying(arrayType&) const = 0;
// This method modifies an operator L before the linear
// system Lu’ = u is solved so that u’ will
// satisfy the given condition.
virtual void applyBeforeSolving(operatorType&, arrayType& rhs) const = 0;
// This method modifies an array so that it satisfies the given condition.
virtual void applyAfterSolving(arrayType&) const = 0;
// This method sets the current time for time-dependent boundary conditions.
virtual void setTime(Time t) = 0;

};

// Neumann boundary condition (i.e., constant derivative)
class NeumannBC : public BoundaryCondition<TridiagonalOperator>
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{
public:

NeumannBC(double value, Side side);
// interface
void applyBeforeApplying(TridiagonalOperator&) const;
void applyAfterApplying(Array&) const;
void applyBeforeSolving(TridiagonalOperator&, Array& rhs) const;
void applyAfterSolving(Array&) const;
void setTime(Time t) {}

private:
double value_;
Side side_;

};

// DirichletBC boundary condition (i.e., constant value)
class DirichletBC : public BoundaryCondition<TridiagonalOperator>
{

public:
DirichletBC(double value, Side side);
// interface
void applyBeforeApplying(TridiagonalOperator&) const;
void applyAfterApplying(Array&) const;
void applyBeforeSolving(TridiagonalOperator&, Array& rhs) const;
void applyAfterSolving(Array&) const;
void setTime(Time t) {}

private:
double value_;
Side side_;

};

The class has the following method definitions:

NeumannBC::NeumannBC(double value, NeumannBC::Side side)
: value_(value), side_(side) {}

/******************************************************************************
applyBeforeApplying : apply Neumann boundary conditions before applying
Tridiag Operator
[in] : TridiagonalOperator& L : tridiag operator
[out]: none
******************************************************************************/

void NeumannBC::applyBeforeApplying(TridiagonalOperator& L) const {
switch (side_) {

case Lower:
L.setFirstRow(-1.0,1.0);
break;

case Upper:
L.setLastRow(-1.0,1.0);
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break;
default:

throw Error(“Unknown side for Neumann boundary condition”);
}

}

/**********************************************************************************
applyAfterApplying : apply Neumann boundary conditions after applying Triadiagonal 

Operator
[in] : Array& L : array of values
[out]: none
**********************************************************************************/
void NeumannBC::applyAfterApplying(Array& u) const {

switch (side_) {
case Lower:

u[0] = u[1] - value_;
break;

case Upper:
u[u.size()-1] = u[u.size()-2] + value_;
break;

default:
throw Error(“Unknown side for Neumann boundary condition”);

}
}

/**********************************************************************************
applyAfterApplying : apply Neumann boundary conditions before solving system
[in] : TridiagonalOperator& L : tridiagonal operator

Array& L : array of values
[out]: none
**********************************************************************************/
void NeumannBC::applyBeforeSolving(TridiagonalOperator& L, Array& rhs) const
{

switch (side_)
{

case Lower:
L.setFirstRow(-1.0,1.0);
rhs[0] = value_;
break;

case Upper:
L.setLastRow(-1.0,1.0);
rhs[rhs.size()-1] = value_;
break;

default:
throw Error(“Unknown side for Neumann boundary condition”);

}
}

void NeumannBC::applyAfterSolving(Array&) const {}

// Dirichlet conditions

DirichletBC::DirichletBC(double value, DirichletBC::Side side)
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: value_(value), side_(side) {}

/**********************************************************************************
applyBeforeApplying : apply Dirichlet boundary conditions before solving system
[in] : TridiagonalOperator& L : tridiagonal operator
[out]: none
**********************************************************************************/
void DirichletBC::applyBeforeApplying(TridiagonalOperator& L) const
{

switch (side_)
{

case Lower:
L.setFirstRow(1.0,0.0);
break;

case Upper:
L.setLastRow(0.0,1.0);
break;

default:
throw Error(“Unknown side for Neumann boundary condition”);

}
}

/**********************************************************************************
applyAfterApplying : apply Dirichlet boundary conditions after applying

Triadiagonal Operator
[in] : Array& L : array of values
[out]: none
**********************************************************************************/
void DirichletBC::applyAfterApplying(Array& u) const
{

switch (side_)
{

case Lower:
u[0] = value_;
break;

case Upper:
u[u.size()-1] = value_;
break;

default:
throw Error(“Unknown side for Neumann boundary condition”);

}
}

/**********************************************************************************
applyAfterApplying : apply Dirichlet boundary conditions before solving system
[in] : TridiagonalOperator& L : tridiagonal operator

Array& L : array of values
[out]: none
**********************************************************************************/
void DirichletBC::applyBeforeSolving(TridiagonalOperator& L,

Array& rhs) const
{

switch (side_)
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{
case Lower:

L.setFirstRow(1.0,0.0);
rhs[0] = value_;
break;

case Upper:
L.setLastRow(0.0,1.0);
rhs[rhs.size()-1] = value_;
break;

default:
throw Error(“Unknown side for Neumann boundary condition”);

}
}
void DirichletBC::applyAfterSolving(Array&) const {}

Moreover, we can create a generic finite-difference model template that can
be used for all types of finite-difference schemes. Consider the FiniteDifference
Model class.

// Generic finite difference model
template<class Evolver>
class FiniteDifferenceModel
{

public:
typedef typename Evolver::arrayType arrayType;
typedef typename Evolver::operatorType operatorType;
typedef BoundaryCondition<operatorType> bcType;
// constructor
FiniteDifferenceModel(const operatorType& L, const std::vector<Handle<bcType>

>& bcs, const std::vector<Time>& stoppingTimes=std::vector<Time>())
: evolver_(L,bcs), stoppingTimes_(stoppingTimes) {}

// solves the problem between the given times, possibly
// applying a condition at every step.
// being a rollback, from time must be a later time than to time.
void rollback(arrayType& a, Time from, Time to, Size steps,

Handle<StepCondition<arrayType> > condition = Handle<StepCondition<arrayType>
>());

private:
Evolver evolver_;
std::vector<Time> stoppingTimes_;

};

// template definitions
template<class Evolver>
void FiniteDifferenceModel<Evolver>::rollback(

FiniteDifferenceModel::arrayType& a,
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Time from, Time to, Size steps,
Handle<StepCondition<arrayType> > condition)

{
Time dt = (from-to)/steps, t = from;
evolver_.setStep(dt);

for (in i=0; i<steps; i++, t -= dt)
{

int j;
for(j=0; j < stoppingTimes_.size(); j++)

if(t-dt <= stoppingTimes_[j] && stoppingTimes_[j] < t)
break;

if(j == stoppingTimes_.size())
{

// No stopping time was hit
evolver_.step(a,t);
if (!condition.isNull())

condition->applyTo(a,t-dt);
}
else
{

// A stopping time was hit
// First baby step from t to stoppingTimes_[j]
evolver_.setStep(t-stoppingTimes_[j]);
evolver_.step(a,t);
if (!condition.isNull())

condition->applyTo(a,stoppingTimes_[j]);

// Second baby step from stoppingTimes_[j] to t-dt
evolver_.setStep(stoppingTimes_[j] - (t-dt));
evolver_.step(a,stoppingTimes_[j]);
if (!condition.isNull())

condition->applyTo(a,t-dt);

evolver_.setStep(dt);
}

}
}

This class makes use of an abstract StepCondition class that aids in the valua-
tion process by applying step conditions along the grid at every step:

// condition to be applied at every time step
template <class arrayType>
class StepCondition
{

public:
virtual ∼StepCondition() {}
virtual void applyTo(arrayType& a, Time t) const = 0;

};
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We can then create a FiniteDifferenceOption class that contains the properties
and methods to value a plain-vanilla Black-Scholes-type option numerically:

class FiniteDifferenceOption : public SingleAssetOption
{

public:
FiniteDifferenceOption(Option::Type type, double underlying,

double strike, Spread dividendYield, Rate riskFreeRate,
Time residualTime, double volatility, Size gridPoints);

// accessors
virtual void calculate() const = 0;
double value() const;
double delta() const;
double gamma() const;
Array getGrid() const{return grid_;}

protected:
// methods
virtual void setGridLimits(double center, double timeDelay) const;
virtual void initializeGrid() const;
virtual void initializeInitialCondition() const;
virtual void initializeOperator() const;
// input data
Size gridPoints_;
// results
mutable double value_, delta_, gamma_;

mutable Array grid_;
mutable FiniteDifferences::BlackScholesOperator finiteDifferenceOperator_;
mutable Array initialPrices_;
typedef FiniteDifferences::BoundaryCondition<

FiniteDifferences::TridiagonalOperator>
BoundaryCondition;

mutable std::vector<Handle<BoundaryCondition> > BCs_;
// temporaries
mutable double sMin_, center_, sMax_;

private:
// temporaries
mutable double gridLogSpacing_;
Size safeGridPoints(Size gridPoints, Time residualTime);

};

// This is a safety check to be sure we have enough grid points.
#define QL_NUM_OPT_MIN_GRID_POINTS 10
// This is a safety check to be sure we have enough grid points.
#define QL_NUM_OPT_GRID_POINTS_PER_YEAR 2

// The following is a safety check to be sure we have enough grid
// points.

5.6 Object-Oriented Finite-Difference Implementation 223



inline Size FiniteDifferenceOption::safeGridPoints( Size gridPoints, Time
residualTime) {
return QL_MAX(gridPoints, residualTime>1.0 ?

static_cast<Size>(
(QL_NUM_OPT_MIN_GRID_POINTS + (residualTime-1.0) *

QL_NUM_OPT_GRID_POINTS_PER_YEAR)): QL_NUM_OPT_MIN_GRID_POINTS);
}

This class has the following method definitions:

FiniteDifferenceOption::FiniteDifferenceOption(Option::Type type,
double underlying, double strike, Spread dividendYield,
Rate riskFreeRate, Time residualTime, double volatility, Size gridPoints)

: SingleAssetOption(type, underlying, strike, dividendYield, riskFreeRate,
residualTime, volatility),

gridPoints_(safeGridPoints(gridPoints, residualTime)),
grid_(gridPoints_), initialPrices_(gridPoints_),
BCs_(2)

{
hasBeenCalculated_ = false;

}

/**********************************************************************************
value : returns price of option using finite differences
[in] :  none
[out]:  double : value
**********************************************************************************/
double FiniteDifferenceOption::value() const
{

if (!hasBeenCalculated_)
calculate();

return value_;
}

/**********************************************************************************
delta : returns delta of option using finite differences
[in] :  none
[out]:  double : delta
**********************************************************************************/
double FiniteDifferenceOption::delta() const
{

if (!hasBeenCalculated_)
calculate();

return delta_;
}
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/**********************************************************************************
gamma : returns gamma of option using finite differences
[in] :  none
[out]:  double : gamma
**********************************************************************************/
double FiniteDifferenceOption::gamma() const
{

if(!hasBeenCalculated_)
calculate();

return gamma_;
}

/**********************************************************************************
setGridLimits : sets grid limits of minimum and maximum sizes
[in] : double center : value of center
[out]: void
**********************************************************************************/
void FiniteDifferenceOption::setGridLimits(double center, double timeDelay) const
{

center_ = center;
double volSqrtTime = volatility_*sqrt(timeDelay);
// the prefactor fine tunes performance at small volatilities
double prefactor = 1.0 + 0.02/volSqrtTime;
double minMaxFactor = exp(4.0 * prefactor * volSqrtTime);
sMin_ = center_/minMaxFactor; // underlying grid min value
sMax_ = center_*minMaxFactor; // underlying grid max value
// insure strike is included in the grid
double safetyZoneFactor = 1.1;
if(sMin_ > strike_/safetyZoneFactor)
{

sMin_ = strike_/safetyZoneFactor;
// enforce central placement of the underlying
sMax_ = center_/(sMin_/center_);

}
if(sMax_ < strike_*safetyZoneFactor){

sMax_ = strike_*safetyZoneFactor;
// enforce central placement of the underlying
sMin_ = center_/(sMax_/center_);

}
}

/**********************************************************************************
initializeGrid : initializes grid and grid spacing
[in] : none
[out]: void
**********************************************************************************/
void FiniteDifferenceOption::initializeGrid() const
{

gridLogSpacing_ = (log(sMax_)-log(sMin_))/(gridPoints_-1);
double edx = exp(gridLogSpacing_);
grid_[0] = sMin_;
Size j;
for (j=1; j<gridPoints_; j++)
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grid_[j] = grid_[j-1]*edx;
}

/**********************************************************************************
initializeGridCondition : sets grid initial conditions
[in] : none
[out]: void
**********************************************************************************/
void FiniteDifferenceOption::initializeInitialCondition() const
{

Size j;
switch (type_)
{

case Option::Call:
for(j = 0; j < gridPoints_; j++)

initialPrices_[j] = max(grid_[j]-strike_,0.0);
break;

case Option::Put:
for(j = 0; j < gridPoints_; j++)

initialPrices_[j] = max(strike_-grid_[j],0.0);
break;

default:
throw Error(“FiniteDifferenceOption: invalid option type”);

}
}

/**********************************************************************************
initializeOperator : initializes boundary condition operator
[in] : none
[out]: void
**********************************************************************************/
void FiniteDifferenceOption::initializeOperator() const
{

finiteDifferenceOperator_ = BlackScholesOperator(gridPoints_,
gridLogSpacing_, riskFreeRate_, dividendYield_, volatility_);

BCs_[0] = Handle<BoundaryCondition>(
new NeumannBC(initialPrices_[1]-initialPrices_[0], BoundaryCondition::Lower));

BCs_[1] = Handle<BoundaryCondition>(
new NeumannBC(initialPrices_[gridPoints_-1] - initialPrices_[gridPoints_-2],

BoundaryCondition::Upper));
}

Additionally, we can create a more specific FiniteDifferenceEuropean class to
value European options:

// Example of European option calculated using finite differences
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class FiniteDifferenceEuropean : public FiniteDifferenceOption
{

public:
FiniteDifferenceEuropean(Option::Type type,

double underlying,
double strike,
double dividendYield,
double riskFreeRate,
double residualTime,
double volatility,
long timeSteps = 200,
long gridPoints = 800);

Array getPrices() const;
Handle<SingleAssetOption> clone() const{

return Handle<SingleAssetOption>( new FiniteDifferenceEuropean(*this));
}
inline Array getPrices() const{

value();
return euroPrices_;

}
protected:

void calculate() const;
private:

Size timeSteps_;
mutable Array euroPrices_;

};

The class has the following method definitions:

using FiniteDifferences::valueAtCenter;
using FiniteDifferences::firstDerivativeAtCenter;
using FiniteDifferences::secondDerivativeAtCenter;

FiniteDifferenceEuropean::FiniteDifferenceEuropean(Option::Type type,
double underlying, double strike, double dividendYield,
double riskFreeRate, double residualTime, double volatility,
Size timeSteps, Size gridPoints)

: FiniteDifferenceOption(type, underlying, strike, dividendYield,
riskFreeRate, residualTime, volatility, gridPoints),
timeSteps_(timeSteps), euroPrices_(gridPoints_) {}

/**********************************************************************************
calculate : compute European prices using finite difference
[in]  : none
[out] : void
**********************************************************************************/
void FiniteDifferenceEuropean::calculate() const
{

setGridLimits(underlying_, residualTime_);
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initializeGrid();
initializeInitialCondition();
initializeOperator();

FiniteDifferences::StandardFiniteDifferenceModel
model(finiteDifferenceOperator_,BCs_);

euroPrices_ = initialPrices_;

// solve
model.rollback(euroPrices_, residualTime_, 0, timeSteps_);

value_ = valueAtCenter(euroPrices_);
delta_ = firstDerivativeAtCenter(euroPrices_, grid_);
gamma_ = secondDerivativeAtCenter(euroPrices_, grid_);

hasBeenCalculated_ = true;
}

where the computation methods are:

namespace FiniteDifferences
{

/******************************************************************************
valueAtCenter: : returns the middle or average option value
[in] Array& a : array of option grid prices
[out] double : value of center price
******************************************************************************/
double valueAtCenter(const Array& a)
{

Size jmid = a.size()/2;
if (a.size() % 2 == 1)

return a[jmid];
else

return (a[jmid]+a[jmid-1])/2.0;
}

/******************************************************************************
firstDerivativeAtCenter : returns the first derivative (delta)
] Array& a : array of option prices
Arrary& g : array of stock prices
[out] double : first derivative at center value
******************************************************************************/
double firstDerivativeAtCenter(const Array& a, const Array& g)
{

QL_REQUIRE(a.size()==g.size(), “firstDerivativeAtCenter:” “a and g must be of
the same size”);

QL_REQUIRE(a.size()>=3, “firstDerivativeAtCenter:”  “the size of the two vectors
must be at least 3”);
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Size jmid = a.size()/2;
if(a.size() % 2 == 1)

return (a[jmid+1]-a[jmid-1])/(g[jmid+1]-g[jmid-1]);
else

return (a[jmid]-a[jmid-1])/(g[jmid]-g[jmid-1]);
}

/******************************************************************************
secondDerivativeAtCenter : returns the second derivative (gamma)
[in]  Array& a : array of option prices

Array& g : array of stock prices
[out] double : second derivative at center value
******************************************************************************/
double secondDerivativeAtCenter(const Array& a, const Array& g)
{

QL_REQUIRE(a.size()==g.size(), “secondDerivativeAtCenter:” “a and g must be of
the same size”);

QL_REQUIRE(a.size()>=4, “secondDerivativeAtCenter:” “the size of the two
vectors must be at least 4”);

Size jmid = a.size()/2;
if(a.size() % 2 == 1)
{

double deltaPlus = (a[jmid+1]-a[jmid])/(g[jmid+1]-g[jmid]);
double deltaMinus = (a[jmid]-a[jmid-1])/(g[jmid]-g[jmid-1]);
double dS = (g[jmid+1]-g[jmid-1])/2.0;
return (deltaPlus-deltaMinus)/dS;

}
else{

double deltaPlus = (a[jmid+1]-a[jmid-1])/(g[jmid+1]-g[jmid-1]);
double deltaMinus = (a[jmid]-a[jmid-2])/(g[jmid]-g[jmid-2]);
return (deltaPlus-deltaMinus)/(g[jmid]-g[jmid-1]);

}
}

// default choice for finite-difference model
typedef FiniteDifferenceModel<CrankNicolson<TridiagonalOperator>

StandardFiniteDifferenceModel;

// default choice for step condition
typedef StepCondition<Array> StandardStepCondition;

}

Finally, we can create a FiniteDifferenceStepCondition class that evaluates the
option price at each time step it rolls back through the lattice:

// option executing additional code at each time step
class FiniteDifferenceStepCondition : public FiniteDifferenceOption
{

protected:
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// constructor
FiniteDifferenceStepConditionOption(Option::Type type, double underlying,

double strike,
double dividendYield, Rate riskFreeRate,
Time residualTime, double volatility,
int timeSteps, int gridPoints);

void calculate() const;
virtual void initializeStepCondition() const = 0;
mutable Handle<FiniteDifferences::StandardStepCondition > stepCondition_;
int timeSteps_;

};

The class has the following method definitions:

using FiniteDifferences::StandardStepCondition;
using FiniteDifferences::StandardFiniteDifferenceModel;
using FiniteDifferences::valueAtCenter;
using FiniteDifferences::firstDerivativeAtCenter;
using FiniteDifferences::secondDerivativeAtCenter;

FiniteDifferenceStepConditionOption::FiniteDifferenceStepConditionOption(Option::
Type type, double underlying, double strike, double dividendYield, Rate
riskFreeRate, Time residualTime, double volatility, int timeSteps, int
gridPoints)

: FiniteDifferenceOption(type, underlying, strike, dividendYield, riskFreeRate,
residualTime, volatility, gridPoints),
timeSteps_(timeSteps) {}

/**********************************************************************************
calculate : computes the option value using control variates and greeks
[in] : none
[out]: void
*********************************************************************************/

void FiniteDifferenceStepConditionOption::calculate() const
{

setGridLimits(underlying_, residualTime_);
initializeGrid();
initializeInitialCondition();
initializeOperator();
initializeStepCondition();
// StandardFiniteDifferenceModel is Crank-Nicolson.
// Alternatively, ImplicitEuler or ExplicitEuler
// could have been used instead
StandardFiniteDifferenceModel model(finiteDifferenceOperator_, BCs_);

// Control-variate variance reduction:
// (1) calculate value/greeks of the European option analytically
EuropeanOption analyticEuro(type_, underlying_, strike_,
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dividendYield_, riskFreeRate_, residualTime_, volatility_);

// (2) Initialize prices on the grid
Array europeanPrices = initialPrices_;
Array americanPrices = initialPrices_;

// (3) Rollback
model.rollback(europeanPrices, residualTime_, 0.0, timeSteps_);
model.rollback(americanPrices, residualTime_, 0.0, timeSteps_, stepCondition_);

// (4) Numerically calculate option value and greeks using
// the european option as control variate

value_ = valueAtCenter(americanPrices) - valueAtCenter(europeanPrices) +
analyticEuro.value();

delta_ = firstDerivativeAtCenter(americanPrices, grid_) -
firstDerivativeAtCenter(europeanPrices, grid_)

+ analyticEuro.delta();

gamma_ = secondDerivativeAtCenter(americanPrices, grid_)
- secondDerivativeAtCenter(europeanPrices, grid_)
+ analyticEuro.gamma();

hasBeenCalculated_ = true;
}

We can price a European option with this implicit difference implementation
using the following code segment:

// define parameters
double price = 50;
double strike = 50;
double vol = 0.20; 
double rate = 0.06;
double div = 0.03;
double T = 0.05;
int M = 200;
int N = 800;

Instruments::VanillaOption option(
price,strike,vol,rate,div,T,Option::Call,Option::Exercise::European,
Handle<QuantLib::PricingEngine>(new PricingEngines::EuropeanBinomialEngine()));

// run implicit difference method
option.setPricingEngine(Handle<PricingEngine>(

new PricingEngines::FiniteDifferenceEngine(price,strike,vol,rate,
div,T, Option::Call, Option::Exercise::European,
PricingEngines::FiniteDifferenceEngine::MethodType::ImplicitDifference, M, N,
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FiniteDifferenceMethod::BoundaryConditions::Dirichlet)));

std::cout << “value” << “ ” << option.engine_->calculate() << endl;

// run explicit difference method
option.setPricingEngine(Handle<PricingEngine>(

new PricingEngines::FiniteDifferenceEngine(price,strike,vol,rate,
div,T, Option::Call, Option::Exercise::American,
PricingEngines::FiniteDifferenceEngine::MethodType::ExplicitDifference, N, M,
FiniteDifferenceMethod::BoundaryConditions::Dirichlet)));

std::cout << “value” << “ ” << option.engine_->calculate() << endl;

Running this code, we find the implicit difference price is $4.5677 and the explicit
difference price is $4.5676, which shows that both methods convergence to the tri-
nomial diffusion process discussed in section 5.2 since the convergence properties
in section 4.5 are satisfied.

5.7 ITERATIVE METHODS

The LU method is a direct method for solving a linear system as in equation (5.16)
if the objective is to find the unknowns exactly and in one pass. An alternative ap-
proach is to employ an iterative method. Iterative methods differ from direct meth-
ods in that one starts with an initial guess for the solution and successively
improves it until it converges to the exact solution (or close enough to the exact so-
lution). A direct method obtains a solution without any iterations. While iterative
methods are slower than direct methods, they do have the advantage that they are
easier to program and that they generalize in a straightforward way to American
option problems and nonlinear models.1

The successive overrelaxation (SOR) method is a type of iterative method. The
SOR is a refinement of the Gauss-Seidel method, another iterative method, which
in turn is a development of the Jacobi method. All three iterative methods rely
on the fact that equation (5.14) (for a simple diffusion process) can be written in
the form

(5.29)

The idea behind the Jacobi method is to take some initial guess for ui+1, j for N – + 1
≤ j ≤ N+ – 1 (a good initial guess is the values of u from the previous step, i.e., ui, j).

u b u ui j i j i j i j+ + − + +=
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Then one substitutes this value into equation (5.29) to generate a new guess for 
ui+1 , j (on the left-hand side). The process is repeated until the approximations
cease to change (the error is less than a specified value). Once this happens, a solu-
tion is found.

More formally, the Jacobi method works as follows. Let uk
i+1, j denote the kth it-

erate for ui+1, j . This initial guess given by u0
i+1, j and as k → ∞, we expect uk

i+1, j → ui+1, j.
Thus, given u k

i+1, j, we calculate uk+1
i+1, j using a modified version of equation (5.29):

(5.30)

The entire process is repeated until the error measured by the norm

becomes sufficiently small so that we then take the uk+1
i+1, j as the value for ui+1, j . The

method converges for any α > 0.
The Gauss-Seidel method improves on the Jacobi method by using the fact that

when we compute uk+1
i+1, j in equation (5.30) we already know uk+1

i+1, j–1.Thus, we use
uk +1

i+1, j–1 instead of uk
i+1, j–1 so that we use an updated guess immediately when it be-

comes available (the Jacobi method uses updated guesses only when they are all
available).2 The Gauss-Seidel method given by

(5.31)

where α = ∆t/(∆x)2.
Since the Gauss-Seidel method uses the most recent information when it be-

comes available, it converges more rapidly than the Jacobi method and is therefore
more computationally efficient.

The SOR method is a refinement of the Gauss-Seidel algorithm and converges
to the correct solution if α > 0. First, notice the (seemingly trivial) observation that

uk+1
i+1, j = uk

i+1, j + (uk+1
i+1, j – uk

i+1, j)

As the sequence converges as k → ∞ one can think of (uk+1
i+1,j – uk

i+1,j) as a correction
term to be added to uk

i+1, j to bring it closer to the exact value of ui+1, j. The possibility
exists that the sequence will converge more rapidly if we overcorrect, which holds
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true if the sequence of iterates uk
i+1, j → ui+1, j monotonically as k increases, rather

than oscillating.3 Thus, if set

(5.32)

uk+1
i+1, j = uk

i+1, j + ω(zk+1
i+1, j – uk

i+1, j)

where ω > is the overcorrection or overrelaxation parameter. (Note that zk+1
i+1, j is the

value that the Gauss-Seidel method would give for uk+1
i+1, j, whereas in the SOR we

view the term zk+1
i+1, j – uk

i+1, j as a correction to be made to uk
i+1, j in order to obtain

uk+1
i+1, j .) It can be shown that the SOR method converges to the correct solution in

equation (5.14) if α > 0 and provided 0 < ω < 2. When 0 < ω < 1, the method is re-
ferred to as underrelaxation in contrast to overrelaxation, which is used for 1 < ω <
2. It can be shown that there is an optimal value of ω in the interval 1 < ω <2,
which leads to a much more rapid convergence than other values of ω.4 The opti-
mal value of ω depends on the dimension of the matrix involved and, more gener-
ally, on the details of the matrix (i.e., rank, sparseness, etc.). It is often much
quicker to change ω each time step until a value is found (that minimizes the num-
ber of iterations of the SOR loop) than to estimate the optimal value of ω.5

The following is an implementation of the SOR technique:

/**********************************************************************************
SOR :  solve tridiagonal system with SOR technique
[in]   Array& rhs : initial guess for solution

double tol : error tolerance
[out]  Array : solution of tridiagonal system
**********************************************************************************/
Array TridiagonalOperator::SOR(const Array& rhs, double tol) const
{

QL_REQUIRE(rhs.size()==size(), “TridiagonalOperator::solveFor: rhs has the wrong
size”);

// initial guess
Array result = rhs;

// solve tridiagonal system with SOR technique
Size sorIteration, i;
double omega = 1.5; // omega
double err=2.0*tol; // error
double temp; // temporarily stores SOR values

for (sorIteration=0; err>tol ; sorIteration++)
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{
QL_REQUIRE(sorIteration<100000,

“TridiagonalOperator::SOR: tolerance [“ + DoubleFormatter::toString(tol) +
”] not

reached in “ + IntegerFormatter::toString(sorIteration) + ” iterations.
The error still is “

+ DoubleFormatter::toString(err));

err=0.0;
for (i = 1; i < size()-2 ; i++)
{

temp = omega * (rhs[i] - upperDiagonal_[i] * result[i+1]-
diagonal_[i] * result[i] - lowerDiagonal_[i-1] * result[i-1]) /

diagonal_[i];
err += temp * temp;
result[i] += temp;

}
}
return result;

}

5.8 CRANK-NICOLSON SCHEME

The Crank-Nicolson is a type of finite-difference scheme that is used to overcome
the stability limitations imposed by the stability and convergence restrictions of the
explicit finite-difference scheme. The Crank-Nicolson converges faster than the im-
plicit and explicit finite-difference schemes. The rate of convergence of the Crank-
Nicolson scheme is O((∆t)2) whereas it is O((∆t)) for the implicit and explicit
finite-difference methods.

Essentially, the Crank-Nicolson method is an average of the implicit and 
explicit methods. Consider a simple diffusion equation. If we use a forward-
difference approximation for the time partial derivative, we obtain the explicit
scheme:

and if we take the backward difference we get the implicit scheme:
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Taking the average of these two equations, we get:6

(5.33)

Ignoring the error terms, we get the Crank-Nicolson scheme:

(5.34)

where α = ∆t /(∆x)2. Notice that ui+1, j–1, ui+1, j , and ui+1, j+1 are now determined im-
plicitly in terms of ui, j, ui, j+1, and ui, j–1. Equation (5.34) can be solved in the same
manner as the implicit scheme in equation (5.7) since everything on the right-hand
side can be evaluated explicitly if the ui, j’s are known. Denote the left-hand side of
(5.34) by Zi, j. The problem of solving (5.28) reduces to first computing

(5.35)

which is an explicit formula for Zi, j, and then solving

(5.36)

We can write (5.36) as a linear system:

Aui+1 = bi (5.37)

where the matrix A is given by

(5.38)
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and the vectors ui+1 and bi are given by

(5.39)

The vector on the far right-hand side of (5.39), in bi, comes from the boundary con-
ditions applied at the end points of a finite mesh where x = N–∆x and x = N+∆x. N–

and N+ are integers, chosen to be sufficiently large that no significant errors are in-
troduced.

To implement the Crank-Nicolson scheme, we first generate the vector bi using
known quantities. Then we use either an LU decomposition solver or an SOR
solver to solve the system (5.37). The scheme is both stable and convergent for all
values of α > 0.

We can apply the Crank-Nicolson scheme to the Black-Scholes diffusion equa-
tion by replacing time and space derivatives with finite differences centered at the
time step i + 1/2.

which can be written as:

puui, j+1 + pmui, j + pdui, j–1 = –puui+1, j+1 –(pm –2)ui+1, j – pdui+1, j–1 (5.40)

where

(5.41)
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We can write (5.40) in the form in (5.35). First, set

Zi, j = puui, j+1 + pmui, j + pdui, j–1

and then solve

–puui+1, j+1 –(pm –2)ui+1, j –pd ui+1, j–1 = Zi, j

using an LU decomposition.
The following is an implementation for the Crank-Nicolson scheme:

/**********************************************************************************
solveCrankNicolson: values an option using the Crank Nicolson scheme in (5.39)
[in]:   double price : asset price

double strike : strike price
double vol : volatility
double rate : risk-free rate
double div : dividend yield
double T : maturity
int N : number of time steps
int M : number of space steps
char type : (C)all or (P)ut

[out] : double option price

**********************************************************************************/
double CrankNicolson::solveCrankNicolson(double price, double strike, double T,

double vol, double rate, double div, long M, long N, char type)
{

double b[50] = {0.0}; // vector of Z(i,j)’s
double c1[50] = {0.0};
double d[50] = {0.0};
double x[100] = {0.0};
double dx = 0.0; // state step size
double drift = rate - div - vol*vol/2; // drift rate
double pu, pm, pd; // risk neutral probabilities
int i, j;
double a = 0.0;
double deltat = T/N; // time step size
cout.setf(ios::showpoint);
cout.precision(2);

dx = vol*sqrt(3*deltat/2);
// we multiply by 0.5 because we are using Crank-Nicolson
a = 0.5*(deltat/(dx*dx));

// compute probabilities
pu = -0.5*deltat*((vol*vol)/(dx*dx) + drift/dx);
pm = 1 + deltat*(vol*vol/(dx*dx)) + rate*deltat;

238 FINITE-DIFFERENCE METHODS



pd = -0.5*deltat*((vol*vol)/(dx*dx) - drift/dx);

// calculate coefficients
for (j = -M; j <= M; j++)
{

S[N][j] = price*exp(j*dx);
S[0][j] = price;

}

// compute stock prices
for (i = 1; i < N; i++)
{

for (j = -M; j <= M; j++)
S[i][j] = S[i-1][j]*exp(j*dx);

}

// calculate payoffs
if (type == ‘P’)
{

for (j = -M; j <= M; j++)
{

P[N][j] = max(strike - S[N][j],0);
}
// calculate boundary conditions
for (i = 0; i < N; i++)
{

P[i][-M] = P[i][-M+1] + 1*(S[i][-M+1]-S[i][-M]); // derivative boundary 
// condition

P[i][M] = 0;
}

}
else // if type == ‘C’
{

// calculate boundary conditions
for (j = -M; j <= M; j++)
{

P[N][j] = max(S[N][j] - strike,0);
}

// calculate boundary conditions
for (i = 0; i < N; i++)
{

P[i][-M] = 0;
P[i][M] = P[i][M-1] + (S[i][M] - S[i][M-1]); // derivative boundary condition

}
}

for (j = -M+1; j < M; j++)
b[j] = (1-a)*P[N][j] + a*(P[N][j+1] + P[N][j-1]);

b[-M+1]= b[-M+1] + a*P[N][-M];
b[M-1] = b[M-1] + a*P[N][M];

5.8 Crank-Nicolson Scheme 239



solveCNTridiagonal(N,M,pu,pm,pd,d,c1,b,type,strike);

// print out mesh
for (i = 0; i <= N; i++)

cout << “ “ << T - deltat*i ;
cout << “\n\n” << endl;

for (j = M; j >= -M; j--)
{

cout << “ “ << S[N][j];
for (i = 0; i <= N; i++)
{

cout << “ “ << endl;
if (j != -M)

cout << “ “ <<P[i][j];
else
cout << “ “ << P[N][-M];
cout << “\n”;

}
}
cout << “\n” << endl;

return P[0][0];
}

/**********************************************************************************
solveCNTridiagonal : solves the Crank Nicolson tridiagonal system of equations
[in]:   int N : number of time steps

int M : number of state steps
double pu : up probability
double pm : middle probability
double pd : down probability
double* d: : array used in solving tridiagonal system
double* c1: : array used in solving tridiagonal system
double* d1: : array of Z(i,j)’s
char type : (C)all or (P)ut
double strike : strike price

[out] : double : option price
**********************************************************************************/
void CrankNicolson::solveCNTridiagonal(int N, int M, double pu, double pm, double

pd, double *d, double *c1, double *d1, char type, double strike)
{

int i,j;

for (j = -M; j <= M; j++)
d[j] = P[N][j];

// set values at boundary points
d1[-M] = d[-M]/pm;
d1[-M+1] = d[-M+1]/pm;
c1[-M] = pd/pm;
c1[-M+1] = pd/pm;
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for (j = -M+1; j <= M-2; j++)
c1[j+1] = pd/(pm - pu*c1[j]);

for (j = -M+1; j <= M-1; j++)
d1[j+1] = (d[j+1] - pu*d1[j-1])/(pm - pu*c1[j]);

// solve tridiagonal system
for (i = N-1; i >= 0; i--)
{

for (j = -M+1; j <= M-1; j++)
{

if (i != N-1)
d[j] = P[i+1][j];

if (j == -M+1)
d1[-M+1] = d[-M+1]/pm;

d1[j+1] = (d[j+1] - pu*d1[j-1])/(pm - pu*c1[j]);

P[i][-j] = d1[-j] - c1[-j]*P[i][-j+1];

// check early exercise
if (type == ‘P’)
{

if (P[i][-j] < strike - S[N][-j])
P[i][-j] = strike - S[N][-j];

}
else
{

if (P[i][-j] < S[N][-j] - strike)
P[i][-j] = S[N][-j] - strike;

}
}

}
}

5.9 ALTERNATING DIRECTION IMPLICIT METHOD

Finite difference methods, in general, can be extended to handle multiple state vari-
ables. However, if we have 100 grid points in one space dimension, then with two
space dimensions we will have 100 × 100 grid points and thus 100 times as much
computation. Consequently, in order to obtain reasonable computation times,
much smaller grid sizes must be used.
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Consider the case of an option that has a payoff that depends on the values of
two assets, S1 and S2, which both follow geometric Brownian motions:

dS1 = (r – q1)S1dt + σ1S1dz1
dS2 = (r – q2)S2dt + σ2S2dz2

where the assets have a correlation of ρ (i.e., dz1 · dz2 = ρdt).
The PDE that the option on the two assets follows is:

(5.42)

If we try to apply the Crank-Nicolson scheme to equation (5.42), we obtain a system
of (2Nj – 1)(2Nk – 1) linear equations where Nj and Nk are the number of nodes on ei-
ther side of the current level of S1 and S2, respectively. Together with the 2(2Nj – 1) +
2(2Nk + 1) boundary conditions we have a system of (2Nj – 1)(2Nk – 1) linear equa-
tions for the (2Nj – 1)(2Nk – 1) unknown option values.7 The result matrix no longer
has a simple tridiagonal structure and must be solved using sparse matrix methods; see
Press et al. (1992). The alternating direction implicit (ADI) method allows one to over-
come this problem. It is an adaptation of the Crank-Nicolson scheme that allows one
to obtain simple tridiagonal matrices.

We follow Clewlow and Strickland (1998a) in the following discussion. To use
the ADI, we first transform equation (5.42) into a standard diffusion equation with
constant coefficients. We transform by setting x1 = ln(S1) and x2 = ln(S2), which
gives the following PDE:

(5.43)
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Second, since the ADI cannot handle mixed second-order derivatives, we must
transform to uncorrelated space variables. We can achieve this by doing an eigen-
vector-eigenvalue decomposition on the covariance matrix of x1 and x2:

The eigenvectors give the linear combination of x1 and x2, which are uncorrelated.
Under this transformation, we get the PDE

(5.44)

where
(5.45)

(5.45)

and dw1 and dw2 are uncorrelated Brownian motions.
To simplify the problem, we will get rid of the left-hand zero term, rf, in equa-

tion (5.44) and first-order terms

through the transformation

f (y1, y2, t) = exp(a1y1 + a2y2 + a3t)U(y1, y2, t) (5.46)

to equation (5.39). Setting the coefficients of the zeroth and first-order terms to
zero, we get

(5.47)

and

a a a r1
1

1
2

2

2
3

1
2

1

2
2

22 2
= − = − = + +α

λ
α
λ

α
λ

α
λ

, ,

− ∂
∂

= ∂
∂

+ ∂
∂

U
t

U

y

U

y

1
2

1
21

2

1
2 2

2

2
2

λ λ

α α1
1

2
1

∂
∂

+ ∂
∂

f
y

f
y

y v x v x

y v x v x

v v

v v

dy dt dw

dy dt dw

1 11 1 12 2

2 21 1 22 2

1 11 1 12 2

2 21 1 22 2

1 1 1 1

2 2 2 2

= +
= +
= +
= +

= +

= +

α µ µ
α µ µ

α λ

α λ

rf
f
t

f
y

f
y

f

y

f

y
= ∂

∂
+ ∂

∂
+ ∂

∂
+ ∂

∂
+ ∂

∂
α α λ λ1

1
2

2
1

2

1
2 2

2

2
2

1
2

1
2

v v

v v

v v

v v
11 12

21 22

1

2

11 21

12 22

1
2

1 2

1 2 2
2

0

0



















=











λ
λ

σ ρσ σ

ρσ σ σ

5.9 Alternating Direction Implicit Method 243



Finally, we transform so that the coefficients on the second-order terms in
equation (5.42) are equal by setting:

(5.48)

which yields:

(5.49)

The ADI can be applied to equation (5.44), which is a two-dimensional diffu-
sion equation. The ADI replaces the partial derivatives by their Crank-Nicolson-
style finite-difference approximations in two stages. In the first stage, the
derivatives with respect to y1 are replaced by finite-difference approximations at
time step i + 1/2, while the derivatives with respect to y ′2 are approximated by fi-
nite differences at time step i + 1. Thus, the ADI reduces to the following finite-
difference equation:

(5.50)

(5.50)

which can be rewritten as

(5.51)

where

p
y

p
t y

p
y

u

m

d

=

= − −

=

λ

λ

λ

1

1
2

1

1
2

1

1
2

2

2

2

∆

∆ ∆

∆

p U p U p U
t
U

U U U

y

u i j k m i j k d i j k i j k

i j k i j k i j k

+ + + + − +

+ + + + −

+ + = −

−
− +

′

( )









1 2 1 1 2 1 2 1 1

1
1 1 1 1 1

2

1

2

2

2
2

/ , , / , , / , , , ,

, , , , , ,

∆

∆
λ

−
−

=
− +

+
− +

′

+ +

+ + + + − + + + + −( ) ( )









U U

t

U U U

y

U U U

y

i j k i j k

i j k i j k i j k i j k i j k i j k

1 1 2

1
1 2 1 1 2 1 2 1

1
2

1 1 1 1 1

2
2

1

2

1

2

2 2

, , / , ,

/ , , / , , / , , , , , , , ,

∆

∆ ∆
λ

− ∂
∂

= ∂
∂

+ ∂
∂ ′











U
t

U

y

U

y

1
2 1

2

1
2

2

2
2

λ

′ =y y2
1

2
2

λ
λ

244 FINITE-DIFFERENCE METHODS



and i denotes the time step, j denotes the state of asset 1, and k denotes the state of
asset 2.

In the second stage, the derivatives with respect to y′2 are replaced by finite-
difference approximations at time step i, while the derivatives with respect to y1 are
approximated by finite differences at time step i + 1/2. This gives to the following 
finite-difference equation:

(5.52)

(5.52)

which can be rewritten as

(5.53)

(5.53)

where p
y

p
t y

p
y

u

m

d

=
′

= − −
′

=
′

λ

λ

λ

1

2
2

1

2
2

1

2
2

2

2

2

∆

∆ ∆

∆

p U p U p U
t
U

U U U

y

u i j k m i j k d i j k i j k

i j k i j k i j k

, , , , , , / , ,

/ , , / , , / , ,

+ − +

+ + + + −

+ + = −

−
− +( )

′











1 1 1 2

1
1 2 1 1 2 1 2 1

2
2

2

1
2

2

∆

∆
λ

−
−

=
− +( )

+
− +( )

′











+

+ + + + − + −

U U

t

U U U

y

U U U

y

i j k i j k

i j k i j k i j k i j k i j k i j k

1 2

1
1 2 1 1 2 1 2 1

1
2

1 1

2
2

1
2

1
2

2 2

/ , , , ,

/ , , / , , / , , , , , , , ,

∆

∆ ∆
λ

5.9 Alternating Direction Implicit Method 245



CHAPTER 6
Exotic Options

Certain derivatives, such as Asian options, barrier options, and lookback options,
have payoffs that are dependent on the entire price path of the underlying secu-

rity. These derivatives are known as path-dependent since they cannot be valued an-
alytically, and hence are dependent on the entire path of the security from (S, t) to
(ST , T ). If St is the value of the underlying security at time t, then the payoff of a
path-dependent derivative at time T is F({St , t0 ≤ t ≤ T}).

In general, simple analytical formulas do exist for certain classes of exotic op-
tions, these options being classified by the property that the path-dependent condi-
tion applies to the continuous path. Those exotic options, such as lookback and
Asian options where usually the path-dependent condition is observed at discrete
fixing or stopping times, either have complicated formulas or cannot be valued ana-
lytically. However, we can value these securities using Monte Carlo simulations and
trees when such closed-formula solutions are nonexistent. There are European path-
dependent options that are contingent on the entire path from (S, t) to (ST , T) but
are paid only at maturity T, American path-dependent options where the option
holder can exercise prior to maturity, as well as Bermudan path-dependent options
that are exercisable only on specified discrete exercise dates.

In section 6.1, we discuss barrier options and provide analytical solutions. In sec-
tion 6.2, we provide an implementation for an up-and-out American barrier put op-
tion. In section 6.3, we discuss Asian options. In section 6.4, we discuss pricing Asian
options with geometric averaging, while in section 6.5, we discuss pricing Asian op-
tions with arithmetic averaging. In section 6.6, we discuss pricing seasoned Asian op-
tions. We devote section 6.7 to discussing lookback options. In section 6.8, an
implementation for pricing a floating-strike lookback put option is given, while section
6.9 gives an implementation for pricing a fixed-strike lookback put option.

6.1 BARRIER OPTIONS

Barrier options are standard call or put options except that they disappear
(knock-out) or appear (knock-in) if the asset price crosses a predetermined bar-
rier B at a predetermined set of fixing dates ti, i = 1, . . . , n. Sometimes a barrier
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option contains a provision that in the event the barrier is hit a rebate R is paid
to the option holder to mitigate the loss of the option. There are actually eight
types of barrier options classified by type of option payoff (call or put), whether
the barrier is below or above the current asset price (“down” or “up”), and
whether the option disappears or appears when the barrier is crossed (“out” or
“in”). Table 6.1 summarizes the barrier types, where 1A is the indicator function
for condition A.

Because of the probability of the option disappearing at one of the fixed
dates for a knock-out barrier or the probability of an option not appearing on
one of the fixed dates for a knock-in barrier, barrier options are cheaper than
standard options. The cheaper premium makes barriers attractive to risk man-
agers who want to reduce their hedging costs. However, barrier options have a
hedging problem: At the barrier, delta is discontinuous and gamma tends to in-
finity. Thus, barrier options become almost unhedgeable when the price nears
the barrier.

It turns out that we can actually price a down-and-out call analytically. We
need to solve the Black-Scholes PDE:

subject to the payoff condition:

f(ST , T) = max(ST – X, 0)

and an extra boundary condition:

f (B, t*) = 0 for t* ∈ [t, T]
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TABLE 6.1 Barrier Types

Type Payoff

Down-and-out call max(0, ST – K)1min(Sti
, . . . ,Stn

)>B

Up-and-out call max(0, ST – K)1max(Sti
, . . . ,Stn

)<B

Down-and-in call max(0, ST – K)1min(Sti
, . . .,Stn

)≤B

Up-and-in call max(0, ST – K)1max(Sti
, . . . ,Stn

)≥B

Down-and-out put max(0, K – ST)1min(Sti
, . . . ,Stn

)>B

Up-and-out put max(0, K – ST)1max(Sti
, . . . ,Stn

)<B

Down-and-in put max(0, K – ST)1min(Sti
, . . . ,Stn

)≤B

Up-and-in put max(0, K – ST)1max(Sti
, . . . ,Stn

)≥B



This boundary condition sets the option price to 0 at the down-and-out barrier
S = B. Denote a down-and-out call price with the barrier B by CB(S, t). The solution
to the preceding boundary value problem can be written in the form:

(6.1)

where 1{mt,T >B} is an indicator function that is equal to 1 if the minimum underlying
price achieved between the option inception at time t and expiration at date T,

is greater than the barrier B (i.e., the barrier was never hit during the lifetime of
the option), zero otherwise; pB(xT, T | x, t) is the conditional probability density
function of the terminal state xT at time T of the Brownian motion path with
drift, dx = µdt + σdz where µ = r – σ2/2, conditional on (1) the initial state x at
time t and (2) the barrier B not hit during the time interval [t, T]; x = lnS; and xT

= ln ST .
This conditional probability density is also a fundamental solution, Green’s

function, of the heat equation with drift:

(6.2)

where τ = T – t, subject to the boundary condition

pB(xT, T | b, t) = 0, b = lnB

The boundary value problem for the heat equation with drift can be reduced 
to the boundary value problem for the standard heat equation without drift. If
we let
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where p0,B is the Green’s function, and plug it into (6.2), we get the standard heat
equation:

(6.4)

subject to the boundary condition

pB(xT , T | b, t) = 0, b = lnB

This boundary value problem for the heat equation can be solved by either of three
methods: (1) separation of variables, (2) reflection principle (method of images),
and (3) Laplace method.

The result is:

(6.5)

The solution with the drift is:

The first term is the standard probability density and the second is the probability
density conditional on the barrier being hit. The difference is the density condi-
tional on the barrier not being hit.

Substituting this into the integral for the down-and-out call price we have:

(6.6)

(6.6)

The first term is just the Black-Scholes integral and is equal to the Black-Scholes
price:

C(S, t) = SN(d1) – e–r τXN(d2)
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The second integral is calculated similarly to the Black-Scholes integral calculation:

where we recall that b = ln B and x = ln S and let γ = 2µ/σ2 and Q = exp(2b – x) =
B2/S. Putting it all together we arrive at the analytical pricing formula for down-
and-out calls:

(6.7)

where C is the Black-Scholes call formula as a function of the initial price and time.
The first term is a standard vanilla call option and the second term is the discount
for including a knockout provision in the option contract. It is equal to the price of
a down-and-in call, that is,

Closed-form formulas for other barriers are given by Douady (1998) and Hull
(1997). Boyle and Lau (1994) discuss how to price barriers with binomial trees.

Barrier options can be valued using binomial trees, but in general the barrier
will lie between two horizontal layers of nodes. In fact, there are two types of inac-
curacies caused by modeling options on a (binomial) lattice. The first type of inac-
curacy, known as quantization error, is caused by the unavoidable existence of the
lattice itself, which quantizes the asset price so that the asset price is allowed to take
only the values of those points on the lattice.1 Essentially, when one uses a lattice,
one values an option on a stock that moves discretely, which leads to theoretically
correct prices for a stock that actually displays such quantized behavior. Conse-
quently, one must use a lattice with infinitesimal increments to approximate contin-
uous diffusions and thus display real-world stock price movements. However,
Ritchken (1996) notes, “refining the partition size may not necessarily produce
more precise results” and suggests use of a trinomial tree as a better solution.2

The second type of inaccuracy, known as specification error, occurs because of
the inability of the lattice to accurately represent the terms of the option. Once a
lattice is selected, available stock prices are fixed; so if the exercise price or barrier
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2Ritchken (1995), 19–28.



level of the option does not coincide with one of the available stock prices, one has
to effectively move the exercise price or barrier level to the closest stock price avail-
able. Then the option valued on the lattice has contractual terms different from the
actual option—the option is thus misspecified.

Convergence is slow on lattices since a large number of time steps is required
to obtain an accurate value. This can be attributed to the fact that the barrier as-
sumed by the tree is different from the true barrier. The reason for this is because a
tree with a certain number of time steps cannot differentiate between barrier levels
that lie between two rows of nodes. Consequently, the tree will assign option
prices to the nodes nearest to, but not beyond, the barrier that is too high. Typi-
cally, the analytical convergence on a binomial lattice displays a sawtooth pattern
like Figure 6.1.

There are two ways to overcome these problems: (1) position nodes on the bar-
rier or (2) adjust for nodes not lying on barriers.

In the first case, we suppose there are two barriers, an outer barrier B1 and
an inner barrier B2, B1 > B2. In a trinomial tree, there are three possible price
movements at each node: up by a proportional amount u, stay the same, and
down by an amount d = 1/u. We can always choose u so that nodes lie on both
barriers. Following Hull (1997), the condition that must be satisfied by u is B2 =
B1u

N for some integer N so that lnB2 = lnB1 + Nlnu. Typically, trinomial trees are
used where

so that

lnu t= σ 3∆

u e t= σ 3∆
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FIGURE 6.1 Sawtooth Pattern
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Thus, we set

where

The trinomial tree is constructed so that the central node is the initial stock price.
Afterward, the central node of tree becomes B1u

M, where M is the integer that
makes this value as close as possible to the initial stock price, which is

The probabilities on all branches are chosen to match the first two moments of the
distribution followed by the underlying asset.

Furthermore, following Linetsky (1999), suppose one builds a CRR-type trino-
mial tree to approximate the diffusion price process. We know from section 4.3
that

The stretch parameter λ is chosen so that the probabilities are positive. For vanilla
options, the optimal choice is 

For barrier options, we choose λ so that one of the layers of nodes lies exactly on the
barrier so that problems are avoided from errors registered from the barrier-crossing
event. The condition is dnS = B for some positive integer n, n = 1, 2, 3, . . . . That is,
n down jumps from the initial price S put us right on the barrier, and we can register
the barrier-hitting event exactly. Substituting in the formula for d, we have
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and the stretch parameter is selected as follows:

Since there are multiple choices of n that put one of the layers of nodes on the bar-
rier, one selects n such that the resulting λ is as close as possible to the choice

The second approach, similar to that of Derman, Kani, Ergener, and Bardhan,3 ad-
justs for nodes not lying on a horizontal (specified) barrier by (1) calculating the
price of the derivative on the assumption that the lower barrier, known as the mod-
ified barrier, is the true barrier; (2) calculating the value of the derivative on the as-
sumption that the upper barrier E, known as the effective barrier, is the true
barrier; and (3) interpolating between the two prices. The modified barrier is com-
puted as the set of nodes naively computed from a knock-out at the effective bar-
rier, rather than at the specified barrier B. As a result, values on these modified
barrier nodes are larger than they should be since the effective barrier is higher than
the specified barrier. Figure 6.2 shows the modified barrier used for pricing a
knock-out barrier option (the call payoffs on the effective barrier are zero).
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FIGURE 6.2 Modified Barrier
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One can work backward through the tree, calculating two values of the deriva-
tive on the nodes that form the modified lower barrier assuming both the lower and
upper barriers are correct and then computing a final estimate for the derivative on
the inner barrier by interpolating between the two values. The method can also be
computed from the fact the derivative of the option price with respect to the stock
price occurring at the specified barrier B, that is, ∂C/∂S (S, B, t) (the sensitivity at
which a barrier option value grows away from the barrier) can be expanded as a
first-order Taylor series since the barrier is independent of the location of the bar-
rier to first order. As Derman, Kani, Ergener, and Bardhan summarize, “the modi-
fied barrier method is a sort of bootstrap method. You first value the (slightly)
wrong option by backward induction from the wrong (effective) barrier to get (al-
most) right numerical values for the derivative of the true option at all times on its
barrier. You then use these derivatives at each level of the tree in a first-order Taylor
series on the barrier to obtain modified barrier values for the true option. Finally,
you value the correct option by backward induction from the modified barrier.”4

The following is the algorithm from an interpolation point of view:5

1. Value a target option T(S) (i.e., the security the barrier option knocks into—a
security with zero value and that pays no rebate) and the barrier option V(S) at
each node on the tree with the barrier at the effective (upper) barrier. The com-
puted value of V(S) on this modified barrier is then V(D), the value from an un-
enhanced computation.

2. Value T(S) and V(S) with the specified barrier moved down to the modified
(lower) barrier. The value of V(S) on the modified barrier is then exactly T(D),
the value of the target option it knocks into.

3. Replace V(D) on the lower barrier by the value V
~
(D) obtained by interpolating

between V(D) and T(D) according the specified (true) barrier B’s distance from
the effective barrier and the modified barrier:

4. Use backward induction from the modified barrier with V
~
(D) as the boundary

values to find the value of V(S) at all other nodes inside the barrier.

Figure 6.3 shows the modified barrier algorithm interpreted as an interpolation
between the upper and lower barriers.

There are many variations of barrier options that are traded in the market-
place, including double-barrier, double-barrier step, and delayed-barrier options.
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For a detailed analysis of the pricing (using numerical methods), structuring, and
hedging of these barrier types, the interested reader should see Linetsky (1999),
Linetsky and Davydov (2002), Schroder (2000), Rubinstein and Reiner (1991),
Geman and Yor (1996), Rogers and Zane (1997), Taleb (1997), Hui (1997), and
Sidenious (1998).

6.2 BARRIER OPTION IMPLEMENTATION

The following is an implementation for valuing an up-and-out American barrier
put option where S = 50, X = 51, barrier = 56, rebate = 0, r = 0.06, q = 0.01, σ =
0.20, T = 1, and N = 4.

/**********************************************************************************
valueUpAndOutPut : computes the value of an up and out barrier put option

with a Derman-Kani adjustment
[in]: double price : asset price

double strike : strike price
double barrier : barrier price
double rate : risk-free interest rate
double dividend : dividend yield
double vol : volatility
double rebate : rebate if barrier is hit
double T : time to maturity
int N : number of time steps
char exercise : ‘A’merican or ‘E’uropean
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FIGURE 6.3 Interpolation between Upper and Lower Barriers
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[out]:  double : value of up and out put
**********************************************************************************/
double BarrierOption::valueUpAndOutPut(double price, double strike, double barrier,

double rate, double dividend, double vol, double rebate, double T, int N, char
exercise)

{
int i, j; // for counters
double pd; // down probability
double pm; // middle probability
double pu; // up probability
double S[120][100]; // stores stock prices
double p[120][100]; // put prices
double up = 0.0; // up movement
double down = 0.0; // down movement
double dt = T/N; // time step
double drift = rate – dividend – vol*vol/2; // drift rate
double dx = vol*sqrt(3*dt); // state step

// compute risk neutral probabilities
pu = sqrt(dt/12)*(drift/vol) + 0.16667;
pd = -sqrt(dt/12)*(drift/vol) + 0.16667;
pm = 0.666667;
up = exp(dx);
down = 1/up;

// compute the stock price at each node
for (i = N; i >= 0; i--)
{

for (j = -i; j <= i; j++)
{

S[i][j] = price*pow(up,j);
}
}

}
// compute payoff at maturity
for (j = N; j >= -N; j--)
{

if (S[N][j] < barrier)
p[N][j] = strike – S[N][j];

else
p[N][j] = rebate;

}

// compute payoffs at all other time steps
for (i=N-1; i >= 0; i--)
{

for (j=i; j >= -i; j--)
{

if (S[i][j] < barrier)
{

p[i][j] = exp(-rate*dt)*(pu*p[i+1][j+1] + pm*p[i+1][j] + pd*p[i+1][j-
1]);

if (exercise == ‘A’)
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p[i][j]= max(p[i][j],strike-S[i][j]);
else

p[i][j] = rebate;

// Derman Kani adjustment
if ((S[i][j] < barrier) && (S[i][j+1] >= barrier))
{

p[i][j] = (rebate-p[i][j])/(S[i][j+1] – S[i][j])*(barrier – S[i][j]);
}

}
}

}
return p[0][0];

}

The price of the barrier option is approximately $2.91. Figure 6.4 shows the
trinomial tree for the up-and-out barrier put.
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FIGURE 6.4 Trinomial Tree for Up-and-Out Barrier Put
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6.3 ASIAN OPTIONS

An Asian option, also called an average price option, is an option that depends on
the average price of the underlying security during the life of the option. Suppose
the payoff at time T is a function F(ST , At,T) of both the terminal stock price ST and
the average price between t and T: At,T. Then the risk-neutral price at time t of this
path-dependent option can be written as an expectation:

where pQ(ST , At,T ,T | S, t) is a joint (risk-neutral) probability density of the terminal
stock price and the average price over [t, T] conditional on the initial stock price at
time t. If the payoff depends only on the average price and not on ST (as in the aver-
age price options), then

(6.8)

where pQ(At,T , T | S, t) is a density of the average price conditional on S at t. Thus,
our job is to find pQ(ST , At,T , T | S, t) and pQ (At,T , T | S, t). This can be found by
employing the theory of Brownian motion. We will be interested only in pricing av-
erage price calls and puts, so we need only the density pQ(At,T , T | S, t) to derive the
pricing formulas.

6.4 GEOMETRIC AVERAGING

Suppose the averaging is continuous and geometric. Define the geometric aver-
age as:

(6.9)

The geometric average of the product of lognormal random variables is also log-
normal. Thus, pQ(At,T , T | S, t) is a lognormal density. It is quite easy to find the pa-
rameters of the lognormal density based on stochastic processes theory.
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PROPOSITION. pQ(At,T , T | S) is a lognormal density of the Black-Scholes form:
(6.10)

(6.10)

where µA = r – qA – σ2
A/2. The volatility of the continuous geometric average is

and the risk-neutral drift of the continuous geometric average is

where q is the dividend yield on the underlying security. We can use the Black-Scholes
formulas to price geometric average price calls and puts where we need to substitute

for the volatility of the average and

for the effective dividend yield on the geometric average price. This analytic for-
mula is used if the averaging is continuous. If the averaging is taken at certain fix-
ing dates, then the formula becomes:

(6.11)

where

where Gt is the current geometric average and j is the last known fixed date.6
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6.5 ARITHMETIC AVERAGING

In practice, most average price options are priced using arithmetic averaging, not geo-
metric averaging. This creates a problem: An arithmetic average of a set of lognormal
random variables is not itself lognormal. This distribution is quite complicated as it is
expressed through Bessel functions (Geman-Yor formulas). However, there exists a
rather accurate approximation. We can approximate this complicated distribution by
a lognormal distribution, and match the first two moments of the complicated exact
distribution and an approximating lognormal distribution. The resulting approxima-
tion, known as the Turnbull-Wakeman approximation, is quite accurate.

The first moment of the continuous arithmetic average price distribution be-
tween t and T is M1S where7

The second moment of the continuous arithmetic average is M2S
2 where

Equating the first two moments of the lognormal distribution yields:

e(r–qA)S = M1S

and

e(2(r–q)+σ2
A)τ S = M2S

2

Solving for the effective volatility σA and the dividend yield qA of the arithmetic
average yields:

(6.12)

and

(6.13)σ
τA A
M

r q2 2 2= − −ln
( )

q r
M

A = − ln 1

τ

M
e

r q r q r q r q

e

r q

r q r q

2

2

2 2 2 2 2 2

2

2

2 1

2

2

=
− + − +

+
− − +

−
− +











− + −( ( ) ) ( )

( )( ( ) ) ( ) ( ) ( )

σ τ τ

σ σ τ τ σ σ

M
e

r q

r q

1
1= −

−

−( )

( )

τ

τ

260 EXOTIC OPTIONS

7Hull, J. (1997), 466.



We can use the Black-Scholes formula to price Asian average price calls and
puts, where you use the effective average rate volatility σA and dividend yield qA of
the average. We have assumed that the average is taken continuously. In prac-
tice, the average is taken discretely based on daily, weekly, or monthly closing
prices. For daily averaging, continuous averaging provides a good approximation.
For weekly and monthly averaging, one needs to develop formulas for discrete 
averaging.

6.6 SEASONED ASIAN OPTIONS

We need to price an Asian option at time t* inside the averaging interval [t, T] (in
season). The averaging period is composed of two periods: τ1 = t* – t (the time pe-
riod where prices have already been observed) and τ2 = T – t* (the time period in
the future). The average At,T can be represented as the sum of two averages:

Then the payoff for an Asian option can be represented as follows:

(6.14)

where the multiplier and adjusted strike are

Thus, we can price a seasoned Asian option in the same manner as newly written
Asian options using the modified Black-Scholes formula where

for the underlying asset price and X* for the strike, and then we multiply the value
by α.

As shown in section 2.8, we can also value Asian options using Monte Carlo
simulation. For a comparison of analytical and Monte Carlo methods for pricing
Asian options see Fu, Madan, and Wang (1999). See also Geman and Yor (1992),
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Kemma and Vorst (1990), Levy (1990), and Boyle (1991) for a more detailed dis-
cussion for pricing Asian options.

6.7 LOOKBACK OPTIONS

Lookback options are standard calls or puts, except that either the final asset price
or the strike price is set equal to the minimum or maximum asset price observed on
one of a set of predetermined fixing dates ti, i = 1, . . . , N. Denote

and

A fixed-strike lookback call option written at time t gives its holder the right,
but not the obligation, to buy the underlying asset at time T, T > t, at the minimum
price reached on one of the fixing dates, ti, i = 1, . . . , N, between the contract in-
ception t and the option expiration T. The payoff is:

max(mt,T – X, 0) (6.15)

A floating-strike lookback call allows the holder to purchase the stock at the
minimum price achieved on any of the fixing dates during the lifetime of the option.
Thus the payoff is:

max(ST – mt,T, 0) = ST – mt,T ≥  0 (6.16)

A fixed-strike lookback put option gives the holder the right, but not the oblig-
ation, to sell the underlying asset at time T, T > t, at the minimum price reached on
one of the fixing dates, ti, i = 1, . . . , N, between the contract inception t and the
option expiration T. The payoff is:

max(X – mt,T, 0) (6.17)

A floating-strike lookback put option gives the holder the right, but not the
obligation, to sell the underlying asset for the maximum price achieved at any of
the fixing dates from the contract inception t to contract expiration T. The payoff
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to the holder is the difference between the maximum price between t and T and the
price at expiration:

max(Mt,T – ST, 0) = Mt,T – ST ≥ 0 (6.18)

Suppose a lookback expiring at T was written at inception time t0. We can
price (mark to market) at some time t, t0 < t < T. The risk-neutral expectations for
seasoned floating-strike lookback calls and puts are:

CLookback(S, Smin, t) = S – e–rτΕ Q
t,Smin

[mt0 ,T]

and

PLookback(S, Smax, t) = e–rτΕ Q
t,Smax

[Mt0 ,T] – S

We need to calculate the mean of the maximum and minimum prices, both random
variables, of the risk-neutral process between t0 and T. Once the probability densi-
ties for these random variables are calculated, the expectations can be taken and
analytical formulas for floating-strike lookback calls and puts can be derived. It
turns out that the closed-form solution for the call is:

(6.19)

where C(S, t | Smin, T) = e–qτSN(d1) – e–rτSminN(d2),

Note that if pricing a newly written lookback call at contract inception, the initial
stock price, S0, is used in place of Smin.

We can price a floating-strike lookback put similarly:
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where P(S, t | Smax, T) = e–rτSmaxN(–d2) – e–qτSN(–d1),

If pricing a newly written lookback put at contract inception, the initial stock price,
S0, is substituted in place of Smax.

Lookbacks can also be priced numerically by two-state variable binomial or
trinomial trees. We will illustrate by example of a floating-strike lookback put
option. Pricing a lookback in a trinomial tree is similar to pricing a vanilla
(plain) option. We use backward induction. However, when we step back
through the tree, we have to deal with the possibility of more than one maxi-
mum asset price at each node. We store the maximum asset prices achievable on
paths leading to the node. At each interior node, we only store two maximum
values. For each node (i, j) in the upper half of the tree, the maxima are the cur-
rent stock price as well as the maximum reached at node (i – 1, j + 1). We don’t
need to store (i – 1, j) since it is the same as (i, j). For each node in the center or
lower half of the tree, we store the value of the initial asset price (since it is
greater than or equal to all of the lower asset prices at each of nodes as well as
the maximum reached at (i – 1, j + 1)). Once we compute the maximum values
at each node, we can work backward to compute the option values for each
maximum value by taking the discounted expected value of the option (risk-neu-
tral pricing):

fi, j = e–r∆t(pu fi+1, j+1 + pm fi+1, j + pd fi+1, j–1)

If the lookback is American, early exercise is considered by comparing the dis-
counted expected value to the intrinsic value, then taking the higher of both val-
ues. We note that assuming we store the maximum values in ascending order at
each node, the first maximum value will be computed by taking the discounted
value of the first maximum value stored at nodes (i + 1, j + 1) and (i + 1, j), but we
use the second maximum value at (i, j – 1) since it is smaller than this value. The
second maximum value is computed by taking the discounted value of the first
maximum value at node (i, j + 1) and the second (higher) maximum values stored
at nodes (i, j) and (i, j + 1). Working backward in this manner will give us the
value at the first node.
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6.8 IMPLEMENTATION OF FLOATING LOOKBACK OPTION

The following is an implementation of a floating lookback put option with S = 50,
σ = 0.40, r = 0.10, q = 0, and T = 0.25 (3 months), N = 3 (time steps), so that ∆t =
0.08333.

/**********************************************************************************
calcLookBackPutFloatStrike : computes the value of a floating lookback put
[in]  double price : asset price

double rate : risk-free interest rate
double div : dividend yield
double vol : volatility
double T : time to maturity
int N : number of time steps
char exercise : ‘A’merican or ‘E’uropean

[out] double : value of up and out put
**********************************************************************************/
double LookBackOption::calcLookBackPutFloatStrike(double price, double vol, double

rate, double div, double T, int N, char exercise)
{

int i, j;
double pd; // down probability
double pm; // middle probability
double pu; // up probability
double S[100][100]; // stock price at node i, j

struct Node // structure at node i, j
{
double maxima[2]; // stores current and previous maximum prices
double optionPrice[2]; // stores current and previous option prices for 

// max prices
double intrinsicValue; // intrinsic option value at node
double stockPrice; // stock price at node
} node[20][20];

double up = 0.0; // up movement
double down = 0.0; // down movement
double drift = 0.0; // drift
double dx = 0.0; // state space
double dt = T/N; // time step
drift = rate – div – vol*vol/2;

pu = 0.33333 + (drift/vol)*sqrt(dt/6);
pd = 0.33333 – (drift/vol)*sqrt(dt/6);
pm = 0.33333;
up = exp(vol*sqrt(3*dt/2));
down = 1/up;

// compute stock price at each node
for (i = N; i >= 0; i--)
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{
for (j = -i; j <= i; j++)
{

S[i][j] = price*pow(up,j);
}

}

// initialize first node
node[0][0].stockPrice = price;
node[0][0].maxima[0]  = price;
node[0][0].maxima[1]  = price;

// use forward induction to calculate maxima at each node
for (i = 1; i <= N; i++)
{

for (j = -i; j <= i; j++)
{

node[i][j].stockPrice = S[i][j];
if (j == i)
{

node[i][j].maxima[0] = node[i][j].stockPrice;
}
else if (j == -i)
{

node[i][j].maxima[0] = node[0][0].stockPrice;
}
else if ((j == i-1) || (j == -i+1))
{

node[i][j].maxima[0] = node[i-1][j].maxima[0];
node[i][j].maxima[1] = node[i-1][j].maxima[0];

}
else if (j == i-2)
{

node[i][j].maxima[0] = node[i-1][j].maxima[0];
node[i][j].maxima[1] = node[i-1][j+1].maxima[0];

}
else if (j == -i+2)
{

node[i][j].maxima[0] = node[i-1][j].maxima[0];
node[i][j].maxima[1] = node[i-1][j+1].maxima[1];

}
else
{

node[i][j].maxima[0] = node[i-1][j].maxima[0];
node[i][j].maxima[1] = node[i-1][j+1].maxima[1];

}
}

}

for (j = N; j >= -N; j--)
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{
node[N][j].optionPrice[0] = max(node[N][j].maxima[0] – S[N][j],0);
node[N][j].optionPrice[1] = max(node[N][j].maxima[1] – S[N][j],0);

}

// use backwards induction to price lookback option
for (i=N-1; i >= 0; i--)
{

for (j = i; j >= -i; j--)
{

if (i == j)
{

node[i][j].optionPrice[0]=exp(rate*dt)*(pu*(node[i+1][j+1].optionPrice[0
])
+ pm*(node[i+1][j].optionPrice[0]) + pd*(node[i+1] [j-

1].optionPrice[1]));

node[i][j].optionPrice[1] = exp(-rate*dt)*(pu*(node[i+1][j+1].option
Price[0]) + pm*(node[i+1][j].optionPrice[1]) + pd*(node[i+1] 
[j-1].optionPrice[1]));

}
else if (i == -j)
{

node[i][j].optionPrice[0] = exp(-rate*dt)*
(pu*(node[i+1][j+1].optionPrice[1])
+ pm*(node[i+1][j].optionPrice[0]) + pd*(node[i+1] [j-

1].optionPrice[0]));

node[i][j].optionPrice[1] = exp(-rate*dt)*(pu*(node[i+1][j+1].option
Price[1]) + pm*(node[i+1][j].optionPrice[0]) + pd*(node[i+1] 
[j-1].optionPrice[0]));

}
else if (j == 0)
{

node[i][j].optionPrice[0] = exp(-rate*dt)*(pu*(node[i+1][j+1].option
Price[1]) + pm*(node[i+1][j].optionPrice[0]) + pd*(node[i+1] 
[j-1].optionPrice[0]));

node[i][j].optionPrice[1] = exp(-rate*dt)* (pu*(node[i+1][j+1].option
Price[1]) + pm*(node[i+1][j].optionPrice[1]) + pd*(node[i+1] 
[j-1].optionPrice[1]));

}
else
{

node[i][j].optionPrice[0] = exp(-rate*dt)*(pu*(node[i+1][j+1].option
Price[1]) + pm*(node[i+1][j].optionPrice[0]) + pd*(node[i+1] 
[j-1].optionPrice[0]));
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node[i][j].optionPrice[1] = exp(-rate*dt)*(pu*(node[i+1][j+1].option
Price[1]) + pm*(node[i+1][j].optionPrice[0]) + pd*(node[i+1] 
[j-1].optionPrice[1]));

}

// if stock price is the same for first and second stock prices, use higher 
// option price
if (node[i][j].maxima[0] == node[i][j].maxima[1])

node[i][j].optionPrice[0] =
max(node[i][j].optionPrice[0],node[i][j].optionPrice[1]);

// check for early exercise
if (exercise == ‘A’)
{

node[i][j].intrinsicValue = node[i][j].maxima[0] – S[i][j];
node[i][j].optionPrice[0] =

max(node[i][j].optionPrice[0],node[i][j].intrinsicValue);

node[i][j].intrinsicValue = node[i][j].maxima[1] – S[i][j];
node[i][j].optionPrice[1] =

max(node[i][j].optionPrice[1],node[i][j].intrinsicValue);
}

}
}
return node[0][0].optionPrice[0];

}

The value of the floating lookback put option is $7.57 using 

Figure 6.5 shows the trinomial tree generated.

6.9 IMPLEMENTATION OF FIXED LOOKBACK OPTION

The following is an implementation of an ATM European fixed-strike lookback put
with the same parameters as the floating-strike lookback put discussed in the pre-
ceding section.

λ = 3
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/**********************************************************************************
calcLookBackPutFixedStrike : This function computes the value of a floating lookback

put
[in]  double price : asset price

double strike : strike price
double barrier : barrier price
double rate : risk-free interest rate
double div : dividend yield
double vol : volatility
double T : time to maturity
int N : number of time steps
char exercise : ‘A’merican or ‘E’uropean

[out] double : value of up and out put
**********************************************************************************/
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FIGURE 6.5 Trinomial Tree for Floating-Strike Lookback Put Option
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double LookbackOption::calcLookBackPutFixedStrike(double price, double strike,
double vol, double rate,double div, double T, int N, char exercise)

{
int i, j;
double pd; // down probability
double pm; // middle probability
double pu; // up probability
double S[100][100]; // stock price at node i,j

struct Node // structure of node i,j
{

double minima[2]; // stores current and previous minimum 
// prices

double optionPrice[2]; // stores current and previous option 
// prices for minimum prices

double intrinsicValue; // intrinsic value of option
double stockPrice; // stock price at node
} node[20][20];

double up = 0.0; // up movement
double down = 0.0; // down movement
double dx = 0.0; // state space step
double dt = T/N; // time step
double drift = rate – div – vol*vol/2; // drift

// use for lambda = sqrt(3/2)
pu = 0.33333 + (drift/vol)*sqrt(dt/6);
pd = 0.33333 – (drift/vol)*sqrt(dt/6);
pm = 0.33333;
up = exp(vol*sqrt(3*dt/2));
down = 1/up;

// compute stock prices at each node
for (i = N; i >= 0; i--)
{

for (j = -i; j <= i; j++)
{

S[i][j] = price*pow(up,j);
}

}

// initialize first node
node[0][0].stockPrice = price;
node[0][0].minima[0] = price;

// use forward induction to calculate maxima at each node
for (i = 1; i <= N; i++)
{

for (j = -i; j <= i; j++)
{

node[i][j].stockPrice = S[i][j];
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if ((i == 1) && (j != -1)) // nodes at time step 1 only 
// have one minimum

{
node[i][j].minima[0] = node[0][0].stockPrice;
node[i][j].minima[1] = 0; // dummy place holder

}
else if (j == i) // edge nodes only have one minimum
{

node[i][j].minima[0] = node[0][0].stockPrice;
node[i][j].minima[1] = 0; // dummy place holder

}
else if ((j == -i) && (i != N)) // edge nodes only have one 

// minimum
{

node[i][j].minima[0] = node[i][j].stockPrice;
node[i][j].minima[1] = 0;

}
else if ((j == -i) && (i == N))
{

node[i][j].minima[0] = node[i-1][j+1].stockPrice;
node[i][j].minima[1] = 0; // dummy place holder

}
else if (j == -i+1)
{

node[i][j].minima[0] = node[i-1][j].minima[0];
node[i][j].minima[1] = node[i][j].stockPrice;

}
else
{

node[i][j].minima[0] = node[i-1][j-1].minima[0];
node[i][j].minima[1] = node[i-1][j].minima[0];

}
}

}

// compute payoffs at final node
for (j = N; j >= -N; j--)
{

node[N][j].optionPrice[0] = max(strike – node[N][j].minima[0],0);
node[N][j].optionPrice[1] = max(strike – node[N][j].minima[1],0);

}

//use backwards induction to price lookback option
for (i=N-1; i >= 0; i--)
{

for (j = i; j >= -i; j--)
{

node[i][j].optionPrice[0] = exp(-rate*dt)*(pu*(node[i+1][j+1].option
Price[0])+ pm*(node[i+1][j].optionPrice[0]) + pd*(node[i+1]
[j-1].optionPrice[0]));
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node[i][j].optionPrice[1] = exp(-rate*dt)*(pu*(node[i+1][j+1].option
Price[0])+ pm*(node[i+1][j].optionPrice[0]) + pd*(node[i+1]
[j-1].optionPrice[1]));

if (exercise == ‘A’)
{

node[i][j].intrinsicValue = strike – node[i][j].minima[0];
node[i][j].optionPrice[0] =

max(node[i][j].optionPrice[0],node[i][j].intrinsicValue);

node[i][j].intrinsicValue = strike – node[i][j].minima[1];
node[i][j].optionPrice[1] =

max(node[i][j].optionPrice[1],node[i][j].intrinsicValue);
}

}
}

return node[0][0].optionPrice[0];
}

The value of the fixed-strike lookback put option is $7.45 using

Figure 6.6 shows the trinomial tree generated using

For a more detailed discussion of lookback options, see Goldman, Sosin, and
Gatto (1979) (who first introduced lookback options), Conze and Viswanathan
(1991), and Dewynne and Wilmott (1993). For variations of lookbacks such as
double lookbacks, see He, Keirstead, and Rebholz (1998). For a discussion of pric-
ing lookbacks (and barrier options) using a constant elasticity of variance process,
see Boyle and Tian (1999).

λ = 3 2/

λ = 3 2/
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FIGURE 6.6 Trinomial Tree for Fixed-Strike Lookback Put Option
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CHAPTER 7
Stochastic Volatility

Volatility is the one unobservable factor affecting option prices. Modeling volatility
structures is important for practitioners and traders since it can capture observ-

able skews and smirks where low-strike options are seen to exhibit higher implied
volatilities than higher-strike options. Volatility structures in the market seen to ex-
hibit such skews and smirks give traders an indication of the relative liquidity and
degree of riskiness placed by the marketplace on various strikes and maturities.
There may be “vol” arbitrage opportunities if implied volatilities from observable
market prices differ from volatilities implied from calibrated models. The focus of
this chapter is to discuss various techniques for measuring and extracting implied
volatilities from market option prices. We initially examine deterministic (constant)
volatility and then discuss how to model stochastic volatility—nondeterministic
parametric forms that can be used in diffusion processes to capture observable mar-
ket volatility structures.

In section 7.1, we discuss implied volatility and how to compute it using an it-
erative numerical method like Newton-Raphson. In section 7.2, volatility skews and
smiles are discussed. In section 7.3, empirical explanations are given for why such
skews are observed. In section 7.4, we discuss constructing and fitting implied
volatility surfaces from market data using numerical procedures like nonparametric
methods. In section 7.5, one-factor parametric volatility structures are discussed. In
section 7.6, constant elasticity variance (CEV) models are discussed for modeling
volatility structures. In section 7.7, we discuss recovering implied “vol” surfaces. In
section 7.8, we discuss an approach by Brigo and Mercurio for constructing local
volatility surfaces. In section 7.9, we discuss jump-diffusion models for modeling
volatility. In section 7.10, two-factor parametric volatility structures are examined.
In two-factor models, correlation is incorporated to capture co-movements in fac-
tors not captured by one-factor models. Finally, in section 7.11, we discuss the im-
portant topic of hedging with stochastic volatility.

7.1 IMPLIED VOLATILITY

The Black-Scholes model assumes that volatility, often referred to as “vol” by practi-
tioners, is constant. We have assumed up to this point that asset prices follow a lognor-
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mal diffusion process under the risk-neutral measure Q with constant volatility. This is
not a realistic assumption as it incorrectly implies (1) historical volatility estimated
from time series data is constant over time; (2) all options with different strikes and
maturities must trade at the same implied volatilities; and (3) the risk-neutral probabil-
ity distributions of future asset prices are lognormal. To correct for this serious prob-
lem, practitioners model volatility as a stochastic factor of asset prices and often model
volatility as following its own diffusion process with drift and diffusion parameters.

Consider a call expiring at time T with strike price X. Suppose Cmarket is a mar-
ket quote for the call. The Black-Scholes model provides a fair value for this call
CBS(σ), which depends on the historical volatility estimate. We can estimate the his-
torical volatility as follows. Suppose we have a time series of daily price data for N
days: Si, i = 1, 2, . . . , N. We first calculate the time series of N logarithmic returns:

(7.1)

where ui is the continuously compounded (not annualized) return in the ith inter-
val. The usual unbiased estimate of volatility σ̂ is give by

(7.2)

where u– the mean of the ui ’s and ∆t is the interval between observations. Implied
volatility σ implied is such a value of the volatility parameter σ that the Black-Scholes
price matches the observed price:

CBS(σ
implied) = Cmarket (7.3)

Since the Black-Scholes price is a known function of (constant) volatility, this equation
can be inverted to find σ implied. The closed-form solution to this problem does not exist,
but it can be solved using the Newton-Raphson numerical procedure: Initially, make
an initial guess σ0 (say, 10 percent) of the volatility. Second, estimate σ1 by using the
Newton-Raphson equation, which is a first-order Taylor approximation of CBS(σ):
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is the Greek hedge statistic vega (kappa). We then use σ1 in the next iteration to
find σ2. We continue the following iteration at step i:

(7.4)

iteratively, until the desired accuracy is reached:

|Cmarket – C(σi+1)| ≤  ε (7.5)

where epsilon, ε, is a very small value such as 0.0001.
The Newton-Raphson method can easily be used for European options where

the analytical formula for the option price is available. For American or exotic op-
tions, one can use the bisection method that does not require knowing vega. The
procedure works as follows:

Step 1: Pick two values for the volatility, σH and σL, so that σH is clearly above
the true implied vol and σL is clearly below (i.e., 1 percent and 100 percent), and
calculate two option prices CH and CL corresponding to these vols. The market
price should be somewhere in between.

Step 2: Suppose σH and σL and prices CH and CL are from the previous step.
Then calculate:

(7.6)

Replace σL with σi+1 if C(σi+1) < Cmarket, or else replace σH with σi+1 if C(σi+1) > Cmarket.
This is continued until the desired accuracy is achieved: |Cmarket – C(σi+1)| ≤ ε.

In practice, traders often use implied vols inferred from quoted option prices in
favor of historical volatility estimated from historical time series data. In fact, in the
over-the-counter (OTC) options market, option prices are quoted by their implied
volatility rather than the option price itself.

7.2 VOLATILITY SKEWS AND SMILES

It is an empirical fact that implied volatility is not constant across different strikes
and maturities. Suppose we have a listing of all market option quotes. We can ob-
serve traded strikes, Xj, traded maturities, Tj, and the current quoted market price
for a call with maturity Ti and strike Xj, Cij(S, t) = C(S, t; Xi, Tj). Suppose we calcu-
late an implied volatility for each of these calls σij

implied. If the Black-Scholes model
were correct, then implied volatilities for all options with different strikes and ma-
turities would be equal. However, an empirical fact is that implied vols are different

σ σ σ σ
i L market L

H L

H L

C C
C C+ = + − −

−1 ( )

σ σ σ
κ σi i

BS i market

BS i

C C
+ = − −
1

( )
( )

276 STOCHASTIC VOLATILITY



for all i and j. Volatility changes with both strike and maturity, known as the
volatility smile or smirk and the term structure of volatility, respectively. Consider
the option chain in Table 7.1 of IBM stock taken on September 20, 2002.

We can compute the volatility smile for January 2003 contracts on Friday, Sep-
tember 20, 2002, using the stock price of IBM, S = 63.92, T = 4/12 = 0.333, the
three-month Treasury bill rate r = 1.64 percent, the dividend yield q = 0.6 percent,
and the market option prices Cj for different strikes Xj, which are given in the chain.

Figure 7.1 shows the implied volatility curve generated from the option chain
whose values are shown in Table 7.1. Notice that the curve is a shaped like a smile.
The minimum implied volatility falls roughly around the ATM strike. The curve
falls then rises as the strike prices increases beyond the ATM strike.
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TABLE 7.1 IBM Call Chain on September 20, 2002

Jan 03 35.00 40.50 Jan 03 95.00 0.30
Jan 03 40.00 25.30 Jan 03 100.00 0.20
Jan 03 45.00 29.50 Jan 03 105.00 0.05
Jan 03 50.00 16.80 Jan 03 110.00 0.10
Jan 03 55.00 12.60 Jan 03 115.00 0.15
Jan 03 60.00 9.30 Jan 03 120.00 0.15
Jan 03 65.00 6.40 Jan 03 125.00 0.10
Jan 03 70.00 4.10 Jan 03 130.00 0.10
Jan 03 75.00 2.60 Jan 03 140.00 0.10
Jan 03 80.00 1.50 Jan 03 150.00 0.05
Jan 03 85.00 0.90 Jan 03 155.00 0.00
Jan 03 90.00 0.50 Jan 03 160.00 0.05

FIGURE 7.1 Implied Volatility Curve of IBM January 2003 Calls Computed on 
September 20, 2002
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The following is an implementation that reads the option chain information
from a file, optionData.txt, and computes the implied vols. The volatility smile
curve is generated in Excel using the strikes and their corresponding implied vols
using the Newton-Raphson method.

void main()
{

OptionCalc option; // option object
vector<double> prices; // vector of option prices
vector<int> strikes; // vector of strikes
char buffer[100]; // buffer for line read
char dataBuffer[100]; // stores current data string read
char *str = NULL; // pointer to data string
const char *file = “optionData.txt”; // file with option chain info
ifstream fin; // input file stream

fin.clear();
fin.open(file);

if (fin.good())
{

while (!fin.eof())
{

// read in one line at a time
fin.getline(buffer,sizeof(buffer)/sizeof(buffer[0]));
istrstream str1(buffer);

// Get data
str1 >> dataBuffer; // read data from file
while (!str1.eof())
{

// read in contract maturity, strike, and price
str1 >> dataBuffer; // read option maturity month
str1 >> dataBuffer; // read option maturity year

str1 >> dataBuffer; // read option maturity strike
// convert strike char* data to integers
// and add to strike vector
strikes.push_back(atoi(dataBuffer));

str1 >> dataBuffer; // read option  market price
// convert option price char* data to floats
// and add to strike vector
prices.push_back(atof(dataBuffer));

}
buffer[strlen(buffer) + 1] = ‘\0’;

}
}
else
{
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cout << “File not good!” << “\n”;
}
// close file
fin.close();
// calculate implied vols
option.calcImpliedVols(63.92,prices,strikes,0.0164,0.006,0.3333,‘C’);

}

The following is the implementation of the calcImpliedVols method:

/**********************************************************************************
calcImpliedVols: : calculates implied volatilities
[in]:  double price : price of the stock

vector<double> opPrices : vector of option prices
vector<double> strikes : vector of strike prices
double rate : risk-free rate
double dividend : dividend yield
double T : time to maturity (in years)
char type : option type (call or put)

[out]: map of implied volatilities (key is strike price)
**********************************************************************************/
map<int,double> OptionCalc::calcImpliedVols(double price, vector<double> opPrices,

vector<int> strikes,double rate, double dividend, double T, char type)
{

int j = 0;
int cnt = 0;
const double epsilon = 0.00001; // error tolerance
map<int,double> opMap; // map of strikes to prices
vector<double>::iterator priceIter; // vector iterator
double vol1 = 0.0; // implied volatility
double error = 0.0; // error between market and model

// price
double vol2 = 0.0; // stores updated volatility in 

// calibration
double vega = 0.0; // option vega
double BSPrice = 0.0; // black scholes price
double marketPrice = 0.0; // market price
int* strike = new int[strikes.size()]; // array of strike prices
double* call  = new double[opPrices.size()]; // array of call prices

// copy strike prices stored in vectors
// into array used in Newton-Raphson
copy(strikes.begin(),strikes.end(),strike);

// compute implied vols for each option contract
for (priceIter = opPrices.begin(); priceIter != opPrices.end(); priceIter++)
{

marketPrice = *priceIter;
vol1 = 0.55; // initial guess of implied volatility for Newton-Raphson

7.2 Volatility Skews and Smiles 279



do
{

BSPrice = calcBSCallPrice(vol1,rate,dividend,strike[cnt],price,T);
vega = calcVega(price,strike[cnt],rate,dividend,vol1,T);
vol2 = vol1 – (BSPrice – marketPrice)/(vega);
error = vol2 – vol1;
vol1 = vol2;

}
while (abs(error) > epsilon);

opMap[cnt] = vol1;
cnt++;

}

// print implied vols
for (j = 0; j < opMap.size(); j++)

cout <<  opMap[j] << endll;

// return a map of strikes and their implied vols
return opMap;

}

Each iteration of the Newton-Raphson procedure makes a call to the calcBSCall-
Price method and the calcVega method, which computes vega as follows:

/**********************************************************************************
double OptionCalc::calcVega(double price,double strike, double rate, double div,

double vol, double T)
{

double d1 = (log(price/strike) + (rate – dividend +(vol)*(vol)/2)*T)/
(vol*sqrt(T));

return price*sqrt(T)*normalCalcPrime(d1);
}
**********************************************************************************/

Table 7.2 is the option chain for IBM January 2003 puts on Friday, September
20, 2002, and Figure 7.2 shows the implied volatility curve generated from these
market prices. Notice that the curve initially has the skew effect—lower strikes
have higher implied volatility than higher strikes—but then it oscillates starting at
around a strike price of 901 due to the very low liquidity and thinly traded con-
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1Typically, implied volatility smiles and volatility surfaces filter moneyness values outside the
interval [0.5, 1.5] (i.e., X/S < 0.5 or X/S > 1.5) since the numerical uncertainty on implied
volatility may be too high and the liquidity very low. The irregularity at moneyness at 1.5
and above can be seen in Figure 7.2.



tracts of these options. If we focus on just the moneyness around ATM contracts,
we get a smoother skew as shown in Figure 7.3.

The smile is skewed: Low-strike implied volatilities are greater than higher-
strike implied vols. Since there is finite liquidity by market makers who take the
other sides of these trades selling out-of-the-money (OTM) puts and buying OTM
calls, market makers demand a liquidity premium, which is reflected in the skew.
Consequently, these OTM puts are priced at higher implied vols compared with
OTM calls, which are priced at lower implied vols.

Prior to the 1987 market crash, there appeared to be symmetry around the zero
moneyness—the degree to which an option is in-the-money (ITM) or out-of-the-
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TABLE 7.2 IBM Put Chain on September 20, 2002

Jan 03 35.00 0.50 Jan 03 95.00 31.00
Jan 03 40.00 0.85 Jan 03 100.00 35.90
Jan 03 45.00 1.40 Jan 03 105.00 40.50
Jan 03 50.00 2.10 Jan 03 110.00 45.90
Jan 03 55.00 3.30 Jan 03 115.00 49.90
Jan 03 60.00 5.00 Jan 03 120.00 55.00
Jan 03 65.00 7.15 Jan 03 125.00 47.00
Jan 03 70.00 10.00 Jan 03 130.00 60.70
Jan 03 75.00 13.00 Jan 03 140.00 62.00
Jan 03 80.00 16.90 Jan 03 150.00 85.30
Jan 03 85.00 21.60 Jan 03 155.00 85.00
Jan 03 90.00 24.60 Jan 03 160.00 90.90

FIGURE 7.2 Implied Volatility Curve of IBM January 2003 Puts on September 20, 2002
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money—where OTM and ITM options traded at higher implied volatilities than
the implied volatilities of ATM options. However, since the 1987 crash, the “smile”
has changed to a “sneer” shape in many markets, particularly for stock indexes.
Dumas, Fleming, and Whaley (1998) have shown the volatility structure change
from a smile to a sneer for S&P 500 options. Option implied volatilities are ob-
served to decrease monotonically as the option goes deeper out-of-the-money (call)
or in-the-money (put).

In general, the smirk in equity markets is very highly skewed with OTM puts
priced at significantly higher vols than OTM calls. Rubinstein (1997) provides sev-
eral fundamental economic reasons for this phenomenon: (1) leverage effect: As
stock prices fall, debt-equity ratio rises, which leads to a rise in volatility; (2) corre-
lation effect: Stocks become more highly correlated in down markets, which leads
the volatility of the S&P 500 market index to rise since the benefits of diversifica-
tion are reduced due to increasing correlation; (3) investor wealth effect: As the
market falls, investors feel poorer and become more risk averse so that any news
leads to greater market reactions and trading, which causes volatility to rise; and
(4) risk effect: As volatility rises, risk premiums increase, leading to declines in the
market. There is also a technical supply-demand view: There is strong demand for
OTM puts created by portfolio hedgers and there is a strong supply of OTM calls
by portfolio overwriters.

In the currency markets, this situation is different. There is a strong demand for
OTM calls and puts on both sides of the market by hedgers in the two countries,
and market makers demand some premium for their services by providing liquidity
to the hedgers on both sides of the market. Thus in the currency markets, there is a
symmetric smile where the minimum is around the ATM options and the implied
volatility increases for both OTM calls and puts.
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FIGURE 7.3 Implied Volatility Curve of IBM January 2003 Puts on September 20, 2002
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7.3 EMPIRICAL EXPLANATIONS

If the Black-Scholes model were the correct model in its assumption of constant
volatility, then the implied volatilities of all options of the same type should be con-
stant across strike prices. In fact, this is not the case as market prices reflect proper-
ties of the price process not assumed in the Black-Scholes model, which is captured
in skews of implied volatilites. One empirical explanation for the smile is that re-
turn distributions may be “fat-tailed,” rather than normally distributed under geo-
metric Brownian motion (GBM). Price movements may not be properly modeled by
assuming GBM as large price movements may be observed with a frequency that is
greater than that assumed in the Black-Scholes model. As Carol Alexander notes,
“if returns distributions are normal but volatility is stochastic, or if volatility is con-
stant but returns are fat-tailed—or indeed, both—then large price changes will be
more likely, and consequently an OTM option will have a higher chance of becom-
ing ITM than is assumed in the Black-Scholes model. Therefore, the Black-Scholes
model price will be less than the market price for an OTM option.”2 Given that
volatility is the only unknown parameter in the model, the only way for Black-
Scholes model prices to equal market prices is to increase the implied volatilities of
OTM options. Consequently, implied volatilities of OTM options will be greater
than ATM implied volatilities.

In many equity markets, there is a clear negative correlation between ATM
volatility and the underlying asset, but the strength of the correlation depends on
the time period and current market regime. Derman (1999) has formulated a hy-
pothesis that attempts to explain the skew in volatility by changes in market
regimes. In a range-bounded regime, volatility is constrained within certain ranges
so that volatility is independent of changes in price movements. In a stable or trend-
ing market, there is little change in realized volatility over the long run as markets
change in a stable manner. In a jumpy market, realized volatility increases as the
probability of price jumps increases. Consequently, fixed-strike volatilities decrease
when the asset price increases and increases when the asset price falls.

In Derman’s models, the skew is approximated as a linear function of the strike
price whose form depends on the market regime.3 In the range-bounded regime, the
market skew is

σX(T ) = σ0 – β(T )(X – S0)

where σX(T ) is the implied volatility of an option with maturity T and strike X, S0
is the initial asset price, and σ0 is the initial implied volatility. Thus, a fixed-strike
volatility is independent of the asset level; if the asset changes, the fixed-strike
volatilities will not change.
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7.4 IMPLIED VOLATILITY SURFACES

Volatility smiles are generated for a specific maturity. They do not tell us how
volatility evolves (changes) over time with different maturities. However, if we
plot volatility across time and strikes, an implied volatility surface can be gener-
ated. The following is an implementation to generate the implied vol for a given
maturity and given strike. It stores the implied vol in a map where the key to the
map is a pair structure containing the maturity and strike:

/**********************************************************************************
calcImpliedSurface : computes the volatility surface of an option

chain
[in]:  double price : price of the stock

vector<double> strikes : vector of strike prices
vector<double> maturities: : vector of maturities
map<double, double> rates : vector of risk-free interest rates
double  dividend : dividend yield of stock

[out]: map of implied volatilities : (key is a pair<strike,maturity>
**********************************************************************************/
map<pair<double,int>,double> OptionCalc::calcImpliedSurface(double price,

vector<double> opPrices, vector<int> strikes, vector<double> maturities,
map<double, double> rates, double dividend)

{
map<pair<double,int>,double> surfaceMap; // map strike and maturity 

// to implied vol
pair<double,int> TXPair; // time (maturity) – strike

// pair
vector<pair<double,int> > vecPair; // vector of TXPairs
vector<pair<double,int> >::iterator vecPairIter; // vector map iterator
vector<double>::iterator priceIter; // vector price iterator
int j = 0;
int cnt = 0;
const double epsilon = 0.000001; // error tolerance
double error = 0.0; // error of between market 

// and model prices
double vol1 = 0.0; // implied vol
double vol2 = 0.0; // temp stores vols
double vega = 0.0; // option vega
double BSPrice = 0.0; // black scholes price
double marketPrice = 0.0; // market price
int* strike = new int[strikes.size()]; // array of strikes
double* maturity = new double[maturities.size()]; // array of maturities
double* call  = new double[opPrices.size()]; // array of call prices
cout.setf(ios::showpoint);
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cout.precision(3).

copy(strikes.begin(),strikes.end(),strike);
copy(opPrices.begin(),opPrices.end(),call);
copy(maturities.begin(),maturities.end(),maturity);

if (type == ‘C’)
{

for (priceIter = opPrices.begin(); priceIter != opPrices.end(); priceIter++)
{

marketPrice = *priceIter;
vol1 = 0.65; // initial volatility guess for Newton-Raphson
do
{

BSPrice =
calcBSCallPrice(vol1,rates[maturity[cnt]],dividend,strike[cnt],price,T);

vega = calcVega(price,strike[cnt],rates[maturity[cnt]],dividend,vol1,T);
vol2 = vol1 – (BSPrice – marketPrice)/(vega);
error = vol2 – vol1;
vol1 = vol2;

}
while (abs(error) > epsilon);
TXPair.first = maturity[cnt];
TXPair.second = strike[cnt];
vecPair.push_back(TXPair);
surfaceMap[TXPair] = vol1;
cnt++;

}
}
else
{

for (priceIter = opPrices.begin(); priceIter != opPrices.end(); priceIter++)
{

marketPrice = *priceIter;
vol1 = 0.55; // initial volatility guess for Newton-Raphson
do
{

BSPrice =
calcBSPutPrice(vol1,rates[maturity[cnt]],dividend,strike[cnt],price,T);

vega = calcVega(price,strike[cnt],rates[maturity[cnt]],dividend,vol1,T);
vol2 = vol1 – (BSPrice – marketPrice)/(vega);
error = vol2 – vol1;
vol1 = vol2;

}
while (abs(error) > epsilon);
TXPair.first = maturity[cnt];
TXPair.second = strike[cnt];
surfaceMap[TXPair] = vol1;
cnt++;

}
}
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// print out implied vol
for (vecPairIter = vecPair.begin(); vecPairIter != vecPair.end(); vecPairIter++)

cout <<surfaceMap[*vecPairIter]) << endl;

return surfaceMap;
}

The volatility surface generated from IBM market-traded call options on Sep-
tember 20, 2002, is shown in Figure 7.4 for maturities up to six months. There are
only a few market quotes for contracts available beyond six months, which are not
included; including them would cause discontinuities. However, implied volatilities
for options that are not market traded could be calculated and included using lin-
ear interpolation.

The same volatility surface viewed from a different angle is shown in Figure
7.5. Notice the smile curvature of the surface along the strike axis. Also notice that
the surface is steeper (i.e., the gradient is higher), as the time to maturity increases,
especially for at-the-money contracts.

Consider the volatility surface of the S&P 500 on October 7, 2002, shown in
Figure 7.6, for maturities ranging from one month to nine months. The S&P 500
closed at 800.58. The dividend yield was approximately 1.48 percent.

If we include maturities more than nine months, 1 year to 1.75 years, as shown
in Figure 7.7, we get much more spiked volatility surface at the longer maturities—
to smooth the surface, linear interpolation would be required for all options that
are not traded across strike and maturity. The surface, like the surface for IBM, has
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FIGURE 7.4 Volatility Surface of IBM on September 20, 2002
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a steep gradient along the maturity axis (the term structure) especially for at-the-
money options. With this local volatility surface of the S&P 500 index, one can
measure options’ market sentiment, to compute the evolution of standard options’
implied volatilities, to calculate the index exposure of standard index options, and
to value and hedge exotic options.4
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FIGURE 7.5 Volatility Surface of IBM on September 20, 2002—Different Angle
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FIGURE 7.6 Implied Volatility of S&P 500 on October 7, 2002

995

750

875

1,125
1,250

149
0

0.1

0.2

0.3

0.4

0.5

0.6

Im
pl

ie
d 

Vo
la

til
ity

Strike

Maturity

0.5–0.6

0.4–0.5

0.3–0.4

0.2–0.3

0.1–0.2

0.0–0.1

4Derman, Kani, and Zou (1995).



Practitioners generate volatility surfaces to study their evolution, but in pricing
theory, they want to find a function dependent on both time and price, σ = σ(S, t),
called a local volatility surface, that can be generated such that the risk-neutral dif-
fusion process dS = (r – q)Sdt = σ(S, t)Sdz is consistent with the correct set of ob-
servable implied volatilities σij

implied. This inverse problem is ill-posed, however, since
we have only a finite set of traded strikes and maturities from which to infer a con-
tinuous function σ = σ(S, t) that should be consistent with the set of observable im-
plied volatilities. Consequently, small changes in the data inputs into the surface
can generate large changes in the parameter estimates. Furthermore, given a local
volatility surface, this model will always generate the same implied volatility sur-
face. However, it is known empirically from market data that the actual implied
volatility surface is nonstationary.5

Cont and da Fonseca (2002) outline a procedure for constructing a smooth
volatility surface for arbitrary strikes and maturities. The procedure to interpolate
or smooth the discrete data set can be done in a parametric or nonparametric form.
The parametric form involves using cubic splines or (piecewise) polynomical func-
tions to fit the implied volatility smile.6 Cont and da Fonseca focus on a nonpara-
metric approach using a Nadaraya-Watson estimator that filters the data set and
constructs for each day a smooth estimator of the implied volatility surface on a
fixed grid. The surface estimator is defined as:

(7.7)ˆ ( , )
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FIGURE 7.7 Volatility Surface of S&P 500 on October 7, 2002

800
925

1,050
1,175

S1S4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Implied
Volatility

StrikeMaturity

0.6–0.7

0.5–0.6

0.4–0.5

0.3–0.4

0.2–0.3

0.1–0.2

0.0–0.1
S7

5Cont and da Fonseca (2002).
6Dumas, Whaley, and Fleming (1998), 95–106.



where g(x, y) = (2π)–1exp(–x2/2h1)exp(–y2/2h2) is a Gaussian kernel, n is the number
of options actively traded on the given day, typically around 100, m is the money-
ness x/s, and the time to maturity t ranges between a month and a year. The impor-
tant parameters are the bandwidth parameters in the Gaussian kernel, h1 and h2,
which determine the degree of smoothing. Values that are too small will lead to a
bumpy surface, and values that are too large will smooth away important details.
The bandwidth can be determined using a cross-validation criterion or an adaptive
bandwidth estimator in order to obtain an optimal bandwidth h.7

Large sample properties of these estimators have been studied and are known.8

After obtaining a daily time series {σ(m, t), t = 0 . . . N} of smooth implied volatility
surfaces σ : [mmin, mmax] × [tmin, tmax] → [0, ∞), one can apply principal component
analysis (PCA), which is used to decompose (random) volatility surfaces into their
principal empirically identifiable factors.9 Alexander (2001a) provides an excellent
discussion of how to use PCA to model volatility smiles and skews,10 and shows
how the first three principal components in PCA can explain much of the variation
in volatility skews. Alexander (2000), for example, shows that during most of
1998, 80 to 90 percent of the total variation in the fixed-maturity volatility skews
of the Financial Times Stock Exchange (FTSE) 100 index can be explained by just
three risk factors: parallel shifts, tilts, and curvature changes that are captured by
the first three principal components.

The time series of smooth surfaces are then modeled as stationary random sur-
faces to which one applies a numerical procedure like Karhunen-Loeve decomposi-
tion in which each random surface, viewed as a random field, can be expressed as a
superposition of uncorrelated random variables, each of which is the product of a
scalar random variable (an eigenvector) with a deterministic surface so that the sur-
face has the representation:

(7.8)

where
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7Cont and da Fonseca (2002), 49.
8Ibid.
9A general discussion of PCA is given in Chapter 9.
10One model given by Alexander (2001a) is the PCA of fixed-strike deviations based on the
model

∆(σX – σATM) = wX1
P1 + wX2

P2 + wX3
P3

where the volatility maturity and the strike of the volatility are both fixed. Time series on the
change between the fixed-strike volatility from the at-the-money (ATM) volatility are used to
estimate the time series of the principal components P1, P2, and P3 and the constant weight
factors wX1

, wX2
, and wX3

.



are (a time series of) principal component processes {xk(t), t = 1, . . . , N}, i.e.,
Ornstein-Uhlenback processes driven by independent noise sources Z Wiener or
jump processes,

dxk(t) = –λk(xk(t) – X
–

k)dt + γkdZk(t), k = 1, . . . , d

where λk represents the speed of mean reversion along the kth eigenfunction and γk

is the volatility of implied volatilities along this direction;

is the initial volatility surface, fk(m, t) are expanded eigenvectors (eigen-
functions) on the basis of a family of smooth functions (surfaces) (hj), that is,
spline functions commonly used for interpolating volatility surfaces and yield
curves,

(7.9)

and k is the kth principal component. The aij are the elements of the matrix A
found by solving the orthogonality condition

CA = DBA (7.10)

where C and B are symmetric positive matrices, computed from the data such
that

D = diag(vi
2, i = 1, . . . , N) where the vi

2 are the associated eigenvalues (vari-
ances) such that v1

2 ≥ v2
2 ≥ . . . ≥ 0, and Bij = 〈hi, hj〉. Numerically solving the gen-

eralized eigenvalue problem in (7.10) for D and A and substituting the
coefficients of A into (7.9) yields the eigenfunctions fk. Each eigenfunction is ac-
tually a surface: fn : A ⊂ �2 → �, which is the solution of a Fredholm integral
equation defined by the kernel K(x, y), x, y ∈ A, namely,
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The kernel is analogous to the covariance matrix of a random vector.11 Moreover,
the kernel K can be decomposed as

(7.12)

which by assuming that the errors in equation (7.9) are orthogonal to the approxi-
mating functions (hn, n = 1, . . . , N) is known as the Galerkin condition. Plugging
equation (7.9) into (7.12), we get an error term

Thus, by the Galerkin condition, < εN, hj > = 0, we have

which is just the orthogonality condition in matrix element form of equation
(7.10).

Empirical results of the procedure applied to S&P 500 index and FTSE 100 in-
dex options are given by Cont and da Fonseca (2002). Cont and da Fonseca also
propose a factor model for the implied volatility surface where the (log-) implied
volatility surface σt(m, τ) is represented by the sum of the initial surface and its fluc-
tuations along the principal (component) directions.

Bodurtha and Jermakyan (1999) use a different nonparameteric approach to
invert option prices into a state- and time-dependent volatility function. Their ap-
proach is a finite-difference-based procedure based on a small-parameter expansion
of the option value functions. They consider a family of volatility functions,

(7.13)

where ε, 0 ≤ ε ≤ 1, is a perturbation parameter used for volatility decomposition
purposes. The inverse solution does not depend on ε in any way. Note that ε = 0
corresponds to the Black-Scholes-Merton constant volatility case, while ε = 1 is the
solution to their volatility surface estimation problem.
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Following Bodurtha and Jermakyan, define FK = e(r–q)τS/K, the scaled forward
price of the spot price (relative to the option exercise price) that follows the 
forward price diffusion process dFk = α(t, S)FKdt + σ(t, S)FKdz(t). A riskless 
no-arbitrage portfolio for an exercise price-standardized call option is created:

Π = λFK + CK(t, FK)

where

Note that underlying FK and call value CK are unitless and the strike price is arbi-
trary. The no-arbitrage condition requires that dΠ = 0 at any time t. By Ito’s
lemma, we have

Thus, the riskless portfolio contains a forward position of λ = –(∂CK/∂FK) and leads
to PDE that CK(t, FK) satisfies:

A change in the current time variable t is then made to a scaled time-to-maturity
variable so that for an option with maturity T,

(7.14)

where the new scaled time variable is v = T/T
–
, v ∈ [0, 1] where T

–
is the maximum

option maturity and t is set to 0. An analogous case holds for a put value PK,
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The valuation problem requires solving two parabolic PDEs, one for the call
PDE (7.14) and one for the put PDE (7.15). Since the strike index K is arbitrary, a
new variable Z is introduced such that Z = ln(FK) and U(v, Z) = CK(v, FK). Thus, FK

defined over the range (0, ∞) is mapped to the variable Z with a range (–∞, ∞).
Plugging in Z and U into equation (7.14) yields

(7.16)

An analogous equation is given for the put by using W(0, Z) = PK(v, FK) in (7.15).12

Given a volatility function that is time and spot price dependent, we can nu-
merically solve equation (7.16) for the associated European call option. Recovery
of the associated exercise-price-dependent option quotes requires two steps: first,
map U(v, Z) into respective forward price and exercise price option prices CK(t, FK).
Second, compute the actual quotes C(t, S) in the spot price–time space. The map-
ping is one-to-one with S(0) mapping to FK(T) and Z(T), S(T) mapping to FK(0) and
Z(0), and the corresponding elements of the spot price and exercise price adjusted
forward price sets mapping accordingly.13

An ε-analog of equation (7.16) under the volatility specification of (7.13) is
formed:

(7.17)

Uε(v, Z) is then expanded into a formal power series with respect to ε:

(7.18)
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13Bodurtha and Jermakyan (1999), 33.



Substituting equations (7.13) and (7.18) into equation (7.17) yields

(7.19)

(7.19)

Equating equivalent powers of ε-terms and applying associated initial or
boundary conditions yields the following system of equations:

(7.20)

(7.21)

(7.22)

In the equation system, all equations, other than (7.20) differ from each other
only in the forcing or nonhomogenous term.14 The forcing term can be determined
by iterating over these equations (starting from n = 1). At each step of the itera-
tions, the forcing term is obtained from the previous equation calculation. To com-
plete the procedure, one can infer a~k from each equation k = i, . . . , n.

Bodurtha and Jermakyan develop an iterative optimization-based estimation
procedure of the parameters. They denote Ki , i = 1, . . . , n traded strike prices and
Tj, j = 1, . . . , m, available option maturities where Tm = T

–
. Denote Vj = Tj/T

–
, Zi , j =

ln(e(r–q)T–vj S/Ki), and Ui, j = erT
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vjC i, j(0, S)/Ki. Zi,j is the natural logarithm of the time-
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zero and Tj-maturity forward price weighted by strike price Ki; C i,j(0, S) is the
time-zero call option price with strike Ki and maturity Tj; and Ui,j is the Ki strike
price weighted and Tj-maturity future value of this call.15

The input parameter a~0 used to solve equation (7.20) is estimated by minimiz-
ing the following (least-squares) function:

(7.23)

Since, for any given a~0 , there are closed-form expressions for U0
i, j (v, Zi, j), one

can minimize (7.23) using a Newton-Raphson search for root of the first derivative
M0(a

~
0). Given this estimate, one can compute both ∂2U0(v, Z)/∂Z2 and ∂U0(v, Z)/∂Z

and thus solve equation (7.21).16 The solution to equation (7.21) has the following
form:17

(7.24)

where

For the a~1 volatility perturbation, Bodurtha and Jermakyan define the associ-
ated minimizer, known as the minimand, as

(7.25)

where α1 is called a regularizing parameters and Ω(·) is a nonnegative functional,
called a stabilizing functional, roughness penalty, or smoother, that satisfies certain
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conditions. While there are different stabilizing functional alternatives to use, the
following guarantee good numerical properties such as stability:

(7.26)

(7.27)

These stabilizing functionals are squares of the Hp norm, where p is a suitably
chosen nonnegative integer. Once the regularizing parameter α1 is known, solve for
a~1 as the minimizer of optimand (7.25). The regularizing parameter can be deter-
mined by the discrepancy method of Tikhonov and Arsenin (1977). Define the dis-
crepancy function

(7.28)

where δ is a bound on the least-squares error of the traded option price quotes and
is nonnegative. Define U

– i, j as the actual call option value at time zero and spot price
S(0). Following the definition of the quoted option prices Ui, j, the actual values U

– i, j

are also scaled by the strike price Ki and maturity time vj. However, it is not ex-
pected that quoted option prices and the actual option values will coincide due to
nonsynchronous option and spot quotes, bid-ask costs, and other factors that in-
troduce the error U

– i, j – Ui, j. The term δ is a chosen as the bound parameter on the
size of the least-squares error:

(7.29)

Given δ, the solution for the unique volatility function, a~1, is the minimizer
of the optimand in (7.25). The regularizing parameter, α1, is chosen such that it
is a root of the discrepancy function in (7.28) so that ρ1(α1) = 0. The general theory 
of Tikhonov and Arsenin (1977) guarantees that a unique solution to the prob-
lem exists.

To implement their approach, Bodurtha and Jermakyan use an explicit finite-
difference scheme. They solve two separate minimization problems—one to com-
pute the ak’s and one to compute α1. They first calculate the Black-Scholes-Merton
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implied volatility for a fixed number of option quotes using a Newton-Raphson
search for the roots of the optimand derivative with respect to a~0. Given closed-
form expressions for U1(vj , Zi, j) terms and their partial derivatives, numerical inte-
gration procedures can be used to discretize them. In particular, they make a change
of variables ξ = Z – a~0v and denote a~k (v, ξ) = a~k (v, Z) for k = 1, . . . , n and H0(v,
ξ) = U0(v, Z), H1(v, ξ) = U1 (v, Z), . . . , Hn(v, ξ) = Un(v, Z) which changes the sys-
tem of equations in (7.20), (7.21), and (7.22) to

(7.30)

(7.31)

(7.32)

(7.32)

The system can be discretized using an explicit finite-difference scheme with
time steps ∆v and state spacing ∆ξ with v0 = 0, vj+1 = vj + ∆v for j = 0, 1, . . . , M
– 1, where M = 1/∆v. The state space line can be truncated by a number L > 0,
that is, ξ∈ [–L, L]. Boundary conditions are imposed at ξ ± L. For sufficiently
large L, it is assumed H1(v, ± L) = 0 for 0 ≤ v ≤ 1. Moreover, ξ0 = L, ξi+1 = ξi + ∆ξ
for i = 0, 1, . . . , N, where ∆ξ = 2L/(N + 1), ξN=1 = L, and ξ1, ξ2, . . . , ξn are in-
ternal grid points that belong to (–L, L).

Equation (7.31) is discretized with a first-order forward difference formula for
∂H1/∂v and a second-order second central difference formula for ∂2H1/∂ξ2. These
discrete approximations lead to the trinomial method. For stability, the risk-neutral
probabilities of an up or down movement p satisfy the following inequality:

The discretization of equation (7.31) becomes
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for i = 1, . . . , N and j = 0, . . . , M – 1. The probability of no movement is pm = 1 –
2p. Following Bodurtha and Jermakyan, the updated (j + 1)th time step value is
computed from p and

as well as the previous (jth) step H1(i, j) = H1(vj , ξi), and a~1(i, j) = a~1(vj , ξi). More-
over, at all time steps, the

terms can be determined from the computation of H0(i, j). Given boundary condi-
tions H1 = 0 at ξ ± L, equation system (7.33) can be written in matrix form as

H1[ j + 1] = AH1[ j] + F1[ j] (7.34)

where

(7.35)
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From the initial condition in equation (7.31), we know H1[0] = 0, and

We can write this system as

(7.36)

where

(7.37)

In equation (7.36), H1 and F1 are NM × 1 column vectors, A
–

is an NM × NM
lower triangular matrix, and I is the N × N identity matrix. The coordinates of vec-
tor H1 correspond to option quotes that are indexed across maturities and strike
prices.18 Since the option quote set is not complete in the coordinate space of H1, H1
is underdetermined, which makes the system in (7.36) underdetermined. To resolve
the underdetermination of the system, projection and regularization steps are used.
For the projection step, denote m as the number of quoted option maturities and n
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as the number of quoted option strike prices for each maturity. Then, P : �M×N →
�m×n is the standard projection of the real (M × N)-dimensional space onto its (m
× n)-dimensional subspace. Bodurtha and Jermakyan let H1

p = P · H1 and define
A
–

p as the mn × MN rectangular matrix obtained by eliminating the rows of ma-
trix A

–
p that correspond to the nonquoted options.19 Rearranging equation (7.36)

yields

H1
p = A

–
pF1 (7.38)

However, since system (7.38) has more variables than equations, it is overde-
termined and thus has an infinite number of solutions (or no solution at all). To
find a unique solution, Tikhonov regularization is used. To define a regularizer, de-
note G as a vector on which a set of forward difference operators act (i.e., the func-
tion to be regularized),

which are MN × 1 and N × 1 vectors, respectively. Taking the first-order difference
of G over the state variable yields:

D (G)ξ ξ
=

−
−

− −
−

− − −

− − − −
− −





1

0 2 0 1

0 3 0 2

0 0 1

0

1 2 1 1

1 1 1

1

∆

G G

G G

G N G N

G N

G M G M

G M N G M N

G M N

( , ) ( , )

( , ) ( , )

( , ) ( , )

( , )

( , ) ( , )

( , ) ( , )

( , )

M

M

M



































G

G

G

G

G

G

G

G

=

−





















=





















[ ]

[ ]

[ ]

[ ]

( , )

( , )

( , )

1

2

1

1

2

M M

M

j

j

j

j N

 and 

300 STOCHASTIC VOLATILITY

19Ibid., 41.



A good choice for G ≡ a– 1 is:

(7.39)

(7.39)

which is the vector of values one wants to ultimately solve for as solutions to use in
equation (7.13) to determine the volatility surface.

The corresponding first-order difference operator, which corresponds to ∂/∂ξ, is

Thus, D
–

ξ is a bidiagonal MN × MN matrix with homogenous Dirichlet boundary
conditions (from the right). Similarly, we can define the second-order forward dif-
ference operator, corresponding to ∂2/∂ξ2,

Dξ 2 is an (N × N)-dimensional matrix, and D
–

ξ2 is an MN × MN block tridiagonal ma-
trix. The first-order difference operator over time, corresponding to ∂/∂v, is given by
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D
–

v is an N × N identity matrix, and D
–

v is an MN × MN matrix. The forward second
difference operator over time, corresponding to ∂2/∂v2 is given by

and

D
–

v2 is an MN × MN block tridiagonal matrix with three N × N blocks, D1
v2, D2

v2, and
again D1

v2. Finally, the mixed forward difference operator, corresponding to ∂2/∂v∂ξ,
over both time and state is given by

Dv ξ is an N × N bidiagonal matrix and D
–

v ξ is an MN × MN block bidiagonal matrix.
Denote the operator (U; V) as the L2 scalar product of the (MN × 1)-dimensional
vectors U and V. Then we can write the regularizer as a function of the difference
operators and the general column vector G:
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v ξ G)] (7.40)

To solve for a unique solution in equation (7.40), we need to solve a discrete
analog to the optimand in equation (7.25):

M1
α(F1) = (
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ApF1 – (Hp – H0

p );
–
ApF1 – (Hp – H0

p )) + α1Ω(G) (7.41)
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The interested reader can find the remaining details for minimizing equation
system (7.41), which requires also finding α1 as a solution to a corresponding dis-
crepancy function, in Bodurtha and Jermakyan’s paper, which applies the method-
ology to Chicago Board Options Exchange (CBOE) S&P 500 option transactions.

7.5 ONE-FACTOR MODELS

If the Black-Scholes assumption of constant volatility is relaxed, we can try to
model the evolution of the asset price using a volatility diffusion coefficient that is a
deterministic function of time—that is, σ = σ(t)—so that the SDE of the asset price
can be written as

(7.42)

Define a conditional variance under the risk-neutral measure Q as follows:

VarQ
t [X(T )] = EQ

t [X2(T )] – (EQ
t [X(T )])2

Then the instantaneous variance of the return on the asset over an infinitesimal
time interval dt is

If we consider a random variable

the continuously compounded return over the entire finite time horizon, then from
Ito’s lemma we have:

(7.43)
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is a normal random variable with mean zero since it is a martingale (i.e., no drift),
and with variance

(7.44)

Therefore, we get

(7.45)

where

is defined as the average volatility over the time horizon and

We can rewrite equation (7.43) as

(7.46)

Thus, we see that if we allow the volatility to be a deterministic function of time,
the pricing formula is still Black-Scholes, where we need to plug in the average
volatility over the lifetime of the option.

The result is also very intuitively simple if we look at it in discrete time. In dis-
crete time:

where the random variable
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where

(7.47)

is the average volatility20 on [t, T ]. Thus,

where ε is the standard normal deviate. Then,

is a lognormal random variable with volatility σ–. Notice that this model of time-
dependent volatility allows fitting to any term structure of implied volatility and
there is no smile effect: Implied volatilities for options of all strikes with the same
maturity have the same implied volatility equal to the average volatility.

7.6 CONSTANT ELASTICITY OF VARIANCE MODELS

If we assume that the volatility is a function of the underlying asset, S—that is, σ =
σ(S)—then we get the following process:

(7.48)

However, in general, we are no longer able to solve the SDE analytically, and have
to do it using numerical methods. The constant elasticity of variance (CEV) model,
initially posed by Cox and Ross (1976),21 assumes such a volatility function:
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20Average volatility can be viewed as the volatility implied by ATM options.
21Cox and Ross (1976), 145–166. Cox and Ross assume the volatility function is σS–α where
0 ≤ α ≤ 1. Thus, their model for the asset price is dS = µSdt + σS1–αdz.



where S(0) is the spot level at time 0 (when we calibrate the model). The CEV in
(7.20) is characterized by two parameters: the ATM local volatility σ0 and the skew
parameter γ. The estimates of γ that produce the observed implied smile curve in
the S&P 500 option market are around –4. The model with 0 < γ < 1 is called re-
stricted CEV since the gamma is not enough to fit the observed smile. The model
with γ = 1 is the standard Black-Scholes lognormal process. Models with γ < 0 are
called unrestricted CEV. They fit the smile rather well. The problem, however, is
that for the unrestricted CEV, the volatility goes to infinity as the asset price goes to
0. This is an undesirable feature of the model that can be handled by introducing a
cutoff point that prevents the volatility from blowing up. The restricted CEV PDE
is actually analytically tractable and can be expressed in terms of hypergeometric
(Bessel) functions as shown by Cox and Ross (1976). However, while there are al-
ternative parametric choices that allow the model to fit the observed smile for a
given maturity date, such parameterizations do not fit the model to the term struc-
ture. Alternative specifications of the volatility are needed.

It is important to note that with the CEV model, the variance of the asset rate of
return depends on the price of the underlying asset, and/or time as well. This is a dif-
ferent framework than the Black-Scholes, which assumes constant variance and in-
dependence of changes in asset returns on the asset’s price level. The Black-Scholes is
actually a special case of the CEV model when γ = 1.

Cox and Rubinstein (1985) provide a closed-form analytic formula for pricing
a European call with CEV:

where

and

is the gamma probability density function and
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is the cumulative gamma distribution function. When using the CEV formula for
different values of γ, the values of σ∼ are standardized so that the current volatility is
the same in each case. Thus, as the skew parameter γ changes, σ∼ changes so that σ∼Sγ

= σS. Thus, changes in option prices are due solely to the differences in the way the
volatility changes as the asset price changes.22

7.7 RECOVERING IMPLIED VOLATILITY SURFACES

In the nonparametric approach, we try to infer the local vol surface from market-
traded options using a numerical optimization procedure such as the procedure
shown earlier of Bodurtha and Jermakyan (1999). In an ideal world, we would like
to find the implied volatility surface σ(S, t) that produces the continuum of observ-
able option prices C(S(0), 0; X, T) at time 0. By Dupier’s equation, we have

Thus, the local volatility is expressed through an infinitesimal calendar spread, an
infinitesimal call spread, and an infinitesimal butterfly spread.

The problem with Dupier’s equation is that only a finite number of strikes and
maturities are actually traded in the market, and the problem of inferring the local
volatility surface (and implied probability distribution) from option prices is ill-
posed. We can try to overcome this problem by using a nonparametric procedure to
handle the case of a finite number of strikes and maturities, known as the inverse
problem for the option-pricing PDE. Suppose we have a finite number of market
quotes Cij for calls with strikes Xj and maturities Ti. At the same time, these option
prices must satisfy the pricing PDE:

subject to the terminal conditions:

C(S(Ti), Xj, Ti) = max(S(Ti) – Xj, 0) at time Ti, i = 1, 2, . . . , N, j = 1, 2, . . . , M

1
2

2
2

2
S

C

S
r q S

C
S

C
t

rf
∂
∂

+ − ∂
∂

+ ∂
∂

=( )

σ2

2
2

2

1
2

( , )
( )

,

S t

C
T

r q X
C
X

qC

X
C

X X S T t

=

∂
∂

+ − ∂
∂

−

∂
∂



















 → →

7.7 Recovering Implied Volatility Surfaces 307

22Cox and Rubinstein (1985), 364.



The inverse problem for the pricing PDE is to find a local vol surface that pro-
duces the observable market quotes for options as solutions to the pricing PDE.
Since there are only a finite number of option quotes, the problem is ill-posed. One
can try minimizing the least-squares error on the set of option quotes:

(7.50)

where C(S, t; Xj, Ti) are Black-Scholes vanilla option prices (calculated assuming a
functional volatility) and C

–
i j are quoted market vanilla option prices (the arithmetic

average of recent known bid and offer prices) over a range of strike prices, Xj, j = 1,
. . . , M, and maturities Ti, i = 1, . . . , N.23

An additional criterion that we might impose is to find a solution that is also
closest to some Black-Scholes (lognormal) prior or which is the smoothest solution.
Unfortunately, it is a very complicated numerical optimization problem and gives
rise to rather unstable results when a limited number of strikes and expirations is
used. In fact, Tikhonov regularization is needed to cope with the ill-posedness of
the problem. Such regularization is a self-stabilizing procedure to force “well-
posedness” in the problem. Regularization restricts the solution to the smoothest
functions that minimize the difference between Black-Scholes prices and quoted
market prices. Jackson, Süli, and Howison (1999) use such an approach to generate
a deterministic volatility surface represented as a space-time spline by minimizing:

(7.51)

where G is the regularizer:

and P is the state-space dimension of the natural cubic spline for S ∈ [Smin, Smax], Q
is the temporal space dimension of the spline, w is a weighting function that reflects
the importance of particular prices; that is, at-the-money prices should be weighted
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23The Black-Scholes prices can be found by solving the Black-Scholes PDE by transforming
the problem via a change of variables and then solving the resulting transformed problem by
a piecewise quadratic finite-element method in space and Crank-Nicolson finite-difference
method in time. See Jackson, Süli, and Howison (1999) for details.



higher than out-of-the-money prices since they are more liquid (it is assumed that
wij > 0 and Σ ij wij = 1), and c1 and c2 are positive constants.24 Their approximation
of σ(S, t) is specified by the matrix of spline weights Σpq = σ(Sp, tq).

7.8 LOCAL VOLATILITY SURFACES

To fit both the smile and the term structure (the entire implied volatility surface),
we need to consider a more general process that allows the volatility to be a func-
tion of the asset price and time to maturity, that is, σ = σ(t, S):

dS(t) = µS(t)dt + σ(t, S)S(t)dz(t) (7.52)

where µ = r – q. We need to solve an inverse problem: find a local volatility sur-
face σ(S, t) that produces the given implied volatility surface (matrix). There are
two approaches: parametric and nonparametric. In the parametric approach, a
parametric form for the local volatility surface is assumed and its parameters are
then estimated. After the parameters are estimated, robustness analysis is per-
formed to ensure the model can properly fit the evolution of the surface over
time. The model is walked forward on (out of sample) data and the parameters
are reestimated at each step. If the parameters are stable (i.e., change slowly over
time), the model is said to be robust. Otherwise, if the parameters are unstable
(i.e., change sharply over time), the model is not robust. An example of a para-
metric approach would be to try estimating a CEV process with time-dependent
ATM volatilities:
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24Jackson, Süli, and Howison (1999), 12.
The natural cubic spline is the smoothest of all piecewise cubic interpolants such that the en-
ergy functional

is minimized. When specifying the spline, P + 1 state nodes are used 0 < Smin = S0 < S1 < . . . <
Sp < . . . < SP = Smax < ∞, while Q + 1 temporal spline nodes are used 0 = t0 < t1 < . . . < tq < . . .
tQ = Tmax.
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An alternative parametric form is:

(7.54)

The volatility does not blow up as the asset price, S(t), tends to 0, but approaches
the finite value σ0(t)e

κ.
Brigo and Mercurio (2001b, 2001c) have developed a more sophisticated ana-

lytic model for finding the local volatility based by allowing the asset marginal
(risk-neutral) density to be a mixture of known basic probability densities. They
consider an extension of (7.22) to N basic diffusion processes with dynamics25

given by:

dSi(t) = µSi(t)dt + vi(S
i(t), t)Si(t)dz(t), i = 1, . . . , N (7.55)

with an initial value Si(0) and where, for each t, pi(t,·) is the density function of Si(t),
that is, pi(t, y) = d(QT{Si(t) ≤ y})/dy, where pi(0) is the δ-Dirac function centered in
Si(0), and vi(t, y)’s are real functions satisfying regularity conditions to ensure exis-
tence and uniqueness of the solution in (7.24). In particular, for suitable positive
constants L and Li’s, the linear-growth conditions hold for the local volatility σ(t, y)
function and the real-valued volatility functions vi(t, y):

σ2 (y, t)y2 ≤ L(1 + y2) uniformly in t (7.56)

and

v 2
i (y, t) ≤ Li(1 + y 2) uniformly in t, i = 1, . . . , N (7.57)

We need to find a local volatility such that its T-forward risk-adjusted measure, QT-
density of S satisfies:

(7.58)

where each Si(0) is set to S(0), and the λi’s are strictly positive constants such that
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25Si can be any asset that follows a diffusion process such as a stock or foreign currency as
well as a spot or forward interest rate (simply use Fi instead of Si).



The λi’s can be interpreted as weights of each individual marginal density function
pi(·, t). As Brigo and Mercurio show, indeed p(·, t) is a QT-density function since, by
definition, the T-forward expected asset price is:

Brigo and Mercurio claim that the inverse problem is essentially the reverse
of that of finding the marginal density function of the solution of an SDE when
the coefficients are known. In particular, σ(t, S(t)) can be found by solving the
Fokker-Planck PDE, which is the equation that must be satisfied for the (ran-
dom) asset price to be a martingale; that is, the PDE sets the drift of the stochas-
tic process to 0.

(7.59)

given that each marginal density pi(t, y) satisfies the Fokker-Planck equation and as-
suming the volatility of underlying asset i = 1, . . . , N, is vi(t, y) = σ(t, y)y, which is
a deterministic function of time and the underlying itself.

(7.60)

Using the linearity of the derivative operator and using definition (7.59),

Then by substituting from (7.60) we get

(7.61)
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This second-order differential equation for σ(t, ·) can be solved to yield the
general solution:

However, the regularity condition in (7.56) implies that the limit on the left-
hand side is zero as y → ∞. In this case, the right-hand side must have a zero limit
as well. This occurs if and only if A(t) = B(t) = 0 for all t. Therefore, we obtain a
function for σ(t, y) that is consistent with the marginal density (7.58) and satisfies
its regularity condition in (7.56):

(7.62)

(7.62)

Brigo and Mercurio denote

(7.63)

for each i = 1, . . . , N and (t, y) > (0, 0), so that the local volatility can be written as

The volatility can be written as a (stochastic) convex combination of the
squared volatilities of the basic processes in (7.55). Moreover, for each (t, y), Λi(t, y)
≥ 0 for each i and

Moreover, the regularity condition (7.56) is satisfied by setting L = maxi=1, . . . ,NLi

and using the regularity conditions of the basic processes (7.57):

While we have shown a strong solution of the local volatility, it is not necessar-
ily unique as verification must done on a case-by-case basis. However, we assume it
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is and plug (7.62) into the model SDE in (7.50) to yield the asset price dynamics un-
der the forward measure QT:

(7.64)

Equation (7.64) leads to analytical formulas for European options since using
basic densities pi that are analytically tractable leads to explicit option prices under
the model process for the underlying asset which preserves the analytic tractability.
In particular, the marginal density as a mixture of lognormals, that is,

where the standard deviation is defined as:

has been studied often26 due to its relationship to Black-Scholes and due to its ana-
lytical tractability. Moreover, mixtures of lognormal densities work well in practice
when used to reproduce market volatility structures. Note that the absence of
bounds on the number of basic assets, N, implies that many parameters can be used
in the asset-price dynamics to improve consistency with market data. Finally, view-
ing local volatilities as a mixture of densities can be interpreted by viewing the un-
derlying asset S as a process whose marginal density at time t coincides with the
basic density pi(t, y) with probability λi.

7.9 JUMP-DIFFUSION MODELS

The jump-diffusion model allows for large price movements over small time inter-
vals. This is a more realistic model than the Black-Scholes GBM process, which as-
sumes small price movements over small time intervals. In a pure jump process,
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each successive price is almost as close to the previous price, but occasionally, there
is a low, but nonzero, probability that the price will be significantly different.

Merton proposed a model where in addition to a Brownian motion term, the
price process of the underlying asset is allowed to have jumps with frequency λ.
The size of the jump is normally distributed. However, the risk of these jumps is as-
sumed to not be priced. It can be shown that the asset price movements converge to
a log-Poisson distribution, rather than to a lognormal distribution as n → ∞. The
pricing formula of European call option C is

where τ = T – t, λ
∼

= λ(1 + κ), CBS(·) is the Black-Scholes formula,

and

In implementing the formula, we need to terminate the infinite sum at some
point. But since the factorial function is growing at a much higher rate than any
other term, we can terminate at approximately n = 50, which should be on the con-
servative side. To avoid numerical difficulties, use the following expression:

The following is an implementation for pricing a European call option using
Merton’s jump-diffusion model:

/**********************************************************************************
calcJumpDiffusion : calculates the value of a call option with jump diffusion.
[in]:  double price : price of the stock

double strike : strike price
double rate : risk-free interest rate
double div : dividend yield of stock 1
double vol : volatility of stock 1
double T : time to maturity (in years)
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double lambda : parameter of jump diffusion process
double kappa : parameter of jump diffusion process
double delta : parameter of jump diffusion process

[out]: double : call option price
**********************************************************************************/
double JumpDiffusionModel::calcJumpDiffusion(double price, double strike, double

rate, double vol, double T, double lambda, double kappa, double delta)
{

const int MAXN = 50; // maximum number of iterations
double lambdatilde = lambda*(1 + kappa); // lambda tilde
double logn = 0.0; // sum of log(i), i = 1 . . . n
double r_n = 0.0; // adjusted risk-free rate
double deltasqr = delta*delta; // delta squared
double vol_sqr = vol*vol; // variance
double voln = 0.0; // sum of volatilities
double gamma = log(1 + kappa); // gamma
double call = exp(lambdatilde*T)*calcBSCallPrice(vol,rate-lambda*kappa,0.0,

strike,price,T);

for (int n = 1; n <= MAXN; n++)
{

logn += log(n);
voln = sqrt(vol_sqr + n*deltasqr/T);
r_n = rate – lambda*kappa + n*gamma/T;
call += exp(lambdatilde*T + n*log(lambdatilde*T)-

logn)*calcBSCallPrice(voln,r_n,0.0,strike,price,T);
}
return call;

}

7.10 TWO-FACTOR MODELS

Since one-factor models cannot capture the evolution of the implied volatility sur-
face, the next stage of generalization is to use a two-factor stochastic model where
both the underlying asset and its volatility, both random variables, evolve simulta-
neously by SDEs. Such stochastic models are used to model the time evolution of
the implied volatility surface. However, since these two random variables are corre-
lated, it is necessary to impose their correlation into the model:

dS / S = µ(S, t)dt + σ(S, t)dWS

dσ = α(σ, t)dt + V (σ, t)dWσ

where α is the drift of the volatility and V is the volatility of the volatility. Note that
dW’s are Wiener processes that are correlated.

E[dWSdWσ] = ρdt
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We can translate these correlated deviates into uncorrelated deviates by letting

so that E[dz1dz2] = 0. This two-factor process can be simulated starting from some
initial conditions S(0) and σ(0).

The correlation is an important part of the model. If the correlation is negative,
volatility increases as the underlying asset falls, and volatility decreases as the un-
derlying rises. Empirically, the volatility smirk in the S&P 500 index with a fatter
lower tail in the implied probability distribution is observed. If the correlation is
zero, the symmetric smile with both slightly fat tails is observed as in the foreign ex-
change market. If the correlation is greater than zero, volatility decreases as the un-
derlying falls and increases as the underlying rises. Empirically, one gets a skew
with a fatter upper tail in the implied probability distribution, which is usually not
present in financial markets.

The following is an implementation of a spread option stochastic volatility
model. There are two assets (i.e., two stocks), S1 and S2, each of which follows a
GBM diffusion process, but where the variance of returns, V1 and V2, of the as-
sets follows mean reverting square root processes; see Hull and White (1999). S1
follows

and S2 follows

where dz1 and dz2 are Wiener processes and V1 and V2 are the variances of returns
of S1 and S2, respectively, following this mean-reverting square root process:

and

where α is the rate of mean reversion, V
–

1 and V
–

2 are the reversion levels, ξ1 and ξ2

dV V V dt V dzV
2 2 2 2 2 2= − +α ξ( )

dV V V dt V dzV
1 1 1 1 1 1= − +α ξ( )

dS r q Sdt V SdzS= − +( ) 2 2

dS r q Sdt V SdzS= − +( ) 1 1

dz dW dz dW dWS S1 2
21= = + −    and ρ ρ σ
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are the volatilities of the variance of returns, V1 = σ 2
1 and V2 = σ2

2 , and the dz’s are
Wiener processes with the following correlation matrix:

We can generate correlated deviates from this matrix, for simulating diffusion
paths, by transforming it into an eigensystem:

ρz = ΓΛΓ′

where Γ is the matrix of eigenvectors and Λ is the matrix with eigenvalues along the
diagonal as shown in section 2.3. Correlated deviates can also be generated with a
Cholesky decomposition.

The following is an implementation of this stochastic volatility spread option
model:

/**********************************************************************************
calcStochasticVolSpread : calculates the value of a call spread option on two

stocks.
[in]:  double price1 : price of stock 1

double price2 : price of stock 2
double X : strike price
double rate : risk-free interest rate
double Vbar1 : mean-reversion level for stock 1
double Vbar2 : mean-reversion level for stock 2
double div1 : dividend yield of stock 1
double div2 : dividend yield of stock 2
double alpha1 : mean reversion rate of the variance for stock 1
double alpha2 : mean reversion rate of the variance for stock 2
double T : time to maturity (in years)
double eta1 : volatility of the variance of stock 1
double eta2 : volatility of the variance of stock 2
double R : correlation (symmetric) matrix
int M : number of simulations
int N : number of time steps

[out]: spread call price (double)
**********************************************************************************/
double SpreadOption::calcStochasticVolSpread(double price1, double price2, 

double X, double rate, double Vbar1, double Vbar2, double div1, double div2,
double alpha1, double alpha2, double T, double eta1, double eta2,
SymmetricMatrix& R, int M, int N)

{
N = 1; // No path dependency
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double dt = T/N; // time step size
int i, j; // counter
int size = R.Nrows(); // size of correlation matrix (number of rows 

// = number of cols)
double sum1 = 0.0; // sum of all the call values on stock 1 at 

// time T
double sum2 = 0.0; // sum of all the call values on stock 2 at 

// time T
double S1 = 0.0; // stock price 1
double S2 = 0.0; // stock price 2
double lnS1 = 0.0; // log of stock price 1
double lnS2 = 0.0; // log of stock price 2
double CT = 0.0; // call price at maturity
double SD = 0.0; // standard deviate of call price
double SE = 0.0; // standard error of call price
double callValue = 0.0; // call price (return value)
double V1 = Vbar1; // variance of stock price 1
double V2 = Vbar2; // variance of stock price 2
double eta1dt = eta1*sqrt(dt); // volatility of the variance of stock 1
double eta2dt = eta2*sqrt(dt); // volatility of the variance of stock 2
double z1[4]; // stores copy of correlated deviates for 

// simulation
double* z = new double[4]; // correlated deviates vector returned from 

// genCorrelated
MatrixUtil mu; // matrix utility class

for (i = 0; i < M; i++) // for each simulation
{

// for each simulation, reset the initial stock prices
lnS1 = log(price1);
lnS2 = log(price2);
V1 = Vbar1;
V2 = Vbar2;

for (j = 0; j < N; j++) // for each time step
{

// generate correlated deviates and store them in z
z = mu.genCorrelatedDeviates(R,dt,z1);

// simulate variances first
V1 = V1 +  alpha1*dt*(Vbar1 – V1) + eta1dt*sqrt(V1)*z[2];
V2 = V2 +  alpha2*dt*(Vbar2 – V2) + eta2dt*sqrt(V2)*z[3];

// simulate asset prices
lnS1 = lnS1 + (rate – div1 – 0.5*V1)*dt + sqrt(V1)*sqrt(dt)*z[0];
lnS2 = lnS2 + (rate – div2 – 0.5*V2)*dt + sqrt(V2)*sqrt(dt)*z[1];

}

S1 = exp(lnS1);
S2 = exp(lnS2);

CT = max(0, S1 – S2 – X); // calculate payoff
sum1 = sum1 + CT;

318 STOCHASTIC VOLATILITY



sum2 = sum2 + CT*CT;
}
callValue = exp(-rate*T)*sum1/M;
cout << “callValue = “ << callVal

SD = sqrt((exp(-2*rate*T)/(M-1))*(sum2 – (sum1*sum1)/M));
cout << “stddev=” << SD <<endl;

SE = SD/sqrt(M);
cout << “stderr = “ <<  SE  << endl;

return callValue;
}

As an example, suppose S1 = 50, S2 = 55, X = 1, r = 0.06, q1 = 0.02, q2 = 0.03,
α1 = 1.0, α2 = 2.0, V

–
1 = 0.06, V

–
2 = 0.20, ξ1 = 0.09, ξ2 = 0.15, T = 1, M = 100, and N

= 1, and that the correlation matrix is:

The Cholesky decomposition matrix L is:

which can be used to generate correlated deviates. If we use principal component
analysis of ρ into an eigenvalue system, we get:

The eigenvalues represent the variances of the independent Brownian motions.
The rows of Γ represent the proportions of a set of four independent Brownian mo-
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tions since the transpose of Γ is equal to its inverse. The correlated deviates can be
generated from linear combinations of the independent Brownian motions:

or

Using 10,000 Monte Carlo simulations, the value using an eigenvalue-
eigenvector decomposition is $5.24 with a standard deviation of 7.292 and a stan-
dard error of 0.0729, while the price using a Cholesky decomposition is $5.29 with
a standard deviation of 7.093 with a standard error of 0.0709. Note that price esti-
mates can differ between a Cholesky and an eigenvector-eigenvalue decomposition
when generating correlated deviates. Note that

LL′ = ΓΛΓ′ = ΓΛ1/2Λ1/2Γ′ = ρ

and

L = ΓΛΓ′(L′)-1 = ΓΛ1/2Λ1/2Γ′(L′)-1 = ρ(L′)-1

holds, but that in general,

Λ1/2Γ′(L′)-1 ≠ I

where I is the identity matrix so that

Lz ≠ ΓΛ1/2z

even though both sides generate correlated deviates. Therefore, both methods de-
compose the correlation matrix, but they generate different correlated bases, which
can lead to different prices. Note L is lower-triangular while ΓΛ1/2 is not.27 How-
ever, as the number of simulations increases the two prices converge.
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7.11 HEDGING WITH STOCHASTIC VOLATILITY

When volatility is stochastic, it is not possible to maintain a perfect hedge. Errors
are introduced by the fact that the actual (process) volatility is unknown. Thus, if
the implied (hedging) volatility is not equal to the process volatility, there will be a
standard error of the portfolio value. This standard error increases with the volatil-
ity error since the variance of the portfolio value is proportional to the variance of
the volatility forecast.

Suppose we want to price an option f that pays off F(ST ) at expiration. We will
try to hedge it by trading both the underlying asset and another option g that pays
off G(S*T ) at its expiration T*. We will construct a dynamic self-financing replicat-
ing strategy that exactly replicates the option f.

We construct the portfolio

Π = ∆S + hg – NA – f

That is, we sell one option f and hedge with ∆ shares of S and h options g, and fi-
nance by selling short N shares of the money market account, effectively borrowing
at the risk-free rate.

Assuming our strategy is self-financing so we don’t have to differentiate the
weights, the change in the portfolio value over dt is

where Ito’s lemma on two stochastic variables, S and σ, is used (we assume σ fol-
lows the general diffusion process dσ = αdt + βdzP

σ with drift rate α and diffusion
rate β, i.e., volatility of the volatility):

where

mf is the drift rate under the real-world measure P, and ρ is the correlation be-
tween the underlying asset and its volatility. We can replicate the option f by using
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the dynamic trading strategy (∆, h, N), so that dΠ(t) = 0. It can be shown, after
some algebra, that this is equivalent to the following relationships:

and

The first relationship states that ∆ is the delta of the portfolio of options f – hg
where the hedge ratio h is the ratio of two vegas—the vega of option f and the vega
of option g. The second relationship can be rewritten as:

This is equivalent to the expression that for any claim f the quantity

is independent of any features of the claim f and depends on S, σ, and t only. This
can be rewritten as:

That is, the return on the option is equal to the risk-free rate of return plus the risk
premium associated with the underlying asset risk (S-risk) and the risk premium as-
sociated with the volatility risk (σ-risk). Substituting in the expressions from Ito’s
lemma, we derive the pricing PDE of a (contingent) claim with stochastic volatility:

where α – βλσ is the drift rate of the volatility in the risk-neutral world equal to its
drift rate in the real world minus the market price of volatility risk λ multiplied by
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the volatility of the volatility β. The risk-neutral processes of the underlying asset
and volatility are:

dS/S = rdt + σdzQ
S

and

dσ = (α – βλσ)dt + βdzQ
σ

respectively, where Q is the risk-neutral measure and E[dzQ
S dzQ

σ ] = ρdt.
The change of measure from the real-world measure P to the risk-neutral mea-

sure Q is

dzP
S = dzQ

S – λSdt and dzP
σ = dzQ

σ – λσdt

If volatility were a traded asset, then α – βλ = r. Since volatility itself is not traded,
we can only trade derivatives on it.28

We need a way to estimate the risk-neutral drift of the volatility. Since volatility
itself is not traded, it cannot be directly estimated. If we had liquid futures or for-
ward contracts on volatility, we could estimate the drift from forward prices. How-
ever, we have only (liquid) options available, and since they are highly nonlinear in
volatility, it is difficult to estimate. We can make assumptions about the risk-neutral
volatility drift, and then we can solve the stochastic volatility PDE by Monte Carlo
simulation based on the Feynman-Kac formula (see Chapter 1) as an expectation
over the two-factor risk-neutral process.
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CHAPTER 8
Statistical Models

In the previous chapter, we examined various models to describe volatility struc-
tures. In this chapter, we examine another way to model volatility—namely using

statistical models. Statistical models, such as generalized autoregressive conditional
heteroskedasticity (GARCH), provide the advantage over parametric approaches in
that they use robust statistical methods to actually estimate volatility structures. We
examine several of these models and show how they can be used for volatility esti-
mation and forecasting. In section 8.1, we give an overview of statistical models and
why they are needed. In section 8.2, we discuss moving average models and provide
an implementation. In section 8.3, we discuss exponential moving average models
and provide an implementation. In section 8.4, we discuss GARCH models. In sec-
tion 8.5, we discuss asymmetric GARCH models. In section 8.6, GARCH models
for high-frequency data are examined. In section 8.7, estimation problems of
GARCH models are discussed. In section 8.8, we discuss using GARCH in an op-
tion pricing model using a lattice. Finally, in section 8.9, we discuss GARCH fore-
casting and provide a GARCH forecasting example.

8.1 OVERVIEW

Option pricing models such as Black-Scholes, as discussed in Chapter 7, can be used
to calculate implied volatilities. In addition, they can be used to forecast the volatil-
ity of the underlying asset over the life of the option. Statistical models can also be
used to calculate implied and forecasted volatilities and correlations. However, the
forecasts and implied volatilities computed from option pricing models and statisti-
cal models will differ since the estimates use different data and different models that
are based on different assumptions. Moreover, most statistical models use asset re-
turns as data input instead of prices, rates, and yields because the latter are gener-
ally nonstationary while the former are not.1 In contrast, the Black-Scholes model
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need to be transformed (i.e., normalized) into returns before applying PCA. Otherwise, the
first principal component will be dominated by the input variable with the greatest volatility.



uses asset prices since all the parameters are assumed to be constant through the
lifetime of the option. Thus, the model assumes stationarity.

Implied methods use current data on market prices of options. Consequently,
implied volatilities incorporate the forward expectations of market participants
about the likely future movements of the underlying asset. Implied volatility
methods are based on Black-Scholes assumptions: complete markets, no arbi-
trage, constant volatility, and a geometric Brownian motion (GBM) continuous
time diffusion process for the underlying asset price. The Black-Scholes pricing
model assumes asset price returns are lognormally distributed. But, as discussed
in section 8.5, the implied probability distribution of returns has fatter tails and is
leptokurtotic.

On the other hand, statistical models used to compute volatility estimates and
forecasts use historical data on asset price returns in a discrete time model. Statis-
tical models are based on time series data. The statistical properties of the time se-
ries data, such as the mean and variance over a given time interval, are used in
turn to make forecasts. Statistical methods do not usually make assumptions
about the underlying data distribution a priori especially for stochastic data that is
time-varying.2 However, assumptions about the asymptotic distribution (for very
large sample sizes) and statistical properties about the data generating process
(i.e., ergodicity, stationarity, or nonstationarity) are often made if such properties
are needed to have a robust forecasting model. Certainly, for model parameter es-
timation, one makes assumptions of the distribution needed to compute maximum
likelihood estimates and likelihood ratio test statistics.

In addition, assumptions about the underlying distribution of the sampling er-
rors captured by the noise (error) term in a regression equation, for example, are
made. It is common to assume a normally distributed i.i.d. white noise process in
many models where it is thought that observations are uncorrelated over time.
These assumptions can be tested with confidence and statistical tests such as
Durbin-Watson.

It is important to note that when dealing with estimating or forecasting volatil-
ity and correlations, the time period horizon can significantly affect the estimates. If
a major market event occurs during the observed time period, it can affect and bias
future forecasts. Ghost effects, for instance, can occur in short-term equally
weighted moving average models where there is a large jump in volatility on the
day of the market event that remains at elevated levels over the entire moving aver-
age period and then drops precipitously the day after the period ends.

As Carol Alexander cites, “the 240-day volatility of the FTSE jumped up to 26
percent the day after Black Monday and stayed at that level for almost a whole year
since one large squared return had the same weight in the average for 240 days. But
exactly 240 days after the event, the large return fell out of the average and the
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volatility forecast returned based to its long-run level of around 13 percent despite
no significant events. This does not reflect actual market conditions so caution must
be used in using such a model.”3

Consequently, the type of statistical model used as well as any adjustments that
need to be made to the data needed to be considered. It may be necessary to de-
trend or make seasonal adjustments with time series data. As an additional note,
we take the logarithms of asset returns as in section 7.1 to compute continuously
compounded returns, rather than use annualized returns. The reason is simply that
we have assumed that the asset follows a continuous time diffusion process. How-
ever, in statistical modeling, the frequency of the time series data determines
whether continuous, annualized, or n-day returns should be used. Thus, daily or in-
traday returns, which are high-frequency returns, can be approximated with con-
tinuous compounding, while lower-frequency returns such as weekly or monthly
returns can be computed on an annualized basis so that the estimate of the variance
of returns at time t is:

(8.1)

where r– is the mean return over the time period and rt–i is the n-day return at time
t – i, i = 1, . . . , N. If we use annualized returns, then:

(8.2)

where A is the number of returns (and thus trading days) per year; that is, A = 252.4

The volatility is then annualized by taking the square root of the variance at time t
and then multiplying by

so that the annualized volatility at time t is
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By annualizing the volatility, returns of different frequencies can be compared on
the same scale.5

In this section, we provide a StatModel class that can expose the methods and
functionality we will need for different statistical models such as the moving aver-
age, exponential moving average, and GARCH models. We define the StatModel
class as follows:

#ifndef _STATMODEL__
#define _STATMODEL__

#include “newmat.h” // from Newmat matrix library
#include “Utility.h” // utility class
#include <vector> // stl vector
#include <math.h> // math header
#include <fstream> // file input output header
#include <numeric> // numeric library
using namespace std; // standard template library

class StatModel
{

protected:
vector<double> od; // omega derivatives
vector<double> ad; // alpha derivatives
vector<double> bd; // beta derivatives
vector<double> sd; // second derivatives
vector<double> returns; // returns of asset prices
vector<double> y; // y = a + bx + e
vector<double> yhat; // yhat = a + bx
vector<double> x; // independent variable
vector<double> e2; // square errors
vector<double> e; // regression residual errors
vector<double> h; // vector of GARCH volatilities
vector<double> se; // standard errors of coefficients
Matrix X; // for multiple regressions
vector<Matrix> matder; // vector of Hessian matrices N
vector<Matrix> matder1; // vector of matrices of form Z + bN
vector<Matrix> matder2; // vector of matrices of form Z’ + bN
ColumnVector LLD; // column vector of log likelihood derives
Matrix H; // Hessian matrix (holds second order derivatives)
ColumnVector B; // coefficients in multiple regressions
ColumnVector Y; // column vector of dependent variable
ColumnVector X1; // column vector of independent variables
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ColumnVector SE; // column vector of standard deviations
int T; // time series length (number of data points)
public:

StatModel() {} // default constructor
StatModel(vector<double> y, 

vector<double> x) :
y(y), x(x), T(y.size()) { }

StatModel(ColumnVector v, 
Matrix m) : // overloaded constructor
Y(v), X(m) { }

StatModel(ColumnVector y, 
ColumnVector x) : // overloaded constructor
Y(y), X1(x) { }

virtual ∼StatModel() { } // destructor
vector<double> MA(int lag, 

vector<double>& prices); // computes moving average
vector<double> MA(int lag); // overloaded moving average function

vector<double> EWMA(double // computes exponential moving average
lambda, vector<double>& prices);

ColumnVector GARCH11 // computes GARCH(1,1) parameters
(vector<double>& prices,
StatModel &sm);

double calcConstCoeff(); // computes constant 
// regression intercept

double calcAve(vector<double> // computes dependent 
& y); // variable average

double calcBeta(); // computes beta coefficient 
// of single var. regression

double getXAve(); // return independent 
// variable average

double getYAve(); // returns dependent 
// variable average

vector<double>& calcErrors(); // computes residual 
// regression errors

vector<double> calcReturns
(vector<double>& returns); // compute asset returns

double calVarEstimator(); // compute variance estimate
double calcSDEstimator(); // compute standard deviation estimate
double calcX2Dev(); // calculates sum of (x - xave)*(x - xave)
double calcY2Dev(); // calculates sum of (y - yave)*(y - yave)
ColumnVector calcLogDerives // calculates log derivatives w.r.t.

(ColumnVector theta); // parameters
Matrix calcHessian(ColumnVector 

theta); // calculates Hessian
vector<double>& calcSE(); // calculates the standard error
int getSampleSize(); // returns data sample size
double calcR2(); // calculates R2 – correlation coefficient
ColumnVector calcBetas(); // calculates beta 

// regression coefficients
ColumnVector calcSEs(); // computes a column vector of standard 

// errors
void readData(); // read data file
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void printStats(); // output statistics
double calcResiduals(); // compute residual errors
vector<double> getErrors(); // return vector of errors
ColumnVector getLogDerives(); // return vector of log derivatives
ColumnVector getVolDerives(int i, // return derivative w.r.t. ith data 

double beta); // and beta values
Matrix getVolSecondDerives(int i, // return second deriv. w.r.t. ith 

double beta); // data and beta values
double calcLambda(ColumnVector theta); // compute lambda
double calcBeta1(); // alternative single var. regression 

// coeff. calculation
void setY(vector<double>& y); // store dependent regression variables
void setX(vector<double>& x); // store independent variables
void setT(int size); // store data time series size

};
#endif _STATMODEL__

8.2 MOVING AVERAGE MODELS

Moving average (MA) models of volatility and correlation assume asset returns are
independent and identically distributed. There are no time-varying assumptions so
that moving averages provide only an estimate of the unconditional volatility, as-
sumed to be a constant, and the current estimate is used as the forecast. Volatility
estimates can change over time, but this is due to sampling errors or noise in the
MA model since no other model features allow for its variation. Equally weighted
MA models are used to make historic volatility and correlation estimates and fore-
casts. An equally weighted average of asset returns is calculated over a fixed time
window that is rolled through time, each day adding the new return and taking off
the oldest return.

An n-day historic volatility estimate based on an equally weighted average of the
logarithms of n mean squared daily returns can be computed using equation (8.1).

The following code is an implementation of a moving average of an arbitrary lag:

/**********************************************************************************
MA: computes the n-day moving average of the volatility of asset returns
[in]:   int lag : time lag of moving average

vector<double> prices : vector of asset prices
[out]:  vector<double> of moving average volatilities
**********************************************************************************/
vector<double> StatModel::MA(int lag, vector<double>& prices)
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{
vector<double> returns; // vector of asset returns
vector<double> vols; // vector of volatilities
vector<double>::iterator iter; // vector iterator
double ret = 0.0; // continuously compounded return at time i
double sum = 0.0; // add up total returns
double var = 0.0; // sum of errors squared
double ave = 0.0; // average return
int N = prices.size(); // cache sizes of time series
int A = 252; // assume 252 trading days per year
int i, j;

for (i = 0; i < N-1; i++)
{

// calculate continuously compounded return
ret = log(prices[i+1]/prices[i]);
returns.push_back(ret);
sum = sum + ret;

}
// calculate mean average return
ave = sum/N;

for (i = 0; i < returns.size() - lag; i++)
{

var = 0.0;
for (j = 0; j < lag; j++)
{

var += (returns[lag+i-j-1]- ave)*(returns[lag+i-j-1] - ave);
}
vols.push_back(100*sqrt(var/((lag-1)*(A))));

}

i = 0;
// print of MA volatilities
for (iter = vols.begin(); iter != vols.end(); iter++)
{

cout << *iter << endl;
i++;

}
return returns;

}

Figure 8.1 plots 5-day, 30-day, and 120-day moving averages of the FTSE 100
index using closing index prices from January 3, 1996, to December 16, 1999.
These prices are passed into the MA function, along with the time lag, and con-
verted into logarithmic returns that are used in the moving average. As Figure 8.1
shows, the longer the lag, the smoother the time series.
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8.3 EXPONENTIAL MOVING AVERAGE MODELS

Another model commonly used to estimate and forecast unconditional variance
is the exponential weighted moving average (EWMA) model since if used cor-
rectly EWMAs can generate more accurate estimates of short-term volatility or
correlation than equally weighted moving averages. EWMA models place more
weight on more recent observations. Like the MA model, a large asset return
(and thus squared asset return) caused by a market event will cause volatility es-
timates in the EWMA to react immediately. However, unlike the MA model, the
effect of this return in EWMA gradually diminishes over time. The reaction of
EWMA volatility estimates to market events persists over time based on the
magnitude of the smoothing constant (decay factor) λ, 0 < λ < 1. The larger λ is,
the more weight is placed on past observations and the smoother the time series
becomes.

The n-period EWMA of a time series {yi , i = 1, . . . , N} (i.e., asset returns) is
defined as:

(8.3)
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FIGURE 8.1 Moving Averages of FTSE 100
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As n → ∞, the exponential weighted moving average places no weight on observa-
tions far in the past. An infinite EWMA may be written as:

since the denominator of equation (8.3) tends to 1/(1 – λ) as n → ∞. For an
EWMA, volatility of asset returns becomes:

(8.4)

where rt is the percentage price change for day t.
The equation for EWMA can also be stated as:

σ̂2
t = λσ2

t–1 + (1 – λ)r2
t

In the EWMA model that is implemented as follows, λ and the vector of asset
prices are passed as parameters into the method. The prices are converted into log-
arithmic returns, which are then used in the EWMA model:

/**********************************************************************************
EWMA : computes the exponential weighted moving average of the volatility of asset 

returns
[in]   double lambda : weight of past observations : decay factor

vector<double> prices : vector of asset prices
[out]: vector<double> : EWMA volatilities
**********************************************************************************/
vector<double> StatModel::EWMA(double lambda, vector<double>& prices)
{

vector<double> returns; // vector of returns
vector<double> vols; // vector of volatilities
vector<double>::iterator iter; // vector iterator
double ret = 0.0; // continuously compounded return at time i
double sum = 0.0; // add up total returns
double var = 0.0; // sum of squared errors
double ave = 0.0; // average return
int N = prices.size(); // cache sizes of time series
const int lag = 100; // moving average time lag
const int A = 252; // number of trading days
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int i, j;

for (i = 0; i < N-1; i++)
{

// calculate continuously compounded return
ret = log(prices[i+1]/prices[i]);
returns.push_back(ret);
sum = sum + ret;

}
// calculate mean average return
ave = sum/N;

for (i = 0; i < returns.size() - lag; i++)
{

var = 0.0;
for (j = 1; j < lag; j++)
{

var += pow(lambda,j-1)*(returns[lag+i-j-1]- ave)*(returns[lag+i-j-1] - ave);
}
var = (1 - lambda)*var;

// annualize volatility
vols.push_back(100*sqrt(var/A));

}

// print out of EWMA volatilities
for (iter = vols.begin(); iter != vols.end(); iter++)
{

cout << *iter << endl;
i++;

}
return returns;

}

Figure 8.2 shows the EWMA of the DAX index from January 1996 to May
2000 for λ = 0.75, λ = 0.85, and λ = 0.95. As expected, as λ gets larger, the moving
average series becomes smoother since past observations have more weight.

While the MA and EWMA models work well for modeling i.i.d. returns, in re-
ality returns are not i.i.d., especially for high-frequency returns that exhibit auto-
correlation. Lower-frequency returns may not exhibit autocorrelation, but squared
returns do, so that returns are not independent. MA and EWMA models do not
capture the volatility “clustering” that occurs with positive autocorrelation
whereby large returns, of either positive or negative sign, follow large returns of the
same sign. In actual financial markets, volatile periods of large returns are inter-
spersed in less volatile (tranquil) periods of small returns.
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8.4 GARCH MODELS

The variance of an asset return or a portfolio return is a measure of the risk level of
those returns. Empirical data has shown autocorrelation of this riskiness across
time. Some time periods are riskier and thus more volatile than others. The ex-
pected value of the error term in autoregressive models of asset or portfolio returns
is not constant across time so that heteroskedasticity may exist. In other words, the
assumption of white noise, εt∼ N(0, σ2), with constant unconditional variance made
in regression models for ordinary least squares (OLS) estimation does not hold in
financial time series data. In fact, errors are time-varying and the expected value of
the error during certain time periods is higher than in others, in which case het-
eroskedasticity exists.

Risk levels, as measured by the variance of asset or portfolio returns, are not
dispersed randomly across quarterly or annual data. In fact, there is a degree of au-
tocorrelation in the variance of financial returns. In order to adequately deal with
heteroskedasticity in time series data, a class of econometric models known as au-
toregressive conditional heteroskedasticity (ARCH) was introduced by Engle
(1982) and generalized by Bollerslev (1986) with generalized autoregressive condi-
tional heteroskedasticity (GARCH) models. The main idea of GARCH is to add a
conditional variance equation to the standard regression equation or conditional
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FIGURE 8.2 Exponential Weighted Moving Averages of DAX Index
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mean equation. The conditional variance equation models a time-varying variance
of the unexpected return process: Vt(εt) = σ2

t . With time-varying variance, GARCH
models can capture the volatility clustering that cannot be captured with MA and
EWMA models. GARCH models have important applications in risk management,
especially in the calculation of value at risk (VaR). In particular, the use of a
GARCH model with a non-Gaussian distribution for the standardized returns can
give a more accurate VaR value.

ARCH assumes today’s conditional variance is a weighted average of past p
squared unexpected returns where the errors are calculated from the regression
equation

yt = β′ xt + εt

where

εt | It ~ N(0, σ2
t )

It is the information set at time t, and the conditional variance is:

ARCH models are not used often since they do not have the volatility dy-
namics of GARCH models and because of the fact that GARCH models perform
better. However, an ARCH model with exponentially declining lag coefficients 
is equivalent to the GARCH(1, 1) model. So, in fact, a GARCH process is actu-
ally an infinite ARCH process, and the two models converge with reason-
able constraints on the GARCH coefficients and use of only very few parameters.
As the lag increases in an ARCH model, the parameters become more difficult 
to estimate since the likelihood function becomes flatter and more difficult to
maximize.

Forecasting the mean and variance of returns conditioned on past informa-
tion has been a major application of these models. Suppose rt is the asset or port-
folio return at time t. In this case, rt can be specified to be equal to the mean
value of rt (that is, the expected value of rt based on past information) plus the
error term, which is the unexpected return or mean deviation return, for the pre-
sent period:

rt = µ + εt (8.5)
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If significant autocorrelation in returns exists, then an AR(1) (autoregressive order
1) model should be used:

rt = µ + βrt–1 + εt (8.6)

The conditional variance can be specified with a GARCH(1, 1) model,6

(8.7)

This model forecasts the variance of the return at time t as a weighted average
of a constant, yesterday’s forecast, and yesterday’s squared error. The magnitude of
the parameters α and β determine the short-term dynamics of the generated volatil-
ity time series. β, the lag coefficient, measures the degree of volatility persistence
from previous shocks to the conditional variance. The error coefficient, α measures
the degree of volatility reactivity to unexpected news. Large β values indicate that
previous volatility shocks take a long time to die out. Large α values indicate that
volatility reacts intensely to market movements. If α is relatively high and β is rela-
tively low, then volatilities tend to become more spiked.

If σ2
t = σ2 for all t, then the long-term steady-state variance in the GARCH(1, 1)

model becomes:

(8.8)

If α + β < 1, then the returns process is stationary and the GARCH volatility term
structure will converge to the long-term steady-state volatility in equation (8.8).

The GARCH(p, q) model can be expressed as:

(8.9)

Using the lag or backshift operator L, the GARCH(p, q) model is:

σ2
t = ω + α(L)ε2

t + β(L)σ2
t (8.10)

where α(L) = α1L + α2L
2 + . . . + αqL

q and β(L) = β1L + β2L
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many autoregressive lags appear in the equation, while the second number refers to how
many lags are included in the moving average component of a variable.



If all the roots of the polynomial | 1 – β(L) | = 0 lie outside the unit circle, we
have:

σ2
t = ω(1 – β(L))–1 + α(L)(1 – β(L))–1 ε2

t (8.11)

which can be viewed as an ARCH(∞) process since the conditional variance linearly
depends on all previous squared residuals. In this case, the conditional variance of
yt can become larger than the unconditional (long-run) variance given by:

(8.12)

if past realizations of ε2
t are larger than σ2 (Palm 1996).

GARCH models are conditionally heteroskedastic but have a constant uncon-
ditional variance since underlying every GARCH model is an unconditional returns
distribution. This distribution is stationary if the parameter conditions of equation
(8.7) are met. There are many types of GARCH models. Each has a different speci-
fied model form. Equation (8.5) or (8.6) with (8.7) comprise what is known as sym-
metric or vanilla GARCH since responses are symmetric to market news; that is,
the same response occurs whether the news is positive or negative. The unexpected
return, εt, always enters the conditional variance equation squared, so that the sign
of the news is irrelevant. Moreover, both the conditional mean return and condi-
tional variance equation can be estimated separately.

8.5 ASYMMETRIC GARCH

In contrast, the asymmetric GARCH (A-GARCH) model of Engle and Ng (1993)
allows for asymmetric volatility responses and has the following conditional vari-
ance equation:

(8.13)

Here λ is a leverage coefficient and is of a similar order of magnitude as daily
returns, but is much less significant than other GARCH coefficients.7 The leverage
coefficient allows for a more realistic modeling of the observed asymmetric behav-
ior of returns according to which positive news surprises increase price and lower
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subsequent volatility, while negative news surprises decrease price and increase sub-
sequent volatility. As Hamilton (1994) notes, many researchers have found evi-
dence of asymmetry of stock price behavior where negative surprises seem to
increase volatility more than positive surprises.8 This could be attributed to the fact
that as stock prices fall, debt ratios increase; a sharp decline in stock prices in-
creases corporate leverage and could thus increase the volatility in the market as the
risk of holding stocks increases.

Another asymmetric model that is widely used in practice due to its flexibility of
avoiding nonnegativity constraints9 is the exponential GARCH (E-GARCH) model
developed by Nelson (1991), which expresses the conditional variance in terms of
logarithms. Moreover, the E-GARCH model captures the dynamics of the leverage
effect observed in financial markets. The conditional variance in the E-GARCH
model is defined in terms of a standard normal variate zt which is the standardized
unexpected return ε2

t / σ2.

ln σ2
t = ω + g(zt–1) + β ln σ2

t–1 (8.14)

where g(·) is an asymmetric response function defined by:

(8.15)

where the term multiplied by the coefficient δ is the mean deviation of zt since

The structural form of g(zt) is based on capturing the asymmetry of returns in the
market. As Nelson (1991) notes, “to accommodate the asymmetric relation be-
tween stock returns and volatility changes . . . the value of g(zt ) must be a function
of both the magnitude and the sign of zt.” In equation (8.15), the first term on the
left side, λzt, captures sign effect and the second term,

captures the magnitude effect. The leverage effect is incorporated by the sign and
magnitude of the parameters. If δ > 0 and λ < 0, then negative shocks to returns will

δ π(| | / )zt − 2

E zt[| |] /= 2 π

g z z zt t t( ) (| | / )= + −λ δ π 2
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tive and that some of the coefficients are negative in practice while the conditional variance
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cause larger unconditional variance responses than positive shocks.10 Bollerslev and
Mikkelsen (1996) proposed to reexpress E-GARCH as:

ln σ2
t = ω + ((1 – β(L))–1((1 – α(L))g(zt–1) (8.16)

E[|zt|] depends on the unconditional density of zt.
Many GARCH models used in practice to model the volatility of daily returns

assume that the errors are conditionally normally distributed in the conditional
mean equation. However, due to time-varying conditional volatility, the uncondi-
tional returns distribution generated by a normal GARCH model will have fat
tails and thus be leptokurtic. Moreover, in many financial markets, there is empir-
ical evidence that return distributions have fatter tails and are more skewed than
returns assumed by a normal distribution.11 Consequently, it may be necessary to
assume a different type of distribution to capture the full effect of excess kurtosis
observed especially with high-frequency data. One possibility is to assume the
skewed Student t error distribution for the error process of the conditional mean
equation12 so that:

(8.17)

where Γ(·) is the gamma function and ξ = 1 for the symmetric Student.
Nelson (1991) proposed the generalized error distribution, normalized to have

zero mean and unit variance:

(8.18)

The term λ is a constant given by:
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and v is a positive parameter that effects the thickness of the tails. For v = 2, the
constant λ = 1 and (8.14) becomes the standard normal density. If v < 2 the density
has thicker tails than the normal, while for v > 2 it has thinner tails. The expected
value of zt is:

Note that for the standard normal case (v = 2), we get the original mean in equa-
tion (8.15),

The E-GARCH as with symmetric GARCH can be estimated by maximum likeli-
hood once the probability density for zt is specified.

8.6 GARCH MODELS FOR HIGH-FREQUENCY DATA

High-frequency data can affect the ability to forecast volatility due to problems of
time aggregation.13 Intra-data data is useful for modeling short-term volatility, but it
may not be useful for modeling long-term volatility. Drost and Nijman (1993), along
with Müller et al. (1997) have studied and compared GARCH volatilities estimated
at different frequencies. They have concluded that a GARCH model estimated with
high-frequency data does not predict lower-frequency volatility well, and that it is
better to predict high-frequency volatility with a low-frequency model.14

In many high-frequency time-series applications, the conditional variance esti-
mated using a GARCH(p, q) process exhibits strong persistence, that is:
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then the error process is stationary. When forecasting, a shock to the conditional
variance σ2

t has a decaying impact on the σ2
t+s when s increases, and is asymptotically

negligible. However, if

the effect on σ2
t+s does not die out asymptotically—the effect is persistent across

horizons. If the sum is equal to 1, then current information remains important
when forecasting the volatility for all time horizons and the correct model specifica-
tion is integrated GARCH (I-GARCH), introduced by Engle and Bollerslev (1986).
If εt follows an I-GARCH process, the unconditional variance of εt will be infinite
(notice the denominator of n, in which case εt and ε2

t are not covariance-stationary
processes. Note that we can rewrite equation (8.9) as an autoregressive conditional
heteroskedasticity (ARCH) process using the lag operator L:

(1 – α(L) – β(L))ε2
t = ω + (1 – β(L))(ε2

t – σ2
t ) (8.20)

When the (1 – α(L – β(L)) polynomial contains a unit root (i.e., the sum of the αi’s
and βi’s is 1), we get the I-GARCH:

φ(L)(1 – L)ε2
t = ω + (1 – β(L))(ε2

t – σ2
t) (8.21)

where φ(L) = (1 – α(L) – β(L))(1 – L)–1 is of order max(p, q) – 1.
We can rearrange equation (8.17) to express the conditional variance as a func-

tion of the squared residuals. After some manipulations, we get:

Figures 8.3 and 8.4 show the GARCH(1, 1) volatility and the corresponding log-
arithmic returns of the asset price with GARCH(1, 1). The GARCH(1, 1) captures
volatility clustering and time-varying volatility that the MA and EWMA do not.

What is important to note about the GARCH term structure is the mean rever-
sion to the long-term level of σ2 = ω/(1 – α – β) = 0.0002/(1 – 0.045 – 0.94) = 0.013
or a volatility of 11.5 percent.

In practice, statistical packages like RATS15 (Regression Analysis of Time Se-
ries) or S-PLUS can be used to estimate the parameters of a GARCH(p, q) model.
GARCH(p, q) parameter estimation is often done using the maximum likelihood
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method where the parameters are chosen to maximize the likelihood of the data un-
der its assumed probability density function. Thus, the objective is to choose para-
meters 0 that maximize the value of the underlying data generating process
distribution that is assumed. Maximum likelihood estimation procedures are
widely used because they usually produce consistent, asymptotically normal, and
efficient parameter estimates.

Numerical optimization routines such as the Berndt-Hall-Hall-Hausmann
(BHHH) or Davidson-Fletcher-Powell (DFP) must be used to determine these pa-
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FIGURE 8.3 GARCH(1, 1) Volatility
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rameters since there is no closed-form analytical solution. Various quasi-Newton,
steepest gradient-descent, and simplex methods exist for nonlinear parameter 
estimation.16

If f(rt; θ) is the probability density function of the asset return rt and if L is the
maximum likelihood function, then θ’s are chosen to solve:

(8.22)

Often, it is easier to work with the log-likelihood function since it is easier to com-
pute the sum of log-likelihoods than the product of (complex) likelihoods. Thus,
we can rewrite the problem as:

(8.23)

For a normal symmetric GARCH model, the likelihood density function of a single
observation rt is:

(8.24)

where εt = rt – r–, r– is the expected return, and σ2
t is the GARCH volatility. For a nor-

mal symmetric GARCH model the log-likelihood �t of a single return observation rt

is:

(8.25)

so that

is maximized with respect to the GARCH variance parameters θ; we ignore the
term ln(2π) since it does not affect the estimates. Note that this is equivalent to
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minimizing –2ln L. In the GARCH(1, 1) model, θ = [ω, α, β]′. The first derivatives
may be written:

(8.26)

where the gradient vector

(8.27)

The derivatives may be calculated recursively,

gt = zt + βgt–1 (8.28)

(8.29)

for t = 1, . . . , T. To start the recursion, we need presamples for σ2
t and ε2

t for t ≤ 0,
so a good choice is the OLS unconditional variance estimate,

Solving the first-order condition ∂σ2
t / ∂θ = 0 will yield a set of nonlinear equations

that must be solved using quasi-Newton methods like the BHHH. The BHHH iter-
ation is:

θi+1 = θi + λi Hi
–1 gi (8.30)

where λi is a variable step length chosen to maximize the likelihood in the appro-
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priate direction (this direction vector can be computed from an OLS regression of a
T × 1 vector of 1’s on

and Hi is the Hessian matrix

(8.31)

For a GARCH(1, 1), the Hessian is:

where the linear sum operator is applied to each of the elements of the Hessian.
Note that:
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The second derivatives in (8.19) may be written:

(8.32)

We can thus rewrite equation (8.30):

(8.33)

The iteration converges when |θi+1 – θi | < ξ where ξ is the error criterion vector that
is arbitrarily close to the 0 vector; that is, each element in ξ is very small, such as
0.0001. Viewed another way, convergence occurs when the gradient vector g is 0.
These estimated parameters maximize the likelihood function.

An implementation for estimating the parameters of a GARCH(1, 1) model
using the BHHH routine is now given. It makes use of R. B. Davies’s Newmat
matrix library.17

/**********************************************************************************
GARCH11 : estimates the parameters of a GARCH(1,1) model
[in]: vector<double>& prices : vector of asset prices
[out]: vector<double> theta : vector of GARCH parameters
**********************************************************************************/
ColumnVector StatModel::GARCH11(vector<double>& prices)
{

vector<double> v2;
vector<double> ret, ret1;
double r = 0.0;
double r1 = 0.0;
double error1 = 0.0;
double error2 = 0.0;
double error3 = 0.0;

int n = prices.size();
vector<double> e = getErrors();
LLD = ColumnVector(3); // log likelihood derivatives
ColumnVector theta(3); // GARCH parameters
ColumnVector theta1(3); // stores updated GARCH params
Matrix H(3,3); // Hessian matrix

// calculate r(t)
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for (int i = 0; i < n-3; i++)
{

r = prices[i];
ret.push_back(r);

}

// calculate r(t-1)
for (i = 1; i <= n-3; i++)
{

r1 = prices[i];
ret1.push_back(r1);

}

// store returns
setY(ret1);
setX(ret);
setT(n-3);

vector<double> ee = calcErrors();
double sum = accumulate(ee.begin(),ee.end(),0.0);
double ave = sum/T;
double lambda = 5; // assume constant direction step

// initialize parameters
od.push_back(1.0);
ad.push_back(ave);
bd.push_back(ave);
sd.push_back(ave);

// initial estimates
theta << 0.0001 << 0.10 << 0.6;
i = 1;
lambda = 2;

try
{

do
{

// normally regress columns of 1’s of dl(t)/d(theta)
lambda = lambda + calcLambda(theta,i);

ColumnVector LD = calcLogDerives(theta);
Matrix H = calcHessian(theta);
ColumnVector r = -lambda*H.i()*LD;

theta1 = theta + r;
error1 = theta1(1) - theta(1);
error2 = theta1(2) - theta(2);
error3 = theta1(3) - theta(3);
theta = theta1;
i++;

}
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while ((abs(error1) > 0.0001) || (abs(error2) > 0.0001) || (abs(error3) >
0.0001));

}
catch (char* s)
{

throw s;
}
cout << “theta(1) = “ << theta(1) << “ theta(2) = “ << theta(2) << “ theta(3) = 

“ << theta(3);
return theta;

}

/**********************************************************************************
calcErrors : computes errors/residuals and squared errors/residuals
[in]: none
[out]: vector<double> : vector of squared residuals
**********************************************************************************/
vector<double>& StatModel::calcErrors()
{

double err = 0.0; // residual error
double yh = 0.0; // y estimate
double a = calcConstCoeff(); // compute constant coefficient
double b = calcBeta(); // compute regression coefficient
int i;
e2.clear();

for (i = 0; i < y.size(); i++)
{

yh = a + b*x[i];
yhat.push_back(yh);
err = y[i] - yhat[i];
e.push_back(err);
e2.push_back(err*err);

}
return e2;

}

/**********************************************************************************
calcLambda : computes lambda—the step length that maximizes the likelihood function

in the right direction
[in]:   ColumnVector theta : matrix column (3x1) of parameters

int i : current time (ith iteration of BHHH)
[out]:  double             : lambda
**********************************************************************************/
ColumnVector StatModel::calcLambda(ColumnVector theta, int i)
{

ColumnVector lambda(T-1);
Matrix v = calcLogDerives(theta,i);

for (int j = 1; j < T; j++)
lambda(j) = 1.0;

StatModel sm(lambda,v);
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ColumnVector b = sm.calcBetas(); // compute coefficients

return b;
}

/**********************************************************************************
calcLogDerives : computes derivative of the log likelihood function
[in]:    ColumnVector theta : matrix column (3x1) of parameters
[out]:   ColumnVector LLD: matrix column with log derivatives with respect to 

parameters
**********************************************************************************/
ColumnVector StatModel::calcLogDerives(ColumnVector theta)
{

int i;
h.clear(); // initial h[0]

double sum = accumulate(e2.begin(), // compute sum of squared residuals
e2.end(),0.0);

double ave = sum/T; // get average of sum of squared residuals

// initialize h[0] and e2[0] to 1/T*sum(e^2)
h.push_back(ave);
e2[0] = ave;

// initialize LLD
LLD << 0 << 0 << 0;
for (i = 1; i < T; i++)
{

h.push_back(theta(1) + theta(2)*e2[i-1] + theta(3)*h[i-1]);
LLD = LLD + (0.5/h[i])*(e2[i]/h[i] - 1)*(getVolDerives(i,theta(3)));

}

for (i = 1; i <=3; i++)
cout << i: << LLD(i) << endl;

return LLD;
}

/**********************************************************************************
calcLogDerives : computes derivative of the log likelihood function for the ith 

iteration : helps compute lambda
[in]:    ColumnVector theta: matrix column (3x1) of parametersint i : current time

(ith iteration of BHHH)
[out]:   ColumnVector LLD: matrix column with log derivatives with respect to

parameters
**********************************************************************************/
Matrix StatModel::calcLogDerives(ColumnVector theta, int i)
{

// initial h[0]
h.clear();
Matrix J(T-1,3);
double sum = accumulate(e2.begin(),e2.end(),0.0);
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double ave = sum/T;
// initialize h[0] and e2[0] to 1/T*sum(e^2)
h.push_back(ave);
e2[0] = ave;

ColumnVector C(3);
for (i = 1; i < T; i++)
{

h.push_back(theta(1) + theta(2)*e2[i-1] + theta(3)*h[i-1]);
C = getVolDerives(i,theta(3));
for (int k = 1; k <= 3; k++)

J(i,k) = (0.5/h[i])*(e2[i]/h[i] - 1)*C(k);
}
return J;

}

/**********************************************************************************
getVolDerivatives : returns the gradient (first derivatives) of the GARCH model 

volatility function with respect to the parameters
[in]:  ColumnVector theta : matrix column (3x1) of parameters
[out]: ColumnVector V : a matrix column of GARCH model derivatives with respect

to par
**********************************************************************************/
ColumnVector StatModel::getVolDerives(int i, double beta)
{

ColumnVector V(3);
od.push_back(1 + beta*od[i-1]); // derivative of volatility w.r.t. omega
ad.push_back(e2[i-1] + beta*ad[i-1]); // derivative of volatility w.r.t. alpha
bd.push_back(h[i-1] + beta*bd[i-1]); // derivative of volatility w.r.t. beta

V << od[i] << ad[i] << bd[i];
cout << V(1) << V(2) << V(3) << endl;
return V;

}

***********************************************************************************
getVolSecondDerives : computes the Hessian matrix of second derivatives of the

GARCH model with respect to the model parameters. Used for calcHessian function
[in]:  int i : ith data observation

double beta : coefficient on h(i-1) in GARCH model
[out]: vector<Matrix> : vector of matrices
**********************************************************************************/
Matrix StatModel::getVolSecondDerives(int i, double beta)
{

Matrix M(3,3);
Matrix Z(3,3);
Matrix N(3,3);
vector<double> err = calcErrors();
double sum = accumulate(err.begin(),err.end(),0.0);
double ave = sum/T;

if (i == 1)
{
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Z << 0 << 0 << 0
<< 0 << 0 << 0
<< 1 << ave << ave;

N << 0 << 0 << od[i-1]
<< 0 << 0 << ad[i-1]
<< 0 << 0 << bd[i-1];

matder.push_back(N);
matder1.push_back(Z + beta*matder[i-1]);

}
else
{

Z << 0 << 0 << 0
<< 0 << 0 << 0
<< 1 << e2[i-2] << h[i-2];

N << 0 << 0 << od[i-1]
<< 0 << 0 << ad[i-1]
<< 0 << 0 << bd[i-1];
matder.push_back(N);
matder1.push_back(Z + beta*matder[i-1]);

}
matder2.push_back(Z + beta*matder1[i-1]);

if (i == 1)
return matder1[i-1];
else
return matder2[i-1];

}

/**********************************************************************************
calcHessian : computes the Hessian matrix of second derivatives of the GARCH

log likelihood function with respect to the model parameters
[in]:  ColumnVector theta : matrix column (3x1) of parameters
[out]: ColumnVector H: : Hessian matrix of second derivatives
**********************************************************************************/
Matrix StatModel::calcHessian(ColumnVector theta)
{

int i;
Matrix H(3,3);
vector<double> e2 = calcErrors();
double sum = accumulate(e2.begin(),e2.end(),0.0);
vector<double> h;
double ave = sum/T;
h.clear();
// initialize h[0] and e2[0] to 1/T*sum(e^2)
h.push_back(ave);
e2[0] = ave;

// initialize Hessian
H << 0 << 0 << 0
<< 0 << 0 << 0
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<< 0 << 0 << 0;

// compute Hessian
for (i = 1; i < T; i++)
{

h.push_back(theta(1) + theta(2)*e2[i-1] + theta(3)*h[i-1]);
ColumnVector CV = getVolDerives(i,theta(3));
Matrix CV2 = getVolSecondDerives(i,theta(3));
H = H + (e2[i]/h[i] - 1)*(0.5*((-1/(h[i]*h[i]))*(CV*CV.t()) + (1/h[i])*(CV2)))

-(0.5/(h[i]*h[i]))*(CV*CV.t())*(e2[i]/h[i]);
}
return H;

}

/**********************************************************************************
getLogDerives : returns the column vector of log derivatives
[in]:  none
[out]: ColumnVector LLD: matrix column with log derivatives with respect to

parameters
**********************************************************************************/
ColumnVector StatModel::getLogDerives()
{

return LLD;
}

As an example of how we can estimate parameters (without using a statistical
package), suppose we estimate a GARCH(1, 1) equation from S&P 500 closing
prices from January 3, 1996, to July 29, 1998, in a text file “SP.txt.” We can call
the following function to read the data from the file:

/**********************************************************************************
readData : read the data file and stores the data in a vector
[in]: none — could also pass in file name rather than hard code file name in function
[out]: none
**********************************************************************************/
void StatModel::readData()
{

char buffer[100]; // line buffer
char dataBuffer[100]; // data character buffer
char *str = NULL; // character string
vector<double> y; // dependent variables
vector<double> x; // independent variables
const char *file = “c:\\sp.txt”; // data file – could also pass in as a parameter
ifstream fin; // input file stream

fin.clear();
fin.open(file);
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if (fin.good())
{

while (!fin.eof())
{

fin.getline(buffer,sizeof(buffer)/sizeof(buffer[0]));
istrstream str(buffer);
//Get data
str >> dataBuffer;
y.push_back(sqrt(atof(dataBuffer)));

}
}
else
{

cout << “File not good!” << “\n”;
}
fin.close();

GARCH11(y);
}

The estimated GARCH(1, 1) parameters are (ω, α, β), though these values can
vary depending on the initial values used, as discussed in the next section.

8.7 ESTIMATION PROBLEMS

Numerical optimization routines such as the BHHH are very sensitive to initial
starting values since they affect the initial gradient. Different estimates can be ob-
tained with different starting values. As more parameters are added to the GARCH
model, the likelihood function becomes flatter and more difficult to maximize so
that a local maximum may be achieved rather than the global maximum. Thus, it
may be necessary to run the model with different starting values, recording the like-
lihood of the optima, to ensure a global optimum has been achieved rather than a
local maximum. If many estimates are generated with different starting values, then
a model with fewer parameters should be used. A well-specified model should con-
verge to the same estimates with different initial values.

If the initial starting values are not good, then convergence problems may oc-
cur if the gradient algorithm used to maximize the likelihood function hits a
boundary in which 0 or 1 is returned for the alpha and/or beta estimates. A bound-
ary could also be caused by outliers in the data (i.e., extremely high or low observa-
tion values). Thus, different starting values should be tried to change the initial
gradient as well as to remove the outliers if a boundary is hit. One might also use a
different data period.

If convergence cannot be reached at all, after changing the initial values, re-
moving any outliers, and even modifying the data period, then the GARCH model
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is misspecified. A different GARCH model should then be used. However, univari-
ate GARCH models usually do not encounter convergence problems if the model is
well specified and the data is well behaved.18 If the model is well specified, then
changes in the data will induce some changes in the coefficient estimates, but they
should not vary considerably, except when there are “structural breaks in the data
generation process.”19

8.8 GARCH OPTION PRICING MODEL

Using discrete-time generalized GARCH process as well as stochastic volatility bi-
variate diffusions (which can be represented as limits of a family of GARCH mod-
els), Ritchken and Trevor (1999) developed an efficient numerical procedure via a
lattice for pricing European and American options.20 The GARCH model of
Ritchken and Trevor (RT) assumes the underlying security satisfies the following
diffusion process:

(8.34)

where St is the asset price at time t; ht is the conditional variance, given information
at time t, of the logarithmic return over the period [t, t + 1]; εt+1 is a standard nor-
mal random variable conditional on time t information; rt is the riskless rate of re-
turn over the period; λ is the unit risk premium for the asset; and c is a nonnegative
parameter that captures the negative correlation between return and volatility inno-
vations in the equity markets. β0, β1, and β2 are nonnegative to ensure positive con-
ditional volatility. Let N be the maturity of a tree (in days) and that option to be
priced by the tree.

Duan (1995) established that if the price of the underlying security follows the
process in equation (8.34), then option price can be computed as simple discounted
expected values under a local risk-neutral probability measure:

(8.35)
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where εt+1 is a standard normal random variable with respect to a risk-neutral mea-
sure, conditional on time t information, and c* = c + λ. The model has five un-
known parameters β0, β1, β2, c*, and h0.

The Ritchken and Trevor algorithm first generates a grid of logarithmic prices.
Adjacent logarithmic prices have a space of γn chosen such that:

where

and n represents a multinomial random variable such that next period’s logarithmic
price is approximated by a discrete random variable that takes on 2n + 1 values.
For example, when n = 1, we have a trinomial random variable such that the price
can jump up (to a value larger than the current price), down (to a value smaller
than the current price), or stay the same (the value remains unchanged). The size of
these 2n + 1 jumps is restricted to integer multiples of γn. To ensure valid probabil-
ity values over the grid of 2n + 1 values, it may be necessary to adjust the probabil-
ities by a jump parameter η so that the first two moments of the approximating
distribution match when the variance is sufficiently large.21 The integer η depends
on the level of the variance and is computed for each level in the tree (up, middle,
and down) for a given time step:

(8.36)

The jump parameter measures how much the two outer branches fan out around
the middle branch. The resulting GARCH model, known as the nonlinear asym-
metric GARCH (N-GARCH) model,22 is given by:

yt+1 = yt + jηγn

ht+1 = β0 + β1ht + β2ht(εt+1 – c*)2
(8.37)

where the innovations are given by:
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and j = 0, ± 1, ± 2, . . . , ± n, r is the risk-free rate, and yt = lnSt. The model is a bi-
variate diffusion specified by (yt, h2

t) at each node.
The probability distribution for yt+1, conditional on yt and ht, is given by:

Prob(yt +1 = yt + jηλn) = P(j) j = 0, ± 1, ± 2, . . . , ± n

where

(8.39)

with ju, jm, jd ≥ 0 such that n = ju + jm + jd and j = ju – jd. The trinomial probabilities
for the dynamics of the approximating process are:

(8.40)

(8.41)

(8.42)

which match the conditional mean and variance of yt+1 given (yt, h2
t ) in the limit.

Thus, the tree converges to the continuous-state model (8.37). From equations (8.39)
to (8.41), the branching probabilities exist, that is, 0 ≤ pu, pm, pd ≤ 1 if and only if:

(8.43)

Constructing a trinomial tree to price options involves both a forward-building
stage and a standard backward recursion process to value the option at time t = 0.
However, jumps are not necessarily symmetric, and multiple references can be
made to several nodes, which allows for multiple variances at each node.23 For ex-
ample, at a given node, ηu can be 2, while ηm = ηd = 1. The model goes through:
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until valid probabilities are obtain or until their nonexistence is confirmed by viola-
tions of inequalities in (8.43). Figure 8.5 shows a possible geometry of a three-day
Ritchken and Trevor tree.

A day is partitioned into n = 1 period. Each node will have as many vari-
ances as the number of paths to the node, creating as many distinct option
prices. However, some nodes may never be reached and are left empty (shown in
gray). To handle this problem, given that typically the number of variances
grows exponentially as the number of time steps increases, only the maximum
variance, the minimum variance, and an interpolated middle variance value are
stored at each node.24 In particular, the model creates K volatilities between the
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FIGURE 8.5 Possible Geometry of a Ritchken-Trevor Tree

η = 1

3 Days

yt, (ht
2)

γn = γ1

η = 2

24More than three variance values can be stored at each node. A total of N > 3 variances can
be stored that are equidistant variances between the minimum and maximum variances at
each node with N – 2 interpolated variances. However, one will have N – 2 additional next-
variance calculations in each node during the forward-building stage alone. Thus, N = 3 is
chosen to keep the model simple and to keep consistent with the approach taken by
Ritchken and Trevor (1999).



maximum and minimum ht (inclusive) per model so that the squared volatilities
are equally spaced, given by:

(8.44)

where hmin and hmax denote the minimum and maximum volatilities at the node.
Once the terminal time step is reached, the option is valued by computing the

option payoff using the security’s price alone and then working backward taking
the discounted risk-neutral expectation at each node at the prior time step until the
first node is reached. However, for a given node prior to maturity, a total of 9 (3 × 3)
option prices need to be computed by taking the first (maximum) variance value in
the node, computing a jump parameter value η, referencing it to three nodes in the
next period (up, middle, and down), and repeating for the middle and down vari-
ances as well. Note that we can compute the next three variances in the tree by
combining equations (8.37) and (8.38).

(8.45)

Cakici and Topyan (2000) modified the Ritchken and Trevor methodology by
producing a forward-building procedure that is independent of the number of vari-
ances stored, leading to greater accuracy and a more reliable volatility measure.
The modified approach uses only real node minimum and maximum variances, not
the interpolated ones in between. Under the Ritchken and Trevor (RT) model, min-
imum and maximum variances originating from the prior day’s interpolated vari-
ance values can occur at many nodes. Under the Cakici and Topyan (CT) model,
this cannot occur since the K – 2 interpolated variances per node are computed af-
ter the tree is built, but before the backward-induction (recursion) stage starts.
With this modification, there may be some out-of-range referencing of the interpo-
lated variances, which can be handled in one of two ways. First, if the next variance
is below the minimum (or above the maximum) variance, then the option price cor-
responding to the minimum (or maximum) variance can be used during the back-
ward induction.25 Second, an extrapolation can be used to value the option when
out-of-range referencing is observed.

For the CT tree, the minimum and maximum volatilities are in fact true volatil-
ities generated by following the updating rule (8.37) of the discrete-state tree
model, starting from the initial state (y0, h2

0). In the RT tree, the minimum or maxi-
mum volatilities may be the result applying the updating rule to an interpolated
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volatility of the previous date so that they may be artifacts in the sense they are not
generated as true volatilities.

After the tree is built, backward induction occurs. For a given volatility ht+1 fol-
lowing state (yt, h2

t ) via updating rule (8.37), the algorithm locates the two volatili-
ties that bracket ht+1. However, ht may be interpolated volatility so that the option
price corresponding to ht+1 is also interpolated linearly from the option prices corre-
sponding to the bracketing volatilities. After all option prices at all 2n + 1 nodes are
determined, the option price at state (yt, h2

t ) is calculated as the (risk-neutral) dis-
counted expected value based on the branching probabilities.

However, Wu (2003) shows that there are serious problems from a practical
use viewpoint with both the RT and CT models. As Wu points out, both models
create exponentially sized trees that can explode if the number of partitions per
day, n, exceeds a typically small number. Thus, the trees are not efficient unless n is
small, but a small n can result in inaccurate option prices and short-dated options.
But, in fact, even the small choice of n = 1 can result in explosion. One cannot trade
off efficiency for accuracy by using a suitably large n because when explosion oc-
curs, the trees cannot grow beyond a certain maturity, making the trees useless for
pricing derivatives with long maturities.26 In the CT model, an interpolated volatil-
ity’s successor volatility may branch to an unreachable node that has no option
prices at all. Consequently, backward induction cannot continue, which, while rare,
can occur when n and N are both large. As Wu shows numerically, the RT model
does not converge with increasing n. There is a downward trend in calculated op-
tion prices so that option prices may fail to converge as n increases.

Wu develops a mean tracking (MT) option price tree that uses a log-linear in-
terpolation scheme. Such a scheme avoids the convergence problems of the RT
model. The rationale for the log-linear scheme, in which logarithmic volatilities are
equally spaced as:

(8.46)

is to address problems with the RT and CT models, which both implicitly assume
the volatility distribution is uniform since interpolated squared volatilities are
equally spaced between the minimum and maximum ones. However, as Wu shows,
the actual distribution more closely approximates a lognormal distribution than a
uniform one, which suggests that there should be more interpolated volatilities at
the lower end of the distribution than at the higher end. The log-linear approach
samples smaller volatilities more finely than larger volatilities. The incorporation of
mean tracking allows the middle branch of the multinomial tree to track the mean
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of yt+1. Thus, explosion problems and their consequences of shortened maturities
cannot occur.

The MT tree is built as follows. At date t, the node is chosen to be that closest to
the mean of yt+1 given (yt, h2

t) , that is, yt + r – (h2
t /2), where the mean µ = r – (h2

t / 2).
By the geometry of the tree, the node’s logarithmic price equals yt + aγn for some in-
teger a. The criterion by which a node is chosen ensures that:

|aγn – µ| ≤ γn/2 (8.47)

The multinomial tree is created by making the middle branch of the (2n + 1)-
nomial tree line up with the node closest to the mean. Though only 2n + 1 nodes
are reached after one day, the top and bottom nodes span over 2nη + 1 nodes.27

Figure 8.6 shows the MT trinomial tree.
The probabilities for upward, middle, and downward branches processes are

given by:

(8.48)
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(8.49)

(8.50)

Since the conditional mean and variance of the GARCH process at time t + 1 is
matched exactly, convergence is guaranteed. State (yt, h2

t ) at time t is followed by
state (yt + jηγn, h2

t+1) at time t + 1, where

(8.51)

The underlying trinomial model has transitions that occur with probability given in
equation (8.39). It can be shown that the condition for the probabilities to lie
within 0 and 1 is:

(8.52)

The existence of a valid jump parameter η is guaranteed, that is, a positive integer
so that the MT tree never stops growing beyond a given maturity. This corrects the
problem with the RT and CT trees. Rather than search for value of η, the MT tree
simply uses the ceiling of the lower bound of inequality (8.52),

(8.53)

Moreover, let H2
min = min(h2

0, β0 / (1 – β1)) so that H2
min ≤ h2

t for t ≥ 0. If γ ≤ Hmin,
then

satisfies γn ≤ H2
min for all n so that interval (8.52) will contain a positive η value. A

smaller γ generally leads to larger trees and longer running times, but results in
greater accuracy. Wu shows that the choice γ = Hmin/2 leads to option prices that fall
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within the 95 percent confidence interval of Monte Carlo simulation of the
continuous-state model in (8.34) for all n > 1.28 Thus, with the choice of:

(8.54)

all the parameters of the MT tree have been chosen. Moreover, the MT tree does
not explode if:

(8.55)

If this relation holds, then the tree size is only quadratic in maturity, which is the
same as a Cox-Ross-Rubinstein (1979) tree. It turns out that if c = 0, the sufficient
condition for nonexplosion reduces to n ≤ (1 – β1)/ β2, which is in fact the threshold
of explosion for the RT and CT trees. Thus, the threshold of the MT model is in
some sense tight and its tree size is asymptotically optimal since relationship (8.55)
holds for any n. In fact, a trinomial tree for the Black-Scholes model is obtained in
the limit by letting β1 = 0 and β2 → 0. Consequently, Wu has shown that the MT
model is the first tree-based GARCH model that is provably efficient.

8.9 GARCH FORECASTING

GARCH models are useful for forecasting volatilities and correlations. GARCH
has practical use in risk management. A risk manager can use GARCH to better
forecast future volatility and risk of the market and thus manage this risk through
use of derivative securities to hedge a portfolio’s market risk exposure. In particu-
lar, GARCH can be used in value at risk (VaR) estimates of an entire portfolio to
movements in underlying market factors like interest rates and exchange rates.
GARCH forecasting can be used to generate 95 percent confidence bands on future
volatility of asset returns such as the S&P 500 index.

GARCH forecasts perform better than ARCH forecasts and OLS uncondi-
tional variance forecasts due to GARCH’s long-term memory of past volatility and
dynamics of capturing volatility clustering. Suppose we have an AR(1) model for
the log return process. Let yt = log(St/St–1). Then we have the return equation:

yt = µ + φyt–1 + εt (8.56)
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where the error’s variance follows a conditional variance GARCH(1, 1) process.
The errors are used in the forecasts.

The GARCH(1, 1) forecast of the one-day forward at time t is:

^σ2
t+1|t = ω + αε2

t + βσ2
t (8.57)

where the forecasted volatility is conditional on the information at time t and the s-
step-ahead forecast is computed iteratively:

^σ2
t+s = ω + (α + β)^σ2

t+s–1 (8.58)

It can be shown29 that the forecast of ε2
t+1 based on ε2

t , denoted ε2
t+1|t, can be cal-

culated iterating on:

ε2
t+1|t – ~σ2 = (α + β)(ε2

t – ~σ2) – βwt (8.59)

where wt = ε2
t – σ2

t and ~σ2 is the unconditional mean of ε2
t , that is, E[ε2

t ] =
~σ2. More

generally, for a GARCH(p, q) model,

and

ε2
τ|t = ε22

τ for τ < t and wτ = ε2
τ – ε2

τ|τ–1 for τ = t, t – 1, . . . , t – p + 1

The linear projection of the s-step-ahead squared error (s > 1) forecast of yt+s|t using
the GARCH(1, 1) model is
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We now provide an example of using a GARCH forecasting application. Using
monthly S&P 500 index prices, taken from the Research Seminar in Quantitative Eco-
nomics (RSQE) database at the University of Michigan30 from the beginning of Janu-
ary 1948 to January 1997 (T = 589 observations), GARCH(1, 1) forecasts were made
for in-sample data. The estimated one-step-ahead mean return equation in (8.22) is:

(8.60)

where standard errors are in parentheses. The coefficient on the lagged value has a
significance level greater than 99 percent (a t-statistic of 6.109), suggesting autocor-
relation in returns.31 However, lagged orders greater than 1 are statistically insignif-
icant as measured by computed autocorrelations and partial autocorrelations. The
errors were assumed to follow a GARCH(1, 1) process that was estimated to be:

(8.61)

for the one-step-ahead forecast. The 95 percent confidence interval for the one-
step-ahead forecast is then computed:

0.005911 + 0.2229yt ± 1.96 × (1 – step-ahead GARCH forecast)

0.005911 + 0.2229yt ± 1.96 × (0.000163 + 0.1314ε2
t + 0.7187σ2

t)

It was found that a sample proportion of 93.7 percent of the one-step-ahead
volatility forecasts fell inside the 95 percent confidence bands. The confidence
bands widen when volatility increases and narrows when volatility decreases.
Moreover, the sample proportion of volatility forecasts that fall inside the confi-
dence bands increases as the step-ahead size increases. This is because there is more
variability over a longer forecast horizon than over a one-period horizon so that
the GARCH model has more information (conditional variances) on which to base
forecasts. GARCH has a long-term memory of these past conditional variances. For
a s = six-step-ahead forecast, the 95 percent confidence interval is:
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where µ = 0.05911 and φ = 0.22296 from (8.60) and α = 0.1314 and β = 0.7187
from (8.61).

The sample proportion of (in-sample) six-step-ahead forecasts that fell inside
the 95 percent band was 99.9 percent with a standard error of approximately zero.
The model was not tested out-of-sample after January 1997 so the stability of the
parameters is not known. Overall, however, the GARCH(1, 1) does an excellent
job of tracking the future variability of the S&P 500 index though the robustness
should be tested out-of-sample to ensure stability of the estimated parameters. In
general, the GARCH(1, 1) model performs better than ARCH(1) and OLS uncon-
ditional variance, especially for longer-term forecasts, due to its long-term memory.

GARCH can also be used to compute the value at risk (VaR) of an asset or
portfolio via historical or Monte Carlo simulation using GARCH to forecast the
rolling volatility. VaR is computed by multiplying the computed (GARCH) volatil-
ity by the multiplication factor of the desired confidence level. For example, the 95
percent confidence multiplier is 1.645 and the 99 percent multiplier is 2.33. Figure
8.7, from Philip Best (1999), shows the price history of gold from November 12,
1991, to November 11, 1996.

Best then computed the 95 percent VaR on a rolling basis (using a one-day
horizon) based on a GARCH(1, 1) forecasted rolling volatility. The estimated
GARCH(1, 1) equation was:

σ2
t+1|t = 0.001865 + 0.4789ε2

t + 0.9457σ2
t

It was then compared to the actual percentage price changes the following day
to determine how well the next-day percentage price changes could be captured in-
side the 95 percent VaR confidence bands using GARCH(1, 1) volatility estimates.
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FIGURE 8.7 Gold Price History
Source: Philip W. Best, Implementing Value at Risk (Chichester, UK: John Wiley & 
Sons, 1998). Reprinted with permission.
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The comparison of VaR and price changes did not start until the volatility measures
covered the observation period of 50 days, which was assumed to be a decay factor
of roughly 0.94 (though different asset classes have decay factors that differ signifi-
cantly from 0.94 for 50 days of observations). Figure 8.8 shows the 95 percent VaR
estimates with GARCH(1, 1) to actual price changes.

Actual price changes greater than the 95 percent VaR confidence level were
counted as “exceptions” and totaled. It was found that 3.7 percent of the actual
percentage price was made up of exceptions. A standard z-score of –2.164 was
computed allowing for a rejection of a two-sided 95 percent confidence test, but
also allowing an acceptance of a one-sided test. However, if an extreme value of
the GARCH decay factor was used, the resultant exception count was found to
be a more statistically significant acceptance range so that a two-tailed test could
be accepted.

366 STATISTICAL MODELS

FIGURE 8.8 Gold—VaR versus Price Change, GARCH(1, 1)
Source: Philip W. Best, Implementing Value at Risk (Chichester, UK: John Wiley & 
Sons, 1998). Reprinted with permission.
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CHAPTER 9
Stochastic Multifactor Models

Many derivative pricing models, such as stochastic interest rate models, hybrid se-
curities pricing models (i.e., convertible bonds), multiasset pricing models (i.e.,

basket options, quanto options), credit models, and stochastic volatility models,
have several underlying assets and several underlying sources of uncertainty. These
models are based on multifactor diffusion processes. They require the use of multi-
variate stochastic calculus to derive pricing formulas.

In the single variable diffusion process, it is assumed that there is only one
source of uncertainty dz. We have assumed that in the risk-neutral world, the single
underlying asset follows the risk-neutral process in equation (1.38). However, this
process can be extended to the case of n sources of uncertainty or risk factors. In-
stead of working with scalar values stochastic processes, we will work with vector-
valued stochastic processes and variance-covariance matrices for n-dimensional
vectors of normal variables and n-dimensional Brownian motions.

This chapter provides the mathematical underpinning for n-dimensional diffu-
sion processes, with n sources of uncertainty (factors), which are important for n-
dimensional Monte Carlo simulations. Often Monte Carlo simulation is the only
method available for pricing path-dependent derivatives dependent on n underly-
ing factors. Thus, we will discuss the tools and techniques needed to model multi-
factor models.

We will discuss changes of measure for independent and correlated random
variables, n-dimensional random walks and Brownian motion, n-dimensional gen-
eralized Wiener processes, Ito’s lemma for multifactor diffusion processes, Monte
Carlo simulation of multivariate diffusion processes, as well as principal component
analysis (PCA), a standard method for extracting the most important uncorrelated
sources of variation (uncertainty) in multivariate systems. PCA is quite applicable to
(multiple) term structures, which are usually highly correlated, as well as a useful
tool for risk management in large portfolios. It is also applied to implied volatilities
of different options on the same underlying factors. Moreover, we discuss correla-
tion and covariance structures and the role they play in multifactor models.

In section 9.1, we discuss change of measure for independent normal random
variables. In section 9.2, we discuss change of measure for correlated normal ran-
dom variables. In section 9.3, we discuss n-dimensional random walks and
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Brownian motions, while in section 9.4 we examine an n-dimensional generalized
Wiener process. In section 9.5, we discuss multivariate diffusion processes. In sec-
tion 9.6, we discuss Monte Carlo simulation of multivariate diffusion processes.
In section 9.7, we discuss the n-dimensional lognormal diffusion process. In sec-
tion 9.8, Ito’s lemma for functions of vector-valued diffusion processes is given.
In section 9.9, we discuss using principal component analysis (PCA) for multifac-
tor models.

9.1 CHANGE OF MEASURE FOR INDEPENDENT RANDOM VARIABLES

Consider a column vector Z of n independent normal random variables:

where E[Zi] = µi and E[(Zi – µi) (Zj – µj)] = 1{i=j} is the indicator function equal 
to 1 if i = j and 0 if not so that Z has mean vector and the identity covariance
matrix:

(9.1)

The probability measure is:

(9.2)
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Thus, if f(Z) is a real-valued function, its expected value with respect to the proba-
bility measure Pµ is:

(9.4)

where the index µ in the notation represents the fact that the underlying random
variables we are averaging over have the mean vector µ and the | | represent the
length of the vector the L2-norm, that is,

We can express the probability measure in equation (9.2) through the probabil-
ity measure P0, or simply P, with the zero mean vector as:

ξµ(Z)P{Z1 ∈ dz1, . . . , Zn ∈ dzn} (9.5)

where

(9.6)

and ξµ (Z) is a scalar random variable under the measure P given by:

(9.7)

The random variable ξµ(Z) is the Radon-Nikodym derivative of the measure Pµ
with respect to the zero-mean measure P, and can be formally written as:

(9.8)

It is easy to see that E[ξµ (Z)] = 1. Thus, we can write the expectation of a function
f(Z) with respect to the probability measure Pµ as:

Eµ[f(Z)]= E[ξµ (Z)f(Z)] (9.9)
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This states that the expectation of a random variable f under the probability measure
Pµ with mean vector µ is equal to the expectation under the zero-mean measure P
of the product of this random variable and the Radon-Nikodym derivative.

Under P, the random variables Zi are independent standard normal with E[Zi]
= 0 and E[ZiZj] = 1{i=j}. However, Zi – µi are independent standard normal random
variables under Pµ. Therefore, the change of probability measure Pµ → P is equiva-
lent to the change of variables Z – µ → Z, and for the expectations, Eµ[f(Z – µ)] =
E[f(Z)] and Eµ[f(Z)] = E[ξµ(Z)f(Z)].

9.2 CHANGE OF MEASURE FOR CORRELATED RANDOM VARIABLES

The change of measure/change of variable result for independent random variables
can be extended to the case of correlated normal variables. Consider a column vec-
tor of n random variables Z1, Z2, . . . , Zn where E[Zi] = µi and E[(Zi – µi) (Zj – µj)]
= σij so that Z has the mean vector µ and covariance matrix Σ:

Note that the diagonal terms along Σ are the variances of the standard normal ran-
dom variables Zi – µi and the off-diagonal terms are their covariances.

The probability measure is then:

(9.10)

If f(Z) is a real-valued function, its expected value with respect to the probability
measure

(9.11)

As in the standard normal case, we can express the probably measure Pµ through
the probability measure P0, or simple P, with the zero-mean vector as:
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where

(9.13)

and ξµ(Z) is a scalar random variable under the measure P:

(9.14)

Moreover, E[ξµ(Z)] = 1. Thus, the expectation of a real-valued function f(Z) with
respect to the probability measure Pµ is:

Eµ[f(Z)] = E[ξµ(Z)f(Z)] (9.15)

Under P, the random variables Zi are normal with zero mean and covariance
E[ZiZj] = σij. However, Zi – µi are normal random variables with zero mean and co-
variance Σ under Pµ. Therefore, the change of probability measure Pµ → P is equiv-
alent to the change of variables Z – µ → Z and for expectations, we get Eµ[f(Z – µ)]
= E[f(Z)] and Eµ[f (Z)] = E[ξµ(Z)f (Z)].

9.3 N-DIMENSIONAL RANDOM WALKS AND BROWNIAN MOTION

Suppose z(t) is vector-valued process with continuous sample paths:

(9.16)
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or written in matrices:

(9.17)

where E[dzi(t)] = 0, i = 1, . . . , n and Cov[dzi(t)dzj(t)] = 1{i=j}dt where 1 is the indica-
tor function. ε(t) for all t are i.i.d. vector random variables so that each vector-valued
realization can be considered a drawing from the multivariate standard normal dis-
tribution in equation (9.6).

The term z(t) is then an n-dimensional Wiener process (or alternatively, Brown-
ian motion in ℜn)—n sources of uncertainty or stochastic factors if it satisfies three
properties:

1. For any t < T, the finite increment difference ∆z = z(T) – z(t) is a vector-valued
normal random variable with zero mean 0 and covariance matrix (T – t)In×n

where I is the n × n identity matrix with elements 1{a=b}. In other words,

The zero mean expectation implies that the Brownian motion is a martin-
gale and in conjunction with the variance-covariance matrix implies that the
Brownian motion processes have identically distributed increments since the
variance depends only on the length of the increment. The increments are not
correlated since all the nondiagonal elements are 0.

2. For any 0 ≤ t1 ≤ t2 ≤ . . . <tn, the increments of the vector-valued random vari-
ables z(t2) – z(t1), z(t4) – z(t3), . . . , z(tn) – z(tn–1) are independent. In other
words, the Brownian motions possess independent increments.

3. z(t0) = 0 with probability 1. Thus, the Brownian motion is started at the origin.

Note that, in addition, Brownian motion is not differentiable with respect to
time1 and that dzi(t)dzj(t) = 1{i=j}dt + O(dt2) for a Brownian motion defined in
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equation (9.17). We also assume that the time difference T – t is finite (i.e., the
variance of z(T) – z(t) < ∞), so that the increments will be stationary.

9.4 N-Dimensional Generalized Wiener Process

We can generalize the n-dimensional Wiener process to an n-dimensional diffusion
process. Consider the process

dx(t) = µdt + Σdz(t) (9.18)

where µ is an n × 1 constant drift vector and Σ is an n × n constant diffusion matrix.
In matrix form,

(9.19)

Suppose Σ = 0, where 0 is an n × n matrix of 0’s. Then we get:

dx(t) = �dt (9.20)

Adding the diffusion term Σdz(t) to (9.20) adds random noise to the deterministic
motion of a particle in �n. We can rewrite (9.19) as:

or

(9.21)

The following properties of the continuous generalized Wiener process then hold:

E[dxi(t)] = µidt and     Cov[dzi(t)dzj(t)] = σijdt for i, j = 1, . . . , n

For finite increments of a generalized Wiener process, we get:
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9.5 MULTIVARIATE DIFFUSION PROCESSES

Consider a stochastic differential equation (SDE) for the ith state variable of an m-
dimensional diffusion process:

(9.22)

This SDE can be written in matrix form as:

dx(t) = µ(x(t), t)dt + Σ(x(t), t)dz(t) (9.23)

or

where both the drift µ, an m × 1 vector, and diffusion coefficient Σ, an m × n ma-
trix, are functions of the underlying state vector and time. The term ε(t) is an n × 1
vector of normal random variables drawn from a multivariate standard normal dis-
tribution. A diffusion process x(t) is defined as a solution of equation (9.23) subject
to the initial condition x(t0) = x0 where x0 is the initial state vector.

If xi are security prices in the market, then there are three cases to consider:

■ Case 1: n = m
The number of securities xi, i = 1, . . . , m is equal to the number of independent
sources of uncertainty zj, j = 1, . . . , n. Thus the diffusion coefficient has full
rank, the system of diffusion equation is complete, and all securities are consid-
ered primary.

■ Case 2: n < m
The number of securities m is more than the number of independent sources of
uncertainty n. Some securities are derivatives of other primary securities. For ex-
ample, x1 is a stock and x2 is a traded option on the stock. This a two-dimensional
process, but the source of uncertainty is common to both the stock and its option.
In this case, the system of diffusion equations is overdetermined.

■ Case 3: n > m
The number of traded securities m is less than the number of independent
sources of uncertainty n in the market. The market is incomplete, the system of
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diffusion equations is underdetermined, and some sources of uncertainty are
external.

The following are some properties of infinitesimal increments of an m-
dimensional diffusion processes driven by an n-dimensional Brownian motion.
The expectation is:

E[dxi(t)] = µi(x(t), t) i = 1, . . . , m

and the covariance of Brownian motions is:

Cov[dxi(t), dxj(t)] = E[dxi(t)dxj(t)] – E[dxi(t)]E[dxj(t)] = σij(x(t), t)dt

We can write the state-and-time-dependent covariance matrix as Σ = σσ′ where σ
is m × n matrix (we assume m = n so that markets are complete) found from a
Cholesky decomposition of Σ since Σ is positive-definite and symmetric. The diffu-
sion coefficient of the ith diffusion process, i = 1, . . . , m, with j stochastic factors,
j = 1, . . . , n, can be written as:

(9.24)

In general, since µ and Σ are functions of both the state vector and time, it is not
possible to find closed-form solutions for the mean and variance of finite incre-
ments of an m-dimensional diffusion process. Thus, it is usually necessary to inte-
grate the stochastic differential equation numerically via Monte Carlo simulation.

9.6 MONTE CARLO SIMULATION OF MULTIVARIATE 
DIFFUSION PROCESSES

We can discretize the SDE in equation (9.22) to get the approximation:

(9.25)

which represents the discrete diffusion process for the ith state variable, i = 1, . . . ,
m at time step k + 1, k = 0, 1, . . . , N – 1, with j = 1, . . . , n stochastic factors and
N time steps. εj,k’s are independent drawings from a standard normal distribution,
and xi,0’s are the initial values (conditions) of the process. ∆t is the time step and
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We simulate a discrete-time approximation to the diffusion process defined by
equation (9.22). Each simulation run produces an approximation to a continuous
sample path of the diffusion process in �n: x0 → x1 → x2 → . . . → xN

9.7 N-DIMENSIONAL LOGNORMAL PROCESS

We can extend the case of one-dimensional geometric Brownian motion (GBM) to
an n-dimensional GBM as a specific type of multivariate diffusion where n = m. We
can generalize the basic Black-Scholes process for n correlated stocks, currencies, or
commodity prices. Let Si, i = 1, . . . , n be the ith stock that follows the GBM with
n-dimensional Brownian motion, that is, n stochastic factors:

(9.26)

The correlation matrix of the stocks is:

(9.27)

where

is the covariance matrix, and

is the volatility of the ith factor. We can use a different basis for the Wiener processes
driving the diffusion:

(9.28)

It is easy to check that dWi has the properties:

E[dWi(t)] = 0 (9.29)
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and

(9.30)

where 1{k=1} is the indicator function. Thus, Wi are correlated Wiener processes with
the correlation matrix ρ. We can rewrite equation (9.26) as:

(9.31)

Moreover, equation (9.30) can be made stronger:

dWi(t)dWj(t) = ρijdt + O(dt2 ) (9.32)

Thus, we have two bases: zj(t), an orthogonal basis, and Wi(t), a correlated basis. Ei-
ther basis can be used depending on the particular need for either. In particular, for
Monte Carlo simulation, it is more convenient to first-generate independent deviates
εj, and then transform them into correlated deviates ξi using either a Cholesky de-
composition or from principal component analysis with an eigenvector-eigenvalue
decomposition (see section 2.3).

As an example, consider a three-dimensional diffusion process with three
stocks, S1, S2, and S3, with the following GBM diffusions:

(9.33)

The Cholesky decomposition (see section 2.3) gives the decomposition of Wi onto
the orthogonal basis dzj:
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Note that E [dW1dW2] = ρ12, E[dW1dW3] = ρ13, and E [dW2dW3] = ρ23. Moreover,
since the dzi are orthogonal: E[dz1dz2] = E[dz1dz3] = E[dz2dz3] = 0, E[dz2

1] =
E[dz2

2] = E[dz2
3] = dt. We can write the three-dimensional process in the orthogo-

nal basis as:

The solution to this three-dimensional SDE is:

where

and εi are standard normal deviates. We can simulate an exact sample path of this
process as follows:
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We can also use a first-order approximation:2

We could build a trinomial tree for this three-dimensional process by approximat-
ing the three standard normal deviates with three-state random variables.

As an example, suppose we want to value a basket option on three stocks that fol-
low the preceding processes. We can value the option using Monte Carlo simulation:

/**********************************************************************************
MonteCarloBasket : values a basket option on three stocks
[in]   double price1 : initial price of stock1

double price2 : initial price of stock2
double price3 : initial price of stock3
double strike : strike price
double vol1 : volatility of stock 1
double vol2 : volatility of stock 2
double vol3 : volatility of stock 3
double rate : risk-free rate
double div1 : dividend yield on stock1
double div2 : dividend yield on stock2
double div3 : dividend yield on stock3
double T : maturity of option
double rho12 : correlation between stock 1 and 2
double rho13 : correlation between stock 1 and 3
double rho23 : correlation between stock 2 and 3
char type : type of basket option: (C)all or (P)ut
long M : number of simulations
long N : number of time steps

[out]  double : price of basket option
**********************************************************************************/
double BasketOption::calcMonteCarloBasket(double price1, double price2, double

price3, double strike, double vol1,double vol2, double vol3, double rate, double
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div1, double div2, double div3, double T, double rho12, doublerho13, double
rho23, char type, int M, int N)

{
int i, j;
double value = 0.0; // basket option price
double St1, St2, St3 = 0.0; // stock prices at time t
double e1 = 0.0; // random deviate for stock 1
double e2 = 0.0; // random deviate for stock 2
double e3 = 0.0; // random deviate for stock 3
double sum = 0.0; // sum of option payoffs
double sum2 = 0.0; // sum of squared option payoffs
double SD = 0.0; // standard deviation
double SE = 0.0; // standard error
double dt = T/N; // time step
StatUtility util; // statistical utility class

srand(time(0)); // initialize RNG
long seed = (long) rand() % 100; // generate seed
long *idum = &seed; // store address of seed
std::cout.precision(4); // set output format

for(i=0; i < M; i++) // i is the path number
{

// reinitialize to initial stock prices
St1 = price1;
St2 = price2;
St3 = price3;

for(j = 0; j < N; j++) // j is the step along the path
{

e1 = util.gasdev(idum);
e2 = util.gasdev(idum);
e3 = util.gasdev(idum);

St1 = St1*(1+(rate-div1)*dt+ vol1*sqrt(dt)*e1);

St2 = St2*(1+(rate-div2)*dt+ vol2*sqrt(dt)*(rho12*e1 + 
sqrt(1-rho12*rho12)*e2));

St3 = St3*(1 + (rate – div3)*dt + vol3*sqrt(dt)*(rho13*e1
+ ((rho23 - rho12*rho13)/sqrt(1-rho12*rho12))*e2
+ sqrt(1 - rho13*rho13 - ((rho23 - rho12*rho13)/sqrt
(1-rho12*rho12)))*e3));

}
if (type == ‘C’)

value = max(St1 + St2 + St3 - strike,0);
else

value = max(strike - St1 - St2 - St3,0);

sum = sum + value;
sum2 = sum2 + value*value;

}
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// compute basket price
value = exp(-rate*T)*(sum/M));

// compute standard deviation
SD = sqrt((exp(-2*rate*T)/(M-1))*(sum2 - (sum*sum)/M));

// compute standard error
SE = SD/sqrt(M);

// output results
std::cout << “basket price = ” << value << endl;
std::cout << “stddev = ” << SD << endl;
std::cout << “stderr = ” << SE << endl;

return value;
}

Suppose we price a basket call option with S1 = 50, S2 = 40, S3 = 55, X = 150,
σ1 = 0.20, σ2 = 0.30, σ3 = 0.25, r = 0.10, q1 = 0, q2 = 0.01, q3 = 0.015, T = 75, ρ12
= 0.6, ρ13 = 0.20, ρ23 = –0.30, M = 100,000, and N = 1,000. We make the func-
tion call:

void main()
{

BasketOption bo;
bo.calcMonteCarloBasket(50,40,55,150,0.2,0.3,0.25,0.1,0.0,0.01,0.015,0.75,0.6,

0.2,-0.3,’C’,100000,1000);
}

We find the price is $11.70, with a standard deviation of 16.20 and a standard er-
ror of 0.051.

For a more robust object-oriented implementation for multifactor diffusions,
we can use Monte Carlo classes defined in section 2.10 to derive a BasketPath-
Pricer class (from the QuantLib library at www.quantlib.org). First, we define a
MultiPath class that implements multiple factors evolving at the same time.

#include “ql/MonteCarlo/Path.h”

namespace QuantLib
{

namespace MonteCarlo
{

// single random walk

9.7 N-Dimensional Lognormal Process 381



/********************************************************************************
MultiPath implements multiple factors evolving at the same time. MultiPath

contains the list of variations for each asset,
log {Y^j_{i+1}/{Y^j_i} for} i = 0, . . . , n-1

where Y^j_i is the value of the underlying j at discretized time t_i . The first
index refers to the underlying, the second to the time position MultiPath[j,i]

********************************************************************************/
class MultiPath
{

public:
MultiPath(Size nAsset, Size pathSize);
MultiPath(const std::vector<Path>& multiPath);
// name inspectors
Size assetNumber() const { return multiPath_.size(); }
Size pathSize() const { return multiPath_[0].size(); }
// name read/write access to components
const Path& operator[](Size j) const { return multiPath_[j]; }
Path& operator[](Size j) { return multiPath_[j]; }

private:
std::vector<Path> multiPath_;

};

// inline definitions
// overloaded constructor
inline MultiPath::MultiPath(Size nAsset, Size pathSize) :

multiPath_(nAsset,Path(pathSize)) {

// data validity tests
QL_REQUIRE(nAsset > 0, “MultiPath: number of asset must be > zero”);
QL_REQUIRE(pathSize > 0, “MultiPath: pathSize must be > zero”);

}

// overloaded constructor
inline MultiPath::MultiPath(const std::vector<Path>& multiPath)

: multiPath_(multiPath) {}
}

}

Each multipath is generated by a MultiPathGenerator class that generates the
diffusion paths and computes drifts and diffusion terms for each diffusion process.

#include “Multipath.h”
#include “Sample.h”

namespace QuantLib
{
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namespace MonteCarlo
{

// Generates a multipath from a random number generator
/********************************************************************************
MultiPathGenerator<RAG> is a class that returns a random multipath. RAG is a

sample generator which returns a random array. It must have the minimal
interface:

RAG {
RAG();
RAG(Matrix& covariance, long seed);
Sample<Array> next();
};
********************************************************************************/
template <class RAG>
class MultiPathGenerator
{

public:
typedef Sample<MultiPath> sample_type;
MultiPathGenerator(const Array& drifts,

const Math::Matrix& covariance,
Time length,
Size timeSteps,
long seed);

MultiPathGenerator(const Array& drifts,
const Math::Matrix& covariance,
const std::vector<Time>& times,
long seed=0);

const sample_type& next() const;
private:

Size numAssets_;
RAG rndArrayGen_;
mutable sample_type next_;
std::vector<Time> timeDelays_;

};

template <class RAG>
inline MultiPathGenerator<RAG >::MultiPathGenerator(

const Array& drifts,
const Math::Matrix& covariance,
Time length,
Size timeSteps,
long seed)

: numAssets_(covariance.rows()), rndArrayGen_(covariance, seed),
next_(MultiPath(covariance.rows(),timeSteps),1.0)

{
QL_REQUIRE(drifts.size() == numAssets_,

“MultiPathGenerator covariance and average do not have the same size”);
QL_REQUIRE(timeSteps > 0, “MultiPathGenerator: Time steps(“ +

IntegerFormatter::toString(timeSteps) + ”) must be greater than zero”);
QL_REQUIRE(length > 0, “MultiPathGenerator: length must be > 0”);

Time dt = length/timeSteps;
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timeDelays_ = std::vector<Time>(timeSteps, dt);
Array variances = covariance.diagonal();
for (Size j=0; j<numAssets_; j++)
{

QL_REQUIRE(variances[j]>=0, “MultiPathGenerator: negative variance”);
for (Size i=0; i<timeSteps; i++)
{

next_.value[j].times()[i] = (i+1)*dt;
next_.value[j].drift()[i]=drifts[j]*timeDelays_[i];

}
}

}

/******************************************************************************
MultiPathGenerator constructor
[in]: Array& drifts: : array of drifts

Math::Matrix& covariance : covariance matrix
std::vector<Time>& times : vector of path times
long seed : seed number for RNG

******************************************************************************/
template <class RAG>
inline MultiPathGenerator<RAG >::MultiPathGenerator(

const Array& drifts,
const Math::Matrix& covariance,
const std::vector<Time>& times,
long seed)

: numAssets_(covariance.rows()),
rndArrayGen_(covariance, seed),
next_(MultiPath(covariance.rows(),times.size()),1.0),
timeDelays_(times.size())

{

QL_REQUIRE(drifts.size() == numAssets_,
“MultiPathGenerator covariance and average do not have the same size”);

QL_REQUIRE(times.size() > 0, “MultiPathGenerator: no times given”);
QL_REQUIRE(times[0] >= 0, “MultiPathGenerator: first time(“

+ DoubleFormatter::toString(times[0]) + ”) must be non negative”);

Array variances = covariance.diagonal();
timeDelays_[0] = times[0];
for (Size i = 1; i < times.size(); i++)

{
QL_REQUIRE(times[i] >= times[i-1], “MultiPathGenerator: time(“
+ IntegerFormatter::toString(i-1)+ ”)=“ +
DoubleFormatter::toString(times[i-1]) + “
is later than time(“ + IntegerFormatter::toString(i) + ”)=” +
DoubleFormatter::toString(times[i]));

timeDelays_[i] = times[i] - times[i-1];
}

for (Size j=0; j<numAssets_; j++)
{
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next_.value[j].times() = times;

QL_REQUIRE(variances[j]>=0, “MultiPathGenerator: negative variance”);

for (Size i = 0; i< times.size(); i++)
{

next_.value[j].drift()[i] = drifts[j] * timeDelays_[i];
}

}
}

/******************************************************************************
next : generates next diffusion random Brownian motion
[in] : none
[out]: MultiPathGenerator<RAG>::sample_type& : sample type
******************************************************************************/
template <class RAG>
inline const typename MultiPathGenerator<RAG >::sample_type&
MultiPathGenerator<RAG >::next() const
{

Array randomExtraction(numAssets_);
next_.weight = 1.0;
for (Size i = 0; i < next_.value[0].times().size(); i++)
{

const Sample<Array>& randomExtraction = rndArrayGen_.next();
next_.weight *= randomExtraction.weight;
for (Size j=0; j<numAssets_; j++)
{

next_.value[j].diffusion()[i] = randomExtraction.value[j] *
sqrt(timeDelays_[i]);

}
}
return next_;

}
}

}

Now, we can use a BasketPathPricer class, which inherits from a PathPricer of
MultiPath.

#include “PathPricer.h”
#include “MultiPath.h”

namespace QuantLib
{

namespace MonteCarlo
{
/********************************************************************************
Multipath pricer for European-type basket option
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The value of the option at expiration is given by the value of the underlying
which has best performed.

********************************************************************************/
class BasketPathPricer : public PathPricer<MultiPath>
{

public:
BasketPathPricer(Option::Type type,

const Array& underlying,
double strike,
DiscountFactor discount,
bool useAntitheticVariance);

double operator()(const MultiPath& multiPath) const;
private:

Option::Type type_;
Array underlying_;
double strike_;

};
}

}

The class has the following method definitions:

#include “BasketPathPricer.h”
#include “SingleAssetOption.h”
using QuantLib::Pricers::ExercisePayoff;

namespace QuantLib
{

namespace MonteCarlo
{
/********************************************************************************
BasketPathPricer constructor
[in]: Option:Type : option type

Array& underlying : array of underlying assets
double strike : strike price
DiscountFactor discount : discount factor
bool useAntitheticVariance : flag for using

********************************************************************************/
BasketPathPricer::BasketPathPricer(Option::Type type,

const Array& underlying,
double strike,
DiscountFactor discount,
bool useAntitheticVariance)

: PathPricer<MultiPath>(discount, useAntitheticVariance), type_(type),
underlying_(underlying), strike_(strike)
{

for (Size j=0; j<underlying_.size(); j++)
{
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QL_REQUIRE(underlying_[j]>0.0, “BasketPathPricer: ” “underlying
less/equal zero not allowed”);

QL_REQUIRE(strike>0.0, “BasketPathPricer: ” “strike less/equal zero not
allowed”);

}
}

/**********************************************************************************
operator() : operator for pricing option on a path
[in]: MultiPath& multiPath : multiPath instance
[out]: double : discounted value of price of basket option
**********************************************************************************/
double BasketPathPricer::operator()(const MultiPath& multiPath)const
{

Size numAssets = multiPath.assetNumber();
Size numSteps = multiPath.pathSize();
QL_REQUIRE(underlying_.size() == numAssets,

“BasketPathPricer: the multi-path must contain ”
+ IntegerFormatter::toString(underlying_.size()) +“ assets”);

std::vector<double> log_drift(numAssets, 0.0);
std::vector<double> log_diffusion(numAssets, 0.0);
Size i,j;
double basketPrice = 0.0;
for(j = 0; j < numAssets; j++)
{

log_drift[j] = log_diffusion[j] = 0.0; // initialize drift and 
// diffusion

for(i = 0; i < numSteps; i++)
{

log_drift[j] += multiPath[j].drift()[i]; // compute drift of jth 
// asset

log_diffusion[j] += multiPath[j].diffusion()[i]; // compute diffusion of jth 
// asset

}
basketPrice += underlying_[j]*exp(log_drift[j]+log_diffusion[j]);

}
if (useAntitheticVariance_) // test if antithetics are 

// used
{

double basketPrice2 = 0.0;
for(j = 0; j < numAssets; j++)
{

basketPrice2 += underlying_[j]*exp(log_drift[j]-log_diffusion[j]);
}
return discount_*0.5*

(ExercisePayoff(type_, basketPrice, strike_) + ExercisePayoff(type_,
basketPrice2, strike_));

}
else
{

return discount_*ExercisePayoff(type_, basketPrice, strike_);
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}

}
}

}

9.8 ITO’S LEMMA FOR FUNCTIONS OF VECTOR-VALUED 
DIFFUSION PROCESSES

We can find the process that a function, f(x, t) of the vector-valued x(t) solution to
the m-dimensional SDE in equation (9.22) will follow. We can use a multivariate
Taylor expansion to derive the SDE for f(x, t):

(9.34)

We recall the property of an n-dimensional Wiener process: dzidzj = 1{i=j}dt + O(dt2).
Thus, dxidxj = σijdt + O(dt2). Substituting this into (9.34), we get:

(9.35)

which can be written in matrix form as:
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where tr denote the matrix trace. We have suppressed the state vector and time de-
pendence of µi and σij to ease notation. We can simulate this process by:

We have shown that f(x, t) of the diffusion process x also follows a (scalar) dif-
fusion Ito process that solves the SDE:

df = µf dt + σf dz(t)

9.9 PRINCIPAL COMPONENT ANALYSIS

Many financial markets exhibit a high degree of correlation, and thus high
collinearity, between market risk factors such as yields on similar bonds of differ-
ent maturities. Market factors (variables) are highly collinear when there are only
a few important sources of information in the data that are common to many fac-
tors.3 Large risk management systems that price and hedge portfolios with many
financial assets might use hundreds of different underlying risk factors. However,
many of these risk factors are often highly collinear. With principal component
analysis (PCA), a method of (symmetric) matrix decomposition into eigenvector
and eigenvalues matrices, it is possible to model these correlated systems based
on only a few key market risk factors, thereby reducing the dimensionality of the
system. Consequently, only the most important independent sources of informa-
tion (variation) are extracted from the data by a few principal components.
Moreover, the lack of correlation and dimensionality reduction advantages of
PCA results in computational efficiency. PCA also provides a robust and efficient
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method for estimating parameters in multifactor models that have multicollinear-
ity between the explanatory variables.

The data input to PCA must be stationary. Since prices, yields, and interest
rates are generally nonstationary, they have to be transformed into returns, which
in turn need to be normalized, before PCA is applied. Otherwise, the first principal
component will be dominated by the input factor with the greatest volatility.

PCA is based on an eigenvalue and eigenvector analysis of V = X′X, the k × k
symmetric matrix of correlations between the variables in X. Each principal com-
ponent is a linear combination of these columns, where the weights are chosen in
such a way that the first principal component explains the largest amount of the to-
tal variation of X, the second component explains the greatest amount of the re-
maining variation, and so forth.

Consider a T × k stationary data matrix X ≡ [X1 . . . Xk] where each element Xi

denotes the ith (T × 1) column of X. Thus, Xi is the standardized historical input
data on the ith factor in the system. PCA finds the k × k orthogonal (weight factor)
matrix W, the set of eigenvectors of the correlation matrix V, such that

V = WΛW′ (9.36)

where Λ is the k × k diagonal matrix of eigenvalues of V. The columns of W, (wi,j)
for i, j = 1, . . . , k, are ordered according to the size of the corresponding eigen-
value so that the mth column of W, denoted wm = (w1m, . . . , wkm)′, is the k × 1
eigenvector corresponding to the eigenvalue λm where the columns of Λ are ordered
so that λ1 > λ2 > . . . > λk.

Define the mth principal component by:

Pm = w1mX1 + w2mX2 + . . . + wkmXk

or in matrix notation,

Pm = Xwm

Each principal component is a time series of the transformed X factors. The full T × k
matrix of principal components is:

P = XW (9.37)

To see that the components are uncorrelated, we note that:

P′P = W′X′XW = W′VW = W′WΛ

However, since W is orthogonal, then W′W = WW′ = I. Thus,

P′P = Λ (9.38)
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Since Λ is a diagonal matrix, then the columns of P are uncorrelated, then the
variance of the mth principal component is λm. Thus, the proportion of the total
variation in X that is explained by the mth principal component is λm/k where k is
the sum of the eignvalues, the number of variables in the system. To see this, note
that the sum of the eigenvalues is the trace of Λ , the diagonal matrix of eigenvalues
of V. However, the trace of Λ equals the trace of V (since trace is invariant under
similarity transforms), and because V has 1’s along its diagonal, the trace of V is the
number of variables in the system,4 k. Thus, the proportion of variation explained
by the first n principal components is:

(9.39)

Given the column order labeling in W, the largest eigenvalue λ1 that corre-
sponds to the first principal component, P1, explains the largest total proportion of
the total variation in X. λ2 corresponds to P2 and explains the second largest total
proportion, and so on. Since W′ = W–1, equation (9.37) can be written as:

X = PW′ (9.40)

that is,

Xi = wi1P1 + wi2P2 + . . . + wikPk (9.41)

Equation (9.41) is the principal components representation of the original factors.
Thus, each vector of input data can be written as a linear combination of the prin-
cipal components, which reduces the dimension of the system. As we’ve seen, once
the data input X has been transformed into the principal component system in
(9.37), the original system can be transformed back via equation (9.41). Equation
(9.41) is also helpful for calculation of the covariance of the original variables.
Since the principal components are orthogonal, their unconditional covariance ma-
trix is diagonal so that the covariance structure of X will also be diagonal.

We consider an application of PCA to Treasury bond yield data. Figure 9.1 is a
graph of daily Treasury yield data from January 2, 1990, to December 31, 1999,
for 3-month, 6-month, 1-year, 2-year, 3-year, 5-year, 7-year, 10-year, 20-year, and
30-year bond maturities.

As the graph shows, the yields of Treasury bonds of different maturities move
in tandem and appear to be highly correlated. Using PCA, we can determine the
few important and independent sources of variation in the system. The data input
matrix X is a 2,503 × 10 matrix since there is a total of 2,503 days of data for each

λi
i

n

k
=
∑

1

/
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of the 10 different maturity bonds. Before PCA is used, the data set must be made
stationary so that the unconditional correlation matrix V = X′X can be calculated.
X is normalized by transforming the data into standardized “returns” by subtract-
ing means and dividing by standard deviations.5 Once this is done, we find that
X′X is as shown in Table 9.1.

If we decompose this correlation matrix into its eigenvectors and eigenvalues,
as follows, we find:

Λ = (8.48, 1.43, 0.065, 0.0078, 0.0068, 0.0013, 0.0011, 0.0009, 0.0003, 0.0001)
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FIGURE 9.1 Treasury Bond Yield Curves (1/2/90–12/31/99)
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TABLE 9.1 Correlation Matrix

3-mo 6-mo 1-yr 2-yr 3-yr 5-yr 7-yr 10-yr 20-yr 30-yr

3-mo 1
6-mo 0.994 1
1-yr 0.975 0.992 1
2-yr 0.931 0.957 0.980 1
3-yr 0.883 0.913 0.944 0.990 1
5-yr 0.756 0.789 0.829 0.918 0.964 1
7-yr 0.693 0.723 0.764 0.868 0.928 0.992 1
10-yr 0.599 0.629 0.671 0.790 0.867 0.966 0.988 1
20-yr 0.564 0.597 0.643 0.767 0.848 0.953 0.980 0.995 1
30-yr 0.453 0.479 0.520 0.655 0.751 0.895 0.937 0.978 0.978 1

5One can also make the data stationary by taking the first differences of the yields as a proxy
for “returns.”



with each element λi, i = 1, . . . , 10, in the ith diagonal position in the matrix and
with 0’s elsewhere. As we see, the first eigenvalue, λ1 = 8.43, is much larger than the
others which is an indication the system is highly correlated. The weight matrix W
contains the eigenvectors of V. The first three eigenvectors off the correlation ma-
trix are listed in Table 9.2.

Figure 9.2 is a plot of the first three principal component eigenvectors.
The first principal component is called the trend component of the yield

curve. As we see, there is a general decline in the factor weights, up to the five-
year maturity, which indicates that the trend is roughly decreasing during this
time period. In fact, the first principal component eigenvector follows the gen-
eral shape (movements) of the Treasury yield curve over the entire period. We see
that the first eigenvalue explains 8.48/10 = 84.8 percent of the variation over the
period and is attributable to (roughly) parallel shifts in the yield curve. The sec-
ond principal component is neither monotonically increasing nor decreasing.
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TABLE 9.2 Principal Component Eigenvectors

P1 P2 P3

1-month 0.043 –0.012 –0.268
3-month –0.136 0.143 0.056
1-year –0.161 –0.177 0.689
2-year –0.164 –0.137 0.108
3-year –0.331 0.021 0.457
5-year 0.563 –0.244 –0.006
7-year –0.177 0.807 –0.122
10-year 0.427 0.022 0.107
20-year –0.453 –0.349 –0.320
30-year –0.286 –0.311 –0.317

FIGURE 9.2 Plot of Principal Component Eigenvectors
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This suggests a fluctuation in changes in the slope of the yield curve over time.
The second component is called the “tilt” component and 1.43 percent of the to-
tal variation is attributed to it. The factor weights of the third principal compo-
nent are almost all positive for the short-term rates and negative for the
longer-term rates. This component influences the convexity of the yield curve,
and 0.65 percent of the variation during the data period is attributable to
changes in convexity.
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CHAPTER 10
Single-Factor Interest Rate Models

In this chapter, we review interest rate models used to price various interest rate
products including bonds, bond options, caps, and swaps. The models are sin-

gle-factor Markovian models—there is only one source of uncertainty—and the
underlying interest rate and the evolution of the short rate do not depend on pre-
vious interest rate movements. We analyze in detail the short rate diffusion
processes and derive analytical solutions for the Vasicek and Hull-White models.
We discuss their properties including mean reversion, analytical tractability,
bond pricing PDEs, and calibration to initial term structures. Interest rate tree
building procedures are discussed in Chapter 11 for pricing various interest de-
rivatives. In Chapter 12, two-factor models—with two sources of uncertainty,
the short rate and short rate volatility—are discussed for the Black-Derman Toy
(BDT) and Hull-White models.

In section 10.1, we discuss the general short rate process. In section 10.2, we
derive the bond pricing partial differential equation, and in section 10.3, we discuss
the risk-neutral drift of the short rate process. In section 10.4, we discuss single-
factor models. In section 10.5, we derive Vasicek’s (1977) model in detail; in section
10.6, we price discount bonds using the Vasicek model; in section 10.7, we price
European bond options on zero-coupon bonds using the Vasicek model. In section
10.8, we introduce the Hull-White (extended Vasicek) model that incorporates
time-dependent parameters. In section 10.9, we discuss Jamshidian’s decomposition
technique to price European options on coupon-bearing bonds. In section 10.10, we
introduce the Cox-Ingersoll-Ross (CIR) model that incorporates a square-root
volatility in the short rate process, while in section 10.11, we discuss the extended
CIR model that incorporates a deterministic shift function of the short rate to better
fit the observable market yield curve. In section 10.12, we discuss the popular
Black-Derman-Toy (BDT) short rate model. In section 10.13, we discuss Black’s
(1976) model for pricing caps, and in section 10.14, we discuss Black’s model for
pricing European swaptions. In section 10.15, we discuss pricing caps, caplets, and
swaptions using single-factor short rate models such as the Hull-White (extended
Vasicek) model and provide an implementation. In section 10.16, we discuss the
valuation of swaps. Finally, in section 10.17, we discuss and provide implementa-
tions for calibrating models in practice.
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Before discussing the models, it is important to understand notation and the re-
lationships of key quantities in continuous time. We denote the short rate r(t) and
the price of the discount bond at time t maturing at time T as P(t, T), where P(T, T)
= 1. The yield to maturity of P(t, T) is denoted R(t, T). R(t, T), for t ≤ T, is referred
to as the yield curve, term structure, or term structure of interest rates. The forward
rate for the period [T1, T2] in the future is denoted f(t; T1, T2). The instantaneous
forward rate at T is denoted f (t, T) and for real values over t ≤ T is known as the
forward yield curve.

Discount bonds and short rates are related:

(10.1)

where E is the expectation at time t over the risk-neutral measure Q. We will derive
this in the next section from no-arbitrage arguments. Discount bonds and the yield
to maturity are related:

(10.2)

where τ = T – t. Note that (10.2) implies that the relationship between the yield to
maturity and the short rate is:

(10.3)

The relationship between forward rates and discount bonds and yield to maturities
is:
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where (10.5) is derived from (10.2). The relationships between the forward rate
and instantaneous forward rate and discount bond are:

(10.6)

and

(10.7)

respectively. The relationship between the forward rate and yield to maturity is:

(10.8)

Note that we can express the yield to maturity in terms of the forward rate:

(10.9)

This states that the yield on P(t, T) can be viewed as an average forward rate over
[t, T]. The relationship between discount bonds and forward rates is:

(10.10)

by substituting (10.9) into (10.2). Finally, the relationship between the forward rate
and the short rate is:

f(t, t) = r(t) (10.11)

It should be noted that the term structure can be described in terms of either P(t, T),
R(t, T), or f(t, T).

We note that there are various day-counting conventions for computing the time
to maturity. Typically, the current time t and the maturity date T are expressed as
day/month/year, say D1 = (d1, m1, y1) and D2 = (d2, m2, y2), and the amount of time
between them, T – t, is expressed in terms of the number of days (in years) between
them. One day-count convention used for Treasury bonds is actual/365 where a year
is 365 days long and the year fraction between the two dates is the actual number of
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days between them divided by 365, that is, (D2 – D1)/365 where D1 is included and
D2 is excluded.

A second convention typically used for corporate and municipal bonds is ac-
tual/360 where a year is assumed to be 360 days long and the year fraction is (D2 –
D1)/360.

Another convention used for Treasury bills and other money market instru-
ments is to assume 30/360 where months are assumed 30 days long and years are
assumed 360 days long. The year fraction is given by

The year fractions can be adjusted for holidays, by leaving out holidays and includ-
ing the first working days that follow them.

Finally, we assume quoted market prices for Treasury bonds (quoted in dollars
and 32nds of a dollar) and coupon-bearing bonds are the clean price, while the
cash price is the dirty price where the two prices are related by

Cash price = Quoted price + Accrued interest since last coupon date

10.1 SHORT RATE PROCESS

We assume that the short rate follows a general diffusion process in the real world
(under the physical measure P) that solves the SDE:

dr = m(r, t)dt + σ(r, t)dz (10.12)

subject to some initial condition:

r(0) = r0

m and σ are drift and volatility of the short rate (generally both time- and state-
dependent). For notational ease, we suppress the explicit dependence of the short
rate on time; that is, r = r(t).

The bond price is a function of r and follows a process under P:

(10.13)

The drift and volatility coefficients are given by Ito’s lemma:
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and

Using Ito’s lemma, we can also find the process for the yield:

and for the instantaneous forward rate:

10.2 DERIVING THE BOND PRICING PARTIAL 
DIFFERENTIAL EQUATION

To derive the bond pricing PDE similar to the Black-Scholes PDE, we will dynami-
cally replicate a zero-coupon bond P(t, T1) with a bond with a different maturity
P(t, T2); that is, we will consider a replicating portfolio:

Π(t) = P(t, T1) – hP(t, T2) (10.15)

where h is the hedge ratio. Over an infinitesimal time period dt we have:

dΠ = dP1 – hdP2 = mP1
P1dt + σP1

P1dz – h(mP2
P2dt + σP2

P2dz)

The hedge ratio that makes the portfolio riskless is:

(10.16)

With this h, we can perfectly hedge P1 with the position in the second bond, h of P2,
instantaneously.

Now the portfolio, Π, is riskless and thus must earn the risk-free rate r(t) by the
assumption of no-arbitrage:

dΠ(t) = r(t)Π(t)dt = r(P1 – hP2)dt (10.17)
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Substituting the result for h, we get

(10.18)

The right-hand side can only depend on T2 and is independent of T1. The left-hand
side can only depend on T1 and is independent of T2. This equality can only hold if
and only if for any zero-coupon bond

(10.19)

is independent of the maturity T. Then the zero-coupon bond price must satisfy a
bond pricing PDE (P = P(r, t, T)):

(10.20)

subject to:

P(r, T, T) = 1

The solution to this bond pricing equation is given by the Feynman-Kac formula:

which is exactly (10.1). The expectation is calculated under the risk-neutral mea-
sure Q:

dr = µ(r, u)du + σ(r, u)dz, u ∈ [t, T] (10.21)

subject to some initial condition:

r(t) = r

This is the risk-neutral process for the short rate—the short rate process under the
risk neutral measure Q (in the risk-neutral world).
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The relationship between the real-world and risk-neutral drifts of the short rate
process is:

µ(r, t) = m(r, t) – σ(r, t)λ(r, t) (10.22)

where λ(r, t) is the market price of interest rate risk:

(10.23)

Note that we do not need to know m(r, t) and λ(r, t) separately in order to price
bonds—we just need to know the risk-neutral drift µ(r, t).

10.3 RISK-NEUTRAL DRIFT OF THE SHORT RATE

There are two approaches to calculating the drift µ(r, t):

1. In an equilibrium approach, we assume a functional form for µ(r, t). Then
bonds of different maturities and all other interest rate contingent claims
(bonds options, etc.) are priced using this assumed drift. The problem is that
the prices of zero-coupon bonds P(t, T) we get by pricing with a specified
µ(r, t) are generally inconsistent with observable market prices of discount
bonds Pmarket(t, T).

2. In an arbitrage-free approach, we fit the risk-neutral drift to the observable
market prices of zero-coupon bonds Pmarket(t, T). This process of fitting the drift
is called model calibration (drift calibration).

Suppose now that we have µ(r, t) (we either assumed a functional form or fitted
the drift to current observable bond prices). The prices P(t, T) are then given by the
Feynman-Kac solution to the bond pricing PDE:

where the expectation is computed under Q in (10.1). The expectation can be cal-
culated either analytically (if possible), by Monte Carlo simulation, by binomial or
trinomial trees, or by finite difference schemes. If the model is arbitrage-free, the
bond prices are calculated in such as way that they will match the actual observable
market prices of zero-coupon bonds.

All other interest rate derivatives f paying F(r(T)) at some time T in the future
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(note that P pays $1 at time T—the simplest possible payoff) also satisfy the same
pricing PDE:

(10.24)

subject to the terminal condition:

f(r(T), T) = F(r(T))

The solution is given by the Feynman-Kac formula:

(10.25)

where the expectation is calculated under Q:

dr = µ(r, u)du + σ(r, u)dz, u ∈ [t, T] (10.26)

subject to some initial condition:

r(t) = r

The expectation can be calculated either analytically (if possible); by Monte Carlo
simulation; or by binomial, trinomial, or finite difference schemes.

10.4 SINGLE-FACTOR MODELS

Many single-factor short rate models follow Markov diffusion processes and are
special cases of the following diffusion process:

dr = (α1 + α2r + α3r ln r)dt + (β1 + β2r)
γdz (10.27)

where αi = αi(t), βi = βi(t), γ ≥ 0.
Many single-factor models were originally specified as equilibrium models

with constant drift and diffusion coefficients (i.e., constant (time-independent) pa-
rameters α and β) or as a function of the short rate. They were later extended to
allow for time-dependent parameters to better fit observable market data (fit to the
current yield curve and the term structure of volatilities). In one-factor models,
rates move in the same direction over any short time interval, but not by the same
amount. Moreover, while the models are more restrictive than a two-factor model,
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the term structures can have different shapes and they do not always have the
same slope.

One important feature that a good short rate model should have is mean rever-
sion. Empirical observation shows that interest rates revert back to their long-run
levels: When r is high, mean reversion tends to cause it to have a negative drift,
whereas when r is low, mean reversion tends to cause it to have a positive drift. Single-
factor models price discount bonds of the following form:

P(t, T) = A(t, T)e–B(t,T)r(t) (10.28)

If A(t, T) is an exponential function, (10.28) can be expressed as:

P(t, T) = eA(t,T) – B(t,T)r(t)

Each model determines the parameters A(t, T) and B(t, T) differently depending on
the specified diffusion process of the short rate. One single-factor model that is
widely used in practice that exhibits mean reversion is the Vasicek model. The spec-
ified form (10.28) for discount bonds ensures that the continuously compounded
spot rate R(t, T) is an affine function of the short rate r(t), that is,

R(t, T) = α(t, T) + β(t, T)r(t) (10.29)

where α and β are deterministic functions of time, and can be chosen as

α(t, T) = –(ln A(t, T))/(T – t), β(t, T) = B(t, T)/(T – t)

from (10.28).
There is a relationship between the coefficients in the risk-neutral process of the

short rate and affinity in the term structure. Suppose the short rate follows a gen-
eral time-homogenous process as in (10.21); that is,

dr(t) = µ(t, r(t))dt + σ(t, r(t))dz(t)

If the coefficients µ and σ are affine (linear) functions themselves, then the resulting
short rate model will exhibit an affine term structure. Thus, if the coefficients µ and
σ have the form

µ(t, x) = λ(t)x + η(t), σ2(t, x) = γ(t)x + κ(t)

for suitable deterministic time functions λ, η, γ, and κ, then the model has an affine
term structure.1 Consequently, A and B in (10.28), and thus α and β in (10.29), de-
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pend on the chosen functions λ, η, γ, and κ. While affinity in the coefficients leads
to affinity in the term structure, the converse is also true: If a model has an affine
term structure and has time-homogenous coefficients µ(t, x) = µ(x) and σ(t, x) =
σ(x), then the coefficients are necessarily affine (linear) functions of x.2 In the Va-
sicek model, λ(t) = –a, η(t) = ar–, γ(t) = 0, κ(t) = σ2, and in the Cox-Ingersoll-Ross
model, λ(t) = –a, η(t) = ar–, γ(t) = σ2, and κ(t) = 0. Both models have explicit bond
prices that can be written in the form (10.28) since A and B can be found from
solving (Riccati) differential equations, as we see in the following sections.

10.5 VASICEK MODEL

In Vasicek’s (1977) model, the risk-neutral process for r is

dr = a(r– – r)dt + σdz (10.30)

where a, r–, and σ are constants, a is the rate of mean reversion to r–, r– is the long-
run average (steady-state) of the short rate, and σ is the diffusion coefficient. The
parameters can also be deterministic functions of time only with no state parame-
ters (in such case, the model becomes the Hull-White extension of the original Va-
sicek model).

In addition to mean reversion, the model is analytically tractable, as we will
show. However, in the model interest rates can get negative, a major disadvantage
that can be managed if the short rate is far above zero since the probability of rates
becoming negative is very small due to mean reversion—though it is not zero.

We will show that the price at time t of a zero-coupon bond that pays $1 at
time T is:

P(t, T) = A(t, T)e–B(t,T)r(t)

where

(10.31)

and
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When a = 0, B(t, T) = T – t and A(t, T) = exp(σ2(T – t)3/6).

Consider a deterministic case of zero volatility. Then (10.30) becomes:

dr = a(r– – r)dt

This ordinary differential equation (ODE) can be integrated to yield:

where C is a constant of integration. The initial condition at t = t0 is

r(t0) = r0

so that

r(t0) = r– – e–at0 –C = r0

Thus, the constant of integration is

C = –at0 – ln(r– – r0)

yielding the solution

r(t) = r– + (r0 – r–)e–a(t– t0)

We can see that the trajectory starts at the initial point r(t0) = r0 and in the limit t →
∞ reverts to its long-run limiting value (steady state) r–.

When σ > 0, we need to solve an Ornstein-Uhlenbeck SDE. It can be integrated
in closed form to yield for each s ≤ t.

(10.33)

In particular at time t0, we have
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The first two terms are the mean of r(t):

Es[r(t)] = r– + (r(s) – r–)e–a(t–s) (10.34)

where E is the expectation conditional on the filtration up to time s, and the third
term is a martingale (Ito’s integral with respect to the Brownian motion). The short
rate r(t) is normally distributed with mean given by (10.33) and variance given by

(10.35)

Sample paths of the Vasicek short rate process can be simulated for Monte
Carlo by discretizing (10.30):

A key property of the Vasicek model is expressed by the following theorem:
THEOREM 1. The Vasicek (Ornstein-Uhlenbeck) process is a time-changed (sub-

ordinated) Brownian motion:

r(t) = r– + (r(s) – r–)e–a(t–s) + e–a(t–s)z(τ) (10.36)

where the new time clock is:

z(τ) is a standard Brownian motion with respect to the new time clock τ with the
standard properties of Brownian motion:

z(0) = 0, E[z(τ)] = 0, E[z2(τ)] = τ

and r(t0) = r0 is the initial condition.
PROOF. Consider the process

r(t) = α(t)z(β(t)) + C(t) (10.37)

where α, β, and C are some deterministic functions of time, and z is a standard
Brownian motion started at time 0. We compute dr:

(10.38)dr
d
dt

z t dt t dz t
dC
dt

dt= + +α β α β( ( )) ( ) ( ( ))

τ β σ= = −[ ]−( ) ( )t
a

e a t s
2

2

2
1

r r a r r t ti i i i+ += + − +1 1( )∆ ∆σ ε

Vars
a t sr t

a
e[ ( )] ( )( )= − − −σ2

2

2
1

406 SINGLE-FACTOR INTEREST RATE MODELS



Now, since

we can rewrite (10.38) as:

We now compute the mean and variance of dr:

and

V[dr] = E[α2(dz(β(t)))2) = α2 E[(dz(β(t)))2]

We now need to calculate the variance of the time-changed Brownian motion.

E[(dz(β(t)))2] = E[(dz(τ))2 = dτ = dβ(t) = β⋅ (t)dt (10.39)

and

V(dr) = α2β⋅ (t)dt (10.40)

Thus, we can rewrite

where ẑ(t) is a standard Brownian motion (Wiener process). Combining our results,
we get

(10.41)

If we compare (10.41) to the Vasicek process in (10.30),
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we get three differential equations for three unknowns that need to be satisfied for
the processes to be equal:

.
C + aC = ar–, C(t0) = r0

Solving the first equation by integration yields,

α = e–a(t–t
0
) (10.42)

Substituting this into α2
.
β= σ2 yields

.
β= σ2e2a(t–t

0
), which when integrated gives

Taking into account the initial condition, we can find the constant of integration
and solve to get

(10.43)

Finally, integrating  
.

C + aC = a–r, C(t0) = r0, yields,

C(t) = r– + e–a(t–t
0
)(r0 – r–) (10.44)

Substituting (10.41), (10.42), and (10.43) into the original process (10.37) proves
that (10.36) holds, namely,

r(t) = r– + (r0 – r–)e–a(t–t
0
) + e–a(t–t

0
)z(τ)

with the new time clock

is indeed a solution to the Vasicek SDE dr = a(r– – r)dt + σdz subject to the initial
condition r(t0) = r0.
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We can now solve all problems for the Vasicek process by using this representa-
tion as a time-changed Brownian motion. In particular, the mean and the variance
of the short rate over a finite time horizon are:

η = η(t0, t) – Et0
[r(t)] = r– + (r0 – r–)e–a(t–t

0
)

and

The transition probability density p(r(t), t | r0, t0) for the short rate process is a nor-
mal density with the mean η and the variance v2:

This is also a Green’s function for the backward PDE for the Vasicek process:

subject to the delta-function terminal condition:

p(r, t0 | r0, t0) = δ(r – r0)

To fit the observable market data (the current yield curve and observable im-
plied cap volatilities), the Vasicek model was extended by Hull and White to allow
for time dependence of the parameters:

dr = a(t)(r–(t) – r)dt + σ(t)dz (10.45)

THEOREM 2. The Vasicek process with time-varying coefficients can also be rep-
resented as a time-changed Brownian motion (subordinated Wiener process) with
parameters:

r(t) = α(t)z(β(t)) + C(t)
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where

The proof is similar to the case with constant coefficients.
In particular, to fit the yield curve only (not the cap implied volatilities), it is

enough to assume that only r–(t) depends on time and that a and σ are constant. In
this particular case, we get:

where

This is the solution to the SDE:

dr = a(r–(t) – r)dt + σdz, r(t0) = r0

In this case, the mean and the variance of the short rate over some finite horizon are
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10.6 PRICING ZERO-COUPON BONDS IN THE VASICEK MODEL

We can compute the expectation to price zero-coupon bonds:

where r follows the Vasicek process. We could solve the bond pricing PDE in
(10.20) but we can take advantage of the Gaussian nature of the underlying process
and compute the expectation directly. Consider a random variable (average interest
rate over the lifetime of the bond):

For each t and T, I(t, T) is normally distributed (it follows from the fact that r(u)
is normally distributed). We can compute the mean and variance of this random
variable:

and

(10.46)
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We need to calculate the covariance of two values of Wiener processes at two dif-
ferent times. This is called the correlation function of the process.

We will make use of the fact that for a standard Brownian motion:

E[z(u)z(s)] = min(u, s) ⇒ E[z(β(u))z(β(s))] = min(z(β(u)), z(β(s))) (10.47)

Substituting (10.47) into (10.46), the integral for the variance, yields:

Now we need to calculate this double integral. The integration result is

(10.48)

Now it is easy to find the expectation for the bond price:

P(r, t, T) = EQ
t [e

–I(t,T)]

Since I(t, T) is a normally distributed random variable with mean m and variance
s2, the exponential e–I(t,T) is lognormally distributed with mean e–(m–s 2/2) (mean of the
lognormal distribution). Thus, the bond pricing formula in the Vasicek model is:

The bond pricing formula can also be written as follows:

P(r, t, T) = exp(A(τ) – B(τ)r)
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The same answer could be derived by solving the bond pricing PDE in (10.20).
Thus, given the short rate r at time t, we can determine the entire term structure
P(r, t, T). The yield curve is determined by:

(10.49)

The yield curve is linear in the short rate. The forward curve is determined by:

(10.50)

Since

we can write the forward curve as:

(10.51)

We can simulate the stochastic evolution of P(r, t, T), R(r, t, T), and f(r, t, T) as r
evolves in time according to the Vasicek process:

by just recalculating P(ri, T – ti), R(ri, T – ti), and f(ri, T – ti) as ri evolves. Note that
the functions P(r, t, T), R(r, t, T), and f(r, t, T) depend only on τ = T – t; that is,
they are time homogenous.

Example: Suppose we generate an initial yield curve using the Vasicek process,

where a = 0.2, r– = 0.08, and σ = 0.02. We assume the time step is one month (i.e.,
∆t = 1/12 = 0.0833) and that the initial rate at time 0 is r0 = 0.06. Suppose we sim-
ulate the initial yield curve out 5 years (60 months). At each time step, we need to
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generate a random normal deviate εi. (See Chapter 2 for a discussion of generating
random normal deviates.) Suppose εi = 0.6291. Then,

At the second time step, 2∆t, we generate ε2 = –2.0553. Then,

At the third time step, 3∆t, we generate ε3 = 0.8602. Then,

We continue on up to r60. Suppose we generate the initial yield curve (spot rates)
as shown in Figure 10.1 and we want to evolve the yield curve out to bond matu-
rities of T = 15 years for each spot rate for each of the 60 months on the initial
curve. From (10.49), we can compute the future spot rate for each ri , 0 ≤ i ≤ 60,
by computing

R r t T
B

r
A

i i( , , )
( ) ( )= −τ
τ

τ
τ

r3 0 0524 0 2 0 08 0 0524 0 0833 0 02 0 0833 0 8602 0 0568= + − + =. . ( . . )( . ) . . ( . ) .

r2 0 064 0 2 0 08 0 064 0 083 0 02 0 0833 2 055 0 0524= + − + − =. . ( . . )( . ) . . ( . ) .

r1 0 06 0 2 0 08 0 06 0 0833 0 02 0 0833 0 6291 0 064= + − + =. . ( . . )( . ) . . ( . ) .
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FIGURE 10.1 Simulated Initial Yield Curve (Spot Rates)
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where

Thus, suppose we want to compute yield curves today at time t = 0 for bond ma-
turities at T = 8 (τ = T since we assume t = 0). We first compute the bond rate
variance:

We compute

Now, we can compute the future spot rate for each ri:

So after one month, ri = 0.064, and so

After two months, r2 = 0.0524, and

If we continue the computation for all 60 months, we get the future yield curve at
T = 8 shown in Figure 10.2.

We can generate a zero-coupon bond yield surface {R(t, T), 0 ≤ T ≤ 15} where
(current) time t is in months and T is the bond maturity in years. Using an Excel
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spreadsheet, we can easily compute all future spot rates and thus generate a bond
yield surface as shown in Figure 10.3 or viewed from another angle in Figure 10.4.

Using (10.50), we can also generate forward rate curves by computing:

f r t T
T

P r t T
B

r
A

i i i( , , ) ln ( , , )
( ) ( )

    = − = −∂
∂

∂ τ
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∂ τ
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FIGURE 10.2 Future Spot Yield Curve (T = 8)
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FIGURE 10.3 Zero-Coupon Bond Yield Surface
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Suppose we want to generate the forward curve today at t = 0 for bond maturities
of T = 8 years. We compute:

and

So that after one month, the first time step, we have the forward rate spanning
(0, 8].

f(r1, 0, 8) = (0.202)(0.064) – (–0.05986) = 0.0728
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r e
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FIGURE 10.4 Zero-Coupon Bond Yield Surface—a Different Angle
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After two months (two time steps), we have

f(r2, 0, 8) = (0.202)(0.0524) – (–0.05986) = 0.0704

and so on for each ri , i = 1, . . . , 60.
We can thus generate the forward rate curve at t = 0 for T = 8 using the spot

rates generated in the initial yield curve as shown in Figure 10.5.
Computing the forward rate curves for all maturities, we generate the forward

rate surface (each curve is a slice of the surface for a given maturity T) as shown in
Figure 10.6.

We can derive diffusion processes for bond prices and forward rates. Using
Ito’s lemma,

dP(r, t, T) = d(eA(τ)–B(τ)r))

we find that the price of a T-maturity zero-coupon bond follows the process

(10.52)

where the instantaneous volatility of the T-maturity bond price is:

(10.53)

As t → T (closer to maturity), τ → 0 and σP → 0, which intuitively should happen
since at maturity the bond is worth exactly $1, so as maturity nears, the volatility

σ σ σ τ
P

at T B t T
a

e( , ) ( , ) ( )= = − −1

dP r t t T
P r t t T

r t dt t T dz tP
( ( ), , )
( ( ), , )

( ) ( , ) ( )= − σ
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FIGURE 10.5 Forward Curve (T = 8)
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of the bond decreases. Also, the risk-neutral drift rate of the bond is equal to the
short rate r(t) since the bond is a traded asset.

In the Vasicek model, the bond price process is lognormal. We can also derive
the process for the T-maturity instantaneous forward rate using Ito’s lemma:

and the result is:

df(r, t, T) = µf (t, T)dt + σf (t, T)dz(t) (10.54)

where the instantaneous volatility and drift rate of the forward rate are:

σf (t, T) = σe–a(T–t) (10.55)

and
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FIGURE 10.6 Forward Rate Surface
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respectively. Thus, we see that the process for the forward rate is also Gaussian in
the Vasicek model. Moreover, the Heath-Jarrow-Morton (HJM) condition holds
(to be discussed in Chapter 12), which is the following relationship between the
drift rate and volatility:

(10.57)

Indeed,

Moreover, the relationship between the instantaneous bond and forward rate
volatilities is given by:

10.7 PRICING EUROPEAN OPTIONS ON ZERO-COUPON BONDS 
WITH VASICEK

Now that we know how to compute the price of a discount bond as shown in the
previous section, we can price bond options and other interest rate derivatives us-
ing the Vasicek model. Suppose we want to price a bond option on a zero-coupon
bond today at time t. The option expires at time T and pays off max(P(T, T*) – X, 0)
where T*, T* ≥ T is the maturity date of the bond such that P(T*, T*) = 1, and X is
the strike price of the bond option. From (10.25) we know the price of the (Euro-
pean call) bond option is:
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To calculate this expectation, we will use a change of numeraire. Instead of choos-
ing dollars as the numeraire, we will choose a zero-coupon bond P(t, T) as the new
numeraire. Thus, we denominate all other assets in the units of the bond rather
than in dollars. We call the corresponding probability measure the T-maturity for-
ward risk-neutral measure and denote it by QT. We denote the expectation with re-
spect to QT by ET

t [.], that is, the expectation at time T conditional on time t.
We will show how to compute the domestic T-maturity forward risk-neutral

measure. Suppose at time t we want to value some domestic cash flow C(T) that
will occur at time T in the domestic economy. Suppose further that this cash flow is
contingent on the state of the economy at time T only (and is independent of the
path of the economy from t to T). The domestic risk-neutral pricing formula gives
the value of this cash flow at time t as:

(10.59)

Note that the discount factor is stochastic. The expectation can be calculated by
changing to the domestic T-maturity forward risk-neutral measure. We choose the
domestic zero-coupon bond P(t, T) as the new numeraire, and consider prices of all
other securities in this numeraire. Consider the forward bond price:

(10.60)

From Ito’s lemma applied to the ratio of two Ito processes X(t) > 0 and Y(t) > 0,
Ito’s division rule (see Appendix B), the forward price follows the process

where σP is the Vasicek volatility of the bond option (10.52). By Girsanov’s theo-
rem, there exists an equivalent measure such that the process

dzT (t) = dz(t) – σP(t, T)dt

or

(10.61)

is a Brownian motion under this measure. Note that λ(t) = σP(t, T) is the market
price of risk. This measure is called the domestic T-maturity risk-neutral measure.

z t z t u t duT
P

t

( ) ( ) ( , )= − ∫ σ
0

dF t T S
F t T S

t S t T t T dt t S t T dz tS P P P P
( ; , )
( ; , )

( ( , ) ( , )) ( , ) ( ( , ) ( , )) ( )     = − − + −σ σ σ σ σ

F t T S
P t S
P t T

( ; , )
( , )
( , )

=

C t E r u du C Tt
Q

t

T

( ) exp ( ) ( )= −
























∫

10.7 Pricing European Options on Zero-Coupon Bonds with Vasicek 421



Under this measure, the forward bond price is a martingale; that is, the drift 
is zero:

(10.62)

The expectation under this measure (with respect to the P(t, T) numeraire) will be
denoted by ET

t [.]. By Girsanov’s theorem, for all Ito processes X(t) the expectations
under the two measures are related by the formula:

ET
t [X(T)] = Et

Q[ξ(T)X(T)], for all t ≤ T (10.63)

where the Radon-Nikodym derivative

(10.64)

solves the SDE

and noting that

(10.65)

so that

which is an integrated version of the SDE for P(t, T). Substituting (10.64) into
(10.63) yields the change of numeraire formula:
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We can now rewrite the domestic risk-neutral pricing formula in (10.59) in terms of
the T-maturity forward risk-neutral expectation:

C(t) = P(t, T)ET
t [C(T)] (10.67)

Thus, under the forward measure the stochastic discount factor and the future cash
flow are decoupled (separable). Since the cash flow depends only on the state of the
economy at time T, the preceding expectation can be calculated if one knows the
joint distribution of the state variables in the economy at time T conditional on
time t. In particular, if the model is Gaussian, the state variables at time T will have
a joint normal distribution and the expectation can be calculated in closed form.

The relationship between the two domestic forward measures of different ma-
turities T and S, T ≤ S on the interval [0, S] is

dzT(t) = dzS(t) – (σP(t, T ) – σp(t, S))dt (10.68)

Returning to our bond pricing formula, we have

C(t) = P(t, T)ET
t [max(F(t; T, S) – X, 0)] (10.69)

where the expectation is with respect to the forward bond price process:

The forward bond price is a martingale and its instantaneous volatility is determin-
istic. Thus, the expectation is given by the Black-Scholes formula:

C(t) = P(t, T)[F(t; T, S)N(d+) – XN(d–)] (10.70)

where F(t; T, S) is the forward bond price given in (10.60),

and σP(t; T, S) is the standard deviation of the normal distribution of the logarithm
of the forward bond price F(T; T, S) at time T, given the information at time t:

(10.71)
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Finally, substituting the expression for the forward bond price (10.60) into 
the bond pricing formula (10.70), gives the final result for a European call bond
option:

c(t, T, S) = P(t, S)N(d+) – XP(t, T)N(d–) (10.72)

where

(10.73)

and

(10.74)

For a European put bond option, we get:

p(t, T, S) = XP(t, T)N(–d–) – P(t, S)N(–d+) (10.75)

In the case of no mean reversion (a = 0), the formula for volatility (10.74) reduces
to that of a Merton-Ho-Lee model:3

The instantaneous bond price volatility in the Merton-Ho-Lee model is

σP(t, T) = σ(T – t)

It turns out that the bond option pricing formula in (10.72) is actually Black’s
1976 formula where the volatility of the bond price is given by (10.74), namely,
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3The Merton-Ho-Lee model has the short rate follow the process dr = µ(t)dt + σ(t)dz. The
model does not incorporate mean reversion. Short rates can go to plus/minus infinity. More-
over, interest rates in this model can get negative, creating arbitrage opportunities. Because
of these two drawbacks, the models are not used in practice.



where σ and a are the volatility and the mean reversion rate of the Vasicek short
rate process. Black’s 1976 formula can be used to price bond options, caps, floors,
swaps, captions, floortions, and some exotic interest rate derivatives. We will price
these fixed-income instruments in Chapter 11 with various models and with Black’s
model in section 10.7.

10.8 HULL-WHITE EXTENDED VASICEK MODEL

We can extend the previous Vasicek results for P(r, t, T) and f(r, t, T) to the case of
a time-dependent long-run rate r–(t) (the Hull-White model). In the Hull-White ex-
tended Vasicek model, short rates evolve according to the following process:

dr(t) = a(r–(t) – r(t))dt + σdz(t) (10.76)

To price bonds, we can take advantage of the Gaussian distribution of r(T) by
considering

the average rate over the period [t, T], where the short rate is, by integrating
(10.76),

(10.77)

where

(10.78)

This is due to the fact that (as we will show later in the section)

r t f t t
a

f t t
t a

e at( ) ( , )
( , )

( )= + + − −
0

0
2

2
21

2
1

∂
∂

σ

α σ
( ) ( , ) ( )t f t t

a
e at= + − −

0

2

2
2

2
1

r t r s e a e r u du e dW u

r s e t s e e dW u

a t s a t u

s

t
a t u

s

t

a t s a t s a t u

s

t

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

= + +

= + − +

− − − − − −

− − − − − −

∫ ∫

∫

σ

α α σ

I t T r u du
t

T

( , ) ( )= ∫

10.8 Hull-White Extended Vasicek Model 425



We can also write the short rate in terms of the subordinated time-changed
Wiener process, for t ≤ u.

(10.79)

The mean m at time t is now:

(10.80)

(10.80)

and the variance s2 remains the same as (10.48), namely:

Thus, the bond price is

where

Now, the forward curve is given by
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Now suppose t = t0 is today’s date. At this time (today), we know the current for-
ward curve f (t0, T ) since it is observable in the market. Thus, we have a relation-
ship between the long-run rate function r–(u) and today’s forward curve:

(10.81)

This equation can be solved with respect to the function r–(u):

(10.82)

where

is the initial forward curve known from market data. Indeed, if we substitute
this solution for r– into the equation for the forward curve (10.78), we get:

Recall from (10.11) that f(t0, t0) = r0, so that we get f(t0, T) = f(t0, T). Thus the Hull-
White extended Vasicek process

dr = a(–r(t) – r)dt + σdz

is consistent with the initial forward curve (calibrated to the forward curve) if the
function –r(t) is selected as follows:

where f(t0, t) is the known (observable in the market) forward curve at time t0.

r t f t t
a

f t t
t a

e a t t( ) ( , )
( , )

( )( )= + + − − −
0

0
2

2
21

2
1 0

∂
∂

σ

f t T e r a e f t s
a

f t s
s a

e ds

a
e

e r a
s

a T t a T s

t

T
a s t

a T t

a T t

( , ) ( ( , )
( , )

( ))

( )

(

( ) ( ) ( )

( )

( )

0 0 0
0

2

2
2

2

2
2

0

0

0

0

0

0

1

2
1

2
1

= + + + −

− −

= +

− − − − − −

− −

− −

∫ ∂
∂

σ

σ

∂
∂

ee f t s ds
a

e e ds

a
e

e r f t T e f t t

a T s

t

T
a T s

t

T
a T s t

a T t

a T t a T t

− − − − − + −

− −

− − − −

∫ ∫+ −

− −

= + −

( ) ( ) ( )

( )

( ) ( )

( , )) ) ( )

( )

( , ) ( , )

0

0

0

0 0

0

2

2
2

2

2
2

0 0 0 0

2

2
1

σ

σ

f t t
T

P t T( , ) ln ( , )0 market= −∂
∂

r t f t t
a

f t t
t a

e a t t( ) ( , )
( , )

( )( )= + + − − −
0

0
2

2
21

2
1 0

∂
∂

σ

f t T e r a e r s ds
a

ea T t a T s

t

T
a T t( , ) ( ) ( )( ) ( ) ( )

0 0

2

2
20 0

2
1= + − −− − − − − −∫ σ

10.8 Hull-White Extended Vasicek Model 427



Finally, for the bond prices in the Hull-White extended Vasicek model we have:

(10.83)

where

(10.84)

(10.84)

and P(t0, T) and P(t0, t0) are initial zero-coupon bond prices at time t0, the time
when the model was calibrated to fit the initial term structure.

We could have written the Hull-White extended Vasicek model as:

dr(t) = a(t)(–r(t) – r(t))dt + σ(t)dz (10.85)

where a, r– and σ are time-dependent. Such a model can be calibrated to the term
structure of interest rates and to the term structure of spot- or forward-rate volatil-
ities. However, if an exact calibration to the current yield curve is a desired feature
of the model, then also making an exact fitting to a volatility term structure can
lead to problems, and caution must be exercised. There are two reasons for this. As
Brigo and Mercurio state, “First, not all the volatilities that are quoted in the mar-
ket are significant: some market sectors are less liquid, with the associated quotes
that may be neither informative nor reliable. Second, the future volatility structures
implied by [equation (10.83)] are likely to be unrealistic in that they do not con-
form to typical market shapes, as was remarked by Hull and White (1995) them-
selves.”4 Consequently, many practitioners use the version of the model analyzed
by Hull and White (1994) where a and σ are constant as in (10.76).

Notice that if we define the Ornstein-Uhlenbeck process x by
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so that we can write r(t) = x(t) + α(t); to see this, just compare (10.77) with
(10.87) for each t where α(t) is in (10.78). We will make use of (10.86) in the
Hull-White and lognormal Hull-White tree building procedures in the next
chapter.

Finally, it is important to note that while the Gaussian nature of the short rate
gives analytical solutions to bond prices, bond options, and long-term rates, there is
still the drawback that rates can become negative in the model. However, the prob-
ability that this occurs is very small.

10.9 EUROPEAN OPTIONS ON COUPON-BEARING BONDS

Jamshidian developed a technique to value derivatives on coupon-bearing bonds.
Jamshidian showed that options on coupon-bearing bonds can be decomposed into
a portfolio of options on individual discount bonds decomposed from the coupon-
bearing bond.

A coupon-bearing bond

pays N coupons ci on each coupon-payment date Ti, i = 1, 2, . . . , N. On the last
coupon-payment date TN (i.e., the maturity date of the bond), the bondholder re-
ceives cN as well as the principal amount of the bond. A European call option on a
coupon-bearing bond pays off:

at the option maturity T. This payoff can be viewed as a call option on a portfolio
of zero-coupon bonds that can be decomposed into a sum of payoffs from calls on
the individual bonds. Jamshidian formulated the following strike decomposition to
value the option. First, determine r* such that the coupon-bearing bond price is
equal to the strike (see Appendix D for implementation from QuantLib):
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This equation can be solved numerically by the Newton-Raphson method when
bond prices are known functions of the short rate as in the Vasicek model. Second,
calculate individual strikes Xi:

P(r*, T, Ti) = Xi

Clearly, the following relation must hold:

Third, note that all zero-coupon bond prices are strictly decreasing functions of the
short rate (see 10.28). Therefore,

and for each individual zero bond,

Since

the payoffs from an option on the coupon-bearing bond and a portfolio of options
on the zero-coupon bonds are equivalent:
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and we can value options on coupon-bearing bonds as portfolios of options on
zeros:

where

It should be noted that swaptions can be regarded as options on coupon-bearing
bonds. Thus, the Jamshidian strike decomposition allows us to price swaptions in
the Vasicek model analytically.

10.10 COX-INGERSOLL-ROSS MODEL

The Cox-Ingersoll-Ross (CIR) model (1985) is a general equilibrium model with a
“square-root” term in the diffusion coefficient of a Vasicek short-rate process mod-
eled under the risk-neutral measure Q:

(10.88)

The model is analytically tractable and because of the square-root diffusion term,
the instantaneous short rate is always positive (unlike the Vasicek model) if the
Feller condition

2a –r > σ2 (10.89)

holds (this ensures the origin cannot be reached).
The process can also be measured under an equivalent martingale measure—

the objective measure Q
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, that is, for historical estimation purposes, by formulating
the model as:
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is the market price of risk under Girsanov’s change of measure where the Radon-
Nikodym derivative is:

The short-rate process in (10.88) follows a noncentral chi-squared distribution.
Denote px(x) as the density function of the random variable X so that

pr(t)(x) = Pχ2(v,λ(t))(x) = c(t)pχ2(v,λ(t))(c(t)x)

where

where the noncentral chi-squared distribution function χ2(·, v, λ) with v degrees of
freedom and noncentrality parameter λ has the density5

where pχ2(v+2i)(z) denotes the density of a (central) chi-squared distribution function
with v + 2i degrees of freedom.6

The mean and variance of r(t) (conditioned) at time s are
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The CIR bond-pricing PDE is:

(10.90)

which admits a solution by separation of variables if P(t, T) = e–(B(t,T)r(t)+A(t,T)) is sub-
stituted into (10.90) We find ODEs for A and B:

or, equivalently,

and

subject to B(T, T) = 0, to ensure that P(T, T) = 1.
The solution is:7

(10.91)
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We can also rewrite the solution (the price at time t of a zero-coupon bond matur-
ing at time T) as:

P(t, T) = A(t, T)e–B(t,T)r(t)

where

and B(t, T) and γ are the same.
We can derive forward rates from the bond price:

where

Thus, the forward rate volatility structure for the CIR model is:

so that the bond price volatility is

Using Ito’s formula, we can derive the bond price dynamics using the CIR
model under the risk-neutral measure Q:
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which can be written as:

by inverting the bond-pricing formula. This can be rewritten as:

Cox, Ingersoll, and Ross (1985a) show that the price at time t of a European
call option that matures at time T, T > t, on a zero-coupon bond maturing at time s,
s > T, is given by:

(10.92)

(10.92)

where

The short-rate dynamics under the T-forward measure QT are:

(10.93)
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From the CIR short-rate dynamics in (10.93), we can derive the implied for-
ward-rate dynamics:

where τ(T, S) is the fraction of time between T and S. By Ito’s formula, it can be
shown that under the forward measure QS, the dynamics of the forward rate are:

which can be rewritten as:

10.11 EXTENDED (TIME-HOMOGENOUS) CIR MODEL

Consider now the CIR model with time-dependent parameters:

(10.94)

To make the origin inaccessible so that rates are always positive, the parameters
must satisfy the Feller condition:
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which must hold for all times t. Consider again a solution for bond prices in the
separated form:

P(r, t, T) = exp(–rB(t, T) – A(t, T))

Substituting this into the extended (time-homogenous) CIR PDE:
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we find ODEs for A and B:

(10.95)

and

(10.96)

subject to B(T, T ) = 0 (to ensure that P(T, T ) = 1). The equation for B (10.95) is a
Riccati differential equation. There is no closed-form solution for time-dependent
coefficients, so it needs to be integrated numerically. If B(t, T ) is solved numerically,
then A(t, T ) is given by the integral

The drift parameter –r(t) can be calibrated to the initial term structure as fol-
lows. We know that the bond price is:

For t = 0, we have:
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In the derivation, we use the facts that B(T, T) = 0 and f(0, 0) = r(0). Equation
(10.97) is an integral Voltera equation for the unknown drift parameter –r(t). It can
be solved numerically.

We can calibrate the extended CIR model to the initial volatility curve. The for-
ward rate volatility in the extended CIR model is:

Suppose at time 0 we want to match a given implied initial forward volatility curve,

We wish to calibrate our model parameters σ(t) and a(t) to produce the desired
β(0, T ).

Jamshidian (1995) showed that the following condition must be satisfied to
properly calibrate the model parameters:

(10.98)

If we assume that a is known (i.e., constant), then this formula provides the expres-
sion for σ(t). If we assume that σ is known (i.e., constant), then a(t) can be found
by solving the ODE. Thus, the CIR model can be calibrated to the initial yield curve
and the initial volatility curve fairly straightforwardly (at least in theory).

10.12 BLACK-DERMAN-TOY SHORT RATE MODEL

The Black-Derman-Toy (BDT) model (1990) is a single-factor Markovian short
rate model that can be calibrated to match the observed term structure of spot in-
terest rates as well as the term structure of spot rate volatilities. The model is a
particular case of the Black-Karasinski model (discussed in the next chapter). The
model is developed algorithmically using a discrete-time binomial tree structure.
A binomial tree for the short rate is constructed so that the observed yield curve
and term structure of spot volatilities, inputs to the model, are calibrated to the
model at each node. In the continuous time limit, the BDT model becomes the
following SDE:
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The BDT model utilizes two independent parameters that are functions of time,
θ(t) and σ(t), that are chosen so that the model is calibrated to the initial term struc-
ture of spot rates and the term structure of spot rate volatilities. Changes in the
short rate are lognormally distributed so that rates can never become negative.
Once θ(t) and σ(t) are chosen, the future short rate volatility is completely deter-
ministic. However, for certain specifications of the volatility function σ(t), rates can
become mean-fleeing instead of mean-reverting. Due to the lognormality of the
short rates, the model is not analytically tractable; that is, neither analytic solutions
for the prices of bonds nor the prices of bond options are available, and pricing can
be computed only with numerical procedures such as trees and simulations.

10.13 BLACK’S MODEL TO PRICE CAPS

In this section, we discuss pricing the important interest rate derivatives of caps and
swaptions with Black’s (1976) model and then discuss how to price them with the
single-factor models.

Consider a floating-rate loan with a principal loan amount N that has the float-
ing interest rate R(ti , ti+1)—that is, three-month London Interbank Offered Rate
(LIBOR)—at n payment dates, ti , i = 1, . . . , n, where 0 = t0 < t1 < . . . < tn and R(ti , ti+1)
is determined at time ti for the next time period τi = ti+1 – ti (i.e., three months). At
time ti+1, the payment made is τNR(ti , ti+1). A borrower who pays the floating rate
to the lender is said to be short a floater, and a lender who receives the floating rate
from the borrower is said to be a long floater. A borrower is exposed to the risk of,
say a rising three-month LIBOR rate in the future. A cap guarantees that the rate
charged on the loan will not be more than the cap rate 

–
R
–

. A long position in a cap
protects a short position in LIBOR against rising rates in the future—the cap holder
receives the difference between LIBOR rate and the cap rate, 

–
R, if the LIBOR rate

goes above R
–
. The payoff from a cap at time ti:

τNmax(R(ti-1, ti) – R
–
, 0) (10.99)

The payoff is similar to that of a call option where 
–
R
–

is the strike price. The option
is written on R(ti–1,ti), the simple interest rate for the period [ti–1, ti] set time ti-1.

Each individual cash flow in the cap is called a caplet. Thus, a cap is a portfolio
of caplets. Each caplet is a call option on the interest rate R(ti–1, ti) at time ti–1, but
paid in arrears at time ti. Caps are normally structured so that there is no payoff at
time t1 since the rate R(t0, t1) is already known at time t0 and there is no uncertainty
to hedge against.

A cap can be viewed as a portfolio of puts on zero-coupon bonds. The payoff at
time ti in the amount of τNmax(R(ti–1, ti) – R

–
, 0) is equivalent to the payoff at time ti–1:

τ
τ

N
R t t

R t t R
i i

t i1
0

1
1+

−
−

−( , )
max( ( , ) , )
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where

is the discount factor for the time interval [ti–1, ti], that is, a zero-coupon bond
P(ti–1, ti) paying $1 at time ti+1 (one-period discount bond):

We can rewrite the caplet payoff as follows:

(10.100)

A caplet can be viewed as a quantity N/P of put options on a one-period zero-
coupon bond P(ti-1, ti) with a strike of

Thus, as mentioned, a cap can be regarded as a portfolio of put options.
Interest rate floors, in contrast to caps, protect holders from drops in floating

rates by placing a lower limit on the interest rate charged on a loan. Thus, the pay-
off in a floor is:

τNmax(R
–

– R(ti–1, ti), 0)

To purchase a cap, a borrower needs to pay the premium for the cap. To reduce
the premium, the borrower can sell a floor. This is analogous to selling an out-of-
the-money (OTM) put to pay for an OTM protective call that protects a short posi-
tion in the underlying asset. The individual payments between [ti–1, ti] are called
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floorlets. A cap (floor) with strike R
_

with payment times t1, . . . , tn is said to be
ATM if and only if:

(10.101)

The cap is said to be ITM if R
–

< R
–

ATM and OTM if R
–

> R
–

ATM, with the converse hold-
ing for a floor.

Caps can be valued with Black’s 1976 model. If we assume the rate R(ti–1, ti) is
lognormally distributed with some known (estimated) standard deviation of
lnR(ti–1, ti) equal to

where σ is the common volatility parameter that is retrieved from market quotes at
time t, then we can use Black’s formula for a caplet Ci that pays at time ti :

Ci = τiNP(t, ti)(f(t; ti–1, ti)Φ(d+) – R
_
Φ(d–)) (10.102)

where P(t, ti) = e–R(t,t
i
)(t–t

i
) is the one-period discount bond, f(t; ti–1,ti) is the forward

LIBOR rate for the period, Φ(·) is the cumulative normal distribution, and

Note that in (10.102), both R
_

and f(t; ti-1, ti) are expressed with a compounding fre-
quency of τi. The forward rate can be expressed through bond prices:

so that

(10.103)

Floorlets are valued similarly:

Pi = τiNP(t, ti)(R
_
Φ(–d–) – f(t; ti–1, ti)Φ(–d+)) (10.104)
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The volatilities used are forward rate volatilities, the volatility of the future spot
LIBOR rate at time ti–1 covering the period [ti–1, ti] conditional on the information
at time t. This volatility is time-dependent and exhibits a pronounced hump effect,
especially in the cap markets.

Note that we assumed that the forward LIBOR rate was lognormally distrib-
uted. This assumption is consistent with the lognormal LIBOR Brace, Gatarek, and
Musiela (BGM) (market) model of the term structure of interest rates. However, it
is possible to value caplets and floorlets as options on zero-coupon bonds and as-
sume that the bond price is lognormal. This assumption is consistent with the
Gaussian Heath-Jarrow-Morton (HJM) (Hull-White extended Vasicek) model of
the term structure of interest rates.

An alternative way to price caplets and caps is to use no-arbitrage arguments
following the results of Harrison and Kreps (1979). In any market where there is
no arbitrage, for any given numeraire security whose price is g(t) there exists a mea-
sure for which S(t)/g(t) is a martingale for all security prices S(t). Denote this mea-
sure M{g(t)}. If we let the discount bond with maturity ti be the numeraire—that is,
g(t) = P(t, ti)—then:

is a martingale for all security prices S(t). Thus,

(10.105)

where Ei denotes the expectation with respect to the measure M{P(t, ti+)}. Set S(t) =
P(t, ti–1) – P(t, ti) in (10.101). We then get

fi(0; ti–1, ti) = Ei[R(ti–1, ti)] (10.106)

where fi(t; ti, ti+1) is the forward rate for the period (ti , ti+1) at time t, and R(ti–1, ti) is
the future spot rate for (ti , ti+1). Thus, equation (10.106) shows that, under the as-
sumed measure, the forward rate at time 0 is equal to the expected future spot rate
for (ti , ti+1). If we set S(t) equal to the price of the (i – 1)th caplet and note that P(ti , ti)
= 1, then we see from (10.105) that:

S(0) = P(0, ti)E
i[S(ti)] (10.107)

or

S(0) = P(0, ti)τNEi[max(R(ti–1, ti) – R
_
, 0)]
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Assuming R(ti–1, ti) is lognormal, with a standard deviation of ln(R(ti–1, ti)) equal to

this becomes:

S(0) = τNP(0, ti)(E
i(R(ti–1, ti)Φ(d1) – R

_
Φ(d2)) (10.108)

where

and Φ(·) is the cumulative normal distribution. Substituting (10.106) into (10.108)
gives the standard market price for a caplet:

S(0) = τNP(0, ti)(f(0; ti–1, ti)Φ(d1) – R
_
Φ(d2))

In general for any t > 0, we get the price of the (i – 1)th caplet at time t:

S(t) = τNP(t, ti)(f(t; ti–1, ti)Φ(d1) – R
_
Φ(d2))

which is consistent with (10.102). Similarly, for the price of the (i – 1)th floorlet:

S(t) = τNP(t, ti)(R
_
Φ(–d2) – f(t; ti–1, ti)Φ(–d1))

which is consistent with (10.104).

10.14 BLACK’S MODEL TO PRICE SWAPTIONS

Swaptions give the holder the right to enter a swap at a certain time in the future.
An interest rate swap is an agreement to exchange a fixed-rate bond (fixed-rate in-
terest payment) for a floating-rate bond (floating payments, i.e., LIBOR). If a swap-
tion gives the holder the right to pay fixed and receiving floating, it is a put option
on the fixed-rate bond and is known as a payer swaption. If a swaption gives the
holder the right to pay floating and receive fixed, then it is a call option on the
fixed-rate bond and is known as a receiver swaption. We can value European
swaptions with Black’s 1976 model. Consider a swaption with an inception at a
swaption expiration (the time to enter into the swap if exercised), swap reset dates

d
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T0, T1, . . . , Tn–1, and corresponding payment dates T1, T2, . . . , Tn, where Tn is the
swap maturity date.

Swaptions give holders the right to enter into a swap at the fixed swap rate R
_
,

given in (10.102) at time t0, allowing the holder to lock in the future swap rate to-
day. The swap rate is the fixed rate, which when exchanged for floating in a for-
ward start swap causes the value of the swap to equal zero. At the swaption
maturity, the current swap rate is R(T0). This swap rate may be less advantageous
than today’s swap rate so the swaption protects the holder from rising rates. The
cost for this protection is the premium paid for the swaption. At time t0, the value
of the swap with swap rate R

_
, assuming a payer swap, is:

V(T0) = Bfloater – Bfixed

where Bfixed is a fixed-rate bond that can be expressed as:

This is simply the sum of the discounted interest payments plus the discounted prin-
cipal repaid at maturity. Denote

This is the present value at time t of an annuity paying $1 at time Ti and τi–1 = ti – ti–1.
Then the fixed bond price can be written:

Bfixed = τNR
_

A(T0) + NP(T0, Tn)

The floating-rate bond is worth par at time T0:

Bfloater(T0) = N(1 + τR(T0, T1))P(T0, T1) = L

The present value of the swap at time T0 is given by:

V(T0) = N(1 – τR
_

A(T0) – P(T0, Tn)) = L(1 – B(T0))

where B(T0) is a coupon-bearing bond:

B(T0) = N(τR
_

A(T0) + P(T0, Tn))

Payoff from a payer’s swaption at time T0, Spayer(T0), is:

Spayer(T0) = max(V(T0), 0) = Nmax(1 – B(T0), 0)
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Thus, a payer’s swaption is a put option on the coupon-bearing bond. The payoff
from the receiver’s swaption, Sreceiver(T0), at time T0 is:

Sreceiver(T0) = max(–V(T0), 0) = Nmax(B(T0) – 1, 0)

Thus, a receiver’s swaption is a call option on the coupon-bearing bond. There is a
fundamental relationship between a receiver and payer swaption known as forward
start swap parity:

Forward start swap parity = Sreceiver(T0) – Spayer(T0)

If we are long a receiver’s swaption and short a payer’s swaption (both with the
same swap rates R

_
), we have:

Nmax(B(T0) – 1, 0) – Nmax(1 – B(T0), 0) = N(B(T0) – 1)

The expression on the right-hand side is nothing but the present value of the swap
starting at T0. Discounting back to t0, we see that the payer’s and receiver’s swap-
tions are just two halves of the forward start swap.

We can value a swaption using Black’s 1976 model. The current swap rate at
T0, R(T0), is a coupon rate that makes the fixed bond worth par (par yield bond):

We substitute the following identity:

τR(T0)A(T0) + P(T0, Tn) = 1

into the payer’s swaption payoff:

Spayer(T0) = Nmax(1 – τR
_
A(T0) – P(T0, Tn), 0)

= τNA(T0)max(R(T0) – R
_
, 0)

Thus, a payer’s swaption is a call option on the swap rate at time T0.
Let S(t0; T0, Tn) = S0,n(t0) be a forward swap rate for a forward-start swap (t0 is

the inception of the forward-start swap, T0 is the inception of the underlying swap,
and Tn is the termination date of the swap). We have:

(10.109)S t
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the forward swap rate for a swap starting at T0 and lasting through Tn as seen at
time t0. Moreover, S0,n(t0) = f(T0; T0, Tn). In Black’s model, we assume the swap rate
R(T0) is lognormally distributed with the mean equal to the current forward swap
rate S0,n(t0), and the volatility of the log future spot swap rate, ln R(T0), conditional
on information at time t0 is equal to σ(t0; T0, Tn). We set

where σ0,n is the implied volatility parameter that is retrieved from market quotes at
time T0 for a swap that matures at Tn. By Black’s formula (a Black-Scholes-like for-
mula), we get the formula for a payer’s swaption:

(10.110)

and the formula for a receiver’s swaption:

(10.111)

where

and Φ(·) is the standard cumulative normal distribution.8

We can also derive the price of European swaptions using a no-arbitrage argu-
ment similar to the one used to price caps. Let
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be the numeraire. Under the measure M {A(t)},

is a martingale for all security prices f(t). Hence:

(10.112)

where EA denotes the expectation under the measure M{A(t)}. Let f(t) = P(t, T0) –
P(t, Tn) in (10.112). The we get:

S0,n (0) = EA [S0,n(Tn)] = EA [R(Tn)] (10.113)

Thus, the forward swap rate equals the expected future swap rate under the mea-
sure. We set f(t) equal to the price of the swaption. From (10.112), we get:

Substituting the payoff of a swaption for f(Tn) we get:

f(0) = NA(0)EA [max(R(Tn) – R
–
, 0)]

Since we assume that R(Tn) is lognormally distributed with a standard deviation of
ln(R(Tn)) equal to

this becomes:

f(0) = NA(0)[EA(R(Tn))Φ(d+) – R
_
Φ(d–)] (10.114)

Substituting (10.113) into (10.114) gives the standard Black’s market model price
for pricing the swaption:

f(0) = NA(0)[S0,n(0)Φ(d+) – R
_
Φ(d–)]
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where

It should be noted that in pricing formulas for caps, floors, and swaptions, the
fraction of time between each payment can vary by letting τ = τi, i = 1, . . . , n,
though in most cases, τi is three months.9 Moreover, the volatility can be made to
vary with payment time by letting

LS
10.15 PRICING CAPS, CAPLETS, AND SWAPTIONS WITH 

SHORT RATE MODELS

All the single short rate models discussed in this chapter can be used to price bond
options, caps, floors, caplets, floorlets, swaptions, and other interest rate products.
The main unknown in all of the models is what volatility to use. This issue is dealt
with by calibrating the models to market option prices so that we can determine the
implied volatility to use in the model. Suppose that we have a set of M pure dis-
count bond put options, the market price of which we denote marketi = 1, . . . , M.
One way to determine the volatility via calibration is to minimize the following
function with respect to the parameter σ:

(10.115)

where modeli(σ) is the model price of the ith option, obtained by using the Black-
Scholes formulas for pricing T-maturity European put options on S-maturity pure
discount bonds given in equation (10.75) since we know from section 10.11 that
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interest rate caps can be expressed as European put options on pure discount
bonds. Thus, if we know the price of caps, we can find the implied volatility para-
meter by using equation (10.75).

The optimization, which can be done using a Newton-Raphson type proce-
dure, involves searching over all possible values of the parameter σ. The value of
σ that minimizes the function is the volatility that best calibrates the model to the
market for the choice of function to be minimized. We could use (10.115) to cali-
brate a Ho and Lee model since only the volatility needs to be determined—the
volatility is not a function of any other parameters. In contrast to the Ho and Lee
model, the Vasicek (and Hull-White extended Vasicek) spot rate volatility equa-
tion contains two parameters, a and σ, so that in order to calibrate the model to
market prices we need to find the best fit for both a and σ simultaneously to mar-
ket data. If we have M individual European pure discount bond put prices, we
can minimize

(10.116)

where modeli (a, σ) is the option value derived from the price of a European put op-
tion from equation (10.75) with the volatility given in (10.71).

As an example, suppose we want to calibrate the Hull-White model to a single
caplet. Assume that the short parameters are a = 0.10 and σ = 0.012, and that the
term structures (with continuous compounding), cap volatilities, and spot rates are
given in Table 10.1. Furthermore, suppose that the cap rate is R

_
= 7.00 percent,

the principal is normalized to N = $1, and the face value (FV) of the bond is N(1 +
R
_
τ) = 1(1 + 0.07 (0.25)) = 1.0175. Suppose we want to calibrate the Hull-White

model to a caplet covering the period between the first and second payment dates
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TABLE 10.1 Hull-White Model to a Single Caplet

Maturity in Years Spot Rate Cap Volatility

0.25 0.0625 0.1625
0.50 0.0654 0.1725
0.75 0.0690 0.1725
1.00 0.0710 0.1750
1.25 0.0731 0.1795
1.50 0.0749 0.1795
1.75 0.0757 0.1800
2.00 0.0768 0.1800
2.25 0.0771 0.1750
2.50 0.0774 0.1725



(i.e., 0.50 – 0.25 = 0.25). Since the market quotes are cap volatilities and not cash
prices, it is necessary to compute the cash prices from the quotes’ volatilities:

P(t, T) = P(0, 0.25) = e–0.0625(0.25) = 0.9845

P(t, S) = FV* P(0, 0.50) = 1.0175e–0.0654(0.50) = 0.9848

p(t, T, S) = 1(0.9845)N(–d2) – (0.9848)N(–d1)

where

so that with a = 0.10, and σ = 0.012, σp = 0.0015, which implies a caplet value of
0.00045. The other caplets are valued similarly. Using (10.116), we find the a and σ
best fit is a = –0.4823 and σ = 0.0076. The following is the code that calibrates the
Hull-White model to market quotes:

/**********************************************************************************
priceCapHW: computes the price of caplets using the Hull-White model by calibrating

to market cash prices
[in] : vector<double> mats : vector of caplet maturities

vector<double> vols : vector of market quote caplet volatilities
vector<double> rates : vector of short rates
vector<double> Rcap : cap rate
double FV : face value of loan
double volatility : length between payment time
double tenor : length of time between payment dates
double L : principal amount of loan

[out]: vector<double> : stores volatility and alpha parameters
**********************************************************************************/
vector<double> HullWhiteModel::priceCapHW(vector<double> mats, vector<double> vols,

vector<double> rates, double a, double FV, double volatility, double Rcap, 
double tenor, double L)

{
int i;
int cnt = 0; // count number of Newton-Raphson iterations
double d1, d2; // evaluation arguments of normal 

// distribution
double K = L; // store principal
double volP = 0.0; // bond volatility
double a1 = 0.0; // initial alpha value
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double tmp = 0.0; // temp variable
double totalsum = 0.0; // total sum
double sum, sum1, sum2 = 0.0; // stores sums used in Newton-Raphson 

// optimization
double tau, tau1, tau2, tau3 = 0.0; // stores tenors between caplet maturity 

// (reset) dates
double error = 0.0; // calibration error of volatility parameter
double error1 = 0.0; // calibration error of alpha parameter
double volSum2 = 0.0; // sum of volatility squared
double vol1, vol2 = 0.0; // volatility parameters to be calibrated
double d1prime, d2prime = 0.0; // derivatives storage variables
double d3prime, d4prime = 0.0; // more derivatives storage variables
double volPrime = 0.0, // derivative with respect to volatility
double aprime = 0.0; // stores part of aPrime calculation
double aPrime = 0.0; // derivative with respect to alpha
const double epsilon = 0.001; // error tolerance level
const int maxIterations = 20; // maximum number of iterations allowed
vector<double> P; // vector of discount bond prices
vector<double> caplet; // vector of caplets
vector<double> model; // vector of Hull White model prices
vector<double> market; // vector of cash market prices
vector<double> params; // stores volatility and alpha parameters
int len = vols.size(); // size of volatility vector

// compute pure discount bond prices
for (i = 0; i < len; i++)
{

tmp = exp(-mats[i]*rates[i]);
P.push_back(tmp);

}
// compute cash prices from market quotes (cap volatilities)
BlackModel bm;
market = bm.priceBlackCap(vols,P,mats,Rcap,L,tenor);
for (i = 0; i < len-1; i++)
{

volP = sqrt(((volatility*volatility)/(2*a*a*a))*(1 - exp(-2*mats[i]*a))*(1 -
exp(-a*(mats[i+1]-mats[i])))*(1- exp(-a*(mats[i+1]-mats[i]))));

d1 = log((FV*P[i+1])/(K*P[i]))/volP + volP/2;
d2 = d1 - volP;
tmp = K*P[i]*util.normalCalc(-d2) - FV*P[i+1]*util.normalCalc(-d1);
model.push_back(tmp);

}

// compute sum of squared errors between model and market prices
sum = 0;
for (i = 0; i < len-1; i++)
{

sum = sum + ((model[i] - market[i])/market[i])*((model[i] -
market[i])/market[i]);

}

// initialize numerical values
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totalsum = sum; // assign sum of squared errors
vol1 = volatility; // assign initial volatility
a1 = a; // assign initial alpha

// two dimensional Newton-Raphson minimization routine
do
{

// initialize sums for each iteration
sum1 = 0;
sum2 = 0;
volSum2 = 0;

for (i = 0; i < len-2; i++)
{

tau = mats[i+1] - mats[i];
tau1 = mats[i];
tau2 = mats[i+1];
tau3 = mats[i+1] + mats[i];
volP = sqrt(((vol1*vol1)/(2*a1*a1*a1))*(1 - exp(-2*tau1*a1))*(1 - exp(-

a1*(tau)))*(1 - exp(-a1*(tau))));

// compute d1 and d2
d1 = log((FV*P[i+1])/(K*P[i]))/volP + volP/2;
d2 = d1 - volP;
aprime = -3*pow(a1,-4);

// compute volatility derivative
volPrime = 0.5*(pow(volP,-0.5))*(2*vol1/(2*a1*a1*a1))*((1 - exp(-

2*tau1*a1))*(1 - exp(-a1*(tau)))*(1 - exp(-a1*(tau))));

// compute alpha derivative
aPrime = 0.5*pow(volP,-0.5)*((0.5*vol1*vol1*pow(a1,-3)*(2*tau*exp(-a1*tau) –

2*tau*exp(-2*a1*tau) + 2*tau1*exp(-2*tau1*a1) - 2*tau3*exp(-a1*tau3) +
2*tau2*exp(-2*a*tau2)) + (0.5*aprime*vol1*vol1)*(1 - 2*exp(-a1*tau) +
exp(-2*a1*tau) - exp(-2*a1*tau1) + 2*exp(-a1*tau3) - exp(-2*a1*tau2))));

d1prime = -((log(FV*P[i+1]/K*P[i]))/(volP*volP))*volPrime + 0.5*volPrime;
d2prime = d1prime - volPrime;
d3prime = -((log(FV*P[i+1]/K*P[i]))/(volP*volP))*aPrime + 0.5*aPrime;
d4prime = d3prime - aPrime;
sum1 = sum1 + (K*P[i]*util.normalCalc(-d2) - FV*P[i+1]*util.normalCalc(-d1) –

market[i])/market[i];
volSum2 = volSum2 + (K*P[i]*util.normalCalcPrime(-d2)*(-d2prime) –

FV*P[i+1]*util.normalCalcPrime(-d1)*(-d1prime))/market[i];
sum2 = sum2 + (K*P[i]*util.normalCalcPrime(-d2)*(-d4prime) –

FV*P[i+1]*util.normalCalcPrime(-d1)*(-d3prime))/market[i];
}
vol2 = vol1 - sum1/volSum2;
error = abs(vol2 - vol1);
vol1 = vol2;
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a2 = a1 - sum1/-sum2;
error1 = abs(a2 - a1);
a1 = a2;

cnt++; // increment number of iterations in loop
if (cnt > maxIterations)

break;
}
while ((error > epsilon) || (error1 > epsilon));

params.push_back(alpha);
params.push_back(vol);
if (cnt < 20)
{

std::cout << “Calibrated alpha = ” << a1 << endl;
std::cout << “Calibrated vol = ” << vo11 << endl;

}
else
{

std::cout << “No Convergence for Calibration. Try different values.” << endl;
}

return params;
}

/**********************************************************************************
priceBlackCap : computes the price of caplets using BlacksFormula
[in]: vector<double> capVol : vector of cap volatilities

vector<double> PDB : price of pure discount bonds
vector<double> maturity : vector of caplet maturities (payment times)
vector<double> Rcap : cap rate
double L : principal amount of loan
double tenor : length of time between payment times (reset dates)

[out]: vector<double> : caplets
*********************************************************************************/
vector<double> RateModel::priceBlackCap(vector<double> capVol, vector<double> PDB,

vector<double> maturity, double Rcap, double L, double tenor)
{

int i;
vector<double> f; // forward rates
vector<double> R; // yield price
vector<double> capV; // stores caplet volatilities
vector<double> P; // stores pure bond prices
vector<double> t; // payment dates
vector<double>::iterator iter; // vector iterator
vector<double> caplet; // stores caplets
double faceValue = 0.0; // bond face value
double tmp = 0.0; // temp variable

// compute face value
faceValue = L*(1 + Rcap*tenor);

10.15 Pricing Caps, Caplets, and Swaptions with Short Rate Models 453



// store cap volatilities
for (iter = capVol.begin(); iter != capVol.end(); iter++)
{

tmp = *iter;
capV.push_back(tmp);

}

// compute pure discount bond prices
for (iter = PDB.begin(); iter != PDB.end(); iter++)
{

tmp = *iter;
P.push_back(tmp);

}

// store payment dates
for (iter = maturity.begin(); iter != maturity.end(); iter++)
{

tmp = *iter;
t.push_back(tmp);

}

// compute forward rates
for (i = 0; i < capVol.size(); i++)
{

tmp = -(1/t[i])*(log(P[i]));
R.push_back(tmp);

tmp = -(1/tenor)*log(P[i+1]/P[i]);
f.push_back(tmp);

}

// compute caplets with Blacks Formula
for (i = 0; i < capVol.size()-1; i++)
{

tmp = BlacksFormula(f[i],P[i],faceValue,Rcap,capV[i],t[i],tenor);
caplet.push_back(tmp);

}
return caplet;

}

/*********************************************************************************
BlacksFormula : computes the price of cap using Black’s 1976 model
[in]:   double f : forward rate

double P : price of pure discount bond
double L : principal amount of bond
double Rcap : cap rate
double vol : market volatility
double tau : length between payment times
double dtau : fixed tenor between reset times

[out] : double : price of cap
********************************************************************************/
double BlackModel::BlacksFormula(double f, double P, double L, double Rcap, double

vol, double tau, double dtau)
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{
double d1 = (log(f) / Rcap) + ((vol*vol)/2)*tau)/(vol*sqrt(tau));
double d2 = d1 - vol*sqrt(tau);

return P*dtau*L*(f*util.normalCalc(d1) - Rcap*util.normalCalc(d2));
}

10.16 VALUATION OF SWAPS

Swaps are interest rate derivatives contracts that obligate the holder to receive
fixed-rate loan payments and pay floating-rate loan payments (or vice versa) at
specified payment dates until the maturity date of the swap. Swaps enable financial
institutions to synthetically alter the composition of their liabilities by transforming
fixed-rate liabilities into floating-rate liabilities (or vice versa). A financial institu-
tion may do this to hedge a loan (or bond) exposure or to use a comparative ad-
vantage it has in borrowing in, say, the fixed-rate market when it in fact wants to
borrow at floating-rate LIBOR. Consider a financial institution that has made a
$10 million three-year loan to a company at a 5.58 percent fixed rate paid semian-
nually. The financial institution thinks that LIBOR rates will rise over the term of
the loan and decides it would rather have floating-rate exposure than fixed-rate ex-
posure. It decides to enter a three-year swap with a swap dealer (i.e., another finan-
cial institution) to pay 6.51 percent fixed and receive LIBOR + 1.5 percent on a
semiannual basis. Effectively, by entering such a swap as shown in Figure 10.7, it is
loaning at LIBOR + 0.87 percent (LIBOR + 1.5 percent + 5.58 percent – 6.51 per-
cent = LIBOR + 0.87 percent) instead of at 5.5 percent. The financial institution
will earn LIBOR + 0.87 percent if the company and swap dealer do not default on
their payments.

The fixed rate that is paid in the swap is called the swap rate. Day count con-
ventions do affect payments in the swap. Since six-month LIBOR is a money-
market rate, it is quoted on an actual/360 basis with semiannual compounding.
Swap rates are often quoted from the U.S. dollar swap curve, though Treasury note
rates can be used. However, Treasury note rates are quoted on an actual/actual (in
period) basis with semiannual compounding, so to make a six-month LIBOR rate
comparable to a Treasury rate in a 365-day year, the Treasury note must be multi-
plied by 360/365. The swap payments are netted at each payment date before ex-
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change of payment occurs and the principals cancel and are never exchanged. The
LIBOR rate used in the payment calculation is based on the quote on the last pay-
ment date.

Let N denote the notional value of the swap, C(ti) the payment amount at time
ti, L(ti, ti+1) the LIBOR rate between ti and ti+1 quoted at ti with compounding fre-
quency δ = n/360 where n is the actual number of days, R the fixed swap rate with
compounding frequency δ = n/365, and S(t) the swap value. The fixed-rate payment
at time ti is Cfix(ti) = δNR, and the floating payment at time ti (swap payments are
made in arrears) is Cfloat(ti) = δNL(ti, ti+1). We can view a fixed-for-floating swap as a
long position in a fixed-rate bond and a short position in a floating-rate bond. The
present value of the fixed-rate bond (fixed-rate leg) is:

and the present value of the floating-rate bond (floating-rate leg) payments is:

Vfloat(t) = N

since immediately after a payment date, the floating-rate bond is always equal to
the notional principal N, the par value of the bond. To determine the fair swap
rate, we note that at time 0, the par swap has zero present value:

S(0) = Vfixed(0) – Vfloat(0) = 0

or

so that the swap rate is:

(10.117)

As Jarrow (2002) states, there are three basic ways of creating a swap syn-
thetically. The first method is to short the money market account (pay floating)
and to synthetically create the coupon bond as a portfolio of zero-coupon bonds.
The value of the combined position at each date and state will match the values
of the swap and its cash flows. This method is independent of any particular
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model for the evolution of the term structure of rates, but is not practical since all
zero-coupon bonds may not trade and the initial transaction costs will be high.
The second method to synthetically replicate a swap is to use a portfolio of for-
ward contracts written on the spot rate of futures dates. This method is also inde-
pendent of any term structure of rates. The third method is to use a dynamic
portfolio consisting of a single zero-coupon bond (for a one-factor model) and
the money market account. This method requires a specification of the term
structure of rates and can be synthetically replicated using single-factor models
such as those discussed in this chapter. At each node, the amount of shares held in
the money market account and those in the zero-coupon bond are determined as
well as the net cash flows and swap value. At the first node, the swap has a zero
value and zero cash flow. We value synthetic swaps in section 12.12 using the
Heath-Jarrow-Morton (HJM) single-factor model.

There are many other types of swaps, including currency swaps, fixed-for-
floating dual currency swaps, commodity swaps, equity swaps, forward start (de-
ferred) swaps, capped swaps, callable and putable swaps, constant maturity swaps,
and index amortizing swaps. Index amortizing swaps are valued in section 14.7 us-
ing the HJM model.

10.17 CALIBRATION IN PRACTICE

When calibrating trees, in practice, for valuation of swaptions, bond options, syn-
thetic swaps, and caps to the term structure of rates, it is helpful to employ a
generic calibration engine that can be used to calibrate multiple types of models
and instruments. Moreover, it is helpful to create separate optimization routines
such as a simplex, Brent’s method, and so on that can be used by the calibration en-
gine to calibrate models and instruments to market data. Consider a generic (ab-
stract) Model class that contains a CalibrationFunction class and a calibrate
method for calibrating models:

class CalibrationSet;

/**********************************************************************************
Abstract short-rate model class
**********************************************************************************/
class Model : public Patterns::Observer,

public Patterns::Observable
{

public:
Model(Size nArguments);
void update()
{

generateArguments();
notifyObservers();
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}

virtual Handle<Lattices::Lattice> tree(const TimeGrid& grid) const = 0;

// Calibrate to a set of market instruments (caps/swaptions)
void calibrate(CalibrationSet& instruments,

const Handle<Optimization::Method>& method);

const Handle<Optimization::Constraint>& constraint() const;

// Returns array of arguments on which calibration is done
Array params();
void setParams(const Array& params);

protected:
virtual void generateArguments() {}
std::vector<Parameter> arguments_;
Handle<Optimization::Constraint> constraint_;

private:
class PrivateConstraint; // constraint imposed on arguments
class CalibrationFunction; // calibration cost function class
friend class CalibrationFunction;

};

The calibrate method computes the optimizations required for calibration.
The instruments to be calibrated are passed in as well as the optimization method
to use.

/**********************************************************************************
calibrate : calibrates model to market 

instrument prices
[in]   CalibrationSet& instruments : instruments to calibrate

Handle<Optimization::Method> & method : method of optimization
[out]  void
**********************************************************************************/
void Model::calibrate(CalibrationSet& instruments, const

Handle<Optimization::Method>& method)
{

CalibrationFunction f(this, instruments);

method->setInitialValue(params());
method->endCriteria().setPositiveOptimization();
Optimization::Problem prob(f, *constraint_, *method);
prob.minimize();

Array result(prob.minimumValue());
setParams(result);

}
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The optimization problem—that is, minimization of (10.115), via a Problem
class—is solved and the results are stored in the setParams method:

/**********************************************************************************
setParams : stores array of parameters
[in] Array& params : array of parameters
[out] void
**********************************************************************************/
void Model::setParams(const Array& params)
{
Array::const_iterator p = params.begin();

for (Size i=0; i<arguments_.size(); i++)
{

for (Size j=0; j<arguments_[i].size(); j++, p++)
{

QL_REQUIRE(p!=params.end(),”Parameter array too small”);
arguments_[i].setParam(j, *p);

}
}
QL_REQUIRE(p==params.end(),”Parameter array too big!”);
update();

}

where the params function is given by:

/**********************************************************************************
params : returns an array of arguments that are calibrated to model
[in] none
[out] Array of parameters
**********************************************************************************/
Array Model::params()
{

Size size = 0, i;
for (i=0; i<arguments_.size(); i++)

size += arguments_[i].size();
Array params(size);
Size k = 0;
for (i=0; i<arguments_.size(); i++)
{

for (Size j=0; j<arguments_[i].size(); j++, k++)
params[k] = arguments_[i].params()[j];

}
return params;

}
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The CalibrationFunction class is given by:

/**********************************************************************************
CalibrationFunction helper class for calibrating model
**********************************************************************************/
class Model::CalibrationFunction : public Optimization::CostFunction
{

public:
CalibrationFunction(Model* model, CalibrationSet& instruments)

: model_(model, false), instruments_(instruments) {}
virtual ∼CalibrationFunction() {}

virtual double value(const Array& params) const
{

model_->setParams(params);
double value = 0.0;
for (Size i=0; i<instruments_.size(); i++)
{

double diff = instruments_[i]->calibrationError();
value += diff*diff;

}
return sqrt(value);

}
virtual double finiteDifferenceEpsilon() const { return 1e-6; }

private:
Handle<Model> model_;
CalibrationSet& instruments_;

};

The Problem class, used for constrained optimization problems, is:

/**********************************************************************************
Constrained optimization problem
**********************************************************************************/
class Problem
{

public:
// default constructor
Problem(CostFunction& f , // function and it gradient vector

Constraint& c, // constraint
Method& meth) // optimization method
: costFunction_(f), constraint_(c), method_(meth) {}

// call cost function computation and increment evaluation counter
double value(const Array& x) const;

// call cost function gradient computation and increment
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// evaluation counter
void gradient(Array& grad_f, const Array& x) const;

// call cost function computation and it gradient
double valueAndGradient(Array& grad_f, const Array& x) const;

// Constrained optimization method
Method& method() const { return method_; }

// Constraint
Constraint& constraint() const { return constraint_; }

// Cost function
CostFunction& costFunction() const { return costFunction_; }

// Minimization
void minimize() const { method_.minimize(*this); }

Array& minimumValue() const { return method_.x (); }

protected:
CostFunction& costFunction_; // Unconstrained cost function
Constraint& constraint_; // Constraint
Method& method_; // constrained optimization method

};

/**********************************************************************************
value returns value of cost function at evaluated data points
[in]  Array& x : data points
[out] double : value of cost function
**********************************************************************************/
inline double Problem::value(const Array& x) const {

method_.functionEvaluation()++;
return costFunction_.value(x);

}

/**********************************************************************************
gradient : computes cost function gradient (first derivative with respect to x)
[in]  Array& grad_f : gradient function

Array& x : data points
[out] void
/*********************************************************************************/
inline void Problem::gradient(Array& grad_f, const Array& x) const {

method_.gradientEvaluation()++;
costFunction_.gradient(grad_f, x);

}

/**********************************************************************************
valueAndGradient : computes both the gradient and cost function with respect to x
[in]  Array& grad_f : gradient function

Array& x : data points
[out] double : value at gradient
**********************************************************************************/
inline double Problem::valueAndGradient(Array& grad_f, const Array& x) const
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{
method_.functionEvaluation()++;
method_.gradientEvaluation()++;
return costFunction_.valueAndGradient(grad_f, x);

}

The abstract CostFunction class for computing first derivatives is:

/**********************************************************************************
Cost function abstract class for optimization problem
**********************************************************************************/
class CostFunction
{

public:
virtual ∼CostFunction() {}
// method to overload to compute the cost functon value in x
virtual double value(const Array& x) const = 0;

// method to overload to compute grad_f, the first derivative of
// the cost function with respect to x
virtual void gradient(Array& grad, const Array& x) const
{

double eps = finiteDifferenceEpsilon(), fp, fm;
Array xx(x);

for (int i=0; I <x.size(); i++)
{

xx[i] += eps;
fp = value(xx);
xx[i] -= 2.0*eps;
fm = value(xx);
grad[i] = 0.5*(fp - fm)/eps;
xx[i] = x[i];

}
}

// method to overload to compute grad_f, the first derivative of
// the cost function with respect to x and also the cost function
virtual double valueAndGradient(Array& grad, const Array& x) const
{

gradient(grad, x);
return value(x);

}

// Default epsilon for finite difference method :
virtual double finiteDifferenceEpsilon() const { return 1e-8; }

};
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Use of a CalibrationHelper class has also aided in some of the intermediary cal-
culations used in calibration:

/**********************************************************************************
Class representing liquid market instruments used during calibration
**********************************************************************************/
class CalibrationHelper : public Patterns::Observer, public Patterns::Observable
{

public:
CalibrationHelper(const RelinkableHandle<MarketElement>& volatility)

: volatility_(volatility), blackModel_(volatility_) {
registerWith(volatility_);
}

void update() {
marketValue_ = blackPrice(volatility_->value());
notifyObservers();

}

// returns the actual price of the instrument (from volatility)
double marketValue() { return marketValue_; }

// returns the price of the instrument according to the model
virtual double modelValue() = 0;

// returns the error resulting from the model valuation
virtual double calibrationError() {

return fabs(marketValue() - modelValue())/marketValue();
}

virtual void addTimes(std::list<Time>& times) const = 0;

// Black volatility implied by the model
double impliedVolatility(double targetValue,

double accuracy,
Size maxEvaluations,
double minVol,
double maxVol) const;

// Black price given a volatility
virtual double blackPrice(double volatility) const = 0;

// set pricing engine
void setPricingEngine(const Handle<PricingEngine>& engine) {

engine_ = engine;
}

protected:
double marketValue_;
RelinkableHandle<MarketElement> volatility_;
Handle<BlackModel> blackModel_;
Handle<PricingEngine> engine_;
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private:
class ImpliedVolatilityHelper;

};

/**********************************************************************************
Set of calibration instruments. For the moment, this is just here to facilitate the
assignment of pricing engine to a set of calibration helpers
**********************************************************************************/
class CalibrationSet : public std::vector<Handle<CalibrationHelper> >
{

public:
void setPricingEngine(const Handle<PricingEngine>& engine)
{

for (Size i=0; i<size(); i++)
(*this)[i]->setPricingEngine(engine);

}
};

The CalibrationHelper contains an ImpliedVolatilityHelper class that aids in com-
puting implied volatilities:

/**********************************************************************************
ImpliedVolatilityHelper nested class used by CalibrationHelper for calibrating
Black volatilities to implied market volatilities
**********************************************************************************/
class CalibrationHelper::ImpliedVolatilityHelper : public ObjectiveFunction
{

public:
ImpliedVolatilityHelper(const CalibrationHelper& helper, double value)

: helper_(helper), value_(value) {}

double operator()(double x) const
{

return value_ - helper_.blackPrice(x);
}

private:
const CalibrationHelper& helper_;
double value_;

};

/**********************************************************************************
impliedVolatility : computes implied volatility using Brent’s 1-dim solver
[in]   double targetValue : target value

double accuracy : degree of accuracy
Size maxEvaluations : maximum number of iterations allowed
double minVol : minimum volatility constraint
double maxVol : maximum volatility constraint

[out]: double : solution to minimization problem
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**********************************************************************************/
double CalibrationHelper::impliedVolatility(double targetValue,

double accuracy, Size maxEvaluations, double minVol, double maxVol) const
{

ImpliedVolatilityHelper f(*this,targetValue);
Solvers1D::Brent solver;
solver.setMaxEvaluations(maxEvaluations);
return solver.solve(f,accuracy,volatility_->value(),minVol,maxVol);

}

Finally, we use a calibrateModel function that accepts the model to be cali-
brated, sets the optimization routine to be used (i.e., simplex optimization proce-
dure), and acts as a wrapper to other calibration methods that need to be called.
The Black volatilities from the calibrated model are then displayed:

/**********************************************************************************
calibrateModel: calibrates a model to market data
[in]   Handle<Model>& model : model used

CalibrationSet& calibs : set of instruments to calibrate
double lambda : parameter for simplex optimization routine

[out]: void
**********************************************************************************/
void calibrateModel(const Handle<Model>& model,

CalibrationSet& calibs,
double lambda)

{
// use simplex method
Handle<Optimization::Method> om(new Optimization::Simplex(lambda, 1e-9));
om->setEndCriteria(Optimization::EndCriteria(10000, 1e-7));

// calibrate model to calibration set
model->calibrate(calibs, om);
// output the implied Black volatilities
int i;
for (i=0; i<numRows; i++)
{

for (int j=0; j<numCols; j++)
{

int k = i*numCols + j;
double npv = calibs[k]->modelValue();
double implied = calibs[k]->impliedVolatility(npv, 1e-4,1000, 0.05,

0.50)*100.0;
cout << implied << “ (”;
k = i*10 + j;
double diff = implied - swaptionVols[k];
cout << diff << “)”;
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}
cout << endl;

}
}

An example using these methods is given in Chapter 14 when valuing Bermu-
dan swaptions.
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CHAPTER 11
Tree-Building Procedures

In the preceding chapter, we discussed the properties and analytics of various single-
factor models. In some cases, such as in the Vasicek, CIR, and Hull-White

(HW) models, analytical formulas exist for bond prices and European options on
bonds. In some cases, however, when closed-form solutions do not exist such as
in the BDT model, it is necessary to build an interest rate tree calibrated to ob-
served market data (i.e., current yield curve and term structure of volatility) to
price interest rate derivatives. In this chapter, we discuss the details for building
trees for the BDT, Hull-White, and lognormal Hull-White (a particular case of
the Black-Karasinski) models. In the BDT, we build a binomial tree that is 
calibrated first to the initial yield curve and then to both the yield curve and 
term structure of yield volatilities. Likewise, we build trinomial trees with the
Hull-White extended Vasicek and lognormal models calibrated to both the yield
curve and the term structure of volatilities. We discuss how to price various inter-
est rate derivatives with these trees including bond options, swaptions, swaps,
and caps.

In section 11.1, we discuss building binomial short trees for the BDT short-
rate model. In section 11.2, we discuss building the BDT tree calibrated to the
yield curve, providing an implementation, while in section 11.3 we build the BDT
calibrated to both the initial yield and volatility curves and also provide an imple-
mentation. In section 11.4, we discuss how to construct a binomial tree that ap-
proximates the Hull-White (extended Vasicek) short rate process consistent with
the initial yield curve and provide an implementation. In section 11.5, we discuss
constructing a lognormal Hull-White (restricted Black-Karasinski) tree while in
section 11.6, we discuss building Hull-White trees calibrated to both the initial
yield and volatility curves. Implementions are also given. In section 11.7, we give
generic object-oriented implementations for the Vasicek and Black-Karasinski
models. In section 11.8, we provide an implementation for the CIR model. In sec-
tion 11.9, we discuss a general deterministic-shift extension approach to better fit
short rate models. In section 11.10, we discuss the shift-extended Vasicek model,
and in section 11.11 we discuss the shift-extended CIR model and provide an im-
plementation. Finally, in section 11.12, we use the models to price bond options,
swaps, and caps.
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11.1 BUILDING BINOMIAL SHORT RATE TREES FOR BLACK,
DERMAN, AND TOY

Unlike normal single-factor models like the Vasicek, Hull-White, and CIR, the BDT
model does not have analytical tractability to generate explicit closed-form formu-
las for bond prices and bond option prices. This is due to the lognormal structure
of the BDT model. To price interest rate derivatives, a short rate tree has to be built
out until the end of the life of the instrument underlying the derivative. In the BDT
model, we assume that the initial yield and volatility curves are specified and
known (i.e., observable in the market), so that the prices for the discount bonds
and their associate yield volatilities for each time step can be calculated. We will
build a binomial tree with risk-neutral probabilities that are equal to 1/2 for up and
down branches. The binomial tree works well for models that are described by
Jamshidian (1991a) as “Brownian path-independent.”

The tree has i time steps, i = 0, . . . , N, and j states at each step, j = –i, –i + 2, 
. . . , i – 2, i. Thus, there are i + 1 states at each time step. Node (i, j) represents state
j at time step i. At time step N, j has a centralized binomial distribution with mean
0 and variance N. The tree is constructed so that at each node, the short rate r is de-
termined so that it matches the initial specified market curves. The initial rate r =
r0,0 is just the yield on the bond that matures at the end of the first period ∆t. The
initial rate can either go up with probability 1/2 or down with probability 1/2. The
next step is to choose the short rates, ru and rd, from an up movement to node u and
a down movement to node d, to match the initial yield curve. To match the initial
yield curve, it is necessary to price a bond that matures in two periods, 2∆t, so that
the bond has a value of $1 in the three states at i = 2, uu, ud, and dd.

Denote yk, k = 1, . . . , N, as the yield on a discount bond Pk with maturity k∆t;
that is,

Pk = e–yk(k∆t) (11.1)

and denote σk as the volatility of yk. In the model, it is assumed that the yields can
increase or decrease with equal probability according to the binomial process as
shown in Figure 11.1. Consequently, to match the initial volatility curve the follow-
ing relationship must hold at time step k:

so that

(11.2)

where yu
k and yd

k are determined from the tree as the yields on bonds maturing at
time step k +1. Notice that the volatility is dependent on time only.
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To satisfy these two requirements, a numerical procedure such as the Newton-
Raphson method can be used. Once ru and rd are determined, the next step is to 
determine the rates ruu , rud , and rdd by matching the price and yield volatility of a
three-period bond and so on for the remaining time steps. Since we are constructing
a binomial tree, we can take advantage of the fact that an up movement followed
by a down movement is the same as a down movement followed by an up move-
ment to limit the search for two short rates instead of three:1

Moreover, at time step k, the following relationships hold:

(11.3)

The BDT tree construction was developed by Jamshidian (1991a) using a tech-
nique of forward induction. Jamshidian (1991a) shows that the level of the short
rate at time t in the BDT model is given by:

r(t) = U(t)e(σ(t)z(t)) (11.4)

where U(t) is the median of the (lognormal) distribution for r at time t, σ(t) is the
level of the short-rate volatility, and z(t) is the level of standard Brownian motion.
U(t) and σ(t) are determined at each time step so that the model fits the observable
yield and volatility curves. If we assume σ(t) is constant so that the model is build
to fit only the yield curve, then it is only necessary to determine the median U(t).
The level of the short rate is then given by:

r(t) = U(t)e(σz(t)) (11.5)

If j follows a centralized binomial distribution, the process
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is distributed with mean 0 and variance t, so that as ∆t → 0 the process converges
to the Wiener process z(t). We can then discretize (11.2) and thus determine the
short (∆t-period) rate at the (i, j) node by:

(11.6)

so that the time step i replaces t and

replaces z(t). We assume U(0) = r0,0 = y1.

Determining U (i ) and σ (i )

We will use Arrow-Debreu state prices to help determine these functions. These 
are the most fundamental securities and the building blocks of all other securities.
Define Qi, j as the value of a security, at time 0, that pays off $1 if node (i, j) is
reached and $0 otherwise. By definition, Q0,0 = 1. The Qi, j’s can be viewed as dis-
counted probabilities. We can use these discounted probabilities to price a pure dis-
count bond that matures at time (i + 1)∆t:

(11.7)

where di, j denotes the price at time i∆t and state j of the zero-coupon bond matur-
ing at time (i + 1)∆t. Thus, di, j is the one-period discount factor (with simple com-
pounding) at node (i, j):

(11.8)

If continuous compounding is used, then

di, j = e–ri,j ∆t (11.9)

As we move forward through the tree, we need to update the pure security
prices Qi,j at time step i and node j from the known values from the previous time
step i – 1 based on the following relationship (assuming simple compounding):

(11.10)
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Equation (11.8) states that pure security price at node (i, j) is the sum of the prod-
uct of the state prices, one-period discount factors, and transitional probabilities
for the two nodes that branch into (i, j) at time step i – 1. The equation is valid for
all nodes at time step i except the upper and lower nodes, (i, i) and (i, –i), which
have the values

(11.11)

11.2 BUILDING THE BDT TREE CALIBRATED TO THE YIELD CURVE

We want to build the following short rate tree as shown in Figure 11.2, so that at
each node we need to find the rates that are fitted to the observed yield curve.

In the BDT tree, we will set the mean reversion parameter (the ratio of 
the slope of the volatility to its level) to zero so that the BDT short rate process
becomes:

(11.12)
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FIGURE 11.2 Short Rate Tree
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so that only r–(t) needs to be calibrated to the yield curve. From equation (11.6), we
can rewrite the price of a pure discount bound at time step i +1 as

(11.13)

If we use continuous compounding, then we solve for U(i) from

(11.14)

This equates the market price of pure discount bond on the right-hand side to the
BDT model price on the left-hand side. The yi’s are all known from the observable
yield curve so that the market price of pure discount bonds Pi is known at each
time i. U(i) in equation (11.13) (on the left-hand side) cannot be solved explicitly,
so a numerical procedure such as the Newton-Raphson method must be used.
Once U(i) is known, we can use equation (11.13) to determine the rates in the tree
at time step i.

In the Newton-Raphson method, we make an initial guess for U(i). We keep 
iterating,

(11.15)

updating Ui = Ui+1 after each iteration until | Ui+1 – Ui | < ε where ε is arbitrarily
small (i.e., 0.0001) and

(11.16)

The following are the steps to build the tree. We assume that i > 0; that we are
using simple compounding; and that U(i – 1), Qi-1, j, ri-1,j , and di-1,j have been found
for all j at time step i – 1. We can start construction of the tree from the initial val-
ues: U(0) = r0,0 , Q0,0 = 1, d0,0 = 1/(1 + r0,0 ∆t). At each time step i, we compute the Qi, j
from (11.10) and (11.11). We then solve for U(i) from Pi+1 in (11.13) by fitting the
observable yield (and thus bond price) to the model price. Once we determine U(i),
we can calculate the short rate and compute the discount factors for all nodes at
time i from (11.6) and (11.8).
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As an example, suppose that the initial yield curve has the structure shown in
Table 11.1, with a constant short rate volatility of 10 percent and time steps of ∆t = 1.
U(0) = r0,0 = 0.05; d0,0 = P1 = 1/(1 + 0.05(1)) = 0.9524; Q1,1 = Q1,–1 = Q0,0 (0.5)(0.9524)
= 0.4762; P2 = 1/(1 + (0.0575)(1))2 = 0.8942. We need to solve for U(1) as the solu-
tion to:

Solving this equation by the Newton-Raphson method using equations (11.15) and
(11.16) yields U(1) = 0.0498 so that at node (1, 1):

and at node (1, –1):

At time step i = 2, we compute Q2,2 = 0.5Q1,1d1,1 = 0.5(0.4762)(0.9479) = 0.2257,
Q2,–2 = 0.5Q1,–1d1,–1 = 0.5(0.4762)(0.9569) = 0.2257, and Q2,0 = 0.5Q1,1d1,1 +
0.5Q1,–1 d1,–1 = 0.2257 + 0.2278 = 0.4535. Now, we solve for U(2),
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TABLE 11.1 Yield Curve
Term Structure

Maturity Yield

1 0.0500
2 0.0575
3 0.0625
4 0.0675
5 0.0700



Solving for U(2) using Newton-Raphson, we get U(2) = 0.0496. We can now deter-
mine the short rates and discount factors at i = 2.

The short rate tree for N = 3 is given in Figure 11.3.
The following is code to build the BDT tree:

/**********************************************************************************
buildBDT : constructs a BDT tree calibrated to the yield
[in]  vector<double> yield_curve : vector of yield curve

int N : number of time steps
int T : time to maturity
double inityield : initial guess for Newton-Raphson method

[out] void
**********************************************************************************/
void BlackDermanToy::buildBDT(vector<double> yield_curve, double vol, int N, double

T, double inityield)
{

double U[20] = {0.0}; // median of the (lognormal) distribution for 
// r at time t

double dt = 0.0; // time step
double P[20] = {0.0}; // bond prices
double R[20] = {0.0}; // discount factors
const double epsilon = 0.001; // error tolerance in numerical search
double error = 0.0; // error between model and target values
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FIGURE 11.3 N = 3 Short Rate Tree
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double sum1 = 0.0; // sum of first derivatives
double sum2 = 0.0; // sum of second derivatives
double alpha1 = 0.05; // parameter to calibrate U(i)
double alpha2 = 0.0; // updates alpha1 in numerical search
int i,j;

// precompute constants – assume 1 year time steps
dt = 1;

// initialize yield curve
for (i = 1; i <= N; i++)
{

R[i] = yield_curve[i-1];
P[i] = 1/(pow((1 + R[i]*dt),i*dt));

}

// initialize first node
Q[0][0] = 1;
P[0] = 1;
U[0] = yield_curve[0];
r[0][0] = yield_curve[0];
d[0][0] = 1/(1 + r[0][0]*dt)

// evolve the tree for the short rate
for (i = 1; i <= N; i++)
{
// update pure security prices at time i

Q[i][-i] = 0.5*Q[i-1][-i+1]*d[i-1][-i+1];
Q[i][i] = 0.5*Q[i-1][i-1]*d[i-1][i-1];
for (j = -i+2; j <= i-2; j += 2)

{
Q[i][j] = 0.5*Q[i-1][j-1]*d[i-1][j-1] + 0.5*Q[i-1][j+1]*d[i-1][j+1];
}
// use numerical search to solve for U[i]
// Newton-Raphson method
alpha1 = inityield;
do
{

sum1 = 0;
sum2 = 0;
for (j = -i; j <= i; j += 2)
{

sum1 += Q[i][j]*(1/(1 + alpha1*exp(vol*j*sqrt(dt))*dt));
sum2 += Q[i][j]*(pow((1+ alpha1*exp(vol*j*sqrt(dt))*dt),-

2)*exp(vol*j*sqrt(dt))*dt);
}
alpha2 = alpha1 – (sum1 – P[i+1])/(-sum2);
error = alpha2 – alpha1;
alpha1 = alpha2;

}
while (error > epsilon);
U[i] = alpha1;
// set r[.] and d[.]
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for (j = -i; j <= i; j+= 2)
{

r[i][j] = U[i]*exp(vol*j*sqrt(dt));
d[i][j] = 1/(1 + r[i][j]*dt);

}
}

}

11.3 BUILDING THE BDT TREE CALIBRATED TO THE YIELD 
AND VOLATILITY CURVE

We will now extend the BDT model to fit both the rate and volatility term struc-
tures. In order to fit the term structure of volatilities, the volatility is now time-
dependent so that the level of the short rate at node (i, j) is

(11.17)

In order to calibrate to both the spot rate yield and volatility curves, we need to
now solve for two discount functions, Pu

i +1 and Pd
i+1, for all i ≥ 2 (we have two un-

knowns, U(i) and σi, so we need two equations) where Pu
i +1 and Pd

i +1 are related to
the known market discount bond prices at time i, Pi, by:

(11.18)

where u denotes the up node and d denotes the down node. The initial volatilities
can be recovered from equation (11.2) by expressing the volatility in terms of Pu

i

and Pd
i :

(11.19)

Solving equations (11.18) and (11.19) simultaneously yields:
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Equation (11.21) cannot be solved explicitly for Pu
i so a numerical search proce-

dure like the Newton-Raphson method must be used. Forward induction from the
initial starting values is used to determine the time-dependent functions that ensure
consistency with the initial yield curve data.2 The state prices are determined from
the state prices at both the up and down nodes, u and d, respectively, where

(11.22)

(11.23)

Qu
i,j is the value of a security that pays off $1 if node (i, j) is reached and zero oth-

erwise as seen from node u. Similarly, Qd
i,j is the value of a security that pays off $1

if node (i, j) is reached and zero otherwise as seen from node d. By definition, Qu
1,1

= 1 and Qd
1,–1 = 1. The tree is constructed similarly to the procedure outlined in the

previous section except there are now two equations to compute, similar to (11.7):

(11.24)

(11.25)

and where now the discount factor is:

(11.26)

Equations (11.24) and (11.25) define two equations with two unknowns, U(i) and
σ(i), which can be solved by a two-dimensional Newton-Raphson method.3 We fit
the BDT model to both the yield and volatility curves by equating the model prices
Pu

i+1 and Pd
i +1 to the observed market prices Pi :
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(11.28)

Note that adding (11.28) to (11.27) gives equation (11.18). It is necessary to start
with initial values (guesses) for U(i) and σ(i). The two-dimensional Newton-Raphson
method computes the following equations simultaneously:

(11.29)
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(11.31)

(11.32)

where
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(11.35)

(11.36)

updating Ui = Uu
i+1 and σi = σu

i+1 at each iteration until | Uu
i+1 – Ui | < ε, | Ud

i+1 – Ui | < ε,
| σ u

i+1 – σi | < ε, and | σd
i+1 −σi | < ε, for arbitrarily small ε > 0 (i.e., 0.0001).

The following are the steps to build the tree. We assume that i > 0, that we are
using simple compounding, ∆t = 1, and that U(i – 1), σ(i – 1), Qu

i–1,j , Qd
i–1,j , ri–1,j and

di–1,j have been determined for all j at time step i – 1. We can start construction of
the tree from the initial values:

U(0) = r0,0 , σ(0) = σ0 , Qu
1,1 = 1, Qd

1,–1 = 1, d0,0 = 1/(1 + r0,0 ∆t)

At each time step i, we compute the Qu
i, j and Qd

i, j from equations (11.22) and
(11.23). We then solve for U(i) from Pi+1 in (11.13) by fitting the observable yield
(and thus bond price) to the model price. Once we determine U(i), we can calcu-
late the short rate and compute the discount factors for all nodes at time i from
(11.26).

Using the values of the previous example, we can construct a BDT tree cali-
brated to the yield and volatility curves. Suppose that the yield curve is as before
and the volatility curve is as shown in Table 11.2.

The initial values of tree for i = 1 are:

U(0) = r0,0 = 0.05, Qu
1,1 = 1.0, Qd

1,–1 = 1.0, and σ(0) = σ0 = 0.10

Using the yield curve, we compute Pi , i = 2, . . . , N. For example, P2 = 1/
(1 + 0.0575(1))2 = 0.8942 and P3 = 1/(1 + 0.0625(1))3 = 0.8337. Next, for i = 2,
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TABLE 11.2 Short Rate Volatility
Term Structure

Maturity Volatility

1 0.1000
2 0.0950
3 0.0900
4 0.0850
5 0.0800



we need to solve for Pu
2 by solving the equation using the Newton-Raphson

method:

Plugging in the values,

The solution is Pu
2 = 0.9336 so that

For i = 3, we solve for

Solving, we find Pu
3 = 0.8659 and

We can now find the values of U(1) and σ(1) as the solutions to

and

with the two-dimensional Newton-Raphson method given by equations (11.29) to
(11.36). The solution yields U(1) = 0.0648 and σ(1) = 0.0923.

It is important to note that the solution is highly sensitive to the initial values
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used and may give different values for different initial values and may not even con-
verge at all if poor initial values are chosen.4

We can now determine the short rates and discount factors:

We can now solve for the pure security prices Qu
2,2 ,Qu

2,0 , Qd
2,–2 , and Qd

2,0 using the
discount factors at time step 1 and then find U(2) and σ(2) as solutions to:

and

The solution yields U(2) = 0.0724 and σ(2) = 0.0739. The short rates and dis-
count factors at i = 2 can then be computed and successively used in forward 
induction.
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4It is always a good idea to test the model with different starting values to see if the values
change and how stable they are. In the current example, initial guesses of U0 = 0.05 and σ0 =
0.092 were used.



The following is the code to build a BDT tree calibrated to the yield curve and
volatility curve:

/**********************************************************************************
buildBDT : constructs a BDT tree calibrated to the yield curve and volatility curve
[in]  vector<double> yield_curve : vector of yield curve

vector<double> volatility_curve : vector of volatility curves
int N : number of time steps
double T : time to maturity

[out]: void
**********************************************************************************/
void BlackDermanToy::buildBDT(vector<double> yield_curve,vector<double>

volatility_curve, int N, double T)
{

double r[20][20] = {0.0}; // short rate at node i, j
double U[20] = {0.0}; // median of the (lognormal) 

// distribution for r at time t
double dt = 0.0; // time step
double volR[20] = {0.0}; // short rate volatiliy
double vol[20] = {0.0}; // stores calibrated volatility 

// parameter
double P[20] = {0.0}; // discount bond prices
double Pu[20] = {0.0}; // price of bond in up movement
double Pd[20] = {0.0}; // price of bond in down movement
double Qu[20][20] = {0.0}; // state securities (Arrow-Debreu) 

// prices for an up movement
double Qd[20][20] = {0.0}; // state securities (Arrow-Debreu) 

// prices for a down movement
double R[20] = {0.0}; // discount curve rates
const double epsilon = 0.0001; // error tolerance level
double error, error1, error2 = 0.0; // errors computed in numerical search
double error3, error4 = 0.0; // errors computed in numerical search
double sum1, sum2 = 0.0; // sums of first derivatives
double sum3, sum4 = 0.0; // sums of second derivatives
double volSum1, volSum2 = 0.0; // sum of volatilities
double sigVal1 = 0.0; // calibrated volatility parameter
double sigVal2, sigVal3 = 0.0; // computed volatilities in numerical 

// search
double alpha1 = 0.05; // calibrated U(i) parameter
double alpha2 = 0.0; // updated alpha1 (U(i)) parameter
double alpha3 = 0.10; // computed U(i) parameter in numerical 

// search
int i,j;

// precompute constants – assume one year time step
dt = 1;

// initialize yield and volatility curves

for (i = 1; i <= N; i++)

{
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R[i] = yield_curve[i-1];
P[i] = 1/(pow((1 + R[i]*dt),i*dt));
volR[i] = volatility_curve[i-1];

}

// initialize nodes
U[0] = R[1];
r[0][0] = R[1];
d[0][0] = 1/(1 + r[0][0]*dt);
vol[0] = volR[1];
Qu[1][1] = 1;
Qd[1][-1] = 1;

// compute Pu[.] and Pd[.]
for (i = 2; i <= N; i++)
{

// solve the following for Pu[i]
sum1 = 0;
sum2 = 0;
error = 0;
alpha1 = 0.92;

do
{

sum1 = (alpha1 + pow(alpha1,exp(-2*volR[i]*sqrt(dt))))/(2*(1 + r[0][0]*dt));
sum2 = (1/(2*(1 + r[0][0]*dt)))*(1 + exp(-2*volR[i]*sqrt(dt))*

(pow(alpha1,exp(-2*volR[i]*sqrt(dt)) – 1)));
alpha2 = alpha1 – (sum1 – P[i])/(sum2);
error = abs(alpha2 – alpha);
alpha1 = alpha2;

}
while (error > epsilon);

Pu[i] = alpha1;
Pd[i] = pow(Pu[i],exp(-2*volR[i]*sqrt(dt)));

}

// evolve tree for the short rate
for (i = 1; i < N; i++)
{

// update pure security prices at time step i
if (i > 1)
{

for (j = -i+2; j <= i; j += 2)
{

Qu[i][j]= 0.5*Qu[i-1][j-1]*d[i-1][j-1] + 0.5*Qu[i-1][j+1]*d[i-1][j+1];
}

for (j = i-2; j >= -i; j -= 2)
{

Qd[i][j] =0.5*Qd[i-1][j-1]*d[i-1][j-1] + 0.5*Qd[i-1][j+1]*d[i-1][j+1];
}

}

11.3 Building the BDT Tree Calibrated to the Yield and Volatility Curve 483



// solve simultaneously for U[i] and sig[i]
// using 2 dimensional Newton-Raphson
// initial guess
alpha1 = 0.05;
sigVal1 = 0.092;

do
{

sum1 = 0;
sum2 = 0;
sum3 = 0;
sum4 = 0;
volSum1 = 0;
volSum2 = 0;
for (j = -i; j <= i; j += 2)
{

sum1 += Qu[i][j]*(1/(1 + alpha1*exp(sigVal1*j*sqrt(dt))*dt));
sum2 += Qu[i][j]*(pow((1+alpha1*exp(sigVal1*j*sqrt(dt))*dt),-

2)*(exp(sigVal1*j*sqrt(dt))*dt));
volSum1 += Qu[i][j]*(pow((1+ alpha1*exp(sigVal1*j*sqrt(dt))*dt),-

2)*(alpha1*(j*sqrt(dt))*
dt*exp(sigVal1*j*sqrt(dt))));

sum3 += Qd[i][j]*(1/(1 + alpha1*exp(sigVal1*j*sqrt(dt))*dt));
sum4 += Qd[i][j]*(pow((1+ alpha1*exp(sigVal1*j*sqrt(dt))*dt),-

2)*(exp(sigVal1*j*sqrt(dt))*dt));
volSum2 += Qd[i][j]*(pow((1+ alpha1*exp(sigVal1*j*sqrt(dt))*dt),-2)*

(alpha1*(j*sqrt(dt))*dt*exp(sigVal1*j*sqrt(dt))));
}
alpha2 = alpha1 – (sum1 – Pu[i+1])/(-sum2);
error = abs(alpha2 – alpha1);
alpha1 = alpha2;

sigVal2 = sigVal1 – (sum1 – Pu[i+1])/(-volSum1);
error1 = abs(sigVal2 – sigVal1);
sigVal1 = sigVal2;

alpha3 = alpha1 – (sum3 – Pd[i+1])/(-sum4);
error3 = abs(alpha3 – alpha1);

sigVal3 = sigVal1 – (sum3 – Pd[i+1])/(-volSum2);
error4 = abs(sigVal3 – sigVal1);
sigVal1 = sigVal3;

}
while ((error > epsilon) || (error1 > epsilon) || (error3 > epsilon) || 

(error4 > epsilon));

U[i] = alpha;
vol[i] = sigVal1;

// set r[.] and d[.]
for (j = -i; j <= i; j += 2)
{
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r[i][j] = U[i]*exp(vol[i]*j*sqrt(dt));
d[i][j] = 1/(1 + r[i][j]*dt);

}
}

}

11.4 BUILDING A HULL-WHITE TREE CONSISTENT WITH 
THE YIELD CURVE

Hull and White (1994) developed a general tree-building procedure (of a trinomial
tree) to calibrate the HW extended Vasicek model:5

dr = a(r–(t) – r)dt + σdz

or in its more common form,

dr = (θ(t) – ar)dt + σdz (11.37)

to the yield curve. The approach can be used in constructing a BDT tree. In the
BDT model, we built a binomial process with fixed probabilities (equal to 1/2) and
time steps, leaving only the freedom of adjusting the space step. For Hull-White tri-
nomial trees, both the time and space steps are fixed (though they can be varied),
allowing us the freedom to adjust the probabilities so that the changes in the short
rate have the correct mean and standard deviation over each time interval ∆t for the
short rate process we are approximating.

In the first stage, Hull and White build a trinomial tree for the short rate x =
x(t) that follows the process in (10.86),

dx = axdt + σdz, x(0) = 0

The process is symmetrical around x = 0 and dx(t) = x(t + ∆t) – x(t) ∼ N(–ax(t)∆t,
σ2∆t) for small time changes (assuming terms of higher order than ∆t are ignored)
so that both mean and variance of changes in x at each step are finite and normally
distributed. The state space (i.e., the spacing between interest rates on the tree, ∆r)
is set to:

∆ ∆r t= σ 3
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where ∆t is the length of each time step.6

The tree is built with N time steps denoted by i = 1, . . . , N with j nodes,
j = –i, –i + 1 . . . , i – 1, i at each time step. The nodes are assumed to be evenly
spaced in x and t, though this assumption can be relaxed and the tree can be built
by letting changes in x and t vary (with the time step) (i.e., ∆xi and ∆ti).

7 Denote (i,
j) as the node for which t = i∆t and x = j∆r. At the (i, j) node, x = r0,0 + j∆r and x can
move up to the upper node (i + 1, k + 1) with probability pu

i,j , move to the center
node (i + 1, k) with probability pm

i,j , and move down to the lower node (i + 1, k – 1)
with probability pd

i,j . The integer n is chosen so that ri,k is as close to the mean of r.
Thus, pu

i,j , pm
i,j , and pd

i,j are the probabilities of the highest, middle, and lowest
branches leading from node (i, j) that sum to unity. The probabilities are con-
strained to all be positive. There are three possible alternative branching processes
shown in Figure 11.4.

In terms of a mean-reverting short rate, the branching process in (a) is a nor-
mal branching process where the short rate can move up by ∆r, stay the same, or
move down by ∆r. The branching process in (b) is the case where the short rate
is currently low and can move up by 2∆r, move up by ∆r, or stay the same. The
branching process in (c) is the case where the short rate is currently high and can
stay the same, move down by ∆r, or move down by 2∆r. The branching process
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FIGURE 11.4 Three Alternative Branching Processes

(a) (b) (c)

6This relationship between ∆r and ∆t is considered a good choice since it satisfies stability
convergence conditions of the trinomial method, which is the same as an explicit finite-
difference scheme.
7Hull (1996), 69–72.



in (b) and (c) represent the mean-reversion movement of the short rate to its
long-run average, from below and above, respectively. Because of the incorpora-
tion of mean reversion into the model, we cannot determine the upper and lower
nodes of the state index j, where the branching process changes, until the tree 
is constructed. Note, however, that the expected value of the short rate at 
the next time step is at the central node. For the normal branching process in (a),
k = j, and for the branching processes in (b) and (c), k = j + 1 and k = j – 1, 
respectively.

Most of the time, the normal branching process in (a) is appropriate, especially
if there is little or no mean reversion (a = 0). However, when the mean reversion
rate is positive (i.e., a > 0), it is necessary to switch to the branching process (c) for
a sufficiently large j. Similarly, if a > 0, it is necessary to switch from the branching
in (a) to the branching process in (b) when j is sufficiently negative. The converse of
these cases holds if a < 0.

Define j̄ as the value of j where we switch from branching in (a) to the branching
in (c) and j

¯
as the value of j where we switch from the branching in (a) to the branch-

ing in (b). Hull and White show that if

(i.e., j̄ is set to the smallest integer greater than 0.1835/(a∆t) and j
¯

= –j̄ ), then the
probabilities are always positive. At j̄ and j

¯
, the tree gets “truncated” so that no

states higher than j̄ or lower than j
¯

are computed. This is accomplished by chang-
ing the branching process from (a) to (c) if state j̄ is reached and changing the
branching process from (a) to (b) if j

¯
is reached. Following Hull and White, if the

branching process from node (i, j) is as in (a), then we can compute the probabili-
ties from the following three equations (the first equation matches short rate
changes to the mean, the second matches it to the variance, and the third sums the
probabilities to unity):

pu
i,j ∆r – pd

i,j ∆r = –aj∆r∆t

pu
i,j ∆r2 + pd

i,j ∆r2 = σ2∆t + a2 j2∆r2∆t2

pu
i,j + pm

i,j + pd
i,j = 1

Solving these three equations for the probabilities, we find (using ∆r2 = 3σ2∆t):

(11.38)
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If the branching process is as in (b) as when state j
¯

is reached, the probabilities are:

(11.39)

and if the branching process is as in (c) as when state j̄ is reached, the probabilities are:

(11.40)

Notice that the probabilities at j
¯

are the reflection of those at j̄.
The second stage of the tree building procedure involves converting the tree for

x into a tree for r by displacing the nodes on the x tree by α(t) so that they fit the
initial term structure. Thus, the new tree contains the short rate at each node where
r(t) = x(t) + α(t) so that α(t) = r(t) – x(t). Recall that dr = (θ(t) – ar)dt + σdz and that
dx = –axdt + σdz. Consequently,

dα(t) = (θ(t) – aα(t))dt

Solving, we find:

Substituting in the value for r–(u) in (10.82) and f(0, 0) = r0 , we have:
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which reduces to

(11.41)

Thus, in the r tree we displace each node by x(i∆t) + α(i∆t). While this model works
well, it is not exactly consistent with the initial term structure. This is because it
uses continuous-time displacements in a discrete-time model. An alternative ap-
proach that is exactly consistent with the initial term structure computes the α(t)’s
iteratively. Define αi = r(i∆t) – x(i∆t) and Qi,j as pure securities (or discounted prob-
abilities) that pay off $1 if node (i, j) is reached and zero otherwise. We can com-
pute αi and Qi,j iteratively using forward induction so as to exactly match the initial
term structure. By definition, Q0,0 = 1. α0 is set equal to the initial ∆t-period interest
rate. From (11.37), we can compute the probabilities at time 0. From the initial
term structure, we can also compute the discount factors di, j = e–ri,j ∆t at each time
step, that is, at time 0, d0,0 = e–r0∆t. We can compute Q1,1,Q1,0 , and Q1,–1, by using
these probabilities, discount factors, and Q0,0:

Q1,1 = Q0,0d0,0 pu
0,0

Q1,0 = Q0,0d0,0 pm
0,0 (11.42)

Q1,–1= Q0,0d0,0 pd
0,0

We compute the value of discount bonds for each time step, Pi = e–ri i∆t, i = 1, . . . ,
N. α1 is chosen to give the market price of a discount bond maturing at time 2∆t.
This can be done using the Newton-Raphson method by solving,

for α1. In general, suppose that the tree has been constructed up to time m∆t and
that the Qi,j’s have been determined for i ≤ n. The next step is to determine αm so
that the tree correctly prices a discount bond maturing at time (m + 1)∆t. By con-
struction, the interest rate at node (m, j) is αm + j∆r. Thus, the price of a discount
bond maturing at time (m + 1)∆t is
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where nk is the number of nodes on each side of the central node at time m∆t. Equa-
tion (11.41) can be explicitly solved for αm:

(11.44)

After αm is computed from (11.41), the Qi, j for i = m + 1 can be calculated using

(11.45)

where qk,j is the probability of moving from node (m, k) to node (m + 1, j) and the
summation is taken over all values of l for which this is nonzero.8 This approach is
computationally efficient and can be extended to models where there are no analyt-
ical formulas such as the Black-Karasinski (lognormal Hull-White), shown in the
next section. However, the approach is valid only for models where the short rate
or functions of the short rate follow a mean-reverting, arithmetic process.

As an example of use of this methodology, we will continue to use the previous
term structure values. We assume ∆t = 1 and that the speed of mean reversion, a, is
0.10. At time 0, x0,0 = 0, d0,0 = e–0.05(1) = 0.9512,

and j
¯

= –j̄ = –2. At time i = 1, we can compute the pure securities Q1,1, Q1,0 , and
Q1,–1 from (11.40). We also compute the discount bond prices for all time steps 
i = 1, . . . , N; that is, P2 = e–(0.055)(2)(1) = 0.8958. Next, we compute the sum of the
pure securities,
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From (11.43), we can compute α1

Since the tree changes the branching process at j̄ = 2, we use a normal branch-
ing process at nodes (1, 1), (1, 0) and (1, –1). We compute the probabilities using
(11.37) and find pu

1,1 = 0.122, pm
1,1 = 0.657, and pd

1,–1 = 0.222. At node (1, 0), pu
1,0 =

0.167, pm
1,0 = 0.667, and pd

1,0 = 0.167. At node (1, –1), the probabilities are those 
“reflected” at node (1, 1), that is, pu

1,–1 = pd
1,1 = 0.222, pm

1,1 = pm
1,–1 = 0.657, and pd

1,–1
= pu

1,1 = 0.222. We can compute the short rate and discount factors. At node (1, 1)
we find:

r1,1 = x1,1 + α1

= x0,0 + 1(∆x) + α1

= 0.0 + 0.0173 + 0.0602 = 0.0775

d1,1 = e–r1,1∆t = e–(0.0775)(1) = 0.9254

At node (1, 0),

r1,0 = x1,0 + α1

= x0,0 + 0(∆x) + α1

= 0.0 + 0.0 + 0.0602 = 0.0602

d1,0 = e–(0.0602(1)) = 0.9416

At node (1, –1), we get:

r1,–1 = x1,–1 + α1

= x0,0 –1(∆x) + α1

= 0.0 – 0.0173 + 0.0602 = 0.0429

d1,0 = e–(0.0429(1)) = 0.9580

We repeat this process for all other time steps, i > 1, until the short rate is built up
to time step N. However, we must change the branching processes (as discussed
earlier), and thus transitional probabilities at states j̄= 2 and j

¯
= –2 where the tree

gets truncated.

α1
0 9514 0 8958

1
0 0602= − =ln( . ) ln( . )

.
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The following is the code to build a Hull-White tree calibrated to the initial
short rate term structure:

/**********************************************************************************
buildHW: constructs a lognormal Hull-White tree calibrated to the yield curve
[in]:  vector<double> zero : vector of zero rates

double a : speed of mean reversion
double volatility : volatility of short rate
int N : number of time steps
double T : time to maturity

[out]: void
**********************************************************************************/
void HullWhite::buildHW(vector<double> zero, double a, double volatility, int N,

double T)
{

int i, j, k;
int jmax; // max upward branch
int jmin; // min downward branch
double pu[20] = {0.0}; // up probabilities
double pm[20] = {0.0}; // middle probabilities
double pd[20] = {0.0}; // down probabilities
double sum = 0.0; // sum of shifted discount Arrow-Debreu 

// securities
double sum1 = 0.0; // sums of discount Arrow-Debreu 

// securities
double sum2[20] = {0.0}; // sum of weighted discount Arrow-Debreu 

// securities
double alpha[20] = {0.0}; // the value of r(i*dt) – r*(i*dt)
double alpha1[20][20]; // alpha value at node i, j
double B[20] = {0.0}; // discount bond price at time step i
double dt = T/N; // time step size
double dr = volatility*sqrt(3*dt); // state step size

jmax = (int) ceil(0.1835/(a*dt));
jmin = -jmax;
B[0] = 1; // par value of discount bond at time 0

// calculate bond prices based on initial term structure
for (i = 0; i <= N; i++)
{

for (j = i; j >= -i; j--)
{

// normal branching a
if ((j != jmax) && (j != jmin))
{

pu[j] = 0.167 + 0.5*(a*a*j*j*dt*dt – a*j*dt);
pm[j] = 0.666 – a*a*j*j*dt*dt;
pd[j] = 0.167 + 0.5*(a*a*j*j*dt*dt + a*j*dt);

}
else if (j == jmin)
{
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// up branching if a == 0
pu[j] = 0.167 + 0.5*(a*a*j*j*dt*dt + a*j*dt);
pm[j] = -0.333 – a*a*j*j*dt*dt – 2*a*j*dt;
pd[j] = 1.167 + 0.5*(a*a*j*j*dt*dt + 3*a*j*dt);

}
else
{

pu[j] = 1.167 + 0.5*(a*a*j*j*dt*dt – 3*a*j*dt);
pm[j] = -0.333 – a*a*j*j*dt*dt + 2*a*j*dt;
pd[j] = 0.167 + 0.5*(a*a*j*j*dt*dt – a*j*dt);

}
}

}

// generate short rate tree
for (i = 0; i <= N; i++)
{

for (j = i; j >= -i; j--)
{

r[i][j] = j*dr;
}

}

// initialize values at node 0, 0
alpha[0] = zero[0];
r[0][0] = alpha[0];
Q[0][0] = 1.0;

// compute discount bond prices
for (i = 0; i <= N+1; i++)
{

B[i+1] = exp(-zero[i]*(i+1)*dt);
}

for (jmax = 0; jmax <= N+1; jmax++)
{

// reinitialize values for next iteration
sum = 0;
sum1 = 0;

for (j = jmax+1; j >= -(jmax+1); j--)
{

sum2[j] = 0;
}
for (j=jmax; j >= -jmax; j--)
{

sum1 += (Q[jmax][j]*exp(-j*dr*dt));
}
alpha[jmax] = (1/dt)*(log(sum1/B[jmax+1]));

for (j = jmax; j >= -jmax; j--)
{

sum += Q[jmax][j]*exp(-(alpha[jmax] + j*dr)*dt);

11.4 Building a Hull-White Tree Consistent with the Yield Curve 493



}
P[jmax] = sum; // assign bond price equal to sum of shifted Arrow-

// Debreu price

// determine Q[i][j] for i = m+1
if (jmax == 0)
{

Q[1][1] = 0.167*exp(-(alpha[jmax] + dr));
Q[1][0] = 0.666*exp(-alpha[jmax]);
Q[1][-1] = 0.167*exp(-(alpha[jmax] – dr));

}
else // if (jmax > 1)
{

for (k = jmax; k >= -jmax; k--)
{

for (j = k+1; j >= k-1; j--)
{

if (j == jmax + 1)
{

Q[jmax+1][jmax+1] = Q[jmax][jmax]*pu[jmax]*(-(alpha[jmax] +
jmax*dr)*dt);

}
if (j == -(jmax + 1))
{

Q[jmax+1][-jmax-1] = Q[jmax][-jmax]*pd[-jmax]*(-(alpha[jmax] + 
(- jmax)*dr)*dt);

}
if ((pu[k] > 0) && (j – k == 1))

{
sum2[j] += Q[jmax][k]*pu[k]*exp(-(alpha[jmax] + k*dr)*dt);

}
if ((pm[k] > 0) && (j – k == 0))
{

sum2[j] += Q[jmax][k]*pm[k]*exp(-(alpha[jmax] + k*dr)*dt);
}
if ((pd[k] > 0) && (j – k == -1))
{

sum2[j] += Q[jmax][k]*pd[k]*exp(-(alpha[jmax] + k*dr)*dt);
}
Q[jmax+1][j] = sum2[j];

}
}

}
}

r[0][0] = 0;
P[0] = 1;
for (i = 0; i <= N; i++)
{

for (j = i; j >= -i; j--)
{

alpha1[i][j] = alpha[i];
rate[i][j] = alpha1[i][j] + r[i][j];

494 TREE-BUILDING PROCEDURES



d[i][j] = exp(-rate[i][j]*dt);
}

}
}

We have assumed that the length of the time step is constant. But it is possible
to build the tree with time steps of varying lengths. When the x* tree is constructed,
the spacing between the nodes at time ti+1 is set equal to

The branching probabilities are chosen so that the mean and standard deviation of
the change in x* are matched. The central node that branches from ti+1 is chosen to
be the node closest to E[x*]; that is, x*i – a(ti+1 – ti)x*i . The final tree for x is con-
structed from the tree for x* in a similar manner to the constant time step case.9

11.5 BUILDING A LOGNORMAL HULL-WHITE 
(BLACK-KARASINSKI) TREE

The procedure outlined in the preceding section can be extended to functions of the
short rate and models with no analytical results, that is, f(r) = log r. In particular, it
is quite applicable to lognormal processes for the short rate. The lognormal HW
model or restricted Black-Karasinski (1991) model can be represented as:

d ln r(t) = a(ln r– – ln r(t))dt + σdz (11.46)

or written in its more general Black-Karasinski form

d ln r(t) = (θ(t) – a ln r(t))dt + σdz (11.47)

This lognormal process does not allow negative rates. It is often used by practition-
ers for this reason. The time-dependent term in the drift is used to calibrate the
model to the initial yield curve. The time-homogenous (constant) parameters a and
σ determine the volatility term structure. From (11.47), by Ito’s lemma, we find:
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which has the explicit solution for s ≤ t.

Therefore, r(t) conditional on ℑs is lognormally distributed and has first and
second moments given by:

and

We can adapt the Black-Karasinski model to the methodology outlined in the
preceding section to construct a short rate tree (for computing discount bond and
bond options that do not have closed-form analytical solutions). First, we set x =
ln r, yielding the process:

dx = (θ(t) – ax)dt + σdz

We then set θ(t) = 0, so that the process becomes:

dx = –axdt + σdz

as before. At time 0, x = 0. We assume that  

the same as before. The tree is symmetrical with equally spaced state and time
steps. The model, however, can be modified to have time-dependent changes in ∆r
and ∆t; that is, ∆i = ti+1 – ti and
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for each i. At node (i, j), we compute xi, j = j∆x. We then need to compute the pure
security prices Qi, j at each node (i, j) and the displacement (shift) parameters αi

at each time step i = 1, . . . , N. The αi’s are chosen to correctly price a (i + 1)∆t-
maturity discount bond. The ∆t-period interest rate at the jth node at time i∆t
becomes:

ri, j = exp(αi + xi, j)

= exp(αi + j∆x)
(11.48)

Writing bond prices as the sum of discounted pure securities in (11.7) using the
short in (11.47) yields:

(11.49)

where ni denotes the uppermost node at time step i (recall that we don’t know what
ni is until the tree is built—if j < j̄ then ni = i, otherwise ni = j̄ ). If i = 0, α0 = ln(r0,0 ).
We can solve for the αi by using the Newton-Raphson method. We iterate:

(11.50)

where

(11.51)

updating αk = αk+1 at each time step until |αk+1 – αk| < ε, for arbitrarily small ε (i.e.,
0.0001). Once the tree for x is built and we determine the αi , we can build the tree
for r by applying (11.48) at each node.

The following is the code to build a lognormal Hull-White tree:

/**********************************************************************************
buildHWLog: constructs and builds a lognormal Hull-White tree calibrated to the

yield curve
[in]: vector<double> zero : vector of zero rates (typically, bootstrapped from 

yield curve)
double a : level of mean reversion
int N : number of time steps
double T : time to maturity

φ α
α

α α( ) exp( exp( ) )exp( ),k
i

k
i j

j n

n

k k
P

Q j r t j r t
i

i

= ∂
∂

= − + ++

=−
∑1 ∆ ∆ ∆ ∆

α α

α

φ αk k

i j
j n

n

k i

k

Q j r t P
i

i

+
=−

+

= −

− + −∑
1

1, exp( exp( ) )

( )

∆ ∆

P Q j r ti i j
j n

n

i

i

i

+
=−

= − +∑1 , exp( exp( ) )α ∆ ∆

11.5 Building a Lognormal Hull-White (Black-Karasinski) Tree 497



double volatility : volatility of short rate
double inityield : initial yield guess for Newton-Raphson method

[out]:  void
**********************************************************************************/
void HullWhiteLog::buildHWLog(vector<double> zero, double a, int N, double T,

double volatility, double inityield)
{

int i, j, k;
int jmax = 0; // max upward branching level
int jmin = 0; // min downward branching level
double P[20] = {0.0}; // sum of Arrow-Debreu securities at time 

// step i
double pu1[20][20] = {0.0}; // up probability at node i,j
double pm1[20][20] = {0.0}; // middle probability at node i,j
double pd1[20][20] = {0.0}; // down probability at node i,j
double sum = 0.0; // sum of discounted Arrow-Debreu securities 

// at branch jmax
double sum1= 0.0; // sum of discounted Arrow-Debreu securities
double sum2 = 0.0; // sum of first derivatives of Arrow-Debreu 

// securities
double alpha[20] = {0.0}; // the value of r(i*dt) – r*(i*dt)
double alpha1[20][20] = {0.0}; // calibrated shift parameter at node i,j
double alpha2 = 0.0; // computed Newton-Raphson shift param value
double alpha3 = 0.0; // updates alpha2
double r[20][20] = {0.0}; // short rate at node i, j
double error = 0.0; // computed error in Newton-Raphson method
double B[20] = {0.0}; // zero bond price at time step i
double Q[20][20] = {0.0}; // the present value of a security that pays 

// off $1 if node (i,j) is reached, else 0.
const double tolerance = 0.00001; // error tolerance level
double dt = T/N; // time step size (typically, 0.5 or 1 year)
double dr = volatility*sqrt(3*dt); // state size step

jmax = (int) ceil(0.1835/(a*dt));
jmin = -jmax;

// first stage of HW procedure
for (i = 0; i < N; i++)
{

for (j = i; j >= -i; j--)
{

// normal branching a
if ((j != jmax) && (j != jmin))
{

pu[j] = 0.167 + 0.5*(a*a*j*j*dt*dt – a*j*dt);
pm[j] = 0.666 – a*a*j*j*dt*dt;
pd[j] = 0.167 + 0.5*(a*a*j*j*dt*dt + a*j*dt);

}
else if (j == jmin)
{

// up branching if a == 0
pu[j] = 0.167 + 0.5*(a*a*j*j*dt*dt + a*j*dt);
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pm[j] = -0.333 – a*a*j*j*dt*dt – 2*a*j*dt;
pd[j] = 1.167 + 0.5*(a*a*j*j*dt*dt + 3*a*j*dt);

}
else
{

pu[j] = 1.167 + 0.5*(a*a*j*j*dt*dt – 3*a*j*dt);
pm[j] = -0.333 – a*a*j*j*dt*dt + 2*a*j*dt;
pd[j] = 0.167 + 0.5*(a*a*j*j*dt*dt – a*j*dt);

}
pu1[i][j] = pu[j];
pm1[i][j] = pm[j];
pd1[i][j] = pd[j];

}
}

// generate r-tree
for (i = 0; i <= jmax+1; i++)
{

for (j = i; j >= -i; j--)
{

r[i][j] = j*dr;
}

}

// initialize
Q[0][0] = 1.0;
B[0] = 1.0;
alpha[0] = inityield; // log(r1[0]);

// calculate bond prices based on initial term structure
for (i = 0; i <= N; i++)
{

B[i+1] = exp(-zero[i]*(i+1)*dt);
}

// second stage of HW procedure
for (jmax = 0; jmax < N; jmax++)
{

// reinitialize values for next iteration
i = jmax;
sum = 0;
error = 0.10;
Q[0][0] = 1.0;

// determine Q[i][j] for i = m+1
if (i == 1)
{

Q[1][1] = Q[0][0]*pu1[0][0]*d[0][0];
Q[1][0] = Q[0][0]*pm1[0][0]*d[0][0];
Q[1][-1] = Q[0][0]*pd1[0][0]*d[0][0];

}
else if (i == 2)
{
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Q[2][2] = Q[1][1]*pu1[1][1]*d[1][1];
Q[2][1] = Q[1][1]*pm1[1][1]*d[1][1] + Q[1][0]*pu1[1][0]*d[1][0];
Q[2][0] = Q[1][1]*pd1[1][1]*d[1][1] + Q[1][0]*pm1[1][0]*d[1][0]

+ Q[1][-1]*pu1[1][-1]*d[1][-1];
Q[2][-1] = Q[1][0]*pd1[1][0]*d[1][0] + Q[1][-1]*pm1[1][-1]*d[1][-1];
Q[2][-2] = Q[1][-1]*pd1[1][-1]*d[1][-1];

}
else
{

for (j = -i+1; j <= i-1; j++)
{

if (j == i-1)
{

// top node values
Q[i][j] = Q[i-1][j-1]*pu1[i-1][j-1]*d[i-1][j-1];

}
else if (j == -i+1)
{

// bottom node values
Q[i][j] = Q[i-1][j+1]*pd1[i-1][j+1]*d[i-1][j+1];

}
else if (j == -i+2)
{

Q[i][j] = Q[i-1][j]*pm1[i-1][j]*d[i-1][j] + Q[i-1][j+1]*pd1[i-
1][j+1]*d[i-1][j+1];

}
else if (j == i-2)
{

Q[i][j] = Q[i-1][j]*pm1[i-1][j]*d[i-1][j] + Q[i-1][j-1]*pu1[i-1][j-
1]*d[i-1][j-1];

}
else
{

Q[i][j] = Q[i-1][j]*pm1[i-1][j]*d[i-1][j] + Q[i-1][j+1]*pd1[i-
1][j+1]*d[i-1][j+1] + Q[i-1][j-1]*pu1[i-1][j-1]*d[i-1][j-1];

}
}

}

if (jmax > 0)
{

alpha2 = inityield; // for example, -2.741;

do
{

sum1 = 0;
sum2 = 0;
for (j = jmax; j >= -jmax; j--)
{

sum1 += Q[i][j]*exp(-dt*exp(alpha2 + j*(dr)));
sum2 += Q[i][j]*exp(-dt*(alpha2 + j*(dr)))*(exp(-dt*(exp(alpha2 +

j*(dr)))));
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}
alpha3 = alpha2 – (sum1 – B[jmax+1])/(-(dt)*sum2);
error = abs(alpha3 – alpha2);
alpha2 = alpha3;

}
while (error > tolerance);

alpha[jmax] = alpha2;
}

for (k = i; k >= -i; k--)
{

alpha1[i][k] = alpha[i];
rate[i][k] = exp(alpha1[i][k] + r[i][k]);
d[i][k] = exp(-rate[i][k]*dt);

}
for (j = jmax; j >= -jmax; j--)
{

sum += Q[jmax][j]*exp(-dt*exp(alpha[jmax] + j*(dr)));
}
P[jmax+1] = sum;

}
rate[0][0] = zero[0];
d[0][0] = exp(-rate[0][0]*dt);

}

11.6 BUILDING TREES FITTED TO YIELD AND VOLATILITY CURVES

The Hull-White methodology to building trinomial trees can be extended to be
consistent with both yield and volatility data. Since we are now calibrating the
model to both market yield and volatility data, the Hull-White model in (11.37)
needs be extended to have two time-dependent drift parameters, θ(t) and a(t):

dr = (θ(t) – a(t)r)dt + σdz (11.52)

Making the mean-reversion rate, a, time-dependent allows the model to fit market
volatility data. Increasing the parameterization of the model allows a fitting to
more data and thus a model more consistent with the market. However, overpara-
meterization (i.e., using too many time-varying parameters) can be a problem since
it can cause a less regular evolution in time of market volatility structures—in fact,
future implied volatility structures are likely to be unrealistic. Moreover, analytical
tractability can be lost.

It is analogous to the binomial case of the BDT tree, but requires a change in
the geometry of the tree after the first step. It is binomial in the first time step, with
equal probabilities of up and down movements, converting to a trinomial tree af-
terward. We first compute the discount bond prices Pi = e–ri i ∆ t, i = 1, . . . , N, and

11.6 Building Trees Fitted to Yield and Volatility Curves 501



then solve for Pu
i and Pd

i . We will use continuously compounded rates. We must
solve

and

simultaneously for i ≥ 2. As in the BDT tree, we get:

where Pu
i is the solution to:

Once we determine Pu
i and Pd

i , we can compute the short rates at the first time step:

At time i ≥ 2, the short rate at node (i, j) can be computed as:

ri, j = r0,0 + j∆r

where

The tree is constructed for time steps i > 1 using the procedure similar to the BDT
methodology for calibrating to the yield and volatility curves in section 11.1. The
time-dependent parameters θ(t) and a(t) are chosen to be consistent with Pu

i and Pd
i .
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where pj′, j is the transitional probability of moving from node (i – 1, j ′) to node (i, j),
di-1,j′’s are the one-period discount factors at time step i – 1, Qu

1,1 = 1, and Qd
1,–1 = 1.

Suppose the tree has been constructed up to time i∆t for i > 1. As before, we need to
determine the branching process at each node for the next time step. This is done
by computing the expected change in the short rate process, (θ(t) – a(t)r)∆t, so that
θ(i∆t) and a(i∆t) are consistent with Pu

i and Pd
i . Hull and White (1994) show that:

where

The drift rate of the short rate at node (i, j), µi,j , at time i∆t can then be computed as

µi,j = (θ(i∆t) – a(i∆t)ri,j)∆t

once the drift parameters, θ(i∆t) and a(i∆t), are determined. The transitional proba-
bilities from nodes at time i to nodes at time (i + 1)∆t are shown to be

where η = µi, j + (j – k)∆r. The expected change of r at node (i, j) is ri,j + µi,j . At i = 1,
η = r1, j + µ1, j – (r0,0 + k∆r). At time step i > 1, for a normal expected change in 
the short rate, k = j with drift η = µi,j ; for an upward expected change, k = j – 1
with drift η = µi,j + ∆r; and for a downward expected change, k = j + 1 with drift 
η = µi,j – ∆r.

p
t

r r

p
t

r

p p p

i j
u

i j
m

i j
d

i j
u

i j
m

,

,

, , ,

= + +

= − +

= − −

σ η η

σ η

2 2

2

2 2

2

2 2

1

1

∆
∆ ∆

∆
∆

a Q e t b Q e r t

c Q e t d Q e r t

e Q e P

i j
u

j

r t
i j
u

j

r t
i j

i j
d

j

r t
i j
d

j

r t
i j

i j
d

j

r t

i j i j

i j i j

i j

= = −

= = −

= −

∑ ∑

∑ ∑

∑

− −

− −

−

, , ,

, , ,

,

, ,

, ,

,

2 2 2 2

2 2 2 2

2

∆ ∆

∆ ∆

∆

∆ ∆

∆ ∆

ii
u

i j
d

j

r t
i
df Q e Pi j

+ +2
2

2= −∑ −
,

, ∆

θ( ) ( )i t
de bf
ad bc

a i t
af ce
ad bc

∆ ∆= −
−

= −
−

Q Q p di j
d

i j
d

j
j j i j, , , ,= − ′

′
′ − ′∑ 1 1

11.6 Building Trees Fitted to Yield and Volatility Curves 503



The following is the code to build a Hull-White model calibrated to both the
yield and volatility curves:

/**********************************************************************************
buildHWLog: constructs a lognormal Hull-White tree calibrated to the yield curve
[in]:  vector<double> yield_curve : vector of yield curve

double a1 : level of mean reversion
int N : number of time steps
double T : time to maturity
vector<double> yield : yield to maturity rates
vector<double> volatility_curve : vector of yield volatilities
int abs_flag : flag to indicate whether volatilities are 

annualized
[out]: void
**********************************************************************************/
void HullWhiteLog::buildHWLog(int N, double T, double a1, vector<double> yield,

vector<double> volatility_curve, int abs_flag)
{

double R[20] = {0.0}; // zero yield rates
double P[20] = {0.0}; // discount bond prices
double Pu[20] = {0.0}; // discount bond price in up nodes
double Pd[20] = {0.0}; // discount bond price in down nodes
double r[20][20] = {0.0}; // short rate at node i, j
double volR[20] = {0.0}; // volatility of short rate
double vol, a, b, c, d1, e, f; // log HW parameters
double pu[20][20] = {0.0}; // up probability at node i,j
double pm[20][20] = {0.0}; // middle probability at node i,j
double pd[20][20] = {0.0}; // down probability at node i,j
double Qu[20][20] = {0.0}; // prices of Arrow-Debreu in up state
double Qd[20][20] = {0.0}; // prices of Arrow-Debreu in down state
double d[20][20] = {0.0}; // discount rate
double theta[20] = {0.0}; // theta parameter
double mu[20][20] = {0.0}; // mu parameter
double tolerance = 0.0001; // error tolerance level
double error = 0.0; // numerical search error
double diff = 0.0; // drift difference r[i][j] – mu[i][j];
double val = 0.0; // f(alpha)
double val1 = 0.0; // first derivative of f(alpha)
double alpha[20] = {0.0}; // alpha (a) parameter
double eta = 0.0; // eta parameter
double topNode[20] = {0.0}; // stores top branch level
double lowNode[20] = {0.0}; // stores low branch level
int jmax = 0; // max upper branch level
int jmin = 0; // min lower branch level
int i, j, k;

// pre-compute constants
double dt = T/N; // time step size (typically, 0.5 or 1 year)
double dr = vol*sqrt(3*dt); // state step size
double sdt = sqrt(dt); // square root of time step
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// initialize yield curve
vol = volatility_curve[0];
for (i = 1; i <= N+1; i++)
{

R[i] = yield[i-1];
P[i] = exp(-R[i]*i*dt);

// compute volatility depending on whether volatilities are annualized
if (abs_flag == 1)

volR[i] = volatility_curve[i-1]/R[i];
else

volR[i] = volatility_curve[i-1];
}

r[0][0] = R[1];
jmax = (int) ceil(0.1835/(a1*dt));
jmin = -jmax;

for (i = 0; i < N; i++)
{

if (i < jmax)
topNode[i] = i;

else
topNode[i] = jmax;

if (i > jmin)
lowNode[i] = -i;

else
lowNode[i] = jmin;

}

// compute Pu[.] and Pd[.]
double alpha2 = 0.0;
for (i = 2; i <= N; i++)
{

// initial guess – change value if convergence does not occur
double alpha1 = 0.94;
// use Newton-Raphson numerical search to solve for Pu[i]
do
{

// compute f(x) = 0
val = alpha1 + pow(alpha1,exp(-2*volR[i]*sdt)) – 2*P[i]*exp(r[0][0]*dt);
// compute derivative
val1 = 1 + exp(-2*volR[i]*sdt)*pow(alpha1,exp(-2*volR[i]*sdt) – 1);
alpha2 = alpha1 – val/val1;
error = abs(alpha2 – alpha1);
alpha1 = alpha2;

}
while (error > tolerance);

Pu[i] = alpha1;
Pd[i] = pow(Pu[i],exp(-2*volR[i]*sdt));

}
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// initialize first node
pu[0][0] = 0.5;
pd[0][0] = 0.5;
d[0][0] = exp(-r[0][0]*dt);

// initialize up (U) and down (D) nodes
r[1][1] = -log(Pu[2])/dt;
r[1][-1] = -log(Pd[2])/dt;
d[1][1] = exp(-r[1][1]*dt);
d[1][-1] = exp(-r[1][-1]*dt);
Qu[1][1] = 1.0;
Qd[1][1] = 0.0;
Qd[1][-1] = 1.0;
Qu[1][-1] = 0.0;

// find theta and alpha for first time step
a = exp(-2*r[1][1]*dt)*pow(dt,2);
b = -exp(-2*r[1][1]*dt)*r[1][1]*dt*dt;
c = exp(-2*r[1][-1]*dt)*dt*dt;
d1= -exp(-2*r[1][-1]*dt)*r[1][-1]*dt*dt;
e = exp(-2*r[1][1]*dt)-Pu[3];
f = exp(-2*r[1][-1]*dt)-Pd[3];

theta[1] = ((d1*e) – (b*f))/((a*d1) – (b*c));
alpha[1] = ((a*f) – (c*e))/((a*d1) – (b*c));

for (j = -1; j <= 1; j += 2)
{

mu[1][j] = (theta[1] – alpha[1]*r[1][j])*dt;
// decide branch process [determines k]
diff = r[1][j] – mu[1][j];
if (abs(diff) < 0.01)

k = 0; // normal branching
else if (diff > r[1][j])

k = -1; // upward branching
else if (diff < r[1][j])

k = 1; // downward branching

eta = r[1][j] + mu[1][j] – (r[0][0] + k*dr);

// calculate probabilities
pu[1][j] = (vol*vol*dt + eta*eta)/(2*dr*dr) + eta/(2*dr);
pm[1][j] = 1 – (vol*vol*dt + eta*eta)/(dr*dr);
pd[1][j] = 1 – pu[1][j] – pm[1][j];

}

// grow tree for the short rate
for (i = 2; i <= N-1; i++)
{

// using m[i-1][j] create nodes at time step i
for (j = -i+1; j <= i-1; j++)
{

r[i][j] = r[0][0] + j*dr;
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d[i][j] = exp(-r[i][j]*dt);
}

// update pure security prices at time step i
if (i == 2)
{

Qu[2][1] = Qu[1][1]*pu[1][1]*d[1][1];
Qd[2][1] = Qd[1][-1]*pu[1][-1]*d[1][-1];

Qu[2][0] = Qu[1][1]*pm[1][1]*d[1][1];
Qd[2][0] = Qd[1][-1]*pm[1][-1]*d[1][-1];

Qu[2][-1] = Qu[1][1]*pd[1][1]*d[1][1];
Qd[2][-1] = Qd[1][-1]*pd[1][-1]*d[1][-1];

}
else if (i == 3)
{

Qu[3][2] = Qu[2][1]*pu[2][1]*d[2][1];
Qd[3][-2] = Qd[2][-1]*pd[2][-1]*d[2][-1];

Qu[3][1] = Qu[2][1]*pm[2][1]*d[2][1] + Qd[2][0]*pu[2][0]*d[2][0];
Qd[3][1] = Qd[2][1]*pm[2][1]*d[2][1] + Qd[2][0]*pu[2][0]*d[2][0];

Qu[3][-1] = Qu[2][-1]*pm[2][-1]*d[2][-1] + Qu[2][0]*pd[2][0]*d[2][0];
Qd[3][-1] = Qd[2][-1]*pm[2][-1]*d[2][-1] + Qd[2][0]*pd[2][0]*d[2][0];

Qu[3][0] = Qu[2][1]*pd[2][1]*d[2][1] + Qu[2][0]*pm[2][0]*d[2][0] +
Qu[2][-1]*pu[2][-1]*d[2][-1];

Qd[3][0] = Qd[2][1]*pd[2][1]*d[2][1] + Qd[2][0]*pm[2][0]*d[2][0]
+ Qd[2][-1]*pu[2][-1]*d[2][-1];

}
else
{

for (j = -i+1; j <= i-1; j++)
{

if (j == i-1)
{

// top node values
Qu[i][j] = Qu[i-1][j-1]*pu[i-1][j-1]*d[i-1][j-1];
Qd[i][j] = Qd[i-1][j-1]*pu[i-1][j-1]*d[i-1][j-1];

}
else if (j == -i+1)
{

// bottom node values
Qu[i][j] = Qu[i-1][j+1]*pd[i-1][j+1]*d[i-1][j+1];
Qd[i][j] = Qd[i-1][j+1]*pd[i-1][j+1]*d[i-1][j+1];

}
else if (j == -i+2)
{

Qu[i][j] = Qu[i-1][j]*pm[i-1][j]*d[i-1][j] + Qu[i-1][j+1]*
pd[i-1][j+1]*d[i-1][j+1];

Qd[i][j] = Qd[i-1][j]*pm[i-1][j]*d[i-1][j] + Qd[i-1][j+1]*
pd[i-1][j+1]*d[i-1][j+1];
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}
else if (j == i-2)
{

Qu[i][j] = Qu[i-1][j]*pm[i-1][j]*d[i-1][j] + Qu[i-1][j-1]*pu[i-1][j-
1]*d[i-1][j-1];

Qd[i][j] = Qd[i-1][j]*pm[i-1][j]*d[i-1][j] + Qd[i-1][j-1]*pu[i-1][j-
1]*d[i-1][j-1];

}
else
{

Qu[i][j] = Qu[i-1][j]*pm[i-1][j]*d[i-1][j] + Qu[i-1][j+1]*pd[i-
1][j+1]*d[i-1][j+1] + Qu[i-1][j-1]*pu[i-1][j-1]*d[i-1][j-1];

Qd[i][j] = Qd[i-1][j]*pm[i-1][j]*d[i-1][j] + Qd[i-1][j+1]*pd[i-
1][j+1]*d[i-1][j+1]+ Qd[i-1][j-1]*pu[i-1][j-1]*d[i-1][j-1];

}
}

}

// find theta and alpha
a = b = c = d1 = e = f = 0;
for (j = -i+1; j <= i-1; j++)
{

a = a + Qu[i][j]*exp(-2*r[i][j]*dt)*dt*dt;
b = b – Qu[i][j]*exp(-2*r[i][j]*dt)*r[i][j]*dt*dt;
c = c + Qd[i][j]*exp(-2*r[i][j]*dt)*dt*dt;
d1 = d1 – Qd[i][j]*exp(-2*r[i][j]*dt)*r[i][j]*dt*dt;
e = e + Qu[i][j]*exp(-2*r[i][j]*dt);
f = f + Qd[i][j]*exp(-2*r[i][j]*dt);

}
e = e – Pu[i+2];
f = f – Pd[i+2];

theta[i] = ((d1*e) – (b*f))/((a*d1) – (b*c));
alpha[i] = ((a*f) – (c*e))/((a*d1) – (b*c));

// compute drift and decide branch process
for (j = -i+1; j <= i-1; j++)
{

mu[i][j] = (theta[i] – alpha[i]*r[i][j])*dt;
// decide branch process [determines k]
diff = r[i][j] – mu[i][j];
if (abs(diff) < 0.02)

k = j; // normal branching
else if (diff > r[i][j])

k = j-1; // upward branching
else if (diff < r[i][j])

k = j+1; // downward branching

eta = mu[i][j] + (j – k)*dr;

// calculate probabilities
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pu[i][j] = (vol*vol*dt + eta*eta)/(2*dr*dr) + eta/(2*dr);
pm[i][j] = 1 – (vol*vol*dt + eta*eta)/(dr*dr);
pd[i][j] = 1 – pu[i][j] – pm[i][j];

}
}

}

11.7 VASICEK AND BLACK-KARASINSKI MODELS

In this section, we provide general object-oriented and robust implementations for
the Vasicek and Black-Karasinski models (which are extended by Hull-White and
Black-Derman-Toy models, respectively). See Appendix D on the CD-ROM for a
discussion on robust pricing implementations in practice.

Consider the Vasicek class:

#include “OneFactorModel.h”

namespace QuantLib
{

namespace ShortRateModels
{

/******************************************************************************
Vasicek model class
This class implements the Vasicek model defined by
dr_t = a(b – r_t)dt + \sigma dW_t , where a , b and sigma are constants.
******************************************************************************/
class Vasicek : public OneFactorAffineModel
{

public:
Vasicek(Rate r0 = 0.05, double a = 0.1, double b = 0.05, double sigma =

0.01);
virtual double discountBondOption(Option::Type type, double strike, Time

maturity, Time bondMaturity) const;
virtual Handle<ShortRateDynamics> dynamics() const;

protected:
virtual double A(Time t, Time T) const;
virtual double B(Time t, Time T) const;
double a() const { return a_(0.0); }
double b() const { return b_(0.0); }
double sigma() const { return sigma_(0.0); }

private:
class Dynamics;
double r0_;
Parameter& a_;
Parameter& b_;
Parameter& sigma_;

};
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/******************************************************************************
Short-rate dynamics in the Vasicek model
The short-rate follows an Ornstein-Uhlenbeck process with mean b.
******************************************************************************/
class Vasicek::Dynamics : public ShortRateDynamics
{

public:
Dynamics(double a, double b, double sigma, double r0)

: ShortRateDynamics(Handle<DiffusionProcess>(
new OrnsteinUhlenbeckProcess(a, sigma, r0 – b))), a_(a), b_(b),

r0_(r0) {}

virtual double variable(Time t, Rate r) const {
return r – b_;

}
virtual double shortRate(Time t, double x) const {

return x + b_;
}

private:
double a_, b_, r0_;

};

// inline definitions

inline Handle<OneFactorModel::ShortRateDynamics>
Vasicek::dynamics() const {

return Handle<ShortRateDynamics>(new Dynamics(a(), b() , sigma(), r0_));
}

The class has the following method definitions:

#include “Vasicek.h”
#include “BlackModel.h”

namespace QuantLib
{

namespace ShortRateModels
{

using Optimization::NoConstraint;
using Optimization::PositiveConstraint;

Vasicek::Vasicek(Rate r0, double a, double b, double sigma) :
OneFactorAffineModel(3), r0_(r0), a_(arguments_[0]), b_(arguments_[1]),
sigma_(arguments_[2])

{
a_ = ConstantParameter(a, PositiveConstraint());
b_ = ConstantParameter(b, NoConstraint());
sigma_ = ConstantParameter(sigma, PositiveConstraint());

}
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double Vasicek::A(Time t, Time T) const
{

double sigma2 = sigma()*sigma();
double bt = B(t, T);
return exp((b() – 0.5*sigma2/(a()*a()))*(bt – (T – t)) –

0.25*sigma2*bt*bt/a());

}

double Vasicek::B(Time t, Time T) const
{

return (1.0 – exp(-a()*(T – t)))/a();
}

/******************************************************************************
discountBondOption: fits shift parameter to term structure and mean reversion

parameter a and volatility
[in]  Option::Type type : option type (C)all or (P)ut

double strike : strike price
Time maturity : maturity of bond option
Time bondMaturity : maturity of bond

[out] double : bond option price
******************************************************************************/
double Vasicek::discountBondOption(Option::Type type, double strike, Time

maturity, Time bondMaturity) const
{

double v;
if (fabs(maturity) < QL_EPSILON)
{

v = 0.0;
}
else
{

v = sigma()*B(maturity, bondMaturity)*sqrt(0.5*(1.0 – exp
(-2.0*a()*maturity))/a());

}
double f = discountBond(0.0, bondMaturity, r0_);
double k = discountBond(0.0, maturity, r0_)*strike;
double w = (type==Option::Call)? 1.0 : -1.0;

return BlackModel::formula(f, k, v, w);
}

}
}

We now define the BlackKarasinski class:

#include “ShortRateModels/onefactormodel.h”

namespace QuantLib

11.7 Vasicek and Black-Karasinski Models 511



{
namespace ShortRateModels
{

/******************************************************************************
Standard Black-Karasinski model class.
This class implements the standard Black-Karasinski model defined by
d\ln r_t = (\theta(t) – \alpha \ln r_t)dt + \sigma dW_t, where alpha and sigma
are constants.
******************************************************************************/
class BlackKarasinski : public OneFactorModel, public

TermStructureConsistentModel
{

public:
BlackKarasinski(const RelinkableHandle<TermStructure>& termStructure,

double a = 0.1, double sigma = 0.1);
Handle<ShortRateDynamics> dynamics() const {

throw Error(“No defined process for Black-Karasinski”);
}
Handle<Lattices::Lattice> tree(const TimeGrid& grid) const;

private:
class Dynamics;
class Helper;
double a() const { return a_(0.0); }
double sigma() const { return sigma_(0.0); }
Parameter& a_;
Parameter& sigma_;

};

/******************************************************************************
Short-rate dynamics in the Black-Karasinski model
The short-rate is here r_t = exp{\varphi(t) + x_t} where varphi(t) is the

deterministic time-dependent parameter (which can not be determined
analytically) used for term-structure fitting and x_t is the state variable
following an Ornstein-Uhlenbeck process.

******************************************************************************/
class BlackKarasinski::Dynamics : public BlackKarasinski::ShortRateDynamics
{

public:
Dynamics(const Parameter& fitting, double alpha, double sigma)

: ShortRateDynamics(Handle<DiffusionProcess>(new
OrnsteinUhlenbeckProcess(alpha, sigma))), fitting_(fitting) {}

double variable(Time t, Rate r) const {
return log(r) – fitting_(t);

}
double shortRate(Time t, double x) const {

return exp(x + fitting_(t));
}

private:
Parameter fitting_;
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};
}

}

The class has the following method definitions:

#include “BlackKarasinski.h”
#include “Trinomialtree.h”
#include “Brent.h”

namespace QuantLib
{

namespace ShortRateModels
{

using namespace Lattices;

/******************************************************************************
Private function used by solver to determine time-dependent parameter
******************************************************************************/
class BlackKarasinski::Helper : public ObjectiveFunction
{

public:
Helper(Size i, double xMin, double dx, double discountBondPrice,

const Handle<ShortRateTree>& tree) : size_(tree->size(i)),
dt_(tree->timeGrid().dt(i)), xMin_(xMin), dx_(dx), statePrices_

(tree->statePrices(i)), discountBondPrice_(discountBondPrice) {}

double operator()(double theta) const
{

double value = discountBondPrice_;
double x = xMin_;
for (Size j=0; j<size_; j++)
{

double discount = exp(-exp(theta+x)*dt_);
value -= statePrices_[j]*discount;
x += dx_;

}
return value;

}
private:

Size size_;
Time dt_;
double xMin_, dx_;
const Array& statePrices_;
double discountBondPrice_;
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};

using Optimization::PositiveConstraint;

/******************************************************************************
BlackKarasinski : Constructor
[in] RelinkableHandle<TermStructure>& termStructure : term structure

double a : mean reversion parameter
double sigma : volatility parameter

******************************************************************************/
BlackKarasinski::BlackKarasinski(const RelinkableHandle<TermStructure>&

termStructure, double a, double sigma)
: OneFactorModel(2), TermStructureConsistentModel(termStructure),
a_(arguments_[0]), sigma_(arguments_[1])

{
a_ = ConstantParameter(a, PositiveConstraint());
sigma_ = ConstantParameter(sigma, PositiveConstraint());

}

/******************************************************************************
tree: builds trinomial tree that approximates Black-Karasinski
[in]  TimeGrid& grid : time grid
[out] Handle<Lattices::Lattice> : Hull-White tree
******************************************************************************/
Handle<Lattice> BlackKarasinski::tree(const TimeGrid& grid) const
{

TermStructureFittingParameter phi(termStructure());

Handle<ShortRateDynamics> numericDynamics(new Dynamics(phi, a(), sigma()));

Handle<TrinomialTree> trinomial(
new TrinomialTree(numericDynamics->process(), grid));

Handle<ShortRateTree> numericTree(
new ShortRateTree(trinomial, numericDynamics, grid));

Handle<TermStructureFittingParameter::NumericalImpl> impl =
phi.implementation();

impl->reset();
double value = 1.0;
double vMin = -50.0;
double vMax = 50.0;
for (Size i=0; i<(grid.size() – 1); i++)
{

double discountBond = termStructure()->discount(grid[i+1]);
double xMin = trinomial->underlying(i, 0);
double dx = trinomial->dx(i);
Helper finder(i, xMin, dx, discountBond, numericTree);
Solvers1D::Brent s1d = Solvers1D::Brent();
s1d.setMaxEvaluations(1000);
value = s1d.solve(finder, 1e-7, value, vMin, vMax);
impl->set(grid[i], value);
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// vMin = value – 10.0;
// vMax = value + 10.0;

}
return numericTree;

}
}

}

11.8 COX-INGERSOLL-ROSS IMPLEMENTATION

The following is an implementation of the Cox-Ingersoll-Ross (1985a) model:

#include “OneFactorModel.h”

namespace QuantLib
{

namespace ShortRateModels
{

/******************************************************************************
Cox-Ingersoll-Ross model class.
This class implements the Cox-Ingersoll-Ross model defined by
dr_t = k(theta – r_t)dt + sqrt{r_t}\sigma dW_t .
******************************************************************************/
class CoxIngersollRoss : public OneFactorAffineModel
{

public:
CoxIngersollRoss(Rate r0 = 0.05, double theta = 0.1, double k = 0.1,

double sigma = 0.1);
virtual double discountBondOption(Option::Type type, double strike, Time

maturity, Time bondMaturity) const;
virtual Handle<ShortRateDynamics> dynamics() const;
virtual Handle<Lattices::Lattice> tree(const TimeGrid& grid) const;
class Dynamics;

protected:
double A(Time t, Time T) const;
double B(Time t, Time T) const;
double theta() const { return theta_(0.0); }
double k() const { return k_(0.0); }
double sigma() const { return sigma_(0.0); }
double x0() const { return r0_(0.0); }

private:
class VolatilityConstraint;
class HelperProcess;
Parameter& theta_;
Parameter& k_;
Parameter& sigma_;
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Parameter& r0_;
};

class CoxIngersollRoss::HelperProcess : public DiffusionProcess
{

public:
HelperProcess(double theta, double k, double sigma, double y0)

: DiffusionProcess(y0), theta_(theta), k_(k), sigma_(sigma) {}
double drift(Time t, double y) const {

return (0.5*theta_*k_ – 0.125*sigma_*sigma_)/y – 0.5*k_*y;
}
double diffusion(Time t, double y) const {

return 0.5*sigma_;
}

private:
double theta_, k_, sigma_;

};

/******************************************************************************
Dynamics of the short-rate under the Cox-Ingersoll-Ross model
The state variable y_t will here be the square-root of the short-rate. It

satisfies the following stochastic differential equation
dy(t)= (2k)/theta+ (sigma ^2)/8){1}y(t)- {k}{2}y(t)dt+ (sigma/2)dW(t).
******************************************************************************/
class CoxIngersollRoss::Dynamics : public ShortRateDynamics
{

public:
Dynamics(double theta, double k, double sigma, double x0)

: ShortRateDynamics(Handle<DiffusionProcess>(new HelperProcess(theta, k,
sigma, sqrt(x0)))) {}

virtual double variable(Time t, Rate r) const {
return sqrt(r);

}
virtual double shortRate(Time t, double y) const {

return y*y;
}

};
}

}

The class has the following method definitions:

#include “Coxingersollross.h”
#include “Trinomialtree.h”
#include “Chisquaredistribution.h”
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namespace QuantLib
{

namespace ShortRateModels
{

using namespace Lattices;
using Optimization::Constraint;
using Optimization::PositiveConstraint;

/******************************************************************************
Volatility Constraint class
Constraints volatility to satisfy the Feller condition.
******************************************************************************/
class CoxIngersollRoss::VolatilityConstraint : public Constraint
{

private:
class Impl : public Constraint::Impl
{

public:
Impl(const Parameter& theta, const Parameter& k)

: theta_(theta), k_(k) {}
bool test(const Array& params) const
{

if (params[0] <= 0.0)
return false;

if (params[0] >= sqrt(2.0*k_(0.0)*theta_(0.0)))
return false;

return true;
}

private:
const Parameter& theta_;
const Parameter& k_; // mean reversion

};
public:

VolatilityConstraint(const Parameter& theta, const Parameter& k)
: Constraint(Handle<Constraint::Impl>(new

VolatilityConstraint::Impl(theta, k))) {}
};

/******************************************************************************
CoxIngersollRoss : Constructor
[in]  Rate r0 : initial risk-free rate

double theta : theta paramater
double k : k parameter for Feller condition
double volatility : volatility of short rate

******************************************************************************/
CoxIngersollRoss::CoxIngersollRoss(Rate r0, double theta, double k, double

sigma) : OneFactorAffineModel(4), theta_(arguments_[0]), k_(arguments_[1]),
sigma_(arguments_[2]), r0_(arguments_[3])

{
theta_ = ConstantParameter(theta, PositiveConstraint());
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k_ = ConstantParameter(k, PositiveConstraint());
sigma_ = ConstantParameter(sigma, VolatilityConstraint(theta_, k_));
r0_ = ConstantParameter(r0, PositiveConstraint());

}
/******************************************************************************
dynamics: generates and returns CIR dynamics
[in]  [none]
[out] Handle<OneFactor::ShortRateDynamics> : CIR dynamics
******************************************************************************/
Handle<OneFactorModel::ShortRateDynamics> CoxIngersollRoss::dynamics() const
{

return Handle<ShortRateDynamics>( new Dynamics(theta(), k() , sigma(),
x0()));

}

/******************************************************************************
A: computes A term of discount bond price for CIR
[in]   Time t : current time

Time T: end time (option maturity)
[out]  double A
******************************************************************************/
double CoxIngersollRoss::A(Time t, Time T) const
{

double sigma2 = sigma()*sigma();
double h = sqrt(k()*k() + 2.0*sigma2);
double numerator = 2.0*h*exp(0.5*(k()+h)*(T-t));
double denominator = 2.0*h + (k()+h)*(exp((T-t)*h) – 1.0);
double value = log(numerator/denominator)*2.0*k()*theta()/sigma2;
return exp(value);

}

/******************************************************************************
B: computes B term of discount bond price for CIR
[in]  Time t : current time

Time T : end time (option maturity)
[out] double B
******************************************************************************/
double CoxIngersollRoss::B(Time t, Time T) const
{

double h = sqrt(k()*k() + 2.0*sigma()*sigma());
double temp = exp((T-t)*h) – 1.0;
double numerator = 2.0*temp;
double denominator = 2.0*h + (k()+h)*temp;
double value = numerator/denominator;
return value;

}

/******************************************************************************
discountBondOption: prices discount bond option using CIR model
[in]  Option::Type type : option type

Time t : current (initial) time
Time s : end time

[out] double : price of discount bond
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******************************************************************************/
double CoxIngersollRoss::discountBondOption(Option::Type type, double strike,

Time t, Time s) const
{

double discountT = discountBond(0.0, t, x0());
double discountS = discountBond(0.0, s, x0());

if (t < QL_EPSILON)
{

switch(type)
{

case Option::Call: return max(discountS – strike, 0.0);
case Option::Put: return max(strike – discountS, 0.0);
default: throw Error(“unsupported option type”);

}
}

double sigma2 = sigma()*sigma();
double h = sqrt(k()*k() + 2.0*sigma2);
double b = B(t,s);

double rho = 2.0*h/(sigma2*(exp(h*t) – 1.0));
double psi = (k() + h)/sigma2;

std::cout << “exp: ” << (exp(h*t) – 1.0) << std::endl;
std::cout << “rho: ” << rho << std::endl;
std::cout << “psi: ” << psi << std::endl;

double df = 4.0*k()*theta()/sigma2;
double ncps = 2.0*rho*rho*x0()*exp(h*t)/(rho+psi+b);
double ncpt = 2.0*rho*rho*x0()*exp(h*t)/(rho+psi);

std::cout << “df: ” << df << std::endl;
std::cout << “ncps: ” << ncps << std::endl;
std::cout << “ncpt: ” << ncpt << std::endl;

Math::NonCentralChiSquareDistribution chis(df, ncps);
Math::NonCentralChiSquareDistribution chit(df, ncpt);

double z = log(A(t,s)/strike)/b;
double call = discountS*chis(2.0*z*(rho+psi+b)) –

strike*discountT*chit(2.0*z*(rho+psi));

std::cout << “chis: ” << chis(2.0*z*(rho+psi+b)) << std::endl;
std::cout << “chit: ” << chit(2.0*z*(rho+psi)) << std::endl;

if (type == Option::Call)
return call;

else
return call – discountS + strike*discountT;

}
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/******************************************************************************
tree: builds trinomial tree that approximates Cox-Ingersoll-Ross process
[in] TimeGrid& grid : time grid
[out] Handle<Lattices::Lattice> : Hull-White tree
******************************************************************************/
Handle<Lattice> CoxIngersollRoss::tree(const TimeGrid& grid) const
{

Handle<Tree> trinomial(new TrinomialTree(dynamics()->process(), grid, true));
return Handle<Lattice>(new ShortRateTree(trinomial, dynamics(), grid));

}
}

}

11.9 A GENERAL DETERMINISTIC-SHIFT EXTENSION

In the Hull-White methodology, we build the short rate tree by displacing or shift-
ing the nodes of the tree for x by α(t). This displacement is developed more for-
mally in this section by describing a general deterministic-shift extension
methodology. A procedure to extend any time-homogenous short rate model so as
to exactly fit the observed term structure of interest rates while preserving the pos-
sible analytical tractability of the original model has been developed from the
works of Brigo and Mercurio (1998, 2001a), Dybvig (1997), Scott (1995), and
Avellaneda and Newman (1998).

The shift-extension approach can make some models more analytically
tractable such as the Cox-Ingersoll-Ross (1985a). The extended model exhibits the
following properties: (1) exact fitting of the model to any observed term structure;
(2) analytical formulas for bond prices, bond option prices, swaptions, and cap
prices; (3) the distribution of the instantaneous spot rate has fatter tails than in the
Gaussian case—a more realistic distributional property; (4) the term structure is
affine in the short rate; and (5) through certain restrictions on the parameters, it is
always possible to guarantee positive rates without worsening the volatility calibra-
tion in most situations.10

We now discuss the basic assumptions and properties of the deterministic-shift
extension approach. Consider a time-homogeneous stochastic process xα, whose
dynamics under a risk-adjusted martingale measure Qx evolve according to:

dxα(t) = µ(xα(t); α)dt + σ(xα(t); α)dxz(t)

where Wx is a standard Brownian motion; α = {α1, . . . , αn} ∈ �n, n ≥ 1, is a vector
of parameters; xα (0) is a given initial value; and µ and σ are sufficiently well be-
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haved real functions.11 Denote by Px (t, T ) the price at time t of a zero-coupon bond
maturing at time T and with a unit face value, so that:

(11.53)

where Ex
t denotes the expectation under the risk-adjusted measure Qx at time t con-

ditional on all information (i.e., the sigma field) generated by xα up to time t. Fol-
lowing Brigo and Mercurio, we also assume that there exists an explicit real
function Πx defined on a suitable subset of �n+3 such that:

Px(t, T) = Πx (t, T, xα(t); α) (11.54)

The Vasicek (1977) model, the Dothan (1977), and the Cox-Ingersoll-Ross (1985a)
model satisfy these assumptions.

Define the instantaneous short rate by:

r(t) = x(t) + ϕ(t; α), t ≥ 0 (11.55)

where x is a stochastic process that has the same dynamics under the risk-neutral
measure Q as xα has under Qx. ϕ is a deterministic function, chosen to fit the initial
term structure of interest rates, that depends on the parameters’ vector (α, x(0))
and is integrable on closed intervals.12 x(0) can be chosen to be any real value as
long as:

ϕ(0; α) = r(0) – x(0)

The short rate r depends on α1, . . . , αn , x(0), both through the process x and the
shift function ϕ. We can determine these parameters by calibrating the model to the
current term structure of volatilities, by fitting, for example, cap, floor, or swaption
prices.13 If ϕ is differentiable, then the SDE for the short process is:

(11.56)

If the coefficients in (11.56) are time-homogenous, then from section 10.4, we
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know that an affine short-rate term structure is equivalent to affine drift and
squared diffusion coefficients.14

From (11.55), we find that the price at time t of a zero-coupon bond maturing
at time T is:

(11.57)

This can be seen as follows. Notice that:

where the expectation is taken under the risk-neutral measure Q at time t condi-
tional on the sigma algebra generated by x up to time t. In the last step, equivalence
of the dynamics of x under Q and xα and Qα is made.

Moreover, model (11.55) fits the currently observed term structure of discount
factors if and only if:

ϕ(t; α) = ϕ* (t; α) = f(0, t) – fx(0, t; α) (11.58)

where

is the instantaneous forward rate at time 0 for a maturity t. Equivalently, calibra-
tion to the term structure occurs if and only if:
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Furthermore, the corresponding zero-coupon bond prices at time t are given by
P(t, T) = Π(t, T, r(t); α), where

Π(t, T, r(t); α) = Φ* (t, T, x0 ; α)Πx (t, T, r(t) – ϕ* (t; α); α) (11.60)

This can be proven as follows. From (11.57), we have

(11.61)

We get (11.58) by taking the natural logarithm of both sides of (11.61) and then
differentiating. From (11.61), we also can obtain (11.59) by noting that:

(11.62)

(11.62)

which when combined with (11.57) yields (11.60).15

If the deterministic-shift extension ϕ(t; α) is chosen as in (11.58), then the short
rate model with (11.55) will exactly fit the observed term structure of interest rates
regardless of the chosen values of α and x(0).16 Since the extension preserves ana-
lytical tractability for option prices via analytical correction factors defined in terms
of ϕ, we can compute prices at time t of European options with maturity T on zero-
coupon bonds that mature at time S with a strike price of X. This is given by

Following Brigo and Mercurio, we assume there exists a closed-form real function
ψx defined on a suitable subset of �n+5, such that:

Vx(t, T, S, X) = ψx (t, T, S, X, xα(t); α)

V t T S X E x s ds P T S Xx
t
x

t

T
x( , , , ) exp ( ) ( ( , ) )    = −













−












∫ +α

exp ( ; ) exp ( ; ) exp ( ; )

( , )

( , , ( ); )

( , , ( ); )
( , )

−












= −
























=

∫ ∫ ∫ϕ α ϕ α ϕ α

α
α

s ds s ds s ds

P T

T x

T x
P t

t

T T t

x

x

   

   

   

0 0

0

0 0

0 0
0Π

Π

P t s ds t x
t

x( , ) exp ( ; ) ( , , ( ); )0 0 0
0

     = −










∫ ϕ α αΠ

11.9 A General Deterministic-Shift Extension 523

15Ibid., 88–89.
16Ibid., 89.



Under model (11.55), the price of a European call option on a zero-coupon bond is:

This formula holds for any chosen ϕ. In particular, when calibrating to the initial
term structure of interest rates, (11.55) must be used to yield:

C(t, T, S, X) = ψ(t, T, S, X, r(t); α)

where

ψ(t, T, S, X, r(t); α) = Φ* (t, S, x(0); α)ψx (t, T, S, XΦ*(S, T, x(0); α), r(t) – ϕ* (t; α); α)

The price of European put can be computed from the put-call parity for bond
options. If Jamshidian’s (1989) decomposition for coupon-bearing bonds holds un-
der the dynamics for xα, given by dxα(t) = µ(xα(t); α)dt + σ(xα(t); α)dxz(t), then it
can be applied under the extended model so that analytical prices exist for coupon-
bearing bonds and swaptions.

11.10 SHIFT-EXTENDED VASICEK MODEL

If we assume that the time-homogenous model xα evolves according to the 
Vasicek model given in equation (10.30), with parameter vector α = (a, r̄, σ),
then it can be extended by (10.55). In the extended case, the short rate dynamics
become:

(11.63)

We can compute the Vasicek shift function ϕ(t; α) = ϕVasicek (t; α) from (11.58) as
follows:

ϕVasicek (t; α) = f(0, t) – fx(0, t)
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where

so that:

(11.64)

The price at time t of a zero-coupon bond maturing at time T can be computed
from (11.60):

(11.65)

The price at time t of European call option with maturity T and strike X, written
on a zero-coupon bond maturing at time S, is:

where
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Φ(·)is the cumulative normal distribution function,

From (11.63), define the shift-extended drift as:

The Vasicek model can be written as:

dr(t) = a(θ(t) – r(t))dt + σdz(t) (11.66)

which coincides with the Hull-White (1994) extended Vasicek model (10.76).17

Moreover, from (11.66), we can obtain (11.64) by setting

If we set r– = 0, then:
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If we compare the similarity of this to

from (10.78), we notice that the initial rate r(0) is completely absorbed by α
whereas in the shift function ϕVasicek, r(0) is partly absorbed by x(0) and partly by
ϕVasicek (0; α). Due to the linearity of the short rate model, x(0) does not add further
flexibility to the extended model and so we can set x(0) = r(0) and ϕVasicek (0; α) = 0
without affecting the model-fitting quality.18

The following is a more robust and object-oriented implementation of the
Hull-White model.19 It breaks up the construction of the tree into multiple task-
specific methods and avoids the inefficient use of double arrays as in the previous
implementation.

#ifndef _HULLTREE_H
#define _HULLTREE_H

#include <vector>
#include “math.h”
using namespace std;

struct myRateNode
{

public:
int nodeNumber; // node id
int depth; // equals depth of the tree
int relativePosition; // equals j (-2,-1,-0, 1, 2) for the node
double rate; // equals R for the node
double presentValue; // equals Q for the node
double alpha; // equals value of center node= term struct
double pu; // probability of going up
double pm; // probability of going in the middle
double pd; // probability of going down
myRateNode * up; // pointer to up node
myRateNode * middle; // pointer to middle node
myRateNode * down; // pointer to down node
myRateNode(int & i, int & a, int & b, double & c, double & d, double & e,

double & z, double & y, double & x, myRateNode * f = NULL, myRateNode * g =
NULL, myRateNode* h = NULL) : nodeNumber(i), depth(a),
relativePosition(b), rate(c), presentValue(d), alpha(e), pu(z), pm(y),
pd(x), up(f), middle(g), down(h)

α σ
( ) ( , ) ( )t f t
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{ }
};

class HullTree
{

public:
HullTree();  // constructor
∼HullTree(); // destructor
void udm(myRateNode * node);
void addBondPrices(vector<double> structure);
vector<myRateNode *> findConnectors(myRateNode * node);
double addPresentValue(myRateNode * node, vector<myRateNode *> depthVector,

vector<double> structure);
void addRemainingRates(myRateNode * tempNode, vector<myRateNode *>

depthVector);
void addRates(vector<double> structure);
int expand(int lastNodeNumber, int nodesInDepth, int tempDepth);
int maintain(int lastNodeNumber, int nodesInDepth, int tempDepth);
void connectNodes(vector<double> structure);
void outputTree();
void buildTree(vector<double> structure, double a, double dT, double dR, double

min, double max);
vector<myRateNode *> myTree;

private:
vector<double> alphaStructure; // same size as structure, saves alpha 

// values per term
vector<double> bondPrices; // same size as structure, saves bond 

// prices per term
vector<int> width; // same size as structure, saves width 

// per term
myRateNode * rootNode;
double meanReversion;
double deltaT;
double deltaR;
double jMin;
double jMax;

};
#endif

The method definitions are:

#include “hullwhite.h”
#include “math.h”
#include <string>
#include <iostream>
#include <fstream>

// default constructor
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HullTree::HullTree() { }
// destructor
HullTree::∼HullTree() { }

/**********************************************************************************
udm: figures out the Pu, Pm, and Pd for each node
[in]: myRateNode* node: pointer to current node
[out]: none
**********************************************************************************/
void HullTree::udm(myRateNode * node)
{

if (node->relativePosition * deltaR * 100 > jMax)
{

node->pu = (7.00000/6.00000) + (((meanReversion * meanReversion *
node->relativePosition * node->relativePosition * deltaT *

deltaT)- (3 * meanReversion * node->relativePosition*deltaT))/2);
node->pm = (0.00000-(1.00000/3.00000)) – (meanReversion *

meanReversion * node->relativePosition * node->relativePosition * deltaT
*deltaT) + (2 * meanReversion * node->relativePosition*deltaT);

node->pd = (1.00000/6.00000) + (((meanReversion * meanReversion *
node->relativePosition * node->relativePosition * deltaT * deltaT)-

(meanReversion * node->relativePosition*deltaT))/2);
}
else if (node->relativePosition * deltaR * 100 < jMin)
{

node->pu = (1.00000/6.00000) + (((meanReversion * meanReversion *
node->relativePosition * node->relativePosition * deltaT *
deltaT)+(meanReversion * node->relativePosition*deltaT))/2);

node->pm = (0.00000-(1.00000/3.00000)) – (meanReversion *
meanReversion * node->relativePosition * node->relativePosition * deltaT *
deltaT) – (2 * meanReversion * node->relativePosition*deltaT);

node->pd = (7.00000/6.00000) + (((meanReversion * meanReversion *
node->relativePosition * node->relativePosition * deltaT *deltaT)+(3 *

meanReversion * node->relativePosition*deltaT))/2);
}
else
{

node->pu = (1.00000/6.00000) + (((meanReversion * meanReversion *
node->relativePosition * node->relativePosition * deltaT *
deltaT)-(meanReversion * node->relativePosition*deltaT))/2);

node->pm = (2.00000/3.00000) – (meanReversion * meanReversion *
node->relativePosition * node->relativePosition * deltaT * deltaT);

node->pd = (1.00000/6.00000) + (((meanReversion * meanReversion *
node->relativePosition * node->relativePosition * deltaT *
deltaT)+(meanReversion * node->relativePosition*deltaT))/2);

}
}

/**********************************************************************************
addBondPrices: calculates bond prices based on the term structure
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[in]: vector<double> structure : yield term structure
[out]: void
**********************************************************************************/
void HullTree::addBondPrices(vector<double> structure)
{

for (int a = 0; a < structure.size(); a++)
{

double temp = exp(0.00000 – (structure[a] * (a+1)*deltaT));
bondPrices.push_back(temp);

}
}

/**********************************************************************************
findConnectors: finds and returns connecting nodes for the calculation of Q
[in]: myRateNode* node : pointer to node
[out]: vector<myRateNode*> : vector of connected nodes to current node
**********************************************************************************/
vector<myRateNode*> HullTree::findConnectors(myRateNode * node)
{

vector<myRateNode *> tempVector;
for (int count = 0; count < myTree.size(); count++)
{

if (myTree[count]->up == node || myTree[count]->middle == node
||myTree[count]->down == node)

{
myRateNode * tempNode = myTree[count];
tempVector.push_back(tempNode);

}
}
return tempVector;

}

/**********************************************************************************
addPresentValue: adds Q-- given depthVector, the Arrow-Debreu prices for the

current node[a] in depthVector is calculated.
[in]:  myRateNode* node : pointer to current node

vector<myRateNode *> depthVector: vector of nodes at current depth
[out]: double : sum of present value of Arrow-Debreu securities
**********************************************************************************/
double HullTree::addPresentValue(myRateNode * node, vector<myRateNode *>

depthVector, vector<double> structure)
{

double alpha= 0.00000;
for (int a = 0; a > depthVector.size(); a++)
{

depthVector[a]->presentValue = 0;
// find connecting nodes to each node of the same depth
vector<myRateNode *> tempVector = findConnectors(depthVector[a]);
// going through those connecting nodes, finding Q for depthVector[a]
for (int b = 0; b < tempVector.size(); b++)
{

if (tempVector[b]->up == depthVector[a])
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{
depthVector[a]->presentValue = tempVector[b]->pu * exp(0.00000 -

((tempVector[b]->rate)*deltaT)) * tempVector[b]->presentValue +
depthVector[a]->presentValue;

}
else if (tempVector[b]->middle == depthVector[a])
{

depthVector[a]->presentValue = tempVector[b]->pm * exp(0.00000 -
((tempVector[b]->rate)*deltaT)) * tempVector[b]->presentValue +

depthVector[a]->presentValue;
}
else if (tempVector[b]->down == depthVector[a])
{

depthVector[a]->presentValue = tempVector[b]->pd * exp(0.00000 -
((tempVector[b]->rate)*deltaT)) * tempVector[b]->presentValue +

depthVector[a]->presentValue;
}

}
}

for (int c = 0; c < depthVector.size(); c++)
{

alpha = alpha + (depthVector[c]->presentValue * exp(0.00000 – (deltaR* deltaT *
depthVector[c]->relativePosition)));

}
alpha = log(alpha);
alpha = alpha – log(bondPrices[depthVector[0]->depth]);
alpha = alpha / deltaT;

return alpha;
}

/**********************************************************************************
addRemainingRates: adds the remaining rates
[in]: myRateNode* tempNode : pointer to node

vector<myRateNode *> depthVector :
**********************************************************************************/
void HullTree::addRemainingRates(myRateNode * tempNode, vector<myRateNode *>

depthVector)
{

for (int a = 0; a < depthVector.size(); a++)
{

depthVector[a]->rate = depthVector[a]->relativePosition * deltaR + 
tempNode->rate;

}
}

/**********************************************************************************
addRates: adds the term structure onto the center nodes
[in]: vector<double> structure : term structure of rates
[out]: void
**********************************************************************************/
void HullTree::addRates(vector<double> structure)
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{
myTree[0]->rate = structure[0];
myTree[0]->presentValue = 1;
myRateNode * tempNode = myTree[0];
vector<myRateNode *> depthVector;
int tempDepth = 1;

for (int a = 1; a < myTree.size(); a++)
{

// we’re put all nodes of the same depth on a vector
if (myTree[a]->depth == tempDepth)
{

depthVector.push_back(myTree[a]);
}
else
{

// getting the center node
tempNode = tempNode->middle;
// calling present value (sum of Arrow-Debreu securities)
// with the center node and vector of nodes with the same depth
tempNode->rate = addPresentValue(tempNode, depthVector, structure);
// add remaining rates to the nodes in the same depth as tempNode
addRemainingRates(tempNode, depthVector);
tempDepth++;
// clear and add the first node of the next depth
depthVector.clear();
a--;

}
}

// getting the center node
tempNode = tempNode->middle;
// calling present value with the center node and vector of nodes with the same 
// depth
tempNode->rate = addPresentValue(tempNode, depthVector, structure);
addRemainingRates(tempNode, depthVector);

}

/**********************************************************************************
expand: expands node
[in]: int lastNodeNumber : position of last number

int nodesInDepth : number of nodes deep
int tempDepth : current (temp) depth size

[out]: int nodesInDepth : number of nodes in depth + 2
**********************************************************************************/
int HullTree::expand(int lastNodeNumber, int nodesInDepth, int tempDepth)
{

int beginningNode = lastNodeNumber-nodesInDepth+1;
int t = 0;
// temp variables, then adding on new blank nodes
int aa = 0;
double bb = 0;
for (int c = 0; c < nodesInDepth + 2; c++)
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{
myRateNode * tempNode = new

myRateNode(aa,tempDepth,aa,bb,bb,bb,bb,bb,bb,NULL,NULL,NULL);
myTree.push_back(tempNode);

}

while (t < nodesInDepth)
{

myTree[beginningNode+t]->up = myTree[beginningNode + t + nodesInDepth];
myTree[beginningNode+t]->middle = myTree[beginningNode + t + nodesInDepth + 1];
myTree[beginningNode+t]->down = myTree[beginningNode + t + nodesInDepth + 2];
t++;

}

// adding relativePosition
int divider = (nodesInDepth + 1) / 2;
for (int a = 0; a < nodesInDepth+2; a++)
{

myTree[beginningNode + nodesInDepth + a]->relativePosition = divider – a;
}
return nodesInDepth + 2;

}

/**********************************************************************************
maintain:
[in]:  int lastNodeNumber : position of last number

int nodesInDepth : number of nodes deep
int tempDepth : current (temp) depth size

[out]: int nodesInDepth : depth size of nodes
**********************************************************************************/
int HullTree::maintain(int lastNodeNumber, int nodesInDepth, int tempDepth)
{

int beginningNode = lastNodeNumber-nodesInDepth+1;
// temp variables, then adding on new blank nodes
int aa = 0;
double bb = 0;
for (int c = 0; c < nodesInDepth; c++)
{

myRateNode * tempNode = new
myRateNode(aa,tempDepth,aa,bb,bb,bb,bb,bb,bb,NULL,NULL,NULL);
myTree.push_back(tempNode);

}
// prevent the top node from expanding
myTree[beginningNode]->up = myTree[beginningNode + nodesInDepth];
myTree[beginningNode]->middle = myTree[beginningNode + nodesInDepth + 1];
myTree[beginningNode]->down = myTree[beginningNode + nodesInDepth + 2];
// expand the middle nodes accordingly
for (int i = 1; i <= nodesInDepth – 2; i++)
{

myTree[beginningNode + i]->up = myTree[beginningNode + i + nodesInDepth – 1];
myTree[beginningNode + i]->middle = myTree[beginningNode + i + nodesInDepth];
myTree[beginningNode + i]->down = myTree[beginningNode + i + nodesInDepth + 1];

}
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myTree[lastNodeNumber]->up = myTree[lastNodeNumber + nodesInDepth – 2];
myTree[lastNodeNumber]->middle = myTree[lastNodeNumber + nodesInDepth – 1];
myTree[lastNodeNumber]->down = myTree[lastNodeNumber + nodesInDepth];

// adding relativePosition
int divider = (nodesInDepth – 1) / 2;
for (int a = 0; a < nodesInDepth; a++)
{

myTree[beginningNode + nodesInDepth + a]->relativePosition = divider – a;
}
return nodesInDepth;

}

/**********************************************************************************
connectNodes: goes down the vector of myRateNodes and connects the nodes to each

other
[in]: vector<double> structure : term structure of rates
[out]: void
**********************************************************************************/
void HullTree::connectNodes(vector<double> structure)
{

// temporary variables
myRateNode * tempNode;
// temp variables, originally making a max of 9 nodes
int aa = 0;
double bb = 0;
for (int c = 0; c < 9; c++)
{

myRateNode * tempNode = new
myRateNode(aa,aa,aa,bb,bb,bb,bb,bb,bb,NULL,NULL,NULL);

myTree.push_back(tempNode);
}
// initializing the root node
myTree[0]->depth = 0;
myTree[0]->relativePosition = 0;
myTree[0]->presentValue = 1.00000;

width.push_back(1);
if (structure.size() > 1)
{

myTree[0]->up = myTree[1];
myTree[0]->middle = myTree[2];
myTree[0]->down = myTree[3];
myTree[1]->depth = 1;
myTree[2]->depth = 1;
myTree[3]->depth = 1;
myTree[1]->relativePosition = 1;
myTree[2]->relativePosition = 0;
myTree[3]->relativePosition = -1;
width.push_back(3);

}
if (structure.size() > 2)
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{
myTree[1]->up = myTree[4];
myTree[1]->middle = myTree[5];
myTree[1]->down = myTree[6];
myTree[2]->up = myTree[5];
myTree[2]->middle = myTree[6];
myTree[2]->down = myTree[7];
myTree[3]->up = myTree[6];
myTree[3]->middle = myTree[7];
myTree[3]->down = myTree[8];
myTree[4]->depth = 2;
myTree[5]->depth = 2;
myTree[6]->depth = 2;
myTree[7]->depth = 2;
myTree[8]->depth = 2;
myTree[4]->relativePosition = 2;
myTree[5]->relativePosition = 1;
myTree[6]->relativePosition = 0;
myTree[7]->relativePosition = -1;
myTree[8]->relativePosition = -2;
width.push_back(5);

}
if (structure.size() > 3)
{

for (int count = 3; count < structure.size(); count++)
{

tempNode=myTree[myTree.size()-1];
// see if tempNode->relativePosition * deltaR is greater than jMax or less

than jMin
if (100 * tempNode->relativePosition * deltaR > jMax || 100 * 

tempNode->relativePosition * deltaR < jMin)
{

width.push_back(maintain(myTree.size()-1, width[count-1], count));
}
// if not, then make it even bigger
else

width.push_back(expand(myTree.size()-1, width[count-1], count));
}

}
}

/**********************************************************************************
outputTree: used for debugging purposes
[in]: none
[out]: void
**********************************************************************************/
void HullTree::outputTree()
{

string filename = “OUTPUT.txt”;
ofstream output(filename.c_str());
for (int count = 0; count < myTree.size(); count++)
{
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myTree[count]->nodeNumber = count;
}
cout <<“count ” <<“depth ” <<“RP ” <<“ rate ” <<“pu ” <<“pm ” <<“pd ” <<endl;
for (count = 0; count < myTree.size(); count++)
{

output <<count <<“ ”;
cout <<count <<“ ”;
output <<myTree[count]->depth <<“ ”;
cout <<myTree[count]->depth <<“ ”;
output <<myTree[count]->relativePosition <<“ ”;
cout <<myTree[count]->relativePosition <<“ ”;
output <<myTree[count]->rate <<“ ”;
cout <<myTree[count]->rate <<“ ”;
output <<myTree[count]->pu <<“ ”;
cout <<“ ” <<myTree[count]->pu <<“ ”;
output <<myTree[count]->pm <<“ ”;
cout <<“ ” <<myTree[count]->pm <<“ ”;
output <<myTree[count]->pd <<endl;
cout <<“ ” <<myTree[count]->pd <<endl;

}
}

/**********************************************************************************
buildTree: builds the tree
[in]: vector<double> structure : term structure of rates

double a : mean reversion parameter
double dT: time step
double dR: state step size
double min : min downward branching level
double max: max upward branching level

[out] : void
**********************************************************************************/
void HullTree::buildTree(vector<double> structure, double a, double dT, double dR,

double min, double max)
{

// variables which equal referenced values
meanReversion = a;
deltaT = dT;
deltaR = dR;
jMin = min;
jMax = max;
connectNodes(structure); // connect the nodes
for (int count = 0; count < myTree.size(); count++)
{

udm(myTree[count]);
}
addBondPrices(structure);
addRates(structure);
outputTree();

}
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Another alternative and more robust object-oriented implementation of the
Hull-White model is adapted from the QuantLib library.

#include “Vasicek.h”

namespace QuantLib
{

namespace ShortRateModels
{

/******************************************************************************
Single-factor Hull-White (extended Vasicek) model class.
This class implements the standard single-factor Hull-White model defined by
dr_t = (theta(t) – alpha r_t)dt + \sigma dW_t where alpha and sigma are
constants.
******************************************************************************/
class HullWhite : public Vasicek, public TermStructureConsistentModel
{

public:
HullWhite(const RelinkableHandle<TermStructure>& termStructure,

double a = 0.1, double sigma = 0.01);

Handle<Lattices::Lattice> tree(const TimeGrid& grid) const;
Handle<ShortRateDynamics> dynamics() const;
// previous method to build tree
void buildHW(vector<double> zero, double a, double volatility, int N,

double T);
double discountBondOption(Option::Type type, double strike, Time maturity,

Time bondMaturity) const;
protected:

void generateArguments();
double A(Time t, Time T) const;

private:
class Dynamics;
class FittingParameter;
Parameter phi_;

};

/******************************************************************************
Short-rate dynamics in the Hull-White model
The short-rate is here r_t = varphi(t) + x_t where varphi(t) \is the

deterministic time-dependent parameter used for term-structure fitting and x_t
is the state variable following an Ornstein-Uhlenbeck process.

******************************************************************************/
class HullWhite::Dynamics : public ShortRateDynamics
{

public:
Dynamics(const Parameter& fitting, double a, double sigma)

11.10 Shift-Extended Vasicek Model 537



: ShortRateDynamics(Handle<DiffusionProcess>(new
OrnsteinUhlenbeckProcess(a, sigma))),
fitting_(fitting) {}
double variable(Time t, Rate r) const {

return r – fitting_(t);
}
double shortRate(Time t, double x) const {

return x + fitting_(t);
}

private:
Parameter fitting_;

};

/******************************************************************************
Analytical term-structure fitting parameter varphi(t).
varphi(t) is analytically defined by varphi(t) = f(t) + 1/2/(sigma(1-exp{-

at})}{a}]^2), where f(t) is the instantaneous forward rate at t.
******************************************************************************/
class HullWhite::FittingParameter : public TermStructureFittingParameter
{

private:
class Impl : public Parameter::Impl
{

public:
Impl(const RelinkableHandle<TermStructure>& termStructure,

double a, double sigma)
: termStructure_(termStructure), a_(a), sigma_(sigma) {}

double value(const Array& params, Time t) const {
double forwardRate = termStructure_->instantaneousForward(t);
double temp = sigma_*(1.0 – exp(-a_*t))/a_;
return (forwardRate + 0.5*temp*temp);

}
private:

RelinkableHandle<TermStructure> termStructure_;
double a_, sigma_;

};
public:

FittingParameter(const RelinkableHandle<TermStructure>& termStructure,
double a, double sigma)
: TermStructureFittingParameter(Handle<Parameter::Impl>(

new FittingParameter::Impl(termStructure, a, sigma))) {}
};

/******************************************************************************
dynamics: generates and returns extended HW dynamics
[in]: none
[out]: Handle<OneFactor::ShortRateDynamics> : HW dynamics
******************************************************************************/
inline Handle<OneFactorModel::ShortRateDynamics> HullWhite::dynamics() const {

return Handle<ShortRateDynamics>(new Dynamics(phi_, a(), sigma()));
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}
}

}

The class has the follwing method definitions:

#include “HullWhite.h”
#include “Trinomialtree.h”
#include “Blackmodel.h”

namespace QuantLib
{

namespace ShortRateModels
{

using namespace Lattices;

/******************************************************************************
HullWhite : Constructor
[in] RelinkableHandle<TermStructure>& termStructure : term structure

double a: mean reversion parameter
double sigma: volatility

******************************************************************************/
HullWhite::HullWhite(const RelinkableHandle<TermStructure>& termStructure,

double a, double sigma) : Vasicek(termStructure->instantaneousForward(0.0),
a, 0.0, sigma), TermStructureConsistentModel(termStructure)

{
arguments_[1] = NullParameter();
generateArguments();

}

/******************************************************************************
tree: builds Hull-White tree
[in] TimeGrid& grid : time grid
[out] Handle<Lattices::Lattice> : Hull-White tree
******************************************************************************/
Handle<Lattices::Lattice> HullWhite::tree(const TimeGrid& grid) const
{

TermStructureFittingParameter phi(termStructure());

// create Hull-White short rate dynamics
Handle<ShortRateDynamics> numericDynamics(new Dynamics(phi, a(), sigma()));

// generate trinomial tree approximated by Hull-White process
Handle<TrinomialTree> trinomial(new TrinomialTree(numericDynamics->process(),

grid));

// build Hull-White short rate (trinomial tree) using Hull-White dynamics
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Handle<ShortRateTree> numericTree(new ShortRateTree(trinomial,
numericDynamics, grid));

Handle<TermStructureFittingParameter::NumericalImpl> impl =
phi.implementation();

impl->reset();

// evolve forward computing state prices (short rates)
for (Size i=0; i<(grid.size() – 1); i++)
{

double discountBond = termStructure()->discount(grid[i+1]);
const Array& statePrices = numericTree->statePrices(i);
Size size = numericTree->size(i);
double dt = numericTree->timeGrid().dt(i);
double dx = trinomial->dx(i);
double x = trinomial->underlying(i,0);
double value = 0.0;
for (Size j=0; j<size; j++)
{

value += statePrices[j]*exp(-x*dt);
x += dx;

}
value = log(value/discountBond)/dt;
impl->set(grid[i], value);

}
return numericTree;

}

/******************************************************************************
A: computes A term of discount bond price
[in]  Time t : current time

Time T : end time (option maturity)
[out] double A
******************************************************************************/
double HullWhite::A(Time t, Time T) const
{

double discount1 = termStructure()->discount(t);
double discount2 = termStructure()->discount(T);
double forward = termStructure()->instantaneousForward(t);
double temp = sigma()*B(t,T);
double value = B(t,T)*forward – 0.25*temp*temp*B(0.0,2.0*t);
return exp(value)*discount2/discount1;

}

/******************************************************************************
generateArguments: fits shift parameter to term structure and mean reversion 

parameter a and volatility
[in] none
[out] void
******************************************************************************/
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void HullWhite::generateArguments() {
phi_ = FittingParameter(termStructure(), a(), sigma());

}

/******************************************************************************
discountBondOption: fits shift parameter to term structure and mean reversion 

parameter a and volatility
[in]  Option::Type type : option type (C)all or (P)ut

double strike : strike price
Time maturity : maturity of bond option
Time bondMaturity : maturity of bond

[out] double : bond option price
******************************************************************************/
double HullWhite::discountBondOption(Option::Type type, double strike, Time

maturity, Time bondMaturity) const
{

double v = sigma()*B(maturity, bondMaturity)*sqrt(0.5*(1.0 – exp(-
2.0*a()*maturity))/a());

double f = termStructure()->discount(bondMaturity);
double k = termStructure()->discount(maturity)*strike;

double w = (type==Option::Call)? 1.0 : -1.0;

return BlackModel::formula(f, k, v, w);
}

}
}

11.11 SHIFT-EXTENDED COX-INGERSOLL-ROSS MODEL

The shift-extension procedure can be extended to the CIR model; the result is often
referred to as CIR++. As before, we have a process xα that follows (11.53) with the
parameter vector α = (a, r̄, σ). The CIR++ short rate model is:

(11.67)

where a, r̄, and σ are positive values that satisfy 2ar̄ > σ2, so that the rates remain
positive. We can compute the shift extension ϕ(t; α) = ϕCIR (t; α) as:

ϕCIR (t; α) = f(0, t) – fCIR(0, t; α)

dx t a r x t dt x t dz t

r t x t t

( ) ( ( )) ( ) ( )

( ) ( ) ( )

= − +
= +

σ
ϕ

11.11 Shift-Extended Cox-Ingersoll-Ross Model 541



where

and

The price at time t of a zero-coupon maturing at time T is

P(t, T ) = A
–
(t, T )e–B(t,T)r(t)

where

(11.68)

and A(t, T) and B(t, T) are defined in (10.91). The price at time t of a European call
option with maturity T and a strike of X on a zero-coupon bond maturing at S > T,

(11.69)

(11.69)

where ψCIR(t, T, S, X, x; α) is the CIR option price from (10.92) where r(t) = x. By
simplifying (11.69) we get:

(11.70)C t T S X P t S r B t S
ar r t t e

B T S

XP t T r
ar

CIR T t

( , , , ) ( , ) ˜( ( , )); ,
( ( ) ( ; ))

( , )

( , ) ˜( ); ,
(

( )

      

     

= + + −
+ +











− +

−
χ ρ ψ

σ
ρ ϕ α

ρ ψ

χ ρ ψ
σ

ρ

γ
2

2

2

2
2

2

2
4 2

2
4 2 rr t t eCIR T t( ) ( ; )) ( )−

+











−ϕ α
ρ ψ

γ

C t T S X
P S A t e

P t A S e

t T S X
P T A S e

P

B T x

B S x

CIR
B S x

( , , , )
( , ) ( , )

( , ) ( , )

, , ,
( , ) ( , )

( ,

( , ) ( )

( , ) ( )

( , ) ( )

   

     

=








 ⋅

−

−

−

0 0

0 0

0 0

0

0 0

0 0

0 0

Ψ
SS A T e

r t t
B T x

CIR

) ( , )
, ( ) ( ; );

( , ) ( )0 0 0
   

−
−









ϕ α α

P t T
P T A t e

P t A T e
A t T e

B t x

B T x
B t T tCIR

( , )
( , ) ( , )

( , ) ( , )
( , )

( , ) ( )

( , ) ( )
( , ) ( ; )=











−

−
0 0

0 0

0 0

0 0
ϕ α

γ σ= +a2 22

f t x
P t

t
A t

t
x

B t
t

t
ar e

a e

CIR
x

a t

t

( , ; )
ln ( , ) ln ( , )

( )
( , )

ln
( )( )

( )

0
0 0

0
0

2 2

2 12

2

   = − ∂
∂

= − ∂
∂

+ ∂
∂

= ∂
∂ + + −




































+





σ
γ

γ γ

γ

γ



+ ∂
∂

−
+ + −











= −
+ + −

+
+ + −

x
t

e

a e

ar e

a e
x

e

a e

t

t

t

t

t

t

( )
( )

( )( )

( )

( )( )
( )

( ( )( ))

0
2 1

2 1

1

2 1
0

4

2 1

2

2

γ

γ

γ

γ

γ

γ

γ γ

γ γ
γ

γ γ

542 TREE-BUILDING PROCEDURES



where

ρ and ψ come from (10.92) in section 10.10, and χ2 is the noncentral chi-squared
distribution.

The following is an implementation of the extended CIR model given in the
QuantLib library:

/**********************************************************************************
Extended Cox-Ingersoll-Ross model class.
This class implements the extended Cox-Ingersoll-Ross model defined by
dr(t) = (theta(t) – alpha*r(t))dt + sqrt(r(t))sigma*dW(t)
**********************************************************************************/
class ExtendedCoxIngersollRoss : public CoxIngersollRoss, public TermStructure

ConsistentModel
{

public:
ExtendedCoxIngersollRoss(const RelinkableHandle<TermStructure>& termStructure,

double theta = 0.1, double k = 0.1, double sigma = 0.1, double x0 = 0.05);
Handle<Lattices::Lattice> tree(const TimeGrid& grid) const;
Handle<ShortRateDynamics> dynamics() const;
double discountBondOption(Option::Type type,

double strike,
Time maturity,
Time bondMaturity) const;

protected:
void generateArguments();
double A(Time t, Time T) const;

private:
class Dynamics;
class FittingParameter;
Parameter phi_;

};

/**********************************************************************************
Short-rate dynamics in the extended Cox-Ingersoll-Ross model
The short-rate is here r(t) = \varphi(t) + y(t)^2 where varphi(t) is the
deterministic time-dependent parameter used for term-structure fitting and y_t is
the state variable, the square-root of a standard CIR process.
**********************************************************************************/
class ExtendedCoxIngersollRoss::Dynamics: public CoxIngersollRoss::Dynamics
{

public:
Dynamics(const Parameter& phi, double theta, double k, double sigma, double x0)

˜
( , )

ln
( , )

ln
( , ) ( , )

( , ) ( , )

( , ) ( )

( , ) ( )
r

B T S
A T S

X
P T A S e

P S A T e

B S x

B T x
=







−






















−

−
1 0 0

0 0

0 0

0 0

   

11.11 Shift-Extended Cox-Ingersoll-Ross Model 543



: CoxIngersollRoss::Dynamics(theta, k, sigma, x0), phi_(phi) {}

virtual double variable(Time t, Rate r) const {return sqrt(r – phi_(t));
}
virtual double shortRate(Time t, double y) const {return y*y + phi_(t);
}

private:
Parameter phi_;

};

/**********************************************************************************
Analytical term-structure fitting parameter varphi(t).
varphi(t) is analytically defined by 
varphi(t) = f(t) – {2k\theta(e^{th}-1)}/{2h+(k+h)(e^{th}-1)} - {4 x_0 h^2

e^{th}}/{(2h+(k+h)(e^{th}-1))^1},
where f(t) is the instantaneous forward rate at t and h = sqrt{k^2 + 2\sigma^2}.
**********************************************************************************/
class ExtendedCoxIngersollRoss::FittingParameter : public TermStructureFitting

Parameter
{

private:
class Impl : public Parameter::Impl
{
public:

Impl(const RelinkableHandle<TermStructure>& termStructure, double theta,
double k, double sigma, double x0) : termStructure_(termStructure),
theta_(theta), k_(k), sigma_(sigma), x0_(x0) {}

double value(const Array& params, Time t) const {
double forwardRate = termStructure_->instantaneousForward(t);
double h = sqrt(k_*k_ + 2.0*sigma_*sigma_);
double expth = exp(t*h);
double temp = 2.0*h + (k_+h)*(expth-1.0);
double phi = forwardRate – 2.0*k_*theta_*(expth – 1.0)/temp –

x0_*4.0*h*h*expth/(temp*temp);

return phi;
}

private:
RelinkableHandle<TermStructure> termStructure_; double theta_, k_, sigma_,

x0_;
};

public:
FittingParameter(const RelinkableHandle<TermStructure>& termStructure,
double theta, double k, double sigma, double x0)
: TermStructureFittingParameter(Handle<Parameter::Impl>(

new FittingParameter::Impl(termStructure, theta, k, sigma, x0))) {}
};
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/**********************************************************************************
dynamics: generates and returns extended CIR dynamics
[in] none
[out] Handle<OneFactor::ShortRateDynamics> : extended CIR dynamics
**********************************************************************************/
inline Handle<OneFactorModel::ShortRateDynamics> ExtendedCoxIngersollRoss::dynamics

() const
{

return Handle<ShortRateDynamics>(new Dynamics(phi_, theta(), k() , sigma(),
x0()));

}

/**********************************************************************************
generateArguments: fits shift parameter to term structure, mean reversion parmamter,

and volatility
[in] none
[out] void
**********************************************************************************/
inline void ExtendedCoxIngersollRoss::generateArguments()
{

phi_ = FittingParameter(termStructure(), theta(), k(), sigma(), x0());
}

The class has the following method definitions:

namespace QuantLib
{

namespace ShortRateModels
{

using namespace Lattices;

/******************************************************************************
ExtendedCoxIngersollRoss : Constructor
[in] RelinkableHandle<TermStructure>& termStructure : term structure
double theta : shift parameter
double k : mean reversion parameter
double sigma : volatility of short rate
double x0 : initial short rate
******************************************************************************/
ExtendedCoxIngersollRoss::ExtendedCoxIngersollRoss(const

RelinkableHandle<TermStructure>& termStructure, double theta, double k,
double sigma, double x0)
: CoxIngersollRoss(theta, k, sigma, x0), TermStructureConsistentModel
(termStructure)

{
generateArguments();

}
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/******************************************************************************
tree: builds trinomial tree that approximates Black-Karasinski
[in] TimeGrid& grid : time grid
[out] Handle<Lattices::Lattice> : Hull-White tree
******************************************************************************/
Handle<Lattice> ExtendedCoxIngersollRoss::tree(const TimeGrid& grid) const
{

TermStructureFittingParameter phi(termStructure());
Handle<Dynamics> numericDynamics(new Dynamics(phi, theta(), k(), sigma(),

x0()));

Handle<Tree> trinomial(new TrinomialTree(numericDynamics->process(), grid,
true));

return Handle<Lattice>(new ShortRateTree(trinomial, numericDynamics,
phi.implementation(), grid));

}

/******************************************************************************
A: computes A term of discount bond price for Extended CIR
[in]  Time t : current time

Time T : end time (option maturity)
[out] double A
******************************************************************************/
double ExtendedCoxIngersollRoss::A(Time t, Time s) const
{

double pt = termStructure()->discount(t);
double ps = termStructure()->discount(s);
double value = CoxIngersollRoss::A(t,s)*exp(B(t,s)*phi_(t))*

(ps*CoxIngersollRoss::A(0.0,t)*exp(-B(0.0,t)*x0()))/
(pt*CoxIngersollRoss::A(0.0,s)*exp(-B(0.0,s)*x0()));

return value;
}

/******************************************************************************
discountBondOption: prices discount bond option using extended CIR model
[in]  Option::Type type : option type (C)all or (P)ut

double strike : strike price
Time maturity : maturity of bond option
Time bondMaturity : maturity of bond

[out] double : bond option price
******************************************************************************/
double ExtendedCoxIngersollRoss::discountBondOption(Option::Type type, double

strike, Time t, Time s) const
{

double discountT = termStructure()->discount(t);
double discountS = termStructure()->discount(s);
if (t > QL_EPSILON)
{

switch(type)
{

case Option::Call: return max(discountS – strike, 0.0);
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case Option::Put: return max(strike – discountS, 0.0);
default: throw Error(“unsupported option type”);

}
}

double sigma2 = sigma()*sigma();
double h = sqrt(k()*k() + 2.0*sigma2);
double r0 = termStructure()->instantaneousForward(0.0);
double b = B(t,s);

double rho = 2.0*h/(sigma2*(exp(h*t) – 1.0));
double psi = (k() + h)/sigma2;

double df = 4.0*k()*theta()/sigma2;
double ncps = 2.0*rho*rho*(r0-phi_(0.0))*exp(h*t)/(rho+psi+b);
double ncpt = 2.0*rho*rho*(r0-phi_(0.0))*exp(h*t)/(rho+psi);

Math::NonCentralChiSquareDistribution chis(df, ncps);
Math::NonCentralChiSquareDistribution chit(df, ncpt);

double z = log(CoxIngersollRoss::A(t,s)/strike)/b;

double call = discountS*chis(2.0*z*(rho+psi+b)) –
strike*discountT*chit(2.0*z*(rho+psi));

if (type == Option::Call)
return call;

else
return call – discountS + strike*discountT;

}
}

}

where

/**********************************************************************************
NonCentralChiSqureDistribution class evaluates the noncentral chi squared

distribution using the noncentrality parameter lambda (ncp_) and dg degrees of
freedom. The sum of the squares of n normally distributed random variables with
variance 1 and nonzero means follows.

**********************************************************************************/
class NonCentralChiSquareDistribution : public std::unary_function<double,double>
{

public:
NonCentralChiSquareDistribution(double df, double ncp) : df_(df), ncp_(ncp) {}
double operator()(double x) const;

private:
static const double pi_;
double df_, ncp_;

};
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/**********************************************************************************
operator() : overloaded nonchi squared distribution evaluation operator
[in]: double x : evaluation argument
[out]: double : nonchi squared distribution value evaluated at x
**********************************************************************************/
double NonCentralChiSquareDistribution::operator()(double x) const
{

if (x <= 0.0)
return 0.0;

const double errmax = 1e-12;
const int itrmax = 10000;
double lam = 0.5*ncp_;

double u = exp(-lam);
double v = u;
double x2 = 0.5*x;
double f2 = 0.5*df_;
double f_x_2n = df_ – x;

double t = 0.0;
if (f2*QL_EPSILON > 0.125 && fabs(x2-f2) < sqrt(QL_EPSILON)*f2)
{

t = exp((1 – t)*(2 – t/(f2+1)))/sqrt(2.0*pi_*(f2 + 1.0));
}
else
{

t = exp(f2*log(x2) – x2 – GammaFunction().logValue(f2 + 1));
}

double ans = v*t;
bool flag = false;
int n = 1;
double f_2n = df_ + 2.0;
f_x_2n += 2.0;

double bound;
for (;;)
{

if (f_x_2n > 0)
{

flag = true;
goto L10;

}
for (;;)
{

u *= lam / n;
v += u;
t *= x / f_2n;
ans += v*t;
n++;
f_2n += 2.0;
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f_x_2n += 2.0;
if (!flag && n <= itrmax)

break;
L10:

bound = t * x / f_x_2n;
if (bound <= errmax || n > itrmax)

goto L_End;
}

}

L_End:
if (bound > errmax)

throw Error(“Didn’t converge”);

return (ans);
}

11.12 PRICING FIXED INCOME DERIVATIVES WITH THE MODELS

Once a short rate tree has been constructed, calibrated to the initial term structure,
it is straightforward to price various fixed income derivatives. Suppose we want to
value a European bond option on a pure discount bond using a Hull-White tree.
After building the tree, we determine if it is optimal to exercise at maturity by com-
puting the payoffs. We then use backward induction to compute the price of the
bond option at each time step by discounting the future payoffs at the next step un-
til we get to the first node at time step 0. Pricing an American bond option also
starts at maturity and involves the same backward induction procedure as in the
European case except that at each node the payoff has to be determined by com-
paring the immediate exercise value with the risk-neutral price at the node. Here is
the code implementation:

/**********************************************************************************
priceDiscountBondsHW : prices discount bond options using the Hull-White tree
[in]: vector<double> zero : vector of spot curve rates

int Ns : bond maturity
int NT : option maturity
double volatility : bond volatility
double a : Hull-White mean reversion parameter
double T : time to maturity
double strike : strike price
char type : ‘C’all or ‘P’ut
char exercise : ‘E’uropean or ‘A’merican

[out] bond option price
**********************************************************************************/
double HullWhite::priceDiscountBondsHW(vector<double> zero, int Ns, int NT, double

volatility, double a, double T, double strike, char type, char exercise)

11.12 Pricing Fixed Income Derivatives with the Models 549



{
int i,j, k;
double Ps[20][20] = {0.0};

// build Hull-White tree
buildHW(zero,a,volatility,Ns,T);

// initialize maturity condition for pure discount bond underlying the option
for (j = -Ns+1; j <= Ns-1; j++)

Ps[Ns][j] = 1;

// backward induction for pure discount bond price
for (i = Ns – 1; i >= 0; i--)
{

for (j = -i; j <= i; j++)
{

Ps[i][j] = d[i][j]*(pu[j]*Ps[i+1][j+1] + pm[j]*Ps[i+1][j] + 
pd[j]*Ps[i+1][j-1]);

}
}

// initialize maturity condition for option
for (j = -NT; j <= NT; j++)
{

if (type == ‘C’)
C[NT][j] = max(0,Ps[NT][j] – strike);

else
C[NT][j] = max(0,strike – Ps[NT][j]);

}

if (exercise == ‘E’)
{

// European price determined via the state prices
C[0][0] = 0;
for (j = -NT; j <= NT; j++)
{

C[0][0] = C[0][0] + Q[NT][j]*C[NT][j];
}

}
else // compute American price
{

// backward induction for American option price
for (i = NT-1; i >= 0; i--)
{

for (j = -i; j <= i; j++)
{

C[i][j] = d[i][j]*(pu[j]*C[i+1][j+1] + pm[j]*C[i+1][j] + 
pd[j]*C[i+1][j-1]);

if (type == ‘C’)
C[i][j] = max(C[i][j],Ps[i][j] – strike);

else
C[i][j] = max(C[i][j],strike – Ps[i][j]);
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}
}

}
return C[0][0];

}

Pricing swaptions is a similar process. The short rate tree is constructed and
then backward induction follows. Suppose we want to value an American payer
swaption using a BDT tree. After we build the BDT short rate tree, we compute the
bond prices at each node. Then we start at the last step, compute the payoff, and
then work backward comparing the intrinsic exercise value at each node with the
risk-neutral value—using the higher of the two values—until we reach the first
node. We need to account for swap payments (the fixed rate leg payments) and the
frequency of the payments and thus the swap payment dates.

The following is the implementation:

/**********************************************************************************
payerSwaptionBDT : prices swaptions using the BDT tree
[in]:  vector<double> rates : vector of spot curve rates

int Ns : swap maturity
int NT : swaption maturity
double volatility : volatility of short rate
double swapRate : fixed leg payment
double inityield : current short rate
double principal : notional amount of swap
double frequency : frequency of payments (annually, semiannually, 

quarterly)
[out] double : swaption price
**********************************************************************************/
double BlackDermanToy::payerSwaptionBDT(vector<double> rates, int Ns, int NT,

double volatility, double swapRate, double inityield, double principal, double
frequency)

{
int i, j;
double B[20][20] = {0.0}; // discount bond prices
double C[20][20] = {0.0}; // swaption prices

// build short rate tree
buildBDT(rates,volatility,Ns,NT,inityield);

// initialize coupon bond maturity condition for fixed side of swap
for (j = -Ns; j <= Ns; j += 2)
{

B[Ns][j] = principal + swapRate/frequency;
}
/ /derive the coupon bond price in the tree via the discounted expectations
for (i = Ns – 1; i >= NT; i--)
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{
for (j = -i; j <= i; j += 2)
{

if (i % frequency == 0)
B[i][j] = d[i][j]*0.5*(B[i+1][j+1] + B[i+1][j-1] + swapRate/frequency);

else
B[i][j] = d[i][j]*0.5*(B[i+1][j+1] + B[i+1][j-1]);

}
}
// initialize maturity condition for option
for (j = -NT; j <= NT; j += 2)
{

C[NT][j] = max(0,(principal-B[NT][j]));
}

// for European swaption value utilize the pure security prices
C[0][0] = 0;
for (j = -NT; j <= NT; j+=2)
{

C[0][0] = C[0][0] + max(0,Q[NT][j]*(principal-B[NT][j]));
}

for (i = NT-1; i >= 0; i--)
{

for (j = -i; j <= i; j += 2)
{

C[i][j] = d[i][j]*(0.5*(C[i+1][j+1] + C[i+1][j-1]));
}

}
return C[0][0];

}

Consider a two-year payer swaption on a three-year swap. We assume the term
structure is upward sloping and given by {0.055, 0.0575, 0.0600, 0.0625, 0.0650,
0.070} and the short-rate volatility is assumed to be 10 percent. The swap rate is
6.5 percent and we assume annual payments. We assume the notional face value or
principal is $100. Figure 11.5 shows the BDT tree built.

The price of the payer swaption is $16.31. At each node, the top number is the
short rate, the middle number is the bond price (swap value), and the bottom num-
ber is the swaption price. Swap prices are not given at the first time step because the
swap cannot be exercised until the second time step, at maturity of the swaption.
Similarly, since the swaption expires in the second year, no swaption values are
given after the second time step.
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FIGURE 11.5 Valuing Two-Year Payer Swaption Using BDT Tree
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CHAPTER 12
Two-Factor Models and the

Heath-Jarrow-Morton Model

In the preceding chapter we focused on single-factor models. In each model, the
short rate was the underlying factor with only one source of randomness, the

Wiener process z(t). From the short rate and its distributional properties, we can
construct bond prices from the relationship

and from all bond prices P(t, T) at time t we can “reconstruct the whole zero-
coupon interest-rate curve at the same time t, so that indeed the evolution of the
whole curve is characterized by the evolution of the single quantity r.”1

While many single-factor models work well in practice, such as the Black-
Karasinski, Hull-White (HW), and exponential Vasicek models, they are not satis-
factory for models that have payoffs dependent on two or more correlated
underlying factors such as two continuously compounded spot rates for bonds of
different maturities (i.e., T1 and T2). Thus, if the payoff depends on two underlying
factors that are terminally correlated, then their joint distribution depends on their
correlation—a consideration that a single-factor model cannot capture. In order to
capture realistic correlation patterns, and thus covariance structures, multifactor
models such as two-factor models are needed. Essentially, what this means is that
the correlation in the model depends on, among other factors, instantaneously cor-
related sources of randomness between the factors (i.e., dz1dz2 = ρ).

In practice, the optimal number of factors to use in a model is a trade-off be-
tween numerically efficient implementation and the ability of the model to represent
realistic correlation patterns and to adequately fit to enough market data. For ex-

P t T E r s dst

t

T

( , ) exp ( )= −
























∫

554

1Brigo and Mercurio (2001c) 127.



ample, a two-factor model has better tractability and implementability than a
three-factor model, which in turn can explain more variation in the yield curve than
the two-factor model. Empirical research and historical analysis of yield curves us-
ing principal component analysis or factor analysis indicate that two components
can explain 85 percent to 90 percent of variations in the yield curve.2

In this chapter, we discuss principal component analysis as well as the proper-
ties and implementation issues of two-factor models. In such models, we consider
additive models of the form

r(t) = x(t) + y(t) + ϕ(t)

where ϕ is a deterministic shift that is added in order to fit exactly the initial zero-
coupon curve, as in the one-factor case discussed in the preceding chapter. We con-
sider this in light of a deterministic-shift two-factor Vasicek model, known as G2++,
and a two-factor Hull-White model. We can analyze these models in a risk-neutral
world since a change of the objective probability measure to the risk-neutral proba-
bility measure does not change the instantaneous-covariance structure. In choosing
a two-factor model, we need to consider how well the model can be calibrated to
the term structure of volatilities and to swaption and cap prices. Can the model ex-
hibit the hump-shaped curve often exhibited by the instantaneous standard devia-
tion of the forward rate? How analytically tractable is the model—can it generate
explicit formulas for discount bonds, European options on discount bonds, swap-
tions, and caps? Finally, we will discuss models that are based on forward rates us-
ing the Heath-Jarrow-Morton (HJM) approach as an alternative to building
models based on the short rate.

The chapter is broken down as follows. In section 12.1, we discuss the two-
factor Gaussian (G2++) model, and in section 12.2 we discuss building a G2++
quadrinomial tree. In section 12.3, we discuss the two-factor Hull-White model. In
section 12.4, we discuss the Heath-Jarrow-Morton (HJM) model in a continuous-
time framework. In section 12.5, we discuss pricing discount bond options with a
Gaussian HJM model. In section 12.6, we discuss pricing discount bond options in
a general HJM framework In section 12.7, we discuss the single-factor HJM dis-
crete-state model. In section 12.8, arbitrage-free restrictions in a single factor model
are given. In section 12.9, we discuss computation of arbitrage-free HJM term
structure evolutions. In section 12.10, an implementation of a single-factor HJM
model is given. In section 12.11, we implement an HJM single-factor tree to value a
(synthetic) swap. In section 12.12, we introduce the two-factor HJM model, while
in section 12.13 a two-factor HJM implementation is given. In section 12.14 we in-
troduce the Ritchken-Sankarasubramanian (RS) model, and in section 12.15 the RS
short rate process is discussed. In section 12.16, an improvement of the RS model—
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the Li-Ritchken-Sankarasubramanian (LRS) model—is given and in section 12.17,
we discuss how to implement an LRS tree.

12.1 THE TWO-FACTOR GAUSSIAN G2++ MODEL

In the G2++ model, a useful model in practice, rates have a Gaussian distribu-
tion. Rates can in become negative, though unlikely. The joint Gaussian distribu-
tion of the two factors makes pricing many interest rate derivatives, especially
exotic products, simpler due to analytical tractability created by the additive na-
ture of linear Gaussian variables (unlike the CIR++ model, which loses tractabil-
ity due to the nonadditive nature of noncentral chi-squared variables). Thus,
explicit formulas for discount bond prices, European options, and a number of
non-plain-vanilla instruments exist, which in turn leads to efficient numerical
procedures for pricing any payoff.3 The nonperfect correlation between the two
factors allows for better calibration to correlation-based products like European
swaptions.

Consider the dynamics of instantaneous short rate process under the risk-neutral
measure Q:

r(t) = x(t) + y(t) + ϕ(t), r(0) = r0 (12.1)

where the processes {x(t) : t ≥ 0} and {y(t) : ≥ 0} follow

dx(t) = –ax(t)dt + σdz1(t), x(0) = 0

dy(t) = –by(t)dt + ηdz2(t), y(0) = 0
(12.2)

where the Brownian motions z1(t) and z2(t) have instantaneous correlation ρ, 0 ≤ ρ
≤ 1,

dz1(t)dz2(t) = ρdt

and r0, a, b, σ, η are positive constants.
Integration of equations (12.2) yields
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for each s < t. The short rate, conditional on the sigma field at time s, �s, is nor-
mally distributed with mean and variance given respectively by

Through a Cholesky decomposition (see section 2.3) of the variance-covariance
matrix of (z1(t), z2(t)), the dynamics of the processes x and y can also be written in
terms of two independent Brownian motions z~1 and z~2:

where

so that we can rewrite r(t) as:

(12.3)

(12.3)

We price a zero-coupon bond as follows. Define the random variable

It can be shown that the mean and variance of I(t, T ) are

and
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respectively.4 Equivalently, note that by differentiating

(12.5)

(12.5)

with respect to T, we obtain (12.4). Thus, the price at time t of a zero-coupon bond
maturing at time T and with unit face value is:

(12.6)

Moreover, the model fits the currently observed term structure of discount factors if
and only if for each T,

(12.7)

where

is the instantaneous forward rate at time 0. This is equivalent to

(12.8)

so that the zero-coupon bond prices at time t are

(12.9)

where
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This can be shown as follows: Note that at time 0,

If we take the logs of both sides and differentiate with respect to T, we get (12.6) by
using (12.5). Since

Equation (12.9) follows from (12.6) and (12.8).
In order to compute the price at time t of a European call option with maturity

T and strike X, we need to evaluate the expectation

This can be accomplished via a change in probability measure using the Radon-
Nikodym derivative:

where B is the bank account numeraire, and QT is T-forward risk-adjusted measure.

dQ
dQ

B
B T

P T T
P T

e
P T

u du x u y u du

P T

v T x u y u du

T
r u du

T T

T

T

= =
∫

=

− − +












= − − +






−

∫ ∫

∫

( )
( )

( , )
( , ) ( , )

exp ( ) ( ( ) ( ))

( , )

exp ( , ) ( ( ) ( ))

( )

0
0 0

0

1
2

0

0

0 0

0

ϕ







E e P T S Xt

r s ds
t

T

−∫
−

















( )

max( ( , ) , )  0

exp ( ) exp ( ) exp ( )

( , )
( , )

( , )

( , )

−











= −

























=

∫ ∫ ∫
−






−






ϕ ϕ ϕu du u du u du

P T
P t

e

e

t

T T t

v T

v t

0 0

1
2

0

1
2

0

0
0

P T u du v T
T

( , ) exp ( ) ( , )0
1
2

0
0

= − +










∫ ϕ

12.1 The Two-Factor Gaussian G2++ Model 559



The processes x and y under the forward measure QT have the dynamics:

(12.10)

where QT
1 and QT

2 are two correlated Brownian motions under QT with dQT
1 dQT

2 =
ρdt.

The explicit solutions of (12.10) are, for s ≤ t ≤ T,

where

We can compute the mean and variance of the distribution of r(t) under QT condi-
tional on the sigma field at time s as5
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It can be shown that the price time t of a European call option with maturity T
and strike X, written on a zero-coupon bond with a face value of N and maturity S,
is given by:

(12.11)

(12.11)

where

Similarly, the price at time t of a European put option with maturity T and
strike X, written on a zero-coupon bond with a face value of N and maturity S, is
given by

(12.12)

We can also price caps, caplets, and swaptions. If L(T1, T2) is the LIBOR rate at
time T1 for the maturity T2 and τ is the fraction of time between T1 and T2 , then

Since a caplet can be viewed as put option maturing at time T1 on a discount bond
maturing at T2 , we get the no-arbitrage value as:

caplet t T T N X NP t T

NP t T

N P t T

v t T T
v t T T

N P t T

NP t T

N P

( , , , , ) ( , )

ln
( , )

( , )

( , , )
( , , )

( , )

ln
( , )

     1 2 1

1

2

1 2
1 2

2

1

1
2

=
′

+

− ′
′

























Φ

Φ
(( , )

( , , )
( , , )

t T

v t T T
v t T T2

1 2
1 2

1
2

























−

L T T
P T T

( , )
( , )1 2

1 2

1 1
1= −









τ

p t T S X P t T X

XP t T

NP t S

v t T S

v t T S
NP t S

XP t T

NP t S

v t T S
( , , , ) ( , )

ln
( , )

( , )

( , , )

( , , )
( , )

ln
( , )

( , )

( , ,
     = + −





























Φ Φ
2 ))

( , , )
−

















v t T S

2

v t T S
a

e e
b

e e

ab a b
e e e

a S T a T t b S T b T t

a S T b S T a b

( , , ) ( ) ( ) ( ) ( )

( )
( )( )(

( ) ( ) ( ) ( )

( ) ( ) ( )(

= − − + − −

+
+

− − −

− − − − − − − −

− − − − − +

σ η

ρση

2

3
2 2

2

3
2 2 2

2
1 1

2
1 1

2
1 1 1 TT t− ) )

c t T S X NP t S

NP t S

XP t T

v t T S

v t T S
P t T X

NP t S

XP t T

v t T S
( , , , ) ( , )

ln
( , )

( , )

( , , )

( , , )
( , )

ln
( , )

( , )

( , ,
    = + −





























Φ Φ
2 ))

( , , )
−

















v t T S

2

12.1 The Two-Factor Gaussian G2++ Model 561



where N ′ = N(1 + τX). Since the price of a cap is the sum of the prices of the under-
lying caplets, the price at time t of a cap with cap rate (strike) X, nominal value N,
and year fractions τ between payment dates is:

We can price a European swaption with strike X, maturity T, and nominal
value N, which gives the holder the right to enter at time t0 = T an interest-rate
swap with payments at times t1, . . . , tn , which allows the holder to pay (receive) at
the fixed rate X and receive (pay) LIBOR. Denote the fixed payments ci = Xτi , i = 1,
. . . , n – 1 and τi = ti – ti–1, i = 1, . . . , n – 1. At time tn, assume unit face value, cn =
1 + Xτn. A European swaption at time 0 can be valued numerically as

where p is the joint probability density function of x(T) and y(T); that is,

where
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λi(x) = ciA(T, ti)e
–B(a,T,ti)x

y– = y– (x) is the unique solution of the following equation:

where

µx = –µT
x

µy = –µT
y
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dynamics in (12.2)—one for x(t) and one for y(t) and then combining them to cre-
ate a quadrinomial tree. We know that from the previous section, we have

Et[x(t + ∆t)] = x(t)e–a∆t

Et[y(t + ∆t)] = y(t)e–b∆t

and

At time t, x(t) (y(t)) can move up with probability p (q) to x(t) + ∆x (y(t) + ∆y) and
down with probability 1 – p (1 – q) to x(t) – ∆x (y(t) – ∆y), respectively. We chose
the quantities ∆x, ∆y, p, and q to match (in first-order ∆t) the conditional mean and
variance of the (continuous-time) processes x and y:

p(x(t) + ∆x) + (1 – p)(x(t) – ∆x) = x(t)(1 – a∆t)

p(x(t) + ∆x)2 + (1 – p)(x(t) – ∆x)2 – (x(t)(1 – a∆t))2 = σ2∆t

and, equivalently,

q(x(t) + ∆x) + (1 – q)(x(t) – ∆x) = x(t)(1 – b∆t)

q(x(t) + ∆x)2 + (1 – q)(x(t) – ∆x)2 – (x(t)(1 – b∆t))2 = η2∆t

Solving the preceding equations, we get:
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To build a tree for the short rate, r(t), we can combine the individual trees for x(t)
and y(t) into a quadrinomial tree so that

(x(t) + ∆x, y(t) + ∆y) with probability π1

(x(t) + ∆x, y(t) – ∆y) with probability π2

(x(t) – ∆x, y(t) + ∆y) with probability π3

(x(t) – ∆x, y(t) – ∆y) with probability π4

where 0 ≤ π1, π2, π3, π4 ≤ 1 and π1 + π2 + π3 + π4 = 1. The probabilities are chosen to
match the marginal distributions of the binomial trees and the conditional variance
between the processes x and y. Consequently, we have the requirements

π1 + π2 + π3 + π4 = 1

π1 + π2 = p

π3 + π4 = 1 – p (12.13)

π1 + π3 = q

π2 + π4 = 1 – q

Matching the conditional covariance, we have the additional constraint:

(∆x + ax(t)∆t)(∆y + by(t)∆t)π1 + (∆x + ax(t)∆t)(–∆y + by(t)∆t)π2

+ (ax(t)∆t – ∆x)(∆y + by(t)∆t) π3 + (ax(t)∆t – ∆x)(–∆y + by(t)∆t) π4 = ρση∆t (12.14)

Solving (12.13) and (12.14), we get:
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To build the G2++ tree, we define a TwoFactorModel as our abstract base class
for a G2++ class:6

#include “DiffusionProcess.h”
#include “Model.h”
#include “Lattice2d.h”
typedef size_t Size;
typedef double Time;

/**********************************************************************************
Abstract base-class for two-factor models
**********************************************************************************/
class TwoFactorModel : public Model
{

public:
TwoFactorModel(Size nParams);
class ShortRateDynamics;
class ShortRateTree;
// Returns the short-rate dynamics
virtual Handle<ShortRateDynamics> dynamics() const = 0;
// Returns a two-dimensional trinomial tree
virtual Handle<Lattices::Lattice> tree(const TimeGrid& grid) const;

};

/**********************************************************************************
Class describing the dynamics of the two state variables
We assume here that the short-rate is a function of two state variables x and y,

r(t) = f(t, x(t), y(t)), a function of two state variables x(t) and y(t). These
stochastic processes satisfy

x(t) = mu_x(t, x(t))dt + sigma_x(t, x(t)) dWx(t) and y(t) = mu_y(t, y(t))dt +
sigma_y(t, y(t)) dWy(t)

where Wx and Wy are two Brownian motions satisfying dWx(t) dWy(t) = rho dt

**********************************************************************************/

class TwoFactorModel::ShortRateDynamics
{

public:

π ρ σ η
ση4

1
4 4

= + + −b y t a x t
t

( ) ( ) ∆
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ShortRateDynamics(const Handle<DiffusionProcess>& xProcess, const
Handle<DiffusionProcess>& yProcess, double correlation) 
: xProcess_(xProcess), yProcess_(yProcess),

correlation_(correlation) {}
virtual ∼ShortRateDynamics() {}

virtual Rate shortRate(Time t, double x, double y) const = 0;
// Risk-neutral dynamics of the first state variable x
const Handle<DiffusionProcess>& xProcess() const {

return xProcess_;
}
// Risk-neutral dynamics of the second state variable y
const Handle<DiffusionProcess>& yProcess() const {

return yProcess_;
}
// Correlation rho between the two Brownian motions.
double correlation() const {

return correlation_;
}

private:
Handle<DiffusionProcess> xProcess_, yProcess_;
double correlation_;

};

/**********************************************************************************
Recombining two-dimensional tree discretizing the state variable
**********************************************************************************/
class TwoFactorModel::ShortRateTree : public Lattices::Lattice2D
{

public:
// Plain tree build-up from short-rate dynamics
ShortRateTree(const Handle<Lattices::TrinomialTree>& tree1, const

Handle<Lattices::TrinomialTree>& tree2, const Handle<ShortRateDynamics>&
dynamics);

DiscountFactor discount(Size i, Size index) const
{

Size modulo = tree1_->size(i);
Size index1 = index % modulo;
Size index2 = index / modulo;

double x = tree1_->underlying(i, index1);
double y = tree1_->underlying(i, index2);
double r = dynamics_->shortRate(timeGrid()[i], x, y);
return exp(-r*timeGrid().dt(i));

}
private:

Handle<ShortRateDynamics> dynamics_;
};
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with method definitions:

/**********************************************************************************
TwoFactorModel: Constructor
[in] : Size nArguments : number of arguments
**********************************************************************************/
TwoFactorModel::TwoFactorModel(Size nArguments) : Model(nArguments) {}

/**********************************************************************************
tree : constructs and builds a two factor lattice
[in] : TimeGrid& grid : time grid
[out]: Handle<Lattice> : two factor short rate tree
**********************************************************************************/
Handle<Lattice> TwoFactorModel::tree(const TimeGrid& grid) const
{

Handle<ShortRateDynamics> dyn = dynamics();
Handle<TrinomialTree> tree1(new TrinomialTree(dyn->xProcess(), grid));
Handle<TrinomialTree> tree2(new TrinomialTree(dyn->yProcess(), grid));
return Handle<Lattice>(new TwoFactorModel::ShortRateTree(tree1, tree2, dyn));

}

TwoFactorModel::ShortRateTree::ShortRateTree(
const Handle<TrinomialTree>& tree1,
const Handle<TrinomialTree>& tree2,
const Handle<ShortRateDynamics>& dynamics)
: Lattice2D(tree1, tree2, dynamics->correlation()), dynamics_(dynamics) {}

where

/**********************************************************************************
Two-dimensional lattice.
This lattice is based on two trinomial trees and primarily used for the G2 short-

rate model.
**********************************************************************************/
class Lattice2D : public Lattice
{

public:
Lattice2D(const Handle<TrinomialTree>& tree1,

const Handle<TrinomialTree>& tree2, double correlation);
Size size(Size i) const { return tree1_->size(i)*tree2_->size(i); }

protected:
Size descendant(Size i, Size index, Size branch) const;
double probability(Size i, Size index, Size branch) const;
Handle<Tree> tree1_, tree2_;
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private:
Math::Matrix m_;
double rho_;

};

The class has the following method definitions:

using namespace Lattices;

/**********************************************************************************
descendant: compute branches that are descendants of the current node
[in] : Size i : ith step
[in] : Size index : index (state position) of branch
[in] : Size branch : number of branch
**********************************************************************************/
Size Lattice2D::descendant(Size i, Size index, Size branch) const
{

Size modulo = tree1_->size(i);

Size index1 = index % modulo;
Size index2 = index / modulo;
Size branch1 = branch % 3;
Size branch2 = branch / 3;

modulo = tree1_->size(i+1);
return tree1_->descendant(i, index1, branch1) + tree2_->descendant(i, index2,

branch2)*modulo;
}

/**********************************************************************************
probability: compute the branching probabilities
[in] : Size i : ith step
[in] : Size index : index (state position) of branch
[in] : Size branch : number of branch
**********************************************************************************/
double Lattice2D::probability(Size i, Size index, Size branch) const
{

Size modulo = tree1_->size(i);

Size index1 = index % modulo;
Size index2 = index / modulo;
Size branch1 = branch % 3;
Size branch2 = branch / 3;

double prob1 = tree1_->probability(i, index1, branch1);
double prob2 = tree2_->probability(i, index2, branch2);

return prob1*prob2 + rho_*(m_[branch1][branch2])/36.0;
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}

/**********************************************************************************
Lattice2D : constructor – creates a 2-dimensional lattice
[in]: Handle<Trinomial>& tree1 : trinomial tree for first factor

Handle<Trinomial>& tree2 : trinomial tree for second factor
double correlation : correlation between first and second factor

**********************************************************************************/
Lattice2D::Lattice2D(const Handle<TrinomialTree>& tree1, const

Handle<TrinomialTree>& tree2, double correlation) : Lattices::Lattice
(tree1->timeGrid(), 9), tree1_(tree1), tree2_(tree2), rho_(fabs(correlation))

{
if (correlation < 0.0)
{

m_[0][0] = -1.0;
m_[0][1] = -4.0;
m_[0][2] = 5.0;
m_[1][0] = -4.0;
m_[1][1] = 8.0;
m_[1][2] = -4.0;
m_[2][0] = 5.0;
m_[2][1] = -4.0;
m_[2][2] = -1.0;

}
else
{

m_[0][0] = 5.0;
m_[0][1] = -4.0;
m_[0][2] = -1.0;
m_[1][0] = -4.0;
m_[1][1] = 8.0;
m_[1][2] = -4.0;
m_[2][0] = -1.0;
m_[2][1] = -4.0;
m_[2][2] = 5.0;

}
}

We now define the G2++ class:

/**********************************************************************************
Two-additive-factor Gaussian model class.
This class implements a two-additive-factor model defined by

dr_t = varphi(t) + x_t + y_t

where x(t) and y(t) are defined by dx(t) = -a x(t) dt + sigma dW^1_t, x_0 = 0
dy(t) = -b y(t)dt + sigma dW^2_t, y_0 = 0 and dW^1(t) dW^2(t) = rho dt.
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**********************************************************************************/
class G2 : public TwoFactorModel, public AffineModel, public TermStructureConsistent

Model
{

public:
G2(const RelinkableHandle<TermStructure>& termStructure,
double a = 0.1,
double sigma = 0.01,
double b = 0.1,
double eta = 0.01,
double rho = 0.9);
Handle<ShortRateDynamics> dynamics() const;
double discountBondOption(Option::Type type,

double strike, Time maturity, Time bondMaturity) const;
double swaption(const Instruments::SwaptionArguments& arguments) const;
DiscountFactor discount(Time t) const
{

return termStructure()->discount(t);
}

protected:
void generateArguments();
double A(Time t, Time T) const; // parameter of discount bond
double B(double x, Time t) const; // parameter of discount bond

private:
class Dynamics; // G2 dynamics
class FittingParameter; // analytical term-structure fitting 

// parameter
double sigmaP(Time t, Time s) const; // bond volatility
Parameter& a_; // drift of x process
Parameter& sigma_; // volatility of x process
Parameter& b_; // drift of y process
Parameter& eta_; // volatility of y process
Parameter& rho_; // correlation of Brownian motions
Parameter phi_; // shift parameter
double V(Time t) const;
double a() const { return a_(0.0); }
double sigma() const { return sigma_(0.0); }
double b() const { return b_(0.0); }
double eta() const { return eta_(0.0); }
double rho() const { return rho_(0.0); }
class SwaptionPricingFunction;
friend class SwaptionPricingFunction;

};

/**********************************************************************************
Dynamics class of the G2 model
**********************************************************************************/

class G2::Dynamics : public TwoFactorModel::ShortRateDynamics
{

public:

12.2 Building a G2++ Tree 571



Dynamics(const Parameter& fitting, double a, double sigma, double b, double eta,
double rho)
: ShortRateDynamics(Handle<DiffusionProcess>(new OrnsteinUhlenbeckProcess(a,

sigma)), Handle<DiffusionProcess>(new OrnsteinUhlenbeckProcess(b, eta)),
rho), fitting_(fitting) {}

virtual Rate shortRate(Time t, double x, double y) const {
return fitting_(t) + x + y;

}
private:

Parameter fitting_;
};

/**********************************************************************************
Analytical term-structure fitting parameter varphi(t).
varphi(t) is analytically defined by
varphi(t) = f(t) + 0.5((sigma(1-exp(-at)))/{a})^2 + 0.5({eta(1-exp(-bt))}(b))^2 +
rho(sigma(1-exp(-at)))(a)/(eta(1-exp(-bt)))(b),
where f(t) is the instantaneous forward rate at t.
**********************************************************************************/
class G2::FittingParameter : public TermStructureFittingParameter
{

private:
class Impl : public Parameter::Impl
{

public:
Impl(const RelinkableHandle<TermStructure>& termStructure,
double a, double sigma, double b, double eta, double rho)
: termStructure_(termStructure), a_(a), sigma_(sigma), b_(b), eta_(eta),

rho_(rho) {}

double value(const Array& params, Time t) const
{

double forward = termStructure_->instantaneousForward(t);
double temp1 = sigma_*(1.0-exp(-a_*t))/a_;
double temp2 = eta_*(1.0-exp(-b_*t))/b_;
double value = 0.5*temp1*temp1 + 0.5*temp2*temp2 + rho_*temp1*temp2 +

forward;
return value;

}
private:

RelinkableHandle<TermStructure> termStructure_;
double a_, sigma_, b_, eta_, rho_;

};
public:

FittingParameter(const RelinkableHandle<TermStructure>& termStructure,
double a, double sigma, double b, double eta, double rho)
: TermStructureFittingParameter(Handle<Parameter::Impl>(

new FittingParameter::Impl(termStructure, a, sigma, b, eta, rho))) {}
};
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The class has the following method definitions:

using Optimization::PositiveConstraint;
using Optimization::BoundaryConstraint;

/**********************************************************************************
G2 : constructor
[in]: RelinkableHandle<TermStructure>& termStructure : term structure

double a : drift of x process
double sigma : volatility of x process
double b : drift of y process
double eta : volatility of y process
double rho : correlation between Brownian motions of x and y processes

**********************************************************************************/
G2::G2(const RelinkableHandle<TermStructure>& termStructure,

double a, double sigma, double b, double eta, double rho)
: TwoFactorModel(5), TermStructureConsistentModel(termStructure),

a_(arguments_[0]), sigma_(arguments_[1]), b_(arguments_[2]),
eta_(arguments_[3]), rho_(arguments_[4])

{
a_ = ConstantParameter(a, PositiveConstraint());
sigma_ = ConstantParameter(sigma, PositiveConstraint());
b_ = ConstantParameter(b, PositiveConstraint());
eta_ = ConstantParameter(eta, PositiveConstraint());
rho_ = ConstantParameter(rho, BoundaryConstraint(-1.0, 1.0));
generateArguments();

}

/**********************************************************************************
dynamics : returns short rate dynamnics of G2 model
[in] :  none
[out] : Handle<TwoFactorModel::ShortRateDynamics> : G2 short rate dynamcs
**********************************************************************************/
Handle<TwoFactorModel::ShortRateDynamics> G2::dynamics() const
{

return Handle<ShortRateDynamics>(new Dynamics(phi_, a(), sigma(), b(), eta(),
rho()));

}

/**********************************************************************************
generateArguments: assign fitting parameter to phi
[in] : none
[out] : none
**********************************************************************************/
void G2::generateArguments()
{

phi_ = FittingParameter(termStructure(), a(), sigma(), b(), eta(), rho());
}

/**********************************************************************************

12.2 Building a G2++ Tree 573



sigmaP: computes the bond volatility of a zero-coupon bond
[in]  : Time t : initial time (option maturity)

Time s : end time (bond maturity)
[out] : bond volatility
**********************************************************************************/
double G2::sigmaP(Time t, Time s) const
{

double temp = 1.0 – exp(-(a()+b())*t);
double temp1 = 1.0 – exp(-a()*(s-t));
double temp2 = 1.0 – exp(-b()*(s-t));
double a3 = a()*a()*a();
double b3 = b()*b()*b();
double sigma2 = sigma()*sigma();
double eta2 = eta()*eta();
double value = 0.5*sigma2*temp1*temp1*(1.0 – exp(-2.0*a()*t))/a3 +

0.5*eta2*temp2*temp2*(1.0 – exp(-2.0*b()*t))/b3 +
2.0*rho()*sigma()*eta()/(a()*b()*(a()+b()))*temp1*temp2*temp;

return sqrt(value);
}

/**********************************************************************************
discountBondOption: price discount bond option using G2++ model
[in] :  Option::Type type : option type

double strike : strike price
Time maturity : maturity of bond option
Time bondMaturity : maturity of bond

[out] : price of bond opiton
**********************************************************************************/
double G2::discountBondOption(Option::Type type, double strike, Time maturity, Time

bondMaturity) const
{

double v = sigmaP(maturity, bondMaturity);
double f = termStructure()->discount(bondMaturity);
double k = termStructure()->discount(maturity)*strike;
double w = (type==Option::Call)? 1.0 : -1.0;
return BlackModel::formula(f, k, v, w);

}

/**********************************************************************************
V: computes subterms in the “A” term of the discount bond price
[in]  : Time t : current time
[out] : returns
**********************************************************************************/
double G2::V(Time t) const
{

double expat = exp(-a()*t);
double expbt = exp(-b()*t);
double cx = sigma()/a();
double cy = eta()/b();
double valuex = cx*cx*(t + (2.0*expat – 0.5*expat*expat – 1.5)/a());
double valuey = cy*cy*(t + (2.0*expbt – 0.5*expbt*expbt – 1.5)/b());
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double value = 2.0*rho()*cx*cy* (t + (expat – 1.0)/a() + (expbt – 1.0)/b()
– (expat*expbt – 1.0)/(a()+b()));

return valuex + valuey + value;
}

/**********************************************************************************
A: computes the “A” term of the discount bond price
[in] :   Time t : initial time

Time T: end time
[out] :  returns A
**********************************************************************************/
double G2::A(Time t, Time T) const
{

return termStructure()->discount(T)/termStructure()->discount(t)* exp(0.5*(V(T-t)
– V(T) + V(t)));

}

/**********************************************************************************
B: computes the “B” term of the discount bond price
[in] :  double x :

Time t: current time
[out] : returns B = (1 – exp(-xt))/x;
**********************************************************************************/
double G2::B(double x, Time t) const
{

return (1.0 – exp(-x*t))/x;
}

12.3 TWO-FACTOR HULL-WHITE MODEL

Hull and White (1994) developed a two-factor model where the short rate evolves
according to

dr(t) = (θ(t) + u(t) – a–r)dt + σ1dz1(t), r(0) = r0

du(t) = –b
–
u(t)dt + σ2dz2(t), u(0) = 0

(12.15)

where u(t) can be interpreted as a random (stochastic) mean reversion level and r0 ,
a–, b

–
, σ1, and σ2 are positive constants. As in the one-factor HW model, θ(t) is a

time-dependent function, allowing the model to fit the initial term structure. The
addition of u(t) to the model allows the model to have more possibilities for term
structure movements and volatility structures. In the one-factor model, forward
rates are perfectly instantaneously correlated. In the two-factor model, correlations
can vary so that more realistic volatility patterns such as the humped volatility
curve often seen in the cap markets can be generated. As in the two-factor G2++
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model, we have correlated Wiener processes, dz1dz2 = ρ. The G2++ is a specific case
of the model, as we will show.

If we integrate (12.15), we get

If we substitute u(t) into

and if we assume a ≠ b,

Following Brigo and Mercurio, we can evaluate the rightmost term by integration
by parts:
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so that we can write the short rate as:

If we let a > b and define

at time 0 we have

(12.16)

Comparing this with the G2++ short rate in (12.3) shows that we can recover the
short rate in the G2++ model if in (12.16) we set:

(12.17)

and the shift factor
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However, given the G2++ model in (12.3), we can recover the two-factor HW
model if we set:7

(12.18)

(12.18)

The price of a pure discount bond at time t that matures at s can be calculated
analytically by:

P(t, s) = A(t, s)e–r(t)B(t,s)-u(t)C(t,s)

where

and

The spot rate volatility is given by

or expanded out

(12.19)
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where

We can price European pure discount bond call and put options using the
Black-Scholes formulas in (10.72) and (10.75), respectively, using the two-factor
HW spot rate volatility given (12.17). Caps, caplets, swaptions, and other interest
rate derivatives can be priced using the formulas given in the previous section for
the G2++ model, except the formulas in (12.17) are used. Similarly, one can build a
two-factor Hull-White tree just like the G2++ binomial tree except the formulas in
(12.17) are used.

12.4 HEATH-JARROW-MORTON MODEL

Heath, Jarrow, and Morton (HJM) (1992) developed a general framework for
modeling interest rates in terms of forward rates instead of spot rates. The HJM
framework allows the volatility function to be a function of the entire forward rate
curve. They assume that the instantaneous forward rate f (t, T) evolves, under an
objective measure, according to:

(12.20)

or in vector form:

df(t, T) = α(t, T)dt + σ(t, T)dz(t)

where σ(t, T) = (σ1(t, T), . . . , σN(t, T)) is a 1 × n vector of volatilities (which are
each adapted processes), z = (z1, . . . , zN) is an n-dimensional Brownian motion,
and α(t, T) is an adapted process.

Heath, Jarrow, and Morton showed in their paper that in order for an equiva-
lent martingale measure to exist, the drift α(t, T) cannot be chosen arbitrarily, inde-
pendent of the volatility structure. Rather, the no-arbitrage drift, under the
risk-neutral measure, must be:
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or in vector form:

so that (12.20) can be written as:

The forward rate model is completely specified in terms of the volatility func-
tions σi(·), which in turn depend on the entire forward rate curve. The volatility
function determines the volatilities and correlations of the forward rates. In the sin-
gle-factor spot rate model, we specify only a single volatility function σR(t) for the
spot rate, and then solve for the forward rate’s volatility function σf(t, T). In the
HJM model, we specify the entire forward volatility function. The initial forward
rate curve is given and then the forward rates of different maturities evolve dynam-
ically through time by (12.20). Thus, to compute derivatives prices using the HJM,
it is necessary to specify explicitly the volatility function to be used.

Integrating the dynamics (12.20), we get

From the relationship between forward rates and bond prices, that is,

we can use Ito’s lemma to generate the dynamics of the zero-coupon bond price
P(t, T). From Ito:

which becomes:
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or

in vector form, where r(t) is the instantaneous short-term interest rate at time t:

(12.23)

(12.23)

which satisfies the following SDE:

(12.24)

(12.24)

where

which relates the volatilities of forward rates and bond prices (for the ith factor).
The short rate process is non-Markovian in general. This is due to the fact

that time t appears in the stochastic integral as the upper limit and inside the inte-
grand function. This implies that the evolution of the term structure could depend
on the entire path taken by the term structure since it was initialized at time 0.8

However, there are conditions that can be imposed on the forward rate volatility
that leads to a Markov short rate process. As Carverhill (1994) has shown, if the
forward rate volatility satisfies a separable conditions, the volatility specification
can be written as:

σi(t, T) = ξi(t)ψi(T) (12.25)

for each i = 1, . . . , N where ξi and ψi are strictly positive and deterministic 
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functions of time, then the short rate process is Markov. In this case, we can
write (12.23) as:

In the one-factor case (N = 1), let A be a strictly positive deterministic function
defined by:

(12.26)

If we assume A is differentiable, then we can write the short rate process as:

(12.27)

where

We end up with the general short rate process developed by Hull and White
(1990); see (10.76). Therefore, it has been established that when the short rate
process is Markov, there is an equivalence between the HJM one-factor model for
which (12.24) holds and the Gaussian one-factor Hull-White short rate model
(1990b). In fact, we can derive the HJM forward rate dynamics that is equivalent
to the Hull-White dynamics in (10.76). Let us set
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where a and σ are now real constants, so that

The volatility function can be estimated by (cross-sectional) nonlinear regression
across different maturities.9

The resulting short-rate dynamics is then given by

which is equivalent to (10.76) when combined with (10.82).10
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9Jarrow (1996), page 319. In the continuous-time HJM model, it can be shown that the vari-
ance of zero-coupon bonds over the time interval [t, t + ∆] satisfies the identity

To estimate the variance on the left side of the equation, one can use zero-coupon bond
prices generated by stripping coupon bonds to compute sample variances, vT , by choosing ∆
= 1/12, for various maturities such as 3 months, 6 months, 1 year, 3 years, 5 years, 7 years,
10 years, and 20 years. Then, one can run the following (cross-sectional) nonlinear regres-
sion across different maturities to estimate the parameters (λ, σ):

where the error terms εT are assumed to be independent and identically distributed with zero
mean and constant variance.
10Brigo and Mercurio (2001), 177.
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12.5 PRICING DISCOUNT BOND OPTIONS WITH GAUSSIAN HJM

In a Gaussian HJM framework, we can derive analytic solutions for European dis-
count bond options assuming Gaussian volatility structures. We change to an
equivalent martingale measure by changing to a bank account numeraire

thus, eliminating the drift in (12.22), making the bond price process a martingale:

(12.28)

where under the new measure

where the tilde denotes the measure under the savings account numeraire.
Given the non-Markovian short rate process in (12.25), it is better to value de-

rivatives in the HJM framework using (12.28) since the drift is eliminated and be-
cause of the fact that bonds are traded assets whereas short rates are not. We can
implement (12.28) via Monte Carlo simulation to price pure discount bond op-
tions. The value of the T-maturity European call option on a s-maturity pure dis-
count bond with strike price X is:

(12.29)

We can change the numeraire to P(t, T) (the forward measure to the maturity
date of the option):
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where ET
t [ ] indicates the expectation with respect to the P(t, T ) numeraire. The so-

lution to this equation is analogous to the Black-Scholes equation:11

c(t, T, s) = P(t, s)N(h) – XP(t, T )N(h – w) (12.31)

where

and w is the variance of the log of relative discount bond prices.

12.6 PRICING DISCOUNT BOND OPTIONS IN GENERAL HJM

In a general HJM framework, we can price discount bond options via Monte Carlo
simulations to deal with the analytic intractability of a non-Markovian short rate
process. Carverhill and Pang (1995) show that the price of a European call option
on a pure discount bond given by

which can be rewritten in the general HJM framework as

c(t, T, s) = E
~

t[max(0, P(t, s)Z(t, T, s) – XP(t, T )Z(t, T, T ))] (12.32)

where

Z t T s v u s dz u v u s du
t

T

t

T

( , , ) exp ( , ) ( ) ( , )    = −












∫ ∫1

2
2

c t T s E r u du P T s Xt

t

T

( , , ) ˜ exp ( ) max( , ( , ) )    = −












−












∫ 0

h

P t s
P t T X

w

w

w v u s v u T dui i

t

T

i

N

=






+

= −











∫∑

=

ln
( , )

( , )

( ( , ) ( , ) )

1
2

2

1

12.6 Pricing Discount Bond Options in General HJM 585

11See Brace and Musiela (1994) or Clewlow, Strickland, and Pang (1997).



We can simulate (12.32) via Monte Carlo simulation with j = 1, . . . , M simula-
tions:

(12.33)

where

We can estimate

where N
–

is the number of (very small) time steps and ∆t = T/N
–
. For example, if we

assume a negative exponential volatility function, then

and for simplicity, if we assume only one factor so that N = 1, then:

It is easy to see that as we increase the number of factors, the computation becomes
more complex as we are approximating multidimensional integrals and thus more
computation time is needed.

12.7 SINGLE-FACTOR HJM DISCRETE-STATE MODEL

In a discrete-time economy, we denote the forward rate f∆(t, T), which represents
“one plus the percentage” forward rate at time t for the future time period [T, T + ∆].
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The continuously compounded (continuous-time) forward rate f(t, T ) corresponds
to the rate such that

f∆(t, T ) ≈ ef(t, T )∆

This expression states that the continuously compounded rate for ∆ units of time
(i.e., a percentage) equals the discrete rate. More formally,

assuming the limit exists. Since we are concerned with changes in continuously
compounded forward rates, then we can write

Under the actual (empirical or objective) probability measure, the evolution of
observed zero-coupon bonds and forward rates is generated by a continuous-time
real-world economy process with drift µ*(t, T) that represents expected changes in
continuously compounded forward rates per unit time, and diffusion coefficient
σ(t, T), the standard deviation of changes in the continuously compounded forward
rates per unit time—the forward rate’s volatility. We would like to construct an ap-
proximating discrete-time empirical economy such that as the step size tends to 0
(i.e., ∆ → 0) the discrete time process approaches the continuous-time process. The
term “empirical” is meant to distinguish between the real-world economy from the
transformation using a change in probability measure to the risk-neutral world, or
“pseudo” economy.

We can characterize a discrete-time empirical economy by (1) real-world prob-
abilities, q∆(t; st), that can be a function of time and current state st (mathematically,
the filtration generated by the adapted process) and (2) the (one plus) percentage
changes in the forward rates across various states (i.e., movements to up or down
states). Under the real-world probability measure at time t, the approximation be-
tween the discrete and continuous-time processes can be made by matching their
means and variances, respectively. From probability theory with certain technical
conditions (see He [1990]), we get:
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and

where the expectations and variances are obtained using the actual probabilities
q∆(t; st). For sufficient small ∆, the discrete process will be a good approximation to
the continuous-time process.

We know from no-arbitrage arguments that there exists an equivalent martin-
gale measure such that unique risk-neutral (pseudo) probabilities π∆(t; st) exist that
can be used for valuation of contingent claims. The discrete-time risk-neutral econ-
omy is characterized by (1) the probability of movements of forward rates π∆(t; st)
and (2) the (one plus) percentage changes in forward rates across various states
(i.e., movements to up and down states). There exists an arbitrage-free link be-
tween both discrete risk-neutral and empirical economies. The percentage changes
in forward rates are identical in both discrete-time economies; only the likelihoods
(probabilities) of the movements differ.12 Under equivalent probability measure, q∆
(t; st) = 0 if and only if π∆(t; st) = 0.

Similar to the discrete-time case, the assumption of no-arbitrage in the continu-
ous-time model gives the existence of unique risk-neutral (pseudo) probabilities,
which are used for the valuation of contingent claims. The risk-neutral economy
process is characterized by the (1) drift, µ(t, T), the expected change in the continu-
ously compounded forward rates per unit time, and (2) σ(t, T), the standard devia-
tion of changes in the continuously compounded forward rates per unit time. The
standard deviations of changes in forward rates are the same in both the risk-neutral
and empirical continuous-time economies; only the likelihoods (and, thus, expected
changes in forward rates) differ so that there is an arbitrage-free (equivalent proba-
bility measure) link between the two limit economies. From Girsanov’s theorem, we
know that under a change of measure,

and

lim

˜ log ( , ) log ( , )

( , )
∆

∆ ∆∆
∆ ∆

∆→

+ −









→

0

2

Vart
f t T f t T

t Tσ

lim

˜ log ( , ) log ( , )

( , )
∆

∆ ∆∆
∆ ∆

∆→

+ −









→ µ

0

E
f t T f t T

t T
t

lim

log ( , ) log ( , )

( , )
∆

∆ ∆∆
∆ ∆

∆→

+ −









→

0

2

Vart
f t T f t T

t Tσ

588 TWO-FACTOR MODELS AND THE HEATH-JARROW-MORTON MODEL

12Jarrow (1996), 278.



where the tildes denote expectations and variances under the risk-neutral probabil-
ity measure. We know from Girsanov’s theorem that the relationship between the
actual and risk-neutral drift is µ*(t, T ) = µ(t, T ) – λ(t)σ(t, T ) where λ(t) is the risk
premium or market price of risk—a measure of the excess expected return (above
the risk-free rate) per unit of standard deviation (risk) for zero-coupon bonds. If the
risk-neutral probabilities π∆(t; st) are chosen such that π∆(t; st) = 1/2, then the com-
putation of matching discrete and continuous time processes is simplified.

Following Jarrow (1996), in the discrete-time empirical economy, we can char-
acterize the forward rate process by

where

(12.34)

and

(12.35)

and

and u and d represent up and down states. Thus, we can write the forward rate
process as:

(12.36)
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Taking the natural logarithms of both sides of expression (12.36), we get

(12.37)

The mean and variance changes in the forward rates can be calculated to be

and

Taking the limit as ∆ → 0 of the mean and variance changes in forward rates (using
(12.37)) and then dividing by ∆ we get:

and

In principle, we can estimate µ*(t, T) and σ(t, T) from historical observations of
forward rates. λ(t) is a stochastic process that is in general not empirically observ-
able, which is why it is easier to work with in the risk-neutral world.
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12.8 ARBITRAGE-FREE RESTRICTIONS IN A SINGLE-FACTOR MODEL

We can define the return at time t on the T-maturity zero coupon bond as

(12.38)

and

(12.39)

in the up and down states, respectively, where u(t, T; st) > d∆(t, T; st) for all t < T – 1
and st. The same symbols u and d are used for both the states and returns on the bond
to visually link the state with changes in the underlying bond price process.13 We can
characterize the evolution of the one-factor zero-coupon bond price process as

(12.40)

From no-arbitrage arguments, we know there exists risk-neutral probabilities
π∆ (t; st) such that P∆ (t + 1, T; st)/B∆ (t + 1; st–1) is a martingale; that is,

Since the bank account return over one time period is B∆(t + 1; st)/B∆(t; st) = r∆(t; st),
the risk-free rate, then we can write (in discrete time):

P∆(t, T; st)r∆(t; st) = π∆(t, T; st)P∆(t + 1, T; stu) + (1 – π∆(t, T; st))P∆(t + 1, T; std)
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so that the risk-neutral probabilities are

(12.41)

and

(12.42)

We can relate the forward rate’s rate of change parameters to the zero-coupon bond
price process’s rate of return parameters in the up and down states, respectively, as
follows:

and

Consequently, we can deduce the zero-coupon bond price process’s rate of return
parameters in the up and down states from the forward rate process. It can be
shown that in the up state

(12.43)

and in the down state
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so that substituting (12.38) into (12.41) and (12.39) into (12.42), respectively, yields
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Substituting (12.45) and (12.46) into the risk-neutral probability in (12.41) yields

(12.47)

for all 0 ≤ t < T – ∆ and st. Using these risk-neutral probabilities, the change in the
logarithm of forward rates is given by

(12.48)

Thus, the mean and variance of the changes in forward rates can be computed un-
der the risk-neutral probabilities.

and

To ensure a discrete approximation in the risk-neutral process to the risk-neutral
continuous-time process requires three conditions. First, (12.47) holds. Second, as
∆ → 0,

(12.49)

and third,

(12.50)
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These three conditions imply that

(12.51)

For computational efficiency, we assume π∆(t; st) = 1/2 for all st and t. Thus, we set
the left-hand side of equation (12.47) to 1/2 and then rearrange terms to get

(12.52)

which is true if and only if
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where

With the restriction on the risk-neutral probability as well as the conditions im-
posed on the drifts and volatilities, the forward rate process will be arbitrage-free
and converge to the appropriate risk-neutral continuous-time process.
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12.9 COMPUTATION OF ARBITRAGE-FREE TERM 
STRUCTURE EVOLUTIONS

We can use the results in the previous section to compute an arbitrage-free term
structure evolution. We can compute the evolution of zero-coupon bonds by substi-
tution of (12.53) into (12.45) and (12.46), which gives

(12.54)

and

(12.55)

(12.55)

Substituting (12.54) and (12.55) into the zero-coupon bond process in (12.40)
gives

(12.56)

(12.56)

for t < T – ∆ where t and T are integer multiples of ∆.
The bond price process in (12.56) gives the realization of the discrete-time

bond price process. Using actual probabilities, (1/2) + (1/2)λ(t; st), this process
will converge to the limiting continuous-time empirical process for the bond’s
prices. If risk-neutral probabilities π∆(t; st) = 1/2 are used, then the bond price
process converges to the limiting continuous-time risk-neutral process for the
bond’s price. Since valuation of contingent claims in the risk-neutral economy is
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all that is required for arbitrage-free pricing, then it is not necessary to ever esti-
mate the stochastic process λ(t; st).

We can generate the forward rate process. By using equation (12.53), we get

and

(12.57)

for T ≥ t + 2∆.
Substituting this expression into the forward rate process yields

(12.58)

(12.58)

for T – ∆ ≥ t, t and T are integer multiples of ∆ where for notational convenience
we define

so that we do not have to write out two expressions: one when T = t + ∆ and one
when T = t + 2∆. Using empirical probabilities, (1/2) + (1/2)λ(t; st), the forward rate
process in (12.58), converges to the empirical continuous-time forward rate
process. Similarly, using risk-neutral probabilities, π∆(t; st) = 1/2, it converges to the
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risk-neutral continuous-time forward rate process. Moreover, in the risk-neutral
economy, a specification of the volatility of forward rates,

[σ(t, t + ∆; st), σ(t, t + 2∆; st), . . . , σ(t, T – ∆; st)]

for all 0 ≤ t ≤ T – ∆ and st is sufficient to determine the evolution of the forward rate
curve.14 Notice that the market price of risk process λ(t) does not appear in (12.58),
which simplifies the implementation.

Two functional forms of the forward rate volatility function σ(t, T; st) are used
widely for implementation: (1) a deterministic volatility function, independent of
the state st , and (2) a nearly proportional volatility function. A deterministic func-
tion restriction implies that forward rates can become negative. This case includes
as special cases Ho and Lee’s (1986) model where the volatility is a constant and
the discrete-time approximation in the HJM model to Vasicek’s (1977) exponential
volatility function.15

σ(t, T; st) = ηe–λ(T–t) η, λ > 0 constants

In the nearly proportional volatility specification, the form is

σ(t, T; st) = η(t, T )min(log f (t, T ), M)

where η(t, T ) is a deterministic function and M > 0 is a large positive constant.
Thus, under this specification, the forward rate volatility is proportional, by a fac-
tor η(t, T ), to the current value of the continuously compounded forward rate log
f(t, T ). This proportionality ensures that forward rates are always nonnegative, a
condition usually imposed on models since negative rates are inconsistent with the
existence of cash currency, which can be stored at no interest rate.16 Moreover, the
larger the forward rate, the larger the volatility. However, if the forward rate be-
comes too large, then the volatility becomes bounded by η(t, T )M, which ensures
forward rates do not explode with positive probability.

In general, the tree is nonrecombining so that an up movement followed by a
down movement does not result in the same discount bond price as a down move-
ment followed by an up movement. The tree recombines only if the forward rate
volatility is a deterministic function of time. The number of nodes increases expo-
nentially as the number of time steps increases: after N time steps, there are 2N

nodes. For example, after 20 time steps, there are more than 1 million nodes. Con-
sequently, the storage and computational costs for an HJM tree are very high. One
approach is to build a binary search tree (BST) to handle this problem.
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12.10 SINGLE-FACTOR HJM IMPLEMENTATION

The following is an implementation of a single-factor HJM binomial tree to price
bonds using a Vasicek exponential deterministic volatility function. The HJM tree
is implemented as a binary search tree (BST) since we want (at most) two children
per parent node. It is constructed by successively adding nodes to the tree in a man-
ner that maintains symmetry of the tree (i.e., two child nodes at each branch). It
does not use recursion, which is another possible and efficient way to build the
tree.17 We define the following HJMTree class, which we assume to be a subclass of
a general Tree class:

#ifndef _HJMTREE__
#define _HJMTREE__

#include <vector>
#include <math.h>
#include “Utility.h”
using namespace std;

class HJMTree
{

private:
typedef struct BSTREE_NODE {

double bondPrice[20]; // bond prices
int nodeKey; // a value that identifies node
double shortRate; // interest rate
double forwardRate[20]; // forward rates
double simpleRate; // simple short rate
double cashFlow; // cash flow for range notes
double numMoneyMarket; // number of shares held of money 

// market
double numZeroCoupon; // number of shares held of zero 

// coupon bond
double moneyMarketAccount; // money market account
BSTREE_NODE *up_childptr; // pointer to up child node
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a process that builds the tree in terms of itself using smaller subtrees that in turn build sub-
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built does not recombine and grows exponentially in the number of nodes, recursion leads to
computational time that is less than exponenential. It can be shown that recursion has a
computational time of the order of O(nlog n). Not only is recursion efficient, but the code is
parsimonious. S. Das, in his 1998 paper “On the Recursive Implementation of Term-Structure
Models,” generates an HJM recombining tree recursively using Mathematica software by re-
cursively solving for the stochastic process followed by the vector for forward rates as they in-
volve into the future, ensuring that arbitrage conditions are not violated.



BSTREE_NODE *middle_childptr; // pointer to middle node (only used 
// for 2-factor HJM)

BSTREE_NODE *down_childptr; // pointer to down child node
} *TREE_PTR;

TREE_PTR root_ptr; // root of the BST
double initRate; // initial short rate
double T; // maturity
long N; // number of time steps
double vol; // coefficient of volatility function 

// of 1st factor
double vol1; // coefficient of volatility function 

// of 2nd factor
double lambda; // coefficient of exponent in 

// volatility of 1st factor
double lambda1; // coefficient of exponent in 

// volatility of 2nd factor
double swapRate; // swap Rate
double dt; // step size
int* A; // stores a sequence of randomly 

// generated keys
bool flag; // flag for counting height of tree
int cnt; // counts the kth node added
int rateMaturity_; // simple rate maturity
double** C; // double array
int nodeCnt; // counts total nodes for upper part 

// of tree
int nodeCnt2; // counts total nodes for lower part 

// of tree
typedef struct
{

double numMoneyMarket; // number of shares of money market 
// account

double numZeroCoupon; // number of zero coupon bonds
double value; // value of security at node
double cashFlow; // cash flow at node
double shortRate; // short rate
double zeroCouponBond; // number of shares of zero coupon 

// bonds
double moneyMarketAccount; // value of money market account

} Shares; // node structure
Shares** C; // double array of Shares

public:
HJMTree() { }
HJMTree(double rate, double T, long N, double vol, double lam);
HJMTree(double rate, double T, long N, double vol, double lambda, double

lambda1);
virtual ∼HJMTree();
StatUtility util; // statistical utility
void init_BSTree() 

{ root_ptr = NULL; } // initialize BST
int* generateKeys(); // generate keys for BST
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int* generateKeys1(); // generate keys for TST
void buildHJMTree(); // build HJMTree
void buildHJMSwapTree(); // build HJM Swap Tree
void build2FactorHJMTree(); // build 2 factor HJM tree
void addNodeHJM(int key); // add node to HJM tree
void addNodeHJM(int key, int num); // add node to HJM tree
void addNodeHJMRangeNote(int key, 

int num, int rateMaturity); // add node to range note tree
void addNode2FactorHJM(int key, 

int num); // add node to 2 factor tree
void traverseInorder(TREE_PTR 

tree_ptr); // traverse tree in order
TREE_PTR get_root() { return 

root_ptr; } // returns root of tree
int getTreeHeight(TREE_PTR 

root_ptr, int cnt); // returns height of tree
int getHeightUp(TREE_PTR 

root_ptr); // returns height of “up” tree
int getHeightDown(TREE_PTR 

root_ptr); // returns height of “down” tree
double calcRangeNote(); // compute range note value
vector<double> calcSyntheticSwap

(double principalAmount); // compute synthetic swap value
};

#endif _HJMTREE__
/**********************************************************************************
addNodeHJM The procedure builds an HJM single-factor binomial tree to price

discount bonds based on the discrete-time bond process in Equation (12.56)
[in]:  int key: a numeric key value that orders the nodes into a BST

int num: used for computing tree height (represents the kth node created)
[out]: void
**********************************************************************************/
void HJMTree::addNodeHJM(int key, int num)
{

TREE_PTR new_ptr, node_ptr, curr_ptr;
double r, sum, sum1;
double volsum = 0.0;
double volsum1 = 0.0;
double coshval = 0.0;
double expvalPlus = 0.0;
double expvalPlus1 = 0.0;
double expvalMinus = 0.0;
double expvalMinus1 = 0.0;
double coshRatio = 0.0;
int i;

new_ptr = new BSTREE_NODE;
new_ptr->up_childptr = NULL;
new_ptr->down_childptr = NULL;
new_ptr->prev_ptr = NULL;

// get tree height
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cnt = getTreeHeight(get_root(), num);
// Add key in the new node’s data field
new_ptr->nodeKey = key;
// If the BST is empty, insert the new rate in root

if (root_ptr == NULL)
{

for (i = 0; i <= N; i++)
{

new_ptr->bondPrice[i] = 1/(pow(initRate,i));
new_ptr->forwardRate[i] = initRate;

}
root_ptr = new_ptr;

}
else
{

TREE_PTR tree_ptr = root_ptr;
while (tree_ptr != NULL)
{

node_ptr = tree_ptr;
if (key == tree_ptr->nodeKey)

return;
else if (key < tree_ptr->nodeKey)

// search its up side for insertion location
tree_ptr = tree_ptr->up_childptr;

else
// search its down side for insertion location
tree_ptr = tree_ptr->down_childptr;

}
// Now ‘node_ptr’ is the pointer to the parent of the new
// node. Now determine where it will be inserted compute volatilites
// sum is used for computing both bond prices and forward rates

sum = 0.0;
for (int k = cnt; k <= N; k++)
{

sum = sum + vol*exp(-lambda*(k*dt));
}

// used for coshRatio for forward rate computation
sum1 = 0.0;
for (k = cnt; k < N; k++)
{

sum1 = sum1 + vol*exp(-lambda*(k*dt));
}

volsum = sum*sqrt(dt)*dt;
volsum1 = sum1*sqrt(dt)*dt;
coshRatio = cosh(volsum)/cosh(volsum1);
coshval = 1/cosh(volsum);
expvalPlus = exp(volsum);
expvalMinus = exp(-volsum);
expvalPlus1 = exp(vol*exp(-lambda*cnt*dt)*sqrt(dt)*dt);
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expvalMinus1 = exp(-vol*exp(-lambda*cnt*dt)*sqrt(dt)*dt);

if (key < node_ptr->nodeKey)
{

node_ptr->up_childptr = new_ptr;
curr_ptr = node_ptr->up_childptr;

for (i = cnt; i <= N; i++)
{

curr_ptr->forwardRate[i]=node_ptr->forwardRate[i]*coshRatio*expvalMinus1;
if (i == cnt)
{

curr_ptr->bondPrice[cnt] = 1; // bond price at maturity
}
else
{

// get short rate r(t) from forward rate f(t,t)
r = curr_ptr->forwardRate[cnt];
curr_ptr->shortRate = r;
// calculate bond prices
curr_ptr->bondPrice[i] = (node_ptr->bondPrice[i])*(r*coshval*expval

Plus);
}

}
}
else
{

node_ptr->down_childptr = new_ptr;
curr_ptr = node_ptr->down_childptr;

for (i = cnt; i <= N; i++)
{

curr_ptr->forwardRate[i]=(node_ptr->forwardRate[i]*coshRatio*expvalPlus1);
if (i == cnt)
{

curr_ptr->bondPrice[cnt] = 1;
}
else
{

// get short rate r(t) from forward rate f(t,t)
r = curr_ptr->forwardRate[cnt];
curr_ptr->shortRate = r;
// compute bond price
curr_ptr->bondPrice[i] = (node_ptr->bondPrice[i]*r*coshval*expvalMinus);

}
}

}
}

}

/**********************************************************************************
getTreeHeight : calculates the tree height (depth of tree)
[in]:  TREE_PTR root_ptr : pointer to root of tree structure
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int num : counts the kth node added to tree
[out]: int height : height of tree
**********************************************************************************/
int HJMTree::getTreeHeight(TREE_PTR root_ptr, int num)
{

int depth_up = 0;
int depth_down = 0;

if (root_ptr == NULL)
return 0;

else
{

depth_up = getHeightUp(root_ptr->up_childptr);
depth_down = getHeightDown(root_ptr->down_childptr);

if ((depth_up == 0) && (depth_down == 0))
return 1; // the root has been added so there is now 1 node

else
{

if ((int)pow(2,cnt) % cnt == 0)
return max(depth_up,depth_down) + 1;

else
return max(depth_up,depth_down);

}
}

}

/**********************************************************************************
getTreeHeightUp : calculates the tree height for “up” tree
[in]: TREE_PTR root_ptr : pointer to root of tree structure
[out]: int : height of “up” tree
**********************************************************************************/
int HJMTree::getHeightUp(TREE_PTR root_ptr)
{

if (root_ptr == NULL)
return 0;

else
return 1 + getHeightUp(root_ptr->up_childptr);

}
/**********************************************************************************
getTreeHeightDown : calculates the tree height for “down” tree
[in]: TREE_PTR root_ptr : pointer to root of tree structure
[out]: int height of “down” tree
**********************************************************************************/
int HJMTree::getHeightDown(TREE_PTR root_ptr)
{

if (root_ptr == NULL)
return 0;

else
return 1 + getHeightDown(root_ptr->down_childptr);

}

/**********************************************************************************
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HJMTree : constructor
[in]:   double rate : initial short rate r(0)

double T : time to maturity
long N : number of time steps
double vol : coefficient of volatility function
double lambda : coefficient in exponent of volatility function

**********************************************************************************/
HJMTree::HJMTree(double rate, double T, long N, double vol, double lam)

: initRate(rate), T(T), N(N), vol(vol), lambda(lamda)
{

root_ptr = NULL; // initialize root pointer
dt = (double) T/N; // time step
int* A = new int[200];

// dynamically allocate memory for double array
C = (Shares **)malloc(N*sizeof(Shares));
for(int i= 0;i < N;i++)

C[i]=(Shares *) malloc((pow(2,N))* sizeof(Shares));

nodeCnt = 1; // used for range note valuation
nodeCnt2 = 0; // used for range note valuation

}

/**********************************************************************************
buildHJMTree: builds a single factor HJM balance binary search tree (BST) tree with

N time steps
[in]:  none
[out]: none
**********************************************************************************/
void HJMTree::buildHJMTree()
{

int i;
int q, k, p;
int M = pow(2, N) – 1;

int* key = new int[M];
int* key2 = new int[M];
int j = pow(2, N-1); // number of nodes on last time step

// generate keys: these numbers are insertion “keys” for the node and become the
value of nodeKey

// the keys are ordered so that they will produce a balanced BST (equal number of
branches and children nodes)

for (i = 0; i < j; i++)
key2[(int)pow(2,N-1)+i] = 2*i + 1;

q = N-1;
k = 0;
for (i = M-j; i >= 1; i--)

key2[i] = 0.5*(key2[(int)2*i] + key2[(int)2*i+1]); // each node is the average 
// of its children

// add node
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for (i = 0; i < M; i++)
addNodeHJM(key2[i+1]);

}

Suppose we want to build a single-factor HJM lattice to price discount bonds
with T = 4 years, with N = 4 time steps, with an initial short rate of 2 percent, and
with a Vasicek volatility function,

σ(t, T) = σe–λ(T–t) = 0.0076e–0.054(T–t)

then we can build the tree shown in Figure 12.1.
At each node is the vector of zero-coupon bonds. Above each node is the short

rate. The short rate was determined by extracting it from the forward rate curve
since r(t) = f(t, t). At the initial node (t = 0), for example, we have the initial dis-
count bond curve (vector) [P(0, 0), P(0, 1), P(0, 2), P(0, 3), P(0, 4)]′ = [1.000,
0.9804, 0.9612, 0.9423, 0.9238]. At the next time step, with probability 1/2 it can
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FIGURE 12.1 HJM Single-Factor Tree
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go up to [P(1, 1; u), P(1, 2; u), P(1, 3; u), P(1, 4; u)]′ = [1.000, 0.9831, 0.9639,
0.94449]′ or down with probability 1/2 to [P(1, 1; d), P(1, 2; d), P(1, 3; d), P(1, 4;
d)]′ = 1.000, 0.9776, 0.9585, 0.9397]′. The discount bond evolution is continued
until out to the end of the maturity of the bond. Notice the tree does not recom-
bine.

12.11 SYNTHETIC SWAP VALUATION

We can use the HJM single-factor model to price a fixed-for-floating T-maturity
swap that can be synthetically created by dynamically trading shares in a T-maturity
zero-coupon bond—long the fixed leg and short a (floating-rate) money market ac-
count (short the floating leg). Each node contains the swap value, cash value, and
amount held in the money market account and amount held in the zero-coupon
bond. Suppose we want to price a swap receiving fixed and paying floating with a
three-year maturity and a notional amount of $100. The initial short rate is 2 per-
cent. We assume the HJM volatility parameters are η = 0.0076 and λ = 0.0154. We
can synthetically create a swap by trading (long) shares of a three-year zero and
(short) shares of the money market account.

We first need to compute the swap rate, which can be computed from (10.114)
where we assume that the time step is one year. The swap rate is computed as 2 per-
cent. We then find the arbitrage-free evolution of bond prices and forward rates, by
constructing the HJM tree starting at the root node, which are used to compute net
cash flows between the long bond and short money market positions, as well as the
swap value at each node. Finally, share amounts held in the three-year zero-coupon
bond and the money market account are computed at each node. The following
code implements this process:

/**********************************************************************************
addNodeHJMSwap : builds an HJM single-factor binomial tree to price swaps based on

the discrete-time bond process in Equation (12.56)
[in]:  int key : a numeric key value that orders the nodes into a BST

int num : used for computing tree height (represents the kth node created)
double principalAmount : notional amount of swap

[out]: void
**********************************************************************************/
void HJMTree::addNodeHJMSwap(int key, int num, double principalAmount)
{

TREE_PTR new_ptr, node_ptr, curr_ptr = NULL;
double r, sum, sum1, bondSum = 0;
double volsum = 0.0;
double volsum1 = 0.0;
double coshval = 0.0;
double expvalPlus = 0.0;
double expvalPlus1 = 0.0;
double expvalMinus = 0.0;
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double expvalMinus1 = 0.0;
double coshRatio = 0.0;
double amortizingRate = 0;
int i;

new_ptr = new BSTREE_NODE;
new_ptr->up_childptr = NULL;
new_ptr->down_childptr = NULL;

// get tree height
cnt = getTreeHeight(get_root(),num);

// add key in the new node’s data field
new_ptr->nodeKey = key;

// necessary initializations to make tree work
C[0][2].moneyMarketAccount = 1;
C[0][1].moneyMarketAccount = 1;
C[0][0].moneyMarketAccount = 1;
C[0][0].cashFlow = 0;
C[1][2].moneyMarketAccount = initRate;
C[0][2].shortRate = initRate;

// If the BST is empty, insert the new rate in root
if (root_ptr == NULL)
{

C[cnt][nodeCnt].shortRate = initRate;
C[cnt][nodeCnt].moneyMarketAccount = 1;
C[cnt][nodeCnt].cashFlow = 0;
C[cnt][nodeCnt].shortRate = initRate;

for (i = 0; i <= N; i++)
{

new_ptr->bondPrice[i] = 1/(pow(initRate,i));
if (i > 0)

bondSum = bondSum + new_ptr->bondPrice[i];

new_ptr->forwardRate[i] = initRate;
new_ptr->moneyMarketAccount = initRate;
new_ptr->shortRate = initRate;
if (i == N)

C[cnt][nodeCnt].zeroCouponBond = new_ptr->bondPrice[N];
}
// compute swapRate
swapRate = (principalAmount – principalAmount*new_ptr->bondPrice[N])/bondSum;
swapRate = swapRate/100;
root_ptr = new_ptr;
nodeCnt++;

}
else
{

TREE_PTR tree_ptr = root_ptr;
while (tree_ptr != NULL)
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{
node_ptr = tree_ptr;
if (key == tree_ptr->nodeKey)

return;
else if (key < tree_ptr->nodeKey)

tree_ptr = tree_ptr->up_childptr; // search its up side for insertion 
// location

else
tree_ptr = tree_ptr->down_childptr; // search its down side for insertion 

// location
}
// Now ‘node_ptr’ is the pointer to the parent of the new node. Now determine 
// where it will be inserted
// compute volatilities

sum = 0.0; // sum is used for computing both bond prices and forward rates
for (int k = cnt; k <= N; k++)

sum = sum + vol*exp(-lambda*(k*dt));

// used for coshRatio for forward rate computation
sum1 = 0.0;
for (k = cnt; k < N; k++)

sum1 = sum1 + vol*exp(-lambda*(k*dt));

volsum = sum*sqrt(dt)*dt;
volsum1 = sum1*sqrt(dt)*dt;
coshRatio = cosh(volsum)/cosh(volsum1);
coshval = 1/cosh(volsum);
expvalPlus = exp(volsum);
expvalMinus = exp(-volsum);
expvalPlus1 = exp(vol*exp(-lambda*cnt*dt)*sqrt(dt)*dt);
expvalMinus1 = exp(-vol*exp(-lambda*cnt*dt)*sqrt(dt)*dt);

if (key < node_ptr->nodeKey)
{

node_ptr->up_childptr = new_ptr;
curr_ptr = node_ptr->up_childptr;

for (i = cnt; i <= N; i++)
{

curr_ptr->forwardRate[i] = node_ptr->forwardRate[i]*coshRatio*expval
Minus1;

if (i == cnt)
{

curr_ptr->bondPrice[cnt] = 1; // bond price at maturity
}
else
{

// get short rate r(t) from forward rate f(t, t)
r = curr_ptr->forwardRate[cnt];
curr_ptr->shortRate = r;
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// calculate bond prices
curr_ptr->bondPrice[i] = (node_ptr->bondPrice[i])*(r*coshval*expval

Plus);
C[cnt][nodeCnt].shortRate = r;
r = node_ptr->shortRate;

C[cnt][nodeCnt].cashFlow =
swapRate*principalAmount – (C[cnt-1][nodeCnt/2].shortRate – 1)*

principalAmount;

C[cnt][nodeCnt].moneyMarketAccount =
(C[cnt-1][nodeCnt/2].moneyMarketAccount)*(node_ptr->shortRate);

if (i == N)
C[cnt][nodeCnt].zeroCouponBond = new_ptr->bondPrice[N];

}
}
// compute swap values
if (cnt > 1)

C[cnt][nodeCnt].swapValue = principalAmount*(1+swapRate)*(curr_ptr->bond
Price[cnt+1]) - principalAmount;

else if (cnt == 1)
C[cnt][nodeCnt].swapValue = principalAmount*swapRate*(curr_ptr-

>bondPrice[cnt+1])
+ principalAmount*(1 + swapRate)*(curr_ptr->bondPrice[cnt+2]) –

principalAmount;
else

C[cnt][nodeCnt].swapValue = 0.0;
}
else
{

node_ptr->down_childptr = new_ptr;
curr_ptr = node_ptr->down_childptr;

for (i = cnt; i <= N; i++)
{

curr_ptr->forwardRate[i] = (node_ptr->forwardRate[i]*coshRatio*expval
Plus1);

if (i == cnt)
{

curr_ptr->bondPrice[cnt] = 1;
}
else
{

// get short rate r(t) from forward rate f(t, t)
r = curr_ptr->forwardRate[cnt];
curr_ptr->shortRate = r;

// compute bond price
curr_ptr->bondPrice[i] = (node_ptr->bondPrice[i]*r*coshval*expvalMinus);
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C[cnt][nodeCnt].shortRate = r;
r = node_ptr->shortRate;

C[cnt][nodeCnt].cashFlow = swapRate*principalAmount –
(C[cnt-1][nodeCnt-nodeCnt2].shortRate – 1)*principalAmount;

C[cnt][nodeCnt].moneyMarketAccount =
(C[cnt-1][nodeCnt-nodeCnt2].moneyMarketAccount)*(node_ptr->shortRate);

if (i == N)
C[cnt][nodeCnt].zeroCouponBond = new_ptr->bondPrice[N];

}
}
// compute swap values
if (cnt > 1)

C[cnt][nodeCnt].swapValue =
principalAmount*(1 + swapRate)*(curr_ptr->bondPrice[cnt+1]) – principal

Amount;
else if (cnt == 1)

C[cnt][nodeCnt].swapValue = principalAmount*swapRate*(curr_ptr->bond
Price[cnt+1]) + principalAmount*(1 + swapRate)*(curr_ptr->bond
Price[cnt+2]) – principalAmount;

else
C[cnt][nodeCnt].swapValue = 0.0;

}
if (nodeCnt != 1)
{

nodeCnt--;
if (nodeCnt % 2 != 0)

nodeCnt2--;
}
else
{

nodeCnt = pow(2, cnt+1);
nodeCnt2 = pow(2, cnt);

}
}

}

/**********************************************************************************
calcSyntheticSwap: values a synthetic swap after building HJM tree
[in] double principalAmount : notional amount of swap
[out]: vector<double> deltaPos : initial positions in money market account and

zero-coupon bond
**********************************************************************************/
vector<double> HJMTree::calcSyntheticSwap(double principalAmount)
{

int j = pow(2, N-2);
double rate = 0.0;
double floatRate = 0.0;
double bondDiff = 0.0;
double moneyAccount = 0.0;
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vector<double> deltaPos; // store initial amount of money market and zero-
// coupon bonds

// initialize terminal swap value
for (int i = pow(2, N-1); i >= 1; i--)

C[N-1][i].swapValue = 0;

C[0][1].swapValue = 0.0;
for (i = N-2; i >= 0; i--)
{

for (j = pow(2, i); j >= 1; j--)
{

floatRate = C[i][j].shortRate;

if (i <= 1)
{

bondDiff = C[i+1][2*j].zeroCouponBond – C[i+1][2*j-1].zeroCouponBond;
C[i][j].numZeroCoupon = (1/bondDiff)*((C[i+1][2*j].swapValue

+ C[i+1][2*j].cashFlow) – (C[i+1][2*j-1].swapValue + C[i+1][2*j-
1].cashFlow));

moneyAccount = C[i][j].moneyMarketAccount;
C[i][j].numMoneyMarket=(1/moneyAccount)*(C[i][j].swapValue -

C[i][j].numZeroCoupon*(C[i][j].zeroCouponBond));
}
else //if (i == N-2)
{

C[i][j].numZeroCoupon = 0;
C[i][j].numMoneyMarket = C[i][j].swapValue/

(principalAmount*swapRate*C[i+1][2*j-1].zeroCouponBond +
principalAmount*(1 + swapRate)*C[i+1][2*j].zeroCouponBond);

}
}

}
deltaPos.push_back(C[0][1].numMoneyMarket);
deltaPos.push_back(C[0][1].numZeroCoupon);

return deltaPos;
}

/**********************************************************************************
buildHJMSwapTree: Builds a single factor HJM binary search tree
[in] : none
[out]: none
**********************************************************************************/
void HJMTree::buildHJMSwapTree()
{

int M = pow(2, N) – 1; // number of nodes in tree
int* key = new int[M]; // allocate memory for keys
int j = pow(2, N-1);
double principal = 100;
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// assign key values
for (int i = 0; i < j; i++)

key[(int)pow(2, N-1)+i] = 2*i + 1;

// generate keys for each node
for (i = M-j; i >= 1; i--)

key[i] = 0.5*(key[(int)2*i] + key[(int)2*i+1]);

// add nodes to HJM tree
for (i = 0; i < M; i++)

addNodeHJMSwap(key[i+1], i+1, principal);
}

The following HJM tree is built to value a synthetic swap by calling:

#include “HJMTree.h”
void main()
{

double initrate = 1.02;
int timeStep = 1;
int numTimeSteps = 3;
double eta = 0.0076;
double lambda = 0.0154;

HJMTree hm(1.02,1,4,0.0076,0.0154,0.017);
hm.generateKeys1();
hm.buildHJMTree();
hm.calcSyntheticSwap(100);

}

Figure 12.2 shows the HJM tree built and the valuation of the synthetic swap at
each node. For complete synthetic swap calculation details, see Jarrow (2002).

12.12 TWO-FACTOR HJM MODEL

Consider a two-factor HJM model where the forward rate process follows
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where

(12.60)

where the processes in (12.60) are parameterized in terms of three stochastic
processes, µ(t, T; st), σ1(t, T; st), and σ2(t, T; st), which be interpreted as the drift
and the volatilities, respectively, for the process log f∆(t + ∆, T; st+∆) – log f∆(t, T; st),
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FIGURE 12.2 HJM Single-Factor Tree: Valuation of Synthetic Swap
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with (σ1(t, T; st), σ2(t, T; st)) being the volatilities of the first and second factors.
Thus, in the risk-neutral world, it can be shown that

and

Substituting (12.60) into (12.59) yields

(12.61)

For computational efficiency, the risk-neutral probabilities are set to πu
∆(t; st) = 1/4,

and πm
∆(t; st) = 1/4, and πd

∆(t; st) = 1/2. From (12.43) and (12.44), we compute

(12.62)

From the martingale (no-arbitrage) property, we have
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Substituting expression (12.62) into (12.63) yields, after some algebra, the no-
arbitrage condition:

(12.64)

(12.64)

for t ≤ T – 2∆ and T ≤ (N – 1)∆ where t and T are integer multiples of ∆.
Following Jarrow (2002), we can now compute the arbitrage-free term evolu-

tion of the forward rate curve in the two-factor economy. By taking the logs on
both sides of (12.64), we get:
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we can compute expressions (12.66) and (12.67), and in conjunction with (12.58)
generate the evolution of forward rates in the risk-neutral world.18 The evolution
of the zero-coupon bond price process can be deduced from the forward rate
process given the relationship between bond prices and forward rates in (12.43)
and (12.44).

12.13 TWO-FACTOR HJM MODEL IMPLEMENTATION

The following is an implementation of a two-factor HJM model to build a forward
rate curve. We assume both factors have volatilities generated by the Vasicek expo-
nential volatility function; that is, σie

–λi(T–t), i = 1, 2.

/**********************************************************************************
addNode2FactorHJM : builds a two-factor HJM (trinomial) tree to build the forward

rate curve evolution based on equations (12.58), (12.66), and
(12.67).

[in]: int key: a numeric key value that orders the nodes into a trinary search tree
[out]: void
**********************************************************************************/
void HJMTree::addNode2FactorHJM(int key)
{

TREE_PTR new_ptr, node_ptr, curr_ptr;
double sum, sum2;
double volsum1 = 0.0;
double volsum2 = 0.0;
double driftsum = 0.0;
double mu[20] = {0.0};
int i, k, cnt;

new_ptr = new HJMTREE_NODE;
new_ptr->up_childptr = NULL;
new_ptr->middle_childptr = NULL;
new_ptr->down_childptr = NULL;

// Add key in the new node’s data field
new_ptr->nodeKey = key;

// get tree height = current time step
cnt = getTreeHeight(get_root());

if (cnt == 0)
{
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// insert initial zero-bond prices and forward rates in root
for (i = 0; i <= N; i++)
{

new_ptr->bondPrice[i] = 1/(pow(initRate,i));
new_ptr->forwardRate[i] = initRate;

}
}

// if the tree is empty, insert the new data in root
if (root_ptr == NULL)
{

root_ptr = new_ptr;
}
else
{

TREE_PTR tree_ptr = root_ptr;
while (tree_ptr != NULL)
{

node_ptr = tree_ptr;
if (key == tree_ptr->nodeKey)

tree_ptr = tree_ptr->middle_childptr; // search middle for insertion 
// location

else if (key < tree_ptr->nodeKey)
tree_ptr = tree_ptr->up_childptr; // search its up side for insertion 

// location
else

tree_ptr = tree_ptr->down_childptr; // search its down side for 
// insertion location

}
sum = 0.0;
sum2 = 0.0;

for (i = 1; i <= N; i++)
{

for (k = 1; k <= i; k++)
{

sum = sum + vol*exp(-lambda*(k*dt));
sum2 = sum2 + vol*exp(-lambda1*(k*dt));

}
volsum1 = sum;
volsum2 = sum2;

mu[1] = log(0.5*exp(volsum1*sqrt(dt)*dt))*(0.5*exp(sqrt(2)*volsum2*sqrt(dt)
*dt) + 0.5*exp(-sqrt(2)*volsum2*sqrt(dt)*dt)) + 0.5*exp(-volsum1*sqrt(dt)
*dt);

mu[1] = mu[1]*dt*dt;

if (i > 1)
{

for (k = 1; k < i; k++)
{

driftsum = driftsum + mu[k];
}
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mu[i] =
log(0.5*exp(volsum1*sqrt(dt)*dt))*(0.5*exp(sqrt(2)*volsum2*sqrt(dt)*dt)
+ 0.5*exp(-sqrt(2)*volsum2*sqrt(dt)*dt)) + 0.5*exp(-volsum1*sqrt(dt)*dt)
– driftsum;

}
}
// Now ‘node_ptr’ is the pointer to the parent of the new node. Now determine

where it will be inserted

if (key < node_ptr->nodeKey)
{

node_ptr->up_childptr = new_ptr;
curr_ptr = node_ptr->up_childptr;

for (i = cnt; i <= N; i++)
{

curr_ptr->forwardRate[i] = node_ptr->forwardRate[i]*exp((mu[i]*dt
- vol*exp(-lambda*i*dt)*sqrt(dt) – sqrt(2)*vol1*exp(-lambda1*i*dt)*sqrt
(dt))*dt);

}
}
else if (key--node_ptr->nodeKey)
{

node_ptr->middle_childptr = new_ptr;
curr_ptr = node_ptr->middle_childptr;

for (i = cnt; i <= N; i++)
{

curr_ptr->forwardRate[i] =
node_ptr->forwardRate[i]*exp((mu[i]*dt – vol*exp(-lambda*i*dt)*sqrt(dt)

+sqrt(2)*vol1*exp(-lambda1*i*dt)*sqrt(dt))*dt);
}

}
else
{

node_ptr->down_childptr=new_ptr;
curr_ptr=node_ptr->down_childptr;

for(i=cnt;i<=N;i++)
{

curr_ptr->forwardRate[i]=
node_ptr->forwardRate[i]*exp((mu[i]*dt-vol*exp

(-lambda*i*dt)*sqrt(dt))*dt);
}

}
}

}

/**********************************************************************************
build2FactorHJMTree: builds a two factor HJM trinary search tree
[in]:  none
[out]: none
**********************************************************************************/
void HJMTree::build2FactorHJMTree()
{
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// builds a balanced trinary search tree (TST) with N time steps
int k, q, i, M = 0;
int num;
int num1;

// calculate total number of nodes
for (i = 0; i – N; i++)
M = M + pow(3, i);

int j = pow(3, N-1); // number of node in last row

int* key = new int[M];
int* key1 = new int[M];
int* key2 = new int[M];

// generate keys
// these numbers are insertion “keys” for the node and become the value of 
// nodeKey. The keys are ordered so that they will produce a balanced TST (equal 
// number of branches with three children nodes at each node).
key = generateKeys();

for (i = 0; i – j; i++)
key1[i+(j/2+1)] = key[i];

q = 1;
k = 0;
key2[0] = key[j/2];
for (i = 2; i <= M – j; i++)
{

if ((((int)pow(3, q) % 3) == 0) && (i % 2 != 0) && (i % 3 == 0))
key2[i-1] = key[j/2]; // central nodes down middle of tree have same value

else
{

num1 = pow(3, N-q-1); // each node always has a value equal to i*(3^N-q-1)
num = i*num1;
key2[i-1] = key1[num];

}
k++;
if (k == (int)pow(3, q))
{

k = 0;
q++;

}
}

int p = 1;
for (i = M; i >= M-j+1; i--)
{

key2[M-j+p-1] = key[M-i];
p++;

}

// add node to HJM Tree
for (i = 0; i < M; i++)

addNode2FactorHJM(key2[i]);
}

12.13 Two-Factor HJM Model Implementation 619



/**********************************************************************************
HJMTree : constructor -- initializes variables
[in]: double rate : initial short rate = initial forward rate

double T : time to maturity
long N : number of time steps
double vol : coefficient of volatility function of 1st factor
double vol1 : coefficient of volatility function of 2nd factor
double lambda : coefficient in exponent of volatility function of 1st factor
double lambda1 : coefficient in exponent of volatility function of 2nd factor

**********************************************************************************/
HJMTree::HJMTree(double rate, double T, long N, double vol, double lambda, double

lambda1):
initRate(rate), T(T), N(N), vol(vol), vol1(vol1), lambda(lambda),

lambda1(lambda1)
{

root_ptr = NULL; // initialize root pointer
dt = (double) T/N; // time step
int* A = new int[200];

// dynamically allocate memory for double array
C = (Shares **)malloc(N*sizeof(Shares));
for(int i= 0;i < N;i++)

C[i]=(Shares *) malloc((pow(2,N))*sizeof(Shares));

flag = false;
cnt = 0;
nodeCnt = 1;
nodeCnt2 = 0;

}

12.14 THE RITCHKEN AND SANKARASUBRAMANIAN MODEL

Given the general non-Markovian nature and problems for nonrecombining trees
in the HJM model, Ritchken and Sankarasubramanian (1995) derived necessary
and sufficient conditions to price any interest rate derivative using a two-state
Markov process (r, φ) that captures the path dependence of the short rate through
the single sufficient statistic φ, which represents the accumulated volatility of the
spot rate over the interval (0, T ]. In the their model, RS specify the following for-
ward volatility structure:

(12.68)

where η(t) is an adapted process that turns out to be the instantaneous short-rate
volatility so we can set η(t) = σf (t, t) = σr(t), κ is a deterministic function, and
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As in the HJM model, the bond and forward rates are assumed to follow

and

df(t, T) = µf(t, T)dt + σf(t, T)dz(t)

respectively, under the objective measure. Since, by definition,

(12.69)

then we can relate the bond and forward rate drift and diffusion coefficients by

µf(t, T ) = σf(t, T )(λ(t) – σP(t, T )) (12.70)

and

(12.71)

where

which is the market price of risk. From (12.70) and (12.71), we derive a more spe-
cific process for the forward rate:

df (t, T ) = σf (t, T )(λ(t) – σP(t, T))dt + σf (t, T )dz(t) (12.72)

In order to derive the bond price under the RS volatility structure given in (12.68),
we integrate (12.71):
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Substituting the last term with

and using

we get

where

(12.73)

(12.74)

From the definition of the bond price in (12.69), we get
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12.15 RS SPOT RATE PROCESS

Starting with the forward process at T = t, we get the short rate

We then take the derivative of this process:

using

and

Finally, from the definition φ(t), we get the deterministic process of φ(t),

dφ(t) = (σ2
r (t) – 2κ(t)φ(t))dt

We also have the process for the short rate
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with drift

This is a two-state Markov process with respect to the two state variables, r(t) and
φ(t).

12.16 LI-RITCHKEN-SANKARASUBRAMANIAN MODEL

The Li-Ritchken-Sankarasubramanian (LRS) model is an extension of the RS
model with two more specifications. First, the zero bond return is assumed to be
the risk-free interest rate so that λ(t) = 0. Second, the volatility of the spot rate
process is assumed to have a constant elasticity γ. Consequently, the forward rate
volatility (the RS volatility) has the form

(12.75)

This specification leads to a model of the term structure specified by the parameters
σ, κ, and γ. The formulation in (12.75) covers a lot of models. For example, with γ
= 0, the volatility structure becomes that assumed by the generalized Vasicek (1977)
and Hull-White (1993b). The process in this case is Markov with respect to the one
state variable, the short rate. With γ = 0.5, we get the square root volatility struc-
ture used by Cox, Ingersoll, and Ross (1985a).

With the volatility structure in (12.75), the RS model becomes

dr(t) = µ(r, s)dt + σ[r(t)]γdz(t) (12.76)

dφ(t) = [σ2
r (t) – 2κ(t)φ(t)]dt (12.77)

where

In order to get a unit diffusion coefficient and state independent volatility (which
eases building lattices for the short rate), (12.76) needs to be transformed as follows:
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Applying Ito’s lemma with ∂Y/∂r = σr, the process for Y(r(t), t) becomes

As a result of the transformation, we get a constant volatility process:

dY(t) = mY (Y, φ, t)dt + dz(t) (12.79)

where

(12.80)

Special Case γ = 1

LRS implemented this special case with a binomial tree. We assume κ(t) is a con-
stant κ and r(t) > 0. Since γ = 1, equation (12.78) becomes

(12.81)

or equivalently, r(t) = eσY(t). Now using
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A recombining tree can be built in terms of the transformed state variable
Y(t)—and equivalently, for r(t). However, the second state variable φ(t) that follows
the deterministic process in (12.83) cannot be built in a recombining tree. Thus, for
computational efficiency it is necessary to control the number of φ(t) at each node,
which will be increasing exponentially through time. This is resolved in the next
section, which discusses numerical implementation.

12.17 IMPLEMENTING AN LRS TRINOMIAL TREE

The process of building an LRS trinomial lattice can be split into two steps. The
first step is to build the tree by marching forward from time 0 to the option matu-
rity. In this step, three important variables are identified at each node, the two state
variables r and φ, and the transition probabilities from a parent node to its three
children nodes. The second step is the pricing of derivatives using the variables
found in the first step.

In the trinomial scheme, each node Y(t) is assumed to have three children
nodes, Y+(t + ∆t), Y(t + ∆t), and Y–(t + ∆t), at up, middle, and down movements. We
choose the number of time steps, fixing the tree size, and allow N multiple jumps in
the tree. We also assume E[Y(t + ∆t)] = Y(t). We, thus, define the evolutionary jump
size between the nodes

(12.84)

(12.85)

At each time step and each node, Y(t) is updated based on (12.84) and (12.85). The
r(t) is determined by converting the Y(t) using r(t) = eσY(t); see (12.44). Conse-
quently, we have a recombining tree of r(t) in terms of Y(t).

We can now update the second state variable φ(t) by using the updated first
state variable Y(t) via the deterministic process (12.83).

φt = φt–∆t + (σ2e2σY(t) – 2κφt–∆t)∆t (12.86)

Unlike the Y(t), the φ(t) keeps the path dependence and the number φ at each
node is increasing exponentially as time increases except at the boundary nodes. As
a result, for computational efficiency purposes, when a node in the tree has more
than three φ, we can choose three representative φ(t), the maximum, the minimum,
and the average. These three representative values are reference values for the inter-
polation of the payoff in the next step. Alternatively, for five φ, one can add ±1
standard deviations, for seven φ, one can add ±2 standard deviations, and so on.

∆ ∆ ∆− −= + − = −Y t t Y t N t( ) ( )

∆ ∆ ∆+ += + − = +Y t t Y t N t( ) ( )
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Finally, based on the updated state variables Y(t) and φ(t) at each node, we
compute the drift term mt , which is used for computing the probabilities.

(12.87)

where

The transitional probabilities, pu , pm, and pd , of each path are computed by
matching the first and second moments of the process, the mean and variance. Us-
ing the mean and variance of the transformed process dY, we get

∆+pu + ∆– pd = mt∆t

(∆+)
2 pu + (∆–)

2 pd = ∆t + (mt∆t)2

pu + pm + pd = 1

Solving the system of equations, we solve for the probabilities

(12.88)

(12.89)

and

pm = 1 – pu – pd

From (12.88) and (12.89) we get the following conditions that must be satisfied at
all times for the probabilities to remain between 0 and 1:
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and the sum of pu and pd gives:

m2
t ∆t + 1 ≤ N2 (12.92)

From (12.92), we notice that the multiple jump size N should be strictly larger than
1 and for a selected jump size N, the drift term mt should satisfy

m2
t∆t ≤ N2 – 1

Once the LRS tree is built using the methodology described in the previous sec-
tion, derivatives pricing starts by working backward from the last (Nth) time step
based on the final payoff of the derivative, based on the price of the underlying as-
set at maturity. A bond price in the LRS framework is a function of two state vari-
ables and forward rates. We can price a European bond option using an LRS tree as
follows. Let T be the option maturity and let S = T + ∆t be the maturity of the
bond. Based on the information at T, the bond price at each node is

(12.93)

where

and

The payoff of the option is given by max(P(t, T ) – X, 0) where X is the strike price.
For a European bond option, (12.93) is only used at maturity.
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It should be noted that while the RS (and LRS) trees avoid the non-Markov na-
ture of the HJM tree, Chien (2003) has shown that the RS tree can give rise to ex-
ponential-sized trees that can explode if the number of time steps is sufficiently
large.19 Chien notes that while the RS algorithm is more efficient than the HJM in
the sense that the tree can have linear computation time for some periods, the RS
tree is still limited in how small the time step ∆t can be. Thus, he concludes that the
RS algorithm for the model does not solve the fundamental problem of the HJM
model, namely, exponential explosion, which means the algorithm suffers in both
time and memory resources.20
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CHAPTER 13
LIBOR Market Models

The standard interest rate models are versions of Black’s 1976 market model.
However, one of the major problems with models discussed so far is that they are

incompatible with the pricing of Black’s model for both caps and swaptions. This is
due to the fact that Black’s model is based on oversimplistic and inexact assump-
tions on interest rate distributions. When Black’s formula is used to price a
caplet/floorlet (one element of a cap/floor), the underlying rate is assumed to be log-
normal. When it is used to price swaptions, the underlying swap rate is also as-
sumed to be lognormal. Jamshidian (1997) showed that while the cap/floor market
model and the European swaption market are each internally consistent in the sense
that they do not permit arbitrage opportunities, they are not precisely consistent
with each other.

Brace, Gatarek, and Musiela (BGM) (1997), Musiela and Rutkowski (1997),
Jamshidian (1997), and Miltersen, Sandmann, and Sondermann (1997) have devel-
oped the arbitrage-free LIBOR market models (LMMs) in an attempt to overcome
these problems.1 The LIBOR market models are widely used by practitioners since
they price and hedge interest rate derivatives consistently with Black’s formulas.
They are extensions of the HJM (1992) model and, as BGM have shown, overcome
some of the technical existence problems associated with the lognormal version of
the HJM. Whereas the HJM model describes the dynamics of interest rates in terms
of the behavior of instantaneous forward rates with continuous compounding, the
LIBOR market models describe the behavior of forward rates underlying caps or
swap rates underlying swaptions with conventional market compounding (the com-
pounding period equals the tenor of the rate). These models assume a deterministic
volatility structure and a lognormal distribution (under the appropriate measure)
for forward and swap rates.

There are several advantages of the LMM over traditional instantaneous spot
rate models—Vasicek (1977), Hull-White (1990), and Cox-Ingersoll-Ross
(1985)—and instantaneous forward rate models—Heath-Jarrow-Morton (1992)
and Ritchken-Sankarasubramanian (1995). First, the LMM prices consistently
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with the Black market formula for cap and swaption prices, which makes calibra-
tion to market data simple since the quoted Black (implied) volatilities can be di-
rectly inputted into the model, avoiding the numerical fitting procedures that are
needed for spot or forward rate models. Second, market models are based on ob-
servable market rates such as LIBOR and swap rates. They do not depend on, and
thus one does not require, (unobservable) instantaneous spot and forward rates.
However, due to the complex dynamics of LMMs and the fact that the forward
rates have a fully state-dependent drift, recombining lattices/trees cannot be used
to evolve interest rate dynamics, and thus price interest rate derivatives, as they
can for instantaneous spot and forward rate models. Instead, Monte Carlo and
other numerical techniques must be used to price caps, swaptions, and other (ex-
otic) interest rate derivatives.

The BGM model, known also as the lognormal forward-LIBOR model (LFM),
prices caps consistently with Black’s formula. Consequently, implied volatilities
quoted in the market are consistent with specified volatility structures used in the
model. The lognormal forward-swap model (LSM), developed by Jamishidian
(1997), prices swaptions consistently with Black’s swaptions formula. However, the
LFM and LSM are not compatible with each other. If forward LIBOR rates are log-
normal each under its measure, as assumed by the LFM, forward swap rates cannot
be lognormal at the same time under their measure, as assumed by the LSM. De-
spite this drawback, the LFM allows for a deterministic calculation, and thus evo-
lution, of the future term structure of volatilities. This calculation requires no
simulation while for other models this is not the case.

This chapter is broken down as follows. In section 13.1, we discuss the LIBOR
market models. In section 13.2, specifications of the instantaneous volatility of for-
ward rates are given. In section 13.3, Hull and White’s adaptation and implementa-
tion of the LMM is given. In section 13.4, calibration of the LFM to cap prices is
discussed. In section 13.5, pricing swaptions with the lognormal LFS model is dis-
cussed, while in section 13.6, approximate swaptions pricing using Hull and
White’s approach is detailed. In section 13.7, an LFM formula that approximates
swaption volatilities is given. In section 13.8, Monte Carlo pricing of swaptions us-
ing the LFM is discussed and an implementation is given. In section 13.9, an im-
proved Monte Carlo pricing of swaptions is given using a predictor-corrector. An
implementation of this approach is given. In section 13.10, incompatibilities be-
tween the LSM and LFM are analyzed. In section 13.11, instantaneous and termi-
nal correlation structures are discussed in the context of the LFM. In section 13.12,
calibration to swaption prices using the LFM is given, while in section 13.13, the
connection between caplet volatilities and S × 1-swaption volatilities is made so
that one can calibrate to both the cap and swaption market. In section 13.14, we
discuss incorporating the observed volatility smile seen in the cap market into the
LFM. In section 13.15, we discuss Rebonato’s (2002) stochastic extension of the
LIBOR market model to deal with recent changing dynamics in the market that the
LMM is not capturing. Finally, in section 13.16, we discuss computing Greek sensi-
tivities in the forward LIBOR model.
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13.1 LIBOR MARKET MODELS

Since market models are models of forward rates, a specification of the volatility
structure of the forward rates uniquely determines their instantaneous drifts via the
no-arbitrage (HJM) condition. We consider a LIBOR market model based on N
forward LIBOR rates Fi(t), i = 0, . . . , N – 1, where Fi(t) = Fi(t; Ti–1, Ti). Under the
Qi probability measure, the measure associated with the Ti-forward measure and
the P(·, Ti) numeraire (i.e., the price of a bond whose maturity coincides with a ma-
turity of the forward rate) the forward rate is a martingale. Note that Fi(t)P(t, Ti) is
the price of a tradable asset, the difference between two discount bonds with no-
tional principal amounts 1/τi.

Fi(t)P(t, Ti) = (P(t, Ti–1) – P(t, Ti))/τi

Since the price of the tradable asset Fi(t)P(t, Ti) divided by the zero-coupon bond
numeraire P(·, Ti) is a martingale, the ith forward rate evolves by

dFi(t) = σi(t)Fi(t)dzi(t)

In general, we need to know the dynamics of the forward rate Fi(t) under a measure
Qk different from Qi, for t ≤ min(Tk, Ti–1). We can obtain the dynamics of Fi under
the forward-adjusted measure Qk. We assume that each forward rate is driven by a
standard Brownian motion zi with a time-dependent lognormal volatility and a
time-dependent instantaneous correlation structure E[dzidzj] = ρijdt. Under this gen-
eral framework, the forward dynamics are given by

dFi(t) = µi(t)Fi(t)dt + σi(t)Fi(t)dzi(t)

where the drift µi is determined by the no-arbitrage condition and depends on the
choice of the numeraire (chosen measure). If we take a zero-coupon bond expiring
at one of the reset times Tk to be the numeraire, P(·, Tk), then the instantaneous
drift is:

(13.1)
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The computation of the drift can be seen by recovering the dynamics under the
Tk-forward measure Qk. Notice, for k < i,

From this, we compute the percentage drift µi from the change in drift formula (and
using quadratic covariation):

If k > i, then the numeraire is a bond with a maturity longer than the maturity of
the forward rate being modeled. In this case, the derivation is similar, but we get

whereby

follows. Moreover, in the case i > k, we can compute from Ito’s formula

(13.2)

Note that under the Qk-measure, the dynamics of equation (13.2) are driftless, and
we can write the explicit solution as
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Both the drift and diffusion coefficient are bounded and deterministic, ensuring the
existence and uniqueness of a strong solution for the SDE.

Hull and White (1999) derive the LIBOR market model through a more formal
change of numeraire framework. We consider their approach for the sake of com-
pleteness especially since their approach leads to a computationally efficient imple-
mentation. Consider a cap with reset dates T1, T2, . . . , Tn–1 with corresponding
payment dates T2, T3, . . . , Tn. Let τi–1 = Ti – Ti–1 be the tenor between reset and
payment dates and define T0 = 0. Define the following:

Fi(t): forward rate observed at time t for the period (Ti–1, Ti) expressed with a
compounding period of τi–1.

P(t, T): price at time t of a zero-coupon bond that provides a payoff of $1 at
time T.

m(t): index for the next reset date at time t. m(t) is the smallest integer such
that t ≤ tm(t).

p: number of factors.

ςt,q: qth component of the volatility of Fi(t) (1 ≤ q ≤ p).

vt,q: qth component of the volatility of P(t, T ) (1 ≤ q ≤ p).

It is assumed that the volatility components are independent, though this is not
required since they can be orthogonalized. The processes followed by the forward
rate and bond price are:

(13.3)

respectively, where the dzq are independent Wiener processes and the drifts depend
on the chosen measure. It is assumed that ςt,q(t) is a function of only time, whereas
the bond price volatility vt,q(t) is in general stochastic in the model.

The chosen numeraire is the money market account that is invested at time T0
for a period of τ0, reinvested at time T1 for a period τ1, reinvested at time T2 for a
period τ2, and so on. This is equivalent to the numeraire at time t of P(t, Tm(t)). Un-
der the chosen measure
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is a martingale for all security prices f(t) when tm(t)–1 ≤ t ≤ tm(t) so that

(13.4)

or

f(tm(t)–1) = P(Tm(t)–1, Tm(t))E
m(t)[f(tm(t))]

where Em(t) denotes the expectation under the measure P(t, Tm(t)). Equation (13.4)
shows that under the chosen measure, we can discount expected values “one ac-
crual period at a time” when pricing securities. As Hull and White point out, this is
an attractive feature of the measure since cash flows and early exercise opportuni-
ties usually occur on reset dates.2

As Jamshidian (1997) has shown, the qth component of the market price of
risk under the P(t, Tj)-measure is the bond price volatility vj,q for all j. Since the for-
ward rate Fi(t) is a martingale under the P(t, Ti)-measure, and thus driftless, then it
follows that the drift of Fi(t) under the P(t, Tt(m))-measure (using the change in drift
formula) is

so that

(13.5)

We recall the relationship between bond prices and forward rates

In conjunction with Ito’s formula, we get

v t v t
F t t

F tj q j q
j j j q

j j
, ,

,( ) ( )
( ) ( )

( )
− =

++1 1

τ ς
τ

P t T

P t T
F tj

j
j j

( , )

( , )
( )

+
= +

1
1 τ

dF t
F t

t v t v t dt t dzi

i
i q

q

p

m t q i q i q
q

p

q
( )
( )

( ) ( ) ( ) ( ), ( ), , ,= −( ) +
=

+
=

∑ ∑ς ς
1

1
1

ςi q
q

p

m t q i qt v t v t, ( ), ,( ) ( ) ( )
=

+∑ −( )
1

1

f t

P T T
E

f t

P T T
m t

m t m t

m t m t

m t m t

( )

( , )

( )

( , )
( )

( ) ( )

( ) ( )

( ) ( )

−

−
=













1

1

13.1 LIBOR Market Models 635

2Hull and White (1999), 10.



Repeated iteration of the result yields

(13.6)

If we substitute (13.6) into (13.5), we see that the process followed by Fi(t)

(13.7)

If we take the limit of (13.7), allowing the τj’s to tend to zero, we get

(13.8)

where now, in continuous time, F(t, T) is the instantaneous forward rate at time t
for maturity at time T. ςq(t, T) is the qth component of the volatility of F(t, T).
Equation (13.8) is the HJM model, which, as we see, is a limiting case of the LI-
BOR market model.

13.2 SPECIFICATIONS OF THE INSTANTANEOUS VOLATILITY OF
FORWARD RATES

It is often assumed that the forward rate Fk(t) has a piecewise-constant instanta-
neous volatility. Moreover, the instantaneous volatility of Fk(t) is constant in each
“expiry-maturity” time interval, Tj–2 < t ≤ Tj–1, that is associated with any other for-
ward rate. The forward rate is said to be “alive” if it exists within the expiry-maturity
interval and “dead” if not.

A general formulation of the instantaneous volatility is the separable structure:

σk(t) = Φkψα, a = 1, . . . , k (13.9)

We can view Φk = Φk (t) as a time-homogenous component and ψα = ψα(T – t) as a
idiosyncratic (forward-rate-specific) component of total instantaneous volatility. A
general parameteric form of this instantaneous volatility is

σk(t) = ψ(Tk–1 – t; a, b, c, d) = (a(Tk–1 – t) + d)e–b(Tk–1–t) + c (13.10)
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volatility of the forward rate. This formulation can be made more flexible (which in
turn allows for richer volatility forms) by setting

σk(t) = Φkψ(Tk–1 – t; a, b, c, d) = Φk((a(Tk–1 – t) + d)e–b(Tk–1–t) + c) (13.11)

The flexibility that (13.11) adds improves the joint calibration of the model to caps
and swaption markets. Figure 13.1 shows a typical hump-shaped term structure ex-
hibited by caplet (instantaneous) volatilities of semiannual forward rates.

A similar type of evolution could be generated with the volatility formulation
in (13.10) with a = 0.19085664, b = 0.97462314, c = 0.08089168, and d =
0.01344948, as demonstrated by Brigo and Mercurio (2001c).

Table 13.1 organizes the expiry-maturity of forward rates and their corre-
sponding instantaneous volatilities.

Denote vi as the instantaneous volatility of the ith caplet and vTi–1–caplet as the
volatility of a caplet with an underlying forward rate spanning the interval [0, Ti–1].
Then we set
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FIGURE 13.1 Caplet Volatilities of Semiannual Forward Rates
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so that the vi is the integrated instantaneous volatility while the Ti–1-caplet volatil-
ity, vTi–1

-caplet is the square root of the average instantaneous (percentage) variance
of the forward rate Fi(t) for t ∈ [0, Ti–1). Note that v2

Ti–1-caplet is standardized with re-
spect to time while v2

i is not. We can approximate (13.12) by

(13.14)

If we assume that the piecewise-constant instantaneous forward volatilities fol-
low the separable form in equation (13.9), then we get

(13.15)

We can determine the Φi’s if the squares of the cap implied volatilities are inputted
from the market into the model:

(13.16)

If we assume the instantaneous forward rate volatility has the parametric volatility
structure given in equation (13.10), then we have
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TABLE 13.1 Expiry-Maturity of Forward Rates

Instantaneous Volatility t ∈ (0,T0] (T0,T1] (T1,T2] . . . (TN–2,TN–1]

f1(t) Φ1ψ1 Dead Dead . . . Dead
. . .

f2(t) Φ2ψ2 Φ2ψ1 Dead . . . Dead

. . . . . .

. . . . . .

. . . . . .
. . . . . . . . . . . . . . .

fN(t) ΦNψN ΦNψN–1 ΦNψN–2 . . . ΦNψ1



so that the model is calibrated to market caplet volatilities through the parameters
Φ. The integral in the denominator of (13.17) can be evaluated using numerical in-
tegration. In order to reduce the number of volatility parameters, one can assume
the forward rate Fk(t) rate has piecewise constant (time-independent) instantaneous
volatility sk:

v2
i = Ti–1s

2
i, vTi–1-caplet = si (13.18)

This leads to a less flexible model for calibration to the market quotes than the Φiψa

volatility formulation, but the si’s can be completely determined (as discussed in the
next section).

Hull-White (1999), in their approach, determine the volatility of the forward
rates using a two-step method proposed by Rebonato (1999c). Using the model in
equation (13.9), Hull and White assume ςi,q(t) is a function only of the number of
the whole accrual periods between the next reset date and time Ti. Define λj,q as the
value of ςi,q(t) where there are j such accrual periods; that is, j = i – m(t). This means

ςi,q = λi–m(t),q

Define Λj as the total volatility of the forward rate when there are j whole ac-
crual periods until maturity so that

(13.19)

The Λj’s can be computed from the spot volatilities, σi’s, used to calculate caplets in
equation (10.102). If we equate variances between the caplet spot variances and the
total variance of the forward rate, we have

(13.20)

The Λj’s are obtained inductively. To determine the λj,q’s, Rebonato’s two-stage ap-
proach is used. First, one computes the Λj’s from market data, and then secondly
one uses historical data to compute the λj,q from the Λj. Rebonato’s approach deter-
mines the λ j,q from the Λj so as to provide a fit as close as possible to the correlation
matrix for the Fj(t), 1 ≤ j ≤ n. Rebonato suggests that such results are similar to
those of principal component analysis. Thus, if the output (i.e., factor loads via
eigenvectors and eigenvalues) of the principal component analysis is available, it
can be used to determine the λj,q. Rebonato supposes that αi,q is the factor loading
of the ith forward rate and the qth factor and sq is the standard deviation of the qth
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factor score. If the number of factors used is p, were equal to N, the number of for-
ward rates, then it is correct to set

λj,q = αj,qsq (13.21)

for 1 ≤ j, q ≤ N. When p < N, the λj,q can be normalized so that the relation in
(13.17) still holds, namely,

(13.22)

The first factor corresponds roughly to a parallel shift in the yield curve; the second
factor corresponds to a “twist” in the yield curve where short rate moves opposite
of long rates; and the third factor corresponds to a “bowing” of the yield curve
where short and long maturities move in one direction and intermediate maturities
move in the opposite direction.

13.3 IMPLEMENTATION OF HULL-WHITE LIBOR MARKET MODEL

From equation (13.13), the process for Fi(t) under the measure M{P(t, Tm(t))} is,

(13.23)

or

(13.24)

(13.24)

An approximation that simplifies the Monte Carlo implementation of the model is
that the drift of ln Fi(t) is constant between ti–1 and ti so that

(13.25)

where εq are independent random standard normal deviates. Each Monte Carlo
simulation consists of using equation (13.25) to generate a path for each forward
rate under the P(t, Tt(m))-measure. The value of Fi(ti–1) is the realized rate for the
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time period between ti–1 and ti and enables the caplet payoff at time ti to be com-
puted. This payoff is discounted to time 0 using Fj(tj–1) as the discount rate for the
interval (tj–1, tj). The estimated caplet value is the average of the discounted payoffs.

13.4 CALIBRATION OF LIBOR MARKET MODEL TO CAPS

Since the LIBOR market model, LFM, as discussed already, prices consistently with
Black’s formula, then to calibrate the LFM model to the market one needs to input
into the model Blacklike implied market volatilities for cap prices. In the market,
quoted implied volatilities of caps typically have an initial reset time equal to three
months, and all the other reset times are equally three-month spaces, or they have
an initial reset time equal to six months, and all the other reset times are equally
six-month spaced. To price caps, we take the risk-neutral expectation of the dis-
counted payoff of the sum of the caplets:

(13.26)

under the Qi-forward-adjusted measure. Since the price of a Ti–1-caplet coincides
with that of Black’s caplet formula, then the price of a cap is

(13.27)

where the last term is Black’s formula for a caplet, and

with

where the same average volatility vT j-cap is assumed for all caplets up to j. The cap
volatilities vT j-cap are called forward volatilities. The market solves equation
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(13.27) for vT j-cap and quotes them annualized and in percentages. It is often as-
sumed that the same average cap volatility vT j-cap is used for all caplets concurring
with the Tj-maturity cap. However, if the same caplets concur to a different cap,
such as a Tj+1-maturity cap, their average volatility is changed. This seems to create
inconsistencies since the same caplets are linked to different volatilities when con-
curring to different caps. To correct this inconsistency and to correctly quote cap
prices, it is necessary that the following relationship be satisfied:

where “Bl” denotes Black’s formula as a function of strike price, the forward rate,
and volatility. The volatilities vTi–1-caplet are sometimes called forward forward
volatilities. Note that different average volatilities vTi–1-caplet are assumed for different
caplets concurring with the same Tj-maturity cap. The cap volatilities used by the
market to price caps can be used to price swaptions.

Note also that correlations do not have an impact on the price of caps since the
joint dynamics of forward rates are not involved in the payoff in equation (13.27).
Thus, the marginal (normal) distributions of the single forward rates are enough to
compute the expectations and correlations are not needed. This is not the case with
swaptions, however, where the terminal correlation is quite relevant thus compli-
cates the pricing.

The caplet volatilities can be stripped from the cap volatilities using a stripping
algorithm for j = 1, 2, . . . . Once the vT j-caplet’s are determined, we can plug them
into equation (13.14) or (13.15) to solve for the general σ’s and the Φψ’s, respec-
tively, via a numerical nonlinear equation solving procedure. However, we cannot
completely fill Table 13.1 since there are more unknowns than equations. Having
more parameters is useful, however, when pricing and calibrating swaptions is con-
sidered. On the other hand, if one assumes constant volatility formulations as in
equation (13.16), then Table 13.1 can be completely determined (substitute the si’s
for Φiψa’s) since all the s’s can be determined from the market by an algebraic nu-
merical procedure.

13.5 PRICING SWAPTIONS WITH LOGNORMAL 
FORWARD-SWAP MODEL

There are two legs of an interest-rate swap (IRS), the floating-leg, based on LIBOR,
and the fixed leg, where payments are exchanged between the two sides on prespec-
ified dates, Tn+1, . . . , TN. The fixed leg pays out an amount corresponding to a
fixed interest rate K, τjK, where τj is the year fraction from Tj–1 to Tj, while the float-
ing leg pays an amount corresponding to the LIBOR rate Fj(Tj–1), set at the previ-
ous instant Tj–1 for the maturity given by the current payment instant Tj. Thus, the
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floating-leg rate is reset at dates Tn,Tn+1, . . . , TN–1 and paid at dates Tn+1, . . . TN.
The payoff at time Tn for the payer of the IRS is

We can compute the value of the payer IRS (payer forward-start swap), PFS(·, [Tn,
. . . , TN], K), by taking the expectation at time t:3

In particular, at time Tn, the value of the payoff is

The discounted payoff at time t
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under the risk-neutral expectation.4 Notice that the neither volatility nor correla-
tion of the forward rates affects the pricing. The forward swap rate corresponding
the above payer IRS is the value of the fixed-leg rate K that makes the contract fair
(i.e., that makes the present value equal to zero). The forward swap rate is

which can be shown to equal

(13.28)

where

is the forward discount factor. The expression in equation (13.28) can be expressed
in terms of an exponential function; that is,

Sn,N(t) = exp(ψ(Fn+1(t), Fn+2(t), . . . , FN(t))

of the underlying forward rates to indicate that the forward swap rate is actually a
(nonlinear) function of the underlying forward LIBOR rates.5

We can now value a swaption. From Chapter 10, we know that a swaption is a
contract that gives its holder the right (but not the obligation) to enter at a future
time Tn > 0 an IRS, with reset times Tn, . . . , TN–1 (the first reset time usually coin-
cides with Tn), and with payments occurring at times Tn+1, Tn+2, . . . , TN. If we as-
sume a unit notional amount, a (payer) swaption payoff can be expressed as
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If the current forward swap rate equals the fixed strike price, Sn,N(0) = K, then the
swaption is at-the-money. If Sn,N(0) > K, then the swaption is in-the-money and if
Sn,N (0) < K, the swaption is out-of-the-money. The moneyness of a receiver swap-
tion is the opposite of that for a payer swaption.

The forward swap rate process, assuming lognormal dynamics, follows a mar-
tingale if the numeraire chosen is

(13.30)

since Cn,N(t)Sn,N(t) = P(t, Tn) – P(t, TN) gives the price of a tradable asset that, ex-
pressed in Cn,N(t) units, coincides with the forward rate swap.6 Thus, under the Qn,N

(forward-swap) measure associated with Cn,N(t), the (driftless) dynamics are

dSn,N(t) = σ(n,N)(t)Sn,N(t)dz(n,N)(t) (13.31)

where σ(n,N)(t) is the deterministic instantaneous percentage forward swap rate
volatility, and z(n,N) is a standard Brownian motion under Qn,N. We define v2

n,N (t) as
the average percentage variance of the forward swap rate in the interval [0, Tn]
multiplied by the interval length Tn.

(13.32)

This model—equation (13.31)—of forward rate dynamics is known as the lognor-
mal forward-swap rate model (LSM) since each swap rate Sn,N(t) has a lognormal
distribution under its forward swap measure7 Qn,N. The LSM model is consistent
with Black’s formula for pricing swaptions. In fact, the LSM payer swaption price
PSLSM is

PSLSM(0, Tn, [Tn, . . . , TN], K) = Cn,N(0)Bl (K, Sn,N(0), vn,N(Tn)) (13.33)

where Bl (., . ,.) is Black’s formula defined in (10.110). This can be seen if we take
the risk-neutral expectation of the discounted payoff in (13.29),

EQ (D(0, Tn)max(Sn,N(Tn) – K, 0)Cn,N(Tn)) = Cn,N(0)En,N[max(Sn,N(Tn) – K, 0)]
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which follows from the change of measure associated with a numeraire formula
given in (1.66) with ZT = max(Sn,N(Tn) – K, 0)Cn,N (Tn), U = B = Q, and N = Cn,N;
that is

where T = Tn, B(0) = 1, and D(0, Tn) = B(Tn)
–1.

13.6 APPROXIMATE SWAPTION PRICING WITH 
HULL-WHITE APPROACH

Pricing European swaptions with the LIBOR market model has been suggested
by Brace, Gatarek, and Musiela (1997) and Andersen and Andreasen (2000).
Hull and White (1999) also provide an approximate, but accurate, procedure for
pricing swaptions using the model given in equation (13.9). Consider an option,
expiring at T, on a swap lasting from Tn, . . . , TN with reset dates Tn+1, . . . , TN–1
(in general, Tn = T). We will assume that the reset dates for the swap coincide
with the reset dates for caplets underlying the LIBOR market model.

We know that the relationship between bond prices and forward rates is

for k ≥ n + 1. It follows that the forward swap rate in equation in (10.109) can be
written as

Given that empty sums are zero and empty products are one, we get

(13.34)
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or

so that

where

From Ito’s lemma, the qth component of the volatility Sn,N(t) is

or

The variance of the forward swap rate Sn, N(t) is thus

Assuming, as discussed in the previous section that forward rate volatility ςk,q = λk–m(t),q,
then the variance of Sn,N(t) is

(13.35)
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Equation (13.35) is in general stochastic suggesting that when forward rates under-
lying caplets are lognormal, swap rates are not lognormal.8 Assume Fk(t) = Fk(0) so
that the volatility of Sn,N(t) is constant within each accrual period and the swap rate
is lognormal. The average variance of Sn,N(t) between time 0 and Tn is

so that the spot swaption volatility is

(13.36)

The swaption price can be calculated by substituting this volatility into swaption
formulas given in (10.102) or (10.104).

13.7 LFM FORMULA FOR SWAPTION VOLATILITIES

Brigo and Mercurio (2001) suggest an approximation method, based on a Rebon-
ato’s work, to compute swaption prices using the LFM without using Monte Carlo
simulation. Rebonato (1998) showed that forward swap rates can be interpreted as
a linear combination of (weighted) forward rates, according to
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As a first approximation, one can freeze the w’s at time 0, obtaining,

(13.37)

which is justified by the fact that the variability of the w’s are much smaller than
the variability of the F’s. This can be verified historically and through Monte Carlo
simulation of the F’s (and therefore the w’s).9

Differentiating both sides of equation (13.37), we get

under any of the forward-adjusted measures. We then compute the quadratic varia-
tion

The percentage quadratic variation is given by

We can provide a further approximation by freezing all the F’s in the formula (as
was done to the w’s) to their time-zero value:
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With this last formula, we can compute an approximation of the LFM swap rate
integrated percentage variance, (vLFM

n,N )2, given by

Thus, we get the LFM Blacklike (squared) swaption volatility (multiplied by Tn)
that can be approximated by what is known as Rebonato’s formula,

(13.38)

As a result, the quantity vLFM
n,N can be used as a proxy for the Black volatility vn,N(Tn)

of the swap rate Sn,N so that using this quantity in Black’s formula for swaptions al-
lows one to compute approximated swaption prices with the LFM.10

13.8 MONTE CARLO PRICING OF SWAPTIONS USING LFM

Consider the swaption price

where the expectation is taken with respect to the LFM numeraire P(·, Tn) rather
than the LSM numeraire Cn,N. Notice that since the swap rate, given in (13.34), can
be expressed in terms of spanning forward rates at time Tn, then the above expecta-
tion depends on the joint distribution of the spanning forward rates Fn+1(Tn),
Fn+2(Tn), . . . , FN(Tn) and thus the forward rate correlations impact the price unlike
in cap/floor pricing.11

To price a swaption using Monte Carlo, we need to generate M realizations of
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the forward LIBOR rates Fn+1(Tn, Fn+2(Tn), . . . , FN(Tn) using the LFM forward rate
dynamics under QP(·,Tn).

for k = n + 1, . . . , N. For each realization, we compute the payoff

and then average over all M = N – n payoffs. The above LFM process needs to be
discretized for sufficiently (but not too) small time steps ∆t since the LFM dynamics
do not lead to a distributionally known process. Small time steps reduce the affects
of random inputs to the independent Gaussian (and thus distributionally known)
Brownian shocks,12 z(t + ∆t) – z(t).

In Monte Carlo, it is often convenient and computationally simpler to work
with logarithms as in (12.46). Thus to evolve the system of forward rates from their
initial values Fi(0) at time 0 to some time t in the future, we can use the standard
Euler scheme and obtain the system of discretized SDEs:

(13.39)

where k = n + 1, . . . , N.
It is important to note that discretizing the continuous-time exact dynamics

does not lead to discrete-time interest-rate dynamics that are consistent with dis-
crete-time no-arbitrage. Thus, the discretized process leads to bond prices that
are not martingales when expressed with respect to the relevant numeraire. De-
spite this problem, for sufficiently small discretization steps, the violation of 
no-arbitrage conditions due to the time-discretization of no-arbitrage continu-
ous-time processes is negligible.13 However, Glasserman and Zhao (2000) devel-
oped a discretization scheme that maintains the martingale property required by
no-arbitrage in discrete time.

The following is a Monte Carlo implementation of the LIBOR forward rate
model to price a European swaption.
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/**********************************************************************************
MonteCarloLFM: A Monte Carlo simulation of the LIBOR log-forward dynamics in

(13.39) to value a European swaption.
[in] SymmetricMatrix& R : correlation matrix of forward rate

Matrix &V : variance/covariance matrix of forward rates.
Alternatively, can specify volatility structure of rates
which is done inside method

double initrate : initial forward (spot) rate
double strike : strike rate of swaption
double T : time to maturity of swaption
long M : number of simulations
long N : number of time steps per simulation path
long m : number of forward rates to simulate
long numeraire : numeraire underlying forward rate dynamics (1, . . . ,N)

[out]Returns: double : swaptionPrice
**********************************************************************************/
void RateModel::MonteCarloLFM(SymmetricMatrix &R, Matrix &V, double initrate,

double strike, double T, long M, long N, long m, long numeraire)
{

int i, j, l, k, n, q, p;
long seed = -2;
long* idum = &seed; // pointer to seed
double drift = 0.0; // drift
double deviate = 0.0; // standard normal deviate
double dt = T/N; // time step 0.5
double F0 = initrate; // initial rate
double F[100] = {0.0}; // forward rates
double v[100] = {0.0}; // forward rate volatiliites
double tau[100] = {0.0}; // forward rate tenors
double lnF[100] = {0.0}; // log forward rates
double logF = 0.0; // stores log of forward rate
vector<double> forwardVec[20]; // array of vector of forward rates
double swapRate = 0.0; // swap rate
double payoff = 0.0; // payoff of swaption
double bondPrice = 0.0; // bond price
double value = 0.0; // value
double prod = 1; // product of forward rates to compute swap rate
double prod1 = 1; // product of forward rates to compute bond price
double swaptionPrice; // swaption price
double SD, SE = 0.0; // standard deviation and error
double sum = 0.0; // sum of prod1
double sum1 = 0.0; // sum of squared values
double a = 0.19085664; // volatility parameter
double b = 0.97462314; // volatility parameter
double c = 0.08089168; // volatility parameter
double d = 0.0134498; // volatility parameter
double mu = 0.0; // drift if numeraire < j
double mu1 = 0.0; // drift if numeraire >= j

// compute volatilities and tenors
for (i = 1; i <= N; i++)
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{
v[i] = (a*(i*dt) + d)*exp(-b*(i*dt)) + c;
tau[i] = 0.5;

}

// initialize RNG
srand(time(0));
seed = (long) rand() % 100;
idum = &seed;

for (i = 1; i <= M; i++) // number of simulations
{

// initialize for each simulation
drift = 0;
prod = 1;
prod1 = 1;
sum = 0;
sum1 = 0;
mu = 0;
mu1 = 0;

for (l = 0; l < N; l++) // number of time steps
{

for (k = 1; k <= m; k++) // generate m forward rates
{

deviate = util.gasdev(idum);
F[0] = F0;

// compute drift coefficient
if (k < numeraire)
{

for (j = k+1; j < numeraire; j++)
mu = mu + ((R(k,j)*tau[j]*v[k]*F[j-1])/(1 + tau[j]*F[j-1]))*dt;

}
else // j >= numeraire
{

for (j = numeraire; j <= k; j++)
mu1 = mu1 + ((R(k,j)*tau[j]*v[k]*F[j-1])/(1 + tau[j]*F[j-1]))*dt;

}
// compute drift
drift = -mu + mu1;
// simulate log forward rate
logF = log(F[k-1]) + v[k]*drift - 0.5*(v[k]*v[k])*dt +

v[k]*deviate*sqrt(dt);
F[k] = exp(logF);
forwardVec[l+1].push_back(F[k]);

}
// compute current swap rate
for (p = 0; p < m; p++)
{
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prod = prod*(1/(1+ tau[p]*forwardVec[l+1][p]));
for (n = 1; n <= m; n++)
{

for (q = 1; q <= n; q++)
prod1 = prod1*(1/(1 + tau[q]*forwardVec[l+1][q]));

sum = sum + tau[n]*prod1;
}

}
swapRate = (1 - prod)/(sum);
bondPrice = 1/prod1;

value = max(swapRate - strike,0)*sum;
payoff = payoff + value;
sum1 = sum1 + value*value;

}
}
swaptionPrice = exp(-initrate*T)*(payoff/M);

cout.precision(4);
cout << “swaption Price = ” << “ ” << swaptionPrice << endl;

SD = sqrt((sum1 - sum1*sum1/M)*exp(-2*initrate*T)/(M-1));
cout << “stddev ” << “ ” << SD << endl;

SE = SD/sqrt(M);
cout << “stderr ” << “ ” << SE << endl;

return swaptionPrice;
}

Suppose we want to value a European payer swaption with a strike rate of 6.5
percent, one year to maturity, an initial forward rate of 5 percent, and a unit no-
tional amount. Furthermore, suppose we have a 1 × 10 swaption (a swaption ma-
turing in one year and giving the holder the right to enter a 10-year swap. Suppose
we consider maturities of 1, 2, 3, 4, 5, 7, and 10 years with underlying swap
lengths of 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 years. Suppose the swaption Black implied
at-the-money swaption volatility matrix (quoted by brokers) is given by V and the
correlation matrix is given by R (which we assume to be estimated from historical
data). Typically, V is used to calibrate the model. However, we will actually com-
pute the volatilities from the formulation in (13.10) (using given values for a, b, c,
and d), which is computed inside the MonteCarloLFM method.14 Calibration to V
can be achieved by a numerical optimization routine.
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***********************************************************************************
void main()
{

LMModel lm;
SymmetricMatrix R(10);
Matrix V(10,7);

V << 0.164 << 0.158 << 0.146 << 0.138 << 0.133 << 0.129 << 0.126 << 0.123 
<< 0.120 << 0.117
<< 0.177 << 0.156 << 0.141 << 0.131 << 0.127 << 0.124 << 0.122 << 0.119 
<< 0.117 << 0.114
<< 0.176 << 0.155 << 0.139 << 0.127 << 0.123 << 0.121 << 0.119 << 0.117 
<< 0.115 << 0.113
<< 0.169 << 0.146 << .129 << 0.119 << 0.116 << 0.114 << 0.113 << 0.111 << 0.110 
<< 0.108
<< 0.158 << 0.139 << 0.124 << 0.115 << 0.111 << 0.109 << 0.108 << 0.107 
<< 0.105 << 0.104
<< 0.145 << 0.129 << 0.116 << 0.108 << 0.104 << 0.103 << 0.101 << 0.099 
<< 0.098 << 0.096
<< 0.135 << 0.115 << 0.104 << 0.098 << 0.094 << 0.093 << 0.091 << 0.088 
<< 0.086 << 0.084;

R << 1.00
<< 0.924 << 1.00
<< 0.707 << 0.924 << 1.00
<< 0.557 << 0.833 << 0.981 << 1.00
<< 0.454 << 0.760 << 0.951 << 0.997 << 1.00
<< 0.760 << 0.951 << 0.997 << 0.963 << 0.924 << 1.00
<< 0.843 << 0.985 << 0.976 << 0.916 << 0.862 << 0.990 << 1.00
<< 0.837 << 0.983 << 0.979 << 0.921 << 0.867 << 0.992 << 1.00 << 1.00
<< 0.837 << 0.983 << 0.979 << 0.920 << 0.867 << 0.992 << 1.00 << 1.00 << 1.00
<< 0.920 << 1.00 << 0.928 << 0.838 << 0.767 << 0.954 << 0.986 << 0.985 << 0.985 
<< 1.00;

// in practice, we would calibrate our model to V
lm.MonteCarloLFM(R,V,0.05,0.065,1,10000,10,10,1);

}

Then, a Monte Carlo simulation with M = 10,000 simulations, N = 10 time steps,
simulated under the Q1 numeraire, yields a swaption price of $3.722 with a stan-
dard deviation of 0.0134 and a standard error of 0.00013.

13.9 IMPROVED MONTE CARLO PRICING OF SWAPTIONS WITH A
PREDICTOR-CORRECTOR

We can improve the accuracy of the Monte Carlo swaption price estimate. We can
rewrite equation (13.39) as

(13.40)d F F t t t t t zk
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where

Thus, a single Euler step to evolve each of the state variables ln Fk from time 0 to
time t denoted by ∆t is given by

(13.41)

where εk’s are standard normal deviates that are correlated according to E[εiεj] = ρij (0).
For time-dependent instantaneous volatility, the Euler scheme in (13.41) can be im-
proved by use of the integrated covariance matrix elements

which can be split into its pseudo-square root A (C = AA′) defined by

A Cholesky, spectral, or angular decomposition can be used generate a valid matrix
A with elements aij. Given this definition of the integrated covariance matrix C, we
can express an improved constant drift approximation µ̂k (Y, C) as

(13.42)

where Yk = ln F∆t
k , which leads to the log-Euler scheme,
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where the εj are now independent standard normal random deviates. If we assume a
piecewise-constant drift, we can carry out the numerical integration analytically
and use the scheme

(13.44)

The Euler scheme does not attempt to account for state dependence in the
drifts, but instead uses the initial values of the (logarithms of the) forward rates in
equation (13.41).15 There are a number of ways to improve the Euler method of the
numerical integration of SDEs such as with implicit, explicit, and standard predic-
tor-corrector methods; see Kloeden and Platen (1999). Hunter, Jackel and Joshi16

suggest a hybrid approach. They directly integrate the diffusion term σkdzk(t) simi-
lar to the standard Euler method. To account for the indirect stochastics of the drift
term, they employ a predictor-corrector method. First, they predict the forward
rates using the initial data, and then they use these values to correct the approxima-
tion of the drift coefficient. An algorithm for constructing one draw from the termi-
nal distribution of the forward rates over one time step is given:

1. Evolve the logarithms of the forward rates as if the drifts were constant and
equal to their initial values according to the log-Euler scheme in equation
(13.43).

2. Compute the drifts at the terminal time with the evolved forward rates from
step 1.

3. Average the initially calculated drift coefficients with the newly computed ones.
4. Re-evolve using the same normal deviates as initially but using the new predic-

tor-corrector drift terms.

In the event that the volatilities are constant, then one gets the simplest predictor-
corrector equation—equation (15.5.4) with α = 1/2 in Kloeden and Platen (1999),

(13.45)

The following is an implementation of a Monte Carlo simulation using a predictor-
corrector equation (13.42) to value a European swaption.
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/**********************************************************************************
MonteCarloLFM_PredCorr: A Monte Carlo simulation using a predictor-corrector method

of the LIBOR log-forward dynamics in (13.39) to value an
European swaption.

[in]:  SymmetricMatrix& R : correlation matrix of forward rates
Matrix &V : variance/covariance matrix of forward rates.

Alternatively, can specify volatility structure of
rates which is done inside method

double initrate : initial forward (spot) rate
double strike : strike rate of swaption
double T : time to maturity of swaption
long M : number of simulations
long N : number of time steps per simulation path
long m : number of forward rates to simulate
long numeraire : numeraire under which to simulate dynamics

[out]: double : swaptionPrice
**********************************************************************************/
double LMModel::MonteCarloLFM_PredCorr(const SymmetricMatrix &R, Matrix &V, double

initrate, double strike, double T, long M, long N, long m, long numeraire)
{

int i, j, l, k, n, q, p;
long seed = 0;
long* idum; // pointer to seed
double mu10 = 0.0; // drift by freezing forward rate F(0) if j < 

// numeraire
double mu20 = 0.0; // drift by freezing forward rate F(0) if j >= 

// numeraire
double mu_hat = 0.0; // -mu10 + mu20
double mu_hat2 = 0.0; // -mu1 + mu2
double deviate = 0.0; // standard normal deviate
double dt = T/N; // time step
double F0 = initrate; // initial forward rate
double F[2000] = {0.0}; // forward rates
double v[100] = {0.0}; // array of forward volatilities
double tau[100] = {0.0}; // array of forward tenors
double logF = 0.0; // log of forward rate
double logEuler = 0.0; // log of Euler scheme
vector<double> forwardVec[100]; // array of vector of forward rates
double swapRate = 0.0; // swaprate
double value = 0.0; // swaption payoff value
double payoff = 0.0; // sum of value
double bondPrice = 0.0; // bond price
double prod = 1; // product of forward rates to compute 

// swaption price
double prod1 = 1; // product of forward rates to compute bond price
double swaptionPrice = 0.0; // swaption price
double SD, SE = 0.0; // standard deviation and error
double sum = 0; // sum of prod1
double sum1 = 0.0; // sum of squared value
double azSum = 0.0; // sum of A(i,j)*deviate (A is square root of 

// corr matrix)
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StatUtility util; // statistical utility class

// volatility parameters
double a = 0.19085664;
double b = 0.97462314;
double c = 0.08089168;
double d = 0.0134498;

DiagonalMatrix D(10); // matrix of eigenvalues on diagonal
Matrix Z(10,10); // matrix of eigenvectors
SymmetricMatrix C(10); // correlation matrix
Matrix A(10,10); // pseudo square root of C

// compute volatilities and tenors
for (i = 1; i <= N; i++)
{

v[i] = (a*(i*dt) + d)*exp(-b*(i*dt)) + c;
tau[i] = 0.5;

}

double temp = 0.0;
// compute integrated covariance elements
for (i = 1; i <= N; i++)
{

for (j = 1; j <= i; j++)
{

// evaluate integral using Simpson’s Rule int_01 rho*vol[i]*vol[j]*dt
C(i,j) = R(i,j)*util.EvaluateSimpson(0,i*dt,1000,j*dt,T);

}
}

// eigenvector - eigenvalue decompositon
EigenValues(C,D,Z);
for (i = 1; i <= N; i++)
{

if (D(i) < 0)
D(i) = -D(i);

D(i) = sqrt(D(i));
}
// compute Cholesky decomposition
A = Z*D;

// initialize RNG
srand(time(0));
seed = (long) rand() % 100;
idum = &seed;

for (i = 1; i <= M; i++) // number of simulations
{

// initialize for each simulation
mu10 = 0;
mu20 = 0;
azSum = 0;
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mu_hat = 0;
mu_hat2 = 0;
prod = 1;
prod1 = 1;
sum = 0;
sum1 = 0;

for (l = 0; l < N; l++) // number of time steps
{

for (k = 1; k <= m; k++) // generate m forward rates
{

F[0] = F0;
// compute drifts for error predictor method
if (k < numeraire)
{

for (j = k+1; j < numeraire; j++)
{

mu1 = mu1 + ((C(k,j)*tau[j]*F[j])/(1 + tau[j]*F[j]));
// compute drift by freezing F(0)
mu10 = mu10 + ((C(k,j)*tau[j]*F[0])/(1 + tau[j]*F[0]));

}
}
else // j >= numeraire
{

for (j = numeraire; j <= k; j++)
{

mu2 = mu2 + ((C(k,j)*tau[j]*F[j])/(1 + tau[j]*F[j]));
// compute drift by freezing forward rate F(0)
mu20 = mu20 + ((C(k,j)*tau[j]*F[0])/(1 + tau[j]*F[0]));

}
}
mu_hat = -mu10 + mu20;
mu_hat2 = -mu1 + mu2;

for (j = 1; j < N; j++)
{

deviate = util.gasdev(idum);
azSum = azSum + A(k,j)*deviate;

}
// logEuler scheme
logEuler = log(F0) + 0.5*(mu_hat + mu_hat2 - C(k,k)) + azSum;

F[k] = exp(logEuler);
forwardVec[l+1].push_back(F[k]);

}

for (p = 0; p < m; p++)
{

prod = prod*(1/(1+tau[p]*forwardVec[l+1][p]));
for (n = 1; n <= m; n++)
{

for (q = 1; q <= n; q++)
prod1 = prod1*(1/(1 + tau[q]*forwardVec[l+1][q]));
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sum = sum + tau[n]*prod1;
}

}
swapRate = (1 - prod)/(sum);
bondPrice = 1/prod1;

value = max(swapRate - strike,0)*sum;
payoff = payoff + value;
sum1 = sum1 + value*value;

}
}
swaptionPrice = exp(-initrate*T)*(payoff/M);
cout << “swaption Price = ” << swaptionPrice << endl;

SD = sqrt((sum1 - sum1*sum1/M)*exp(-2*initrate*T)/(M-1));
cout << “SD = ” << SD << endl;

SE = SD/sqrt(M);
cout << “SE = ” << SE << endl;

return swaptionPrice;
}

where the method definition of EvaluateSimpson is given in the StatUtility class by:

class StatUtility
{

private:
double *x,*g; // arrays used in Simpson’s rule
double h; // segment length

public:
/**************************************************************************
EvaluateSimpson : evaluates integral using Simpson’s Rule
[in]:  double a : lower limit of integration

double b : upper limit of integration
long n : number of segments for approximation
double t : current time
double T : maturity

[out]: double : value of integral
**************************************************************************/
double EvaluateSimpson(double a, double b, long n, double t, double T)
{

double value = 0.0;

h=(b-a)/n;
x = new double[n];
g = new double[n];

x[0]= a;
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g[0]=F(x[0],t,T);

for(int i=1; i < n; i++)
{

x[i]=h+(x[i-1]);
g[i]=F(x[i],t,T);

}
value = calcIntegral(n);

return value;
}
/******************************************************************************
calcintegral : calculates integral approximation using Simpson’s Rule
[in]: long n : number of integral segments
[out]: double : integral approximation
******************************************************************************/
double calcIntegral(long n)
{

double oddValues = 0;
double evenValues = 0;

for(int i=1;i<n ;i+=2)
oddValues +=g[i];

for(int j=2;j <n-1;j+=2)
evenValues+=g[j];

double value=((h/3)*(g[0]+4*oddValues+2*evenValues+g[n-1]));

return value;
}

/**********************************************************************************
F:    volatility function to evaluate for LFM simulation
[in]: double t : function evaluation point

double s : current time
double T : maturity

[out]:
**********************************************************************************/

double F(double t,double s, double T)
{

const double a = 0.19085664;
const double b = 0.97462314;
const double c = 0.08089168;
const double d = 0.0134498;

return ((a*(T-t) + d)*exp(-b*(T-t) + c))*((a*(T-s) + d)*exp(-b*(T-s) + c));
}
// . . . other method definitions

};

Pricing the same swaption in the previous section (using the same parameters) with
predictor-corrector, we get a value of $3.268, a standard deviation of 0.01203, and
a standard error of 0.00012.
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13.10 INCOMPATIBILITY BETWEEN LSM AND LSF

While the LSM model is convenient for pricing swaptions since it is consistent with
Black’s formula, in general there are no analytical formulas for pricing interest rate
derivatives involving swap rates. Consequently, forward LIBOR rates, rather than
forward swap rates, are used to model the yield curve. However, we may be inter-
ested in computing the dynamics of forward swap rates under the numeraire used
for forward rates, namely P(t, Tn). Thus, we are interested in expressing the dynam-
ics of forward swap rates under the measure QP(·,Tn).

Following Brigo and Mercurio, by applying the change-of-drift formula given
in equation (1.68), we obtain the percentage drift mn,N (t) for Sn,N under QP(·,Tn) as

(13.46)

The covariation term is computed as follows:

Recalling that Sn,N(t) = exp(ψ(Fn+1(t), . . . , FN(t)) so that lnSn,N(t) = ψ(Fn+1(t), . . . , FN

(t)), we find

It can be shown after some lengthy computations that the forward swap rate Sn,N(t)
under the numeraire P(·,Tn) follows the dynamics

dSn,N(t) = mn(t)Sn,N(t)dt + σS(t)Sn,N(t)dz(t)
where
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and z is a QP(·,Tn ) standard Brownian motion and where FPk(t) = FP(t; Tn, Tk) for all
k for brevity.

We can also compute the forward-rate LIBOR dynamics under the forward-
rate swap measure Qn,N by computing the new drift

After some lengthy computation, we find

dFk(t) = σk(t)Fk(t)µκ
n,N(t)dt + σk(t)Fk(t)dzk(t) (13.47)

where

the z’s are Brownian motion under Qn,N, and 1(j≤k) is the indicator function equal to
1 if j ≤ k and 0 otherwise.

As we can see, there are two different possibilities for pricing swaptions with
market models—and thus for computing the price as

EQ[D(0, Tn)max(Sn,N(Tn) – K, 0)Cn,N(Tn)] = Cn,N(0)En,N[max(Sn,N(Tn) – K, 0)]

One can price the swaption through the preceding expectation either with the
LSM in (13.31) under the forward-swap measure Qn,N or with the LFM, also un-
der the swap measure Qn,N, so that the swap rate is expressed in terms of the LFM
dynamics in equation (13.47). If swaptions are priced with the LSM based on the
swap-rate dynamics in equation (13.31), then the swap-rate distribution is ex-
actly lognormal and the LSM expectation reduces to Black’s formula (13.33).
However, if this expectation is taken with the LFM, then the computations are
based on the dynamics of forward LIBOR rates. Consequently, since the forward
LIBOR rates define the swap rate through the relationship in equation (13.34),
then the distribution of the swap rate obtained does not have to be lognormal,
which shows why, in theory, the LSM and LFM are not distributionally compati-
ble. However, Brace, Dun, and Barton (1998) argue while the implied distribu-
tion of swap rates by the LFM is not lognormal, it is not far from being
lognormal in practice.
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13.11 INSTANTANEOUS AND TERMINAL CORRELATION STRUCTURES

Derivatives, such as swaptions, are priced based on expected values of quantities
involving several forward rates simultaneously. Thus, their prices depend on the
terminal correlation between these rates, which in turn depends on the instanta-
neous correlations of forward rates as well the instantaneous volatility specifica-
tion. We will examine these structures in this section.

The instantaneous correlation ρ represents the degree of dependence (co-
movement) between changes dF of different forward rates. For example, 

where “Std” denotes standard deviation conditional on the information available at
time t, shows that instantaneous correlation is related to changes in forward rates.
Terminal correlation, denoted “Corr,” however, represents the degree of dependence
between two different forward rates at a given terminal time instant. The T1 termi-
nal correlation between F2 and F3 is the correlation at time T1 of F2(T1) and F3(T1). It
turns out that, in general, terminal correlation depends both on the instantaneous
correlation between different rates as well as the way the total average volatility of
each forward rate (caplet volatility) is distributed in instantaneous volatility. Thus,
the correlation between F2(T1) and F3(T1) depends on the instantaneous percentage
volatilities of forward rates, namely the functions, σ2(t) and σ3(t), respectively, that
are used to recover the average volatilities from cap prices, v2(t) and v3(t) over [0, T1]
through integration. As Rebonato (1998) has pointed out, the average volatilities
can be decomposed in two different ways, “a” (σa

2, σa
3) and “b” (σb

2, σb
3), which will

lead to different correlations between F2(T1) and F3(T1).
Moreover, the instantaneous correlation does not depend on the particular

probability measure (or numeraire asset) used while the terminal correlation does.
In fact, Girsanov’s theorem states that the instantaneous covariance structure is in-
variant for all equivalent measures that can be used to express the process, so that
the measure used is irrelevant. However, as we will see, it is possible to approxi-
mate terminal correlations based on “freezing part of the drift” so that the dynam-
ics are not dependent on the particular measure chosen.

In general, the computation of terminal correlations of forward rates at a fu-
ture time instant using the LFM has to be based on Monte Carlo. Suppose we 
are interested in computing the terminal correlation between forward rates Fi =
F(·; Ti-1, Ti) and Fj = F(·; Tj–1, Tj) at time Tn, n < i – 1 < j, under the measure Qη, η ≥
n. We compute
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The expected values appearing in the formula can be obtained by simulating
the LFM dynamics based on the Milstein dynamics given in equation (13.39),
namely,

for k = i and k = j so as to simulate Fi and Fj up to time Tn. It is also possible to com-
pute terminal correlations through an approximated formula by “freezing the drift
in the dynamics”:

Under this approximation, the forward-rate dynamics under Qη is

dFk(t) = µ–η
k(t)σk(t)Fk(t)dt + σk(t)Fk(t)dzk(t) (13.49)

which can be directly integrated. The dynamics of (13.49) under the Qη measure for
k = i and k = j leads to jointly normally distributed variables ln Fi(Tn) and ln Fj(Tn).
Consequently, an exact evaluation of the expected value in the numerator of
(13.48) can be obtained from the relationship
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Moreover, by Ito’s isometry the two-dimensional random vector is jointly normally
distributed as

Consequently, we can approximate the terminal correlation based on this distribu-
tion without having to resort to Monte Carlo simulation or without having to eval-
uate equation (13.48). An approximate formula for terminal correlation is given by
Rebonato’s terminal-correlation formula:

Rebonato (1999a, 1999d) also proposes a useful structure to use for calculating in-
stantaneous correlation. In general, an instantaneous-correlation matrix with full
rank has M(M – 1)/2 parameters where M = N – n is the number of forward rates.
Given that M can be a large number, Rebonato offers an approach for reducing the
number of parameters and thereby offering a more parsimonious form for the cor-
relation structure. Since ρ is a positive-definite symmetric matrix, we can express it
in terms of its eigenvectors and eigenvalues:

ρ = PΛP′

where P is a real orthogonal matrix (i.e., P′P = PP′ = IM) that is spanned by the
eigenvectors ρ. Λ is the diagonal matrix whose entries are the (positive) eigenvalues
of ρ. Since Λ is a diagonal matrix we can (using a simple Cholesky decomposition)
write it as Λ = A′A where A is a matrix whose entries are the square roots of the
corresponding entries of Λ. We can set V = PA so that

ρ = PAA′ P′ = VV′

Rebonato suggests that the decomposition of ρ = VV′ be mimicked through a suit-
able n-rank M × n matrix W, such that WW′ is an n-rank correlation matrix, with
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n < M (typically n << M). As a result, we generate new n-dimensional Brownian
motion w by replacing the original random shocks dz(t) with Wdw(t) so that we go
from a noise correlation structure

dzdz′ = ρdt

to

Wdw(Wdw)′ = Wdwdw ′W′ = WW′dt

so that the dimension of the random noise has decreased to n. Thus, we set

ρW = WW′

Rebonato then suggests a suitable parametric form for W, such that WW′ is a pos-
sible correlation matrix. He suggests the following form for the matrix:

With this parametric form, ρW is positive-semidefinite and its diagonal terms are
1’s. Thus, ρW possible correlation matrix with M × (n – 1) parameters.

As an example, consider the n = 2 case with M parameters. Denote wi is the ith
row of W. Then

wi,1 = cosθi,1, wi,2 = sinθi,2

so that

ρW
i,j = wi,1wj,1 + wi,2wj,2 = cos(θi – θj)

The matrix consists of M parameters θ1, . . . , θM. If M is large (i.e., 20), then there
can be calibration problems so that it may be necessary to subparameterize the θ’s
as functions of a small number, say four or five, of the parameters; that is θk = v(k).
Such a function could be linear-exponential in form, similar to the one used for
volatility in equation (13.10). However, Brigo and Mercurio note that as the num-
ber of swaption parameters becomes large, subparameterization should not be
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used as more free parameters are needed for calibration.17 Moreover, to ensure
positivity of adjacent rate correlations, ρi,i–1 > 0, we can impose constraints on the
correlation angles

With a rank-two matrix, it is difficult to obtain decorrelation. Empirical evi-
dence shows that a plot of correlation versus parameter indexes will be sigmoidal
in shape since positive correlations remain high (close to 1) for adjacent forward
rates and then jump to values close to 0 between short and longer maturity rates.18

While decorrelation improves by using a higher-rank matrix, in general only when
the number of factors (parameters) approaches the number of forward rates will
decorrelation lead (graphically) to a straight line between correlations and in-
dexes. Decorrelation is important for market calibration, especially for swaptions,
since decorrelation among different forward rates is actually observed in the mar-
ket. Consequently, to get the best fit to market data, what matters most is calibra-
tion of terminal correlation, which in turn requires fitting both instantaneous
correlation and instantaneous volatilities. Typically, one estimates instantaneous
correlation historically from time series of zero-coupon rates at a given set of ma-
turities, and then approximates it by a lower-rank matrix. This allows the θ’s to be
determined.19

13.12 CALIBRATION TO SWAPTION PRICES

To calibrate the LFM model, we choose the instantaneous-volatility parame-
ters—that is, a, b, c, and d in (13.10)—and the correlation parameters (i.e., θ’s),
that reflect the swaption prices quoted in the market. Since Black’s formula is
used by traders to translate prices into implied volatilities, the LFM is used to in-
corporate and thus calibrate to as many prices as possible. For chosen parame-
ters, we can generate an LFM table of prices corresponding to the table of
quoted at-the-money swaption volatilities. Recall that we are given the market
volatilities vmarket and that we are using the volatility form in (13.10), we can de-
termine the Φ’s from (13.35). We can subsequently try to change the parameters,
a, b, c, d, θ, and related Φ’s so as to match the LFM table with the market swap-
tions table as closely as possible. Thus, we can minimize the sum of the squares

π θ θ π
2 21< − < −−i i
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of the differences of the corresponding swaption prices in the two tables, namely,
the function

(13.50)

using a numerical iteration routine such as the Newton-Raphson method, gradient-
descent method, or a minimization optimization algorithm such as Brent’s method.
The LFM is calibrated to the swaption market when the parameters that minimize
the sum of the squared differences of the swaption prices are determined. Such a
minimization is possible since the sum is a function of the parameters.

Note that while the Φ’s can be determined by the cap market as functions of a,
b, c, and d, parameters that are also used in the calibration to swaption prices.
However, if the number of swaptions is large, four parameters are not sufficient for
practical purposes.20 In this case, a richer parametric form of the instantaneous
volatility such as that in equation (13.9) should be used. Moreover, joint calibra-
tion to both the cap and swaption market is common practice for traders. Reconcil-
ing the difference in cap and swaption volatility structures is important so that joint
calibration can be achieved.

For a detailed discussion of swaption calibration using actual data as well as
numerical results, see Brigo and Mercurio (2001c).

13.13 CONNECTING CAPLET AND S × 1-SWAPTION VOLATILITIES

In the cap market, forward rates are mostly semiannual, whereas those used in 
forward-swap-rate formulas are usually annual rates. To jointly calibrate to both
the cap and swaption markets, the volatilities of semiannual forward rates needs to
be reconciled with the volatilities of annual forward rates. Suppose we have three
time instants 0 < S < T < U that are each six months spaced. Furthermore, suppose
we have an S × 1 swaption and both S and T-expiry six-month caplets. For exam-
ple, S = 4 years, T = 4.5 years, and U = 5 years. We will derive a relationship be-
tween the Black swaption volatility and the two Black caplet volatilities.

Consider three forward rates F1(t) = F(t; S, T), F2(t) = F(t; T, U), and F(t) =
F(t; S, U), where the first two forward rates are semiannual while the third rate is
annual and composed of the two “inner rates.” Thus, the tenor for F1 and F2 is 0.5
and it is 1 for F. Using the relationships between forward rates and zero-coupon
bond prices, we get
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and

Note that

which can be written as

(13.51)

by substituting the two inner fractions of discount factors from the preceding ex-
pressions for F1 and F2. Subsequently, if F1 and F2 are lognormal, then F cannot be
lognormal at the same time.

Following Brigo and Mercurio (2001c), consider the following dynamics:

dF1(t) = ( . . . )dt + σ1(t)F1(t)dz1(t)

dF2(t) = ( . . . )dt + σ2(t)F2(t)dz2(t)

dz1dz2 = ρ

for the two semiannual rates. ρ is the “infra-correlation” between the inner rates F1
and F2. Thus, by differentiation of equation (13.13), we get

Taking the variance on both sides, conditional on the information available at time
t, yields

where σ(t) is the percentage volatility of F. Set
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so that

σ2(t) = u2
1(t)σ

2
1(t) + u2

2(t)σ
2
2(t) + 2ρσ1(t)σ2(t)u1(t)u2(t) (13.52)

We can achieve a deterministic approximation to (13.48) by freezing all F’s (and
thus u’s) at their time-zero value:

σ2
approx(t) ≈ u2

1 (0)σ2
1(t) + u2

2 (0)σ2
2(t) + 2ρσ1(t)σ2(t)u1(0)u2(0) (13.53)

Since F is the (one-period) swap rate underlying the S × 1 swaption, then the
(squared) Black’s swaption volatility is

(13.54)

Since S is exactly the expiry of the semiannual rate F1(t), then the first integral can
be computed directly as a market caplet volatility,

The second and third integrals cannot be directly computed since they require some
parametric assumption on the instantaneous volatility structure rates. The simplest
solution is to assume forward rates have constant volatilities. Thus, the second inte-
gral can be computed as

and third one can be computed as

so that the approximate Black volatility assuming constant volatility is

v2
Black ≈ u2

1(0)v2
S-caplet + u2

2(0)v2
T-caplet + 2ρu1(0)u2(0)vS-capletvT-caplet (13.55)
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Certainly, many other volatility term structures are possible. However, equation
(13.55) is simple and it is one of the few that can be computed directly from market
quantities. De Jong, Driessen, and Pelsser (1999) examined empirical data on for-
ward rate volatility term structures. They found that flat volatilities in forward
rates tend to overprice swaptions. Thus, the approximated formula in (13.53) gives
volatilities that are slightly larger than actual market volatilities. This can be seen
by looking at the third integral. By the Schwartz inequality, we have

so in the case of positive correlation, equation (13.53) overestimates volatility with
respect to (13.52).21

13.14 INCLUDING CAPLET SMILE IN LFM

Black’s formula, the standard in the cap market, is consistent with the LFM, in that
the expected value is the discounted caplet payoff under the related forward mea-
sure when the forward-rate dynamics are given by the LFM. Consider the price at
time 0 of a T2-maturity caplet resetting at time T1 (0 < T1 < T2) with strike X and a
notional amount of 1. Let τ be the tenor (year fraction) between T1 and T2. The
caplet pays off

τmax(F(T1; T1, T2) – X,0)

at time T2. Thus its value at time 0 is

P(0, T2)τE2
0 [max(F(T1; T1, T2) – X, 0)]

where the expectation is to take at time 0 under the T2-forward measure so that F is
a martingale. Thus, the dynamics for F, taken under the T2-forward measure, fol-
low the lognormal LFM dynamics

dF(t; T1, T2) = σ2(t)F(t; T1, T2)dz(t) (13.56)

σ σ σ σ1 2
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1
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0

2
2

0

( ) ( ) ( ) ( )t t dt t dt t dt Sv v
S S S

S caplet T caplet∫ ∫ ∫≤ ≈ - -
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Given the lognormality of the T1-marginal distribution of this dynamics, the expec-
tation results in Black’s formula:

The average volatility of the forward rate in [0, T1], namely,

does not depend on the strike X of the option. Therefore, the strike price should
not affect the volatility of the forward rate and we would expect two caplets with
the same expiry-maturity, T1 – T2, and same underlying forward rates, but different
strikes, to have the same underlying volatility. However, this is not the case. Each
caplet market price requires its own Black market volatility v2

market(T1, X). Thus,
two different volatilities, v2(T1, X1) and v2(T1, X2), are required to match the ob-
served market prices if one is using Black’s formula:

CplBlack(0, T1, T2, X1) = P(0, T2)τBlack(X1, F2(0), v2
market(T1, X1))

CplBlack(0, T1, T2, X2) = P(0, T2)τBlack(X2, F2(0), v2
market(T1, X2))

The curve

is known as the volatility smile of the caplet. If Black’s formula were consistent
along different strikes, one would expect this curve to be flat. However, the curve
often exhibits “smiley” or “skewed” shapes. By skew, it is meant that for a fixed
maturity, low-strike implied volatilities are higher than high-strike implied volatili-
ties. A smile shape is meant to characterize volatility structures where, for a fixed
maturity, the volatility has a minimum value around the value of the underlying
forward rate.

Since only a fixed number of strikes are quoted in the market, the remaining
points of

can be found through interpolation. Suppose a few market caplet prices for expiry

X v T X Tmarket→ 2 1 1( , )/

X v T X Tmarket→ 2 1 1( , )/
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T1 and for a set of strikes Xi is given. By interpolation, it is possible to construct a
function

by obtaining a caplet price for every other possible strike X. If the price corre-
sponds to an expectation, then we have

Cplmarket(0, T1, T2, X) = P(0, T2 )τET2
0 [max(F(T1; T1, T2) – X, 0)]

(13.57)

where p2 is the probability density function of F2(T1) under the T2-forward mea-
sure. If Black’s formula were consistent with the distribution observed in the mar-
ket, the probability density would be lognormal, coming, for example, from the
dynamics in (13.56). However, since this is not the case, we must recover the den-
sity from some other method. Breeden and Litzenberger (1978) suggest differentiat-
ing (13.57) twice with respect to the strike X, so that

(13.58)

Thus, differentiating the interpolated-prices curve, it is possible to find the density
p2 of the forward rate at time T1 that is compatible with the given interpolated
prices. However, the method of interpolation may interfere with the density recov-
ery since a second derivative of the interpolated curve is involved.22

Alternative dynamics can be used to recover p2. Consider

dF(t; T1, T2) = v(t, F(t; T1, T2))dz(t) (13.59)

under the T2-forward measure where v can either be deterministic—that is, v(t,
F) = σ2(t)F

γ (CEV model) where 0 ≤ γ ≤1 and σ2(t) is itself deterministic—or be a
stochastic function of F(t; T1, T2)—that is, v(t, F) = ξ(t)F where ξ follows a sec-
ond SDE. In the former case, we would be using a local-volatility model whereas
in the latter case we would be using a stochastic-volatility model. In general, v(t,
·) must be flexible enough for the curve X → v(X) to resemble or fit the corre-
sponding market volatility curve or so that the chosen alternative forward rate

∂
∂
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dynamics to equation (13.56) are as compatible as possible with density p2 asso-
ciated with market prices. This can be accomplished by calibrating directly 
the prices implied by the alternative model in (13.59) to the market prices 
Cplmarket(0, T1, T2, Xi) given the observed set of strikes Xi. Equivalently, one can
fit the model implied volatilities to the quoted market implied volatilities
v2

market(T1, Xi) for the observed strikes.
Following Brigo and Mercurio (2001c), we list the steps necessary to generate a

volatility smile to be fitted to the market smile using the alternative dynamics in
(13.59).

Step 1. Set the strike X to a starting value.

Step 2. Compute the model caplet price:

Cpl(X, T1, T2) = τP(0, T2)E
T2
0 [max(F(T1; T1, T2) – X, 0)]

Step 3. Invert Black’s formula for the strike by solving:

in v(X), thus obtaining the (average) model implied volatility v(X).

Step 4. Change X and restart from step 2.

By acting on the coefficient v(t, ·) in the dynamics given in (13.55), the four
steps will eventually lead to model implied volatilities v(X́i) corresponding to the
observed strikes to be made as close as possible to the corresponding market
volatilities

Thus, a smile or skew will be generated. However, the problem becomes one of
finding an implied-volatility surface since we have a caplet volatility surface for
each considered expiry. One approach is to assume (alternative) explicit dynamics
for the forward-rate process that generate smiles and skews. The CEV model of
Cox (1975) and Cox and Ross (1976) discussed in section 7.6, or the displaced
diffusion model of Rubinstein (1983), follow this approach. However, these mod-
els do not provide sufficient flexibility to properly calibrate the entire volatility
surface. A second approach, formulated by Breeden and Litzenberger (1978) and
developed upon by Dupire (1994, 1997) and Derman and Kani (1994, 1998), is
based on the assumption of a continuum of traded strikes. However, the ap-
proach has the problem that it is necessary to smoothly interpolate option prices

v T X Tmarket
i2 1 1( , )/

Cpl X T T P T X F v X T( , , ) ( , ) ( , ( ), ( ) )   Black   1 2 2 1 2 10 0= τ
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between successive strikes in order to differentiate them twice with respect to 
the strike.23

In general, since there are infinitely many curves connecting finitely many
points, the problem of finding a distribution that consistently prices all quoted op-
tions is largely undetermined. One solution is to assume a particular parametric
distribution depending on several time-dependent parameters and then find for-
ward-rate dynamics consistent with the chosen parametric density. This solution is
adopted by Brigo and Mercurio (2000a), who propose the lognormal-mixture ap-
proach, as discussed in section 7.7. The interested reader should see Brigo and Mer-
curio (2001c) for a discussion of its use in pricing caplets and recovering
smile-shaped caplet volatility surfaces implied by option prices.

13.15 STOCHASTIC EXTENSION OF LIBOR MARKET MODEL

Figures 13.2, 13.3, and 13.4, taken from Rebonato and Joshi (2002), show how
caplet smiles differ across markets in the U.S., U.K., and European markets, respec-
tively, in August 2000.
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FIGURE 13.2 U.S. Market
Source: R. Rebonato and M. Joshi, 2002, “A Stochastic-Volatility, Displaced-Diffusion Exten-
sion of the LIBOR Market Model,” see www.rebonato.com/StochasticVolatilityBGMFin.pdf;
R. Rebonato, 2002, Modern Pricing of Interest Rate Derivatives: The LIBOR Market
Model and Beyond, Princeton: Princeton Univ. Press. Used with permission from Ricardo
Rebonato.
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FIGURE 13.3 U.K. Market
Source: R. Rebonato and M. Joshi, 2002, “A Stochastic-Volatility, Displaced-Diffusion Exten-
sion of the LIBOR Market Model,” see www.rebonato.com/StochasticVolatilityBGMFin.pdf;
R. Rebonato, 2002, Modern Pricing of Interest Rate Derivatives: The LIBOR Market Model
and Beyond, Princeton: Princeton Univ. Press. Used with permission from Ricardo Rebonato.
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FIGURE 13.4 European Market
Source: R. Rebonato and M. Joshi, 2002, “A Stochastic-Volatility, Displaced-Diffusion Exten-
sion of the LIBOR Market Model,” see www.rebonato.com/StochasticVolatilityBGMFin.pdf;
R. Rebonato, 2002, Modern Pricing of Interest Rate Derivatives: The LIBOR Market Model
and Beyond, Princeton: Princeton Univ. Press. Used with permission from Ricardo Rebonato.
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As seen in these graphs, the smiles, especially in the U.K. and European mar-
kets, exhibit caplet implied volatility smiles that deviate from the typical near-
symmetric smiles once seen in the markets. Over the past few years, to an
increasing extent, the LIBOR market model has not priced consistently with the
market in plain-vanilla interest rate options. Approximately around 1996, the
implied volatility for caplets exhibited a monotonically decreasing shape and af-
ter the second half of 1998 assumed more of a hockey-stick shape, especially in
the European markets. Consequently, nonflat but deterministic smile surfaces, as
implied by the extended LMM, where CEV and displaced diffusion features 
are incorporated into the original LMM model, were no longer suitable to cap-
ture market dynamics. Thus, there has been a deviation away from lognormal
behavior. Consequently, one can no longer determine implied volatilities by tak-
ing the root mean square of the instantaneous volatility as in equation (13.12)
and plugging them into Black’s formula since it is the wrong number to obtain
the correct price.

Rebonato and Joshi (2002) have proposed a stochastic extension of the LMM
that gives more flexibility to capture observed changes in the market structures of
volatilities. The stochastic extended LMM model is given as

d(Fk(t) + α) = µα
k({F}, t)(Fk(t) + α)dt + σk(t, Tk)(Fk(t) + α)dzk (13.60)

where the volatility structure is a stochastic version of equation (13.10),

σk(t) = ψ(Tk–1 – t; a(t), b(t), c(t), d(t)) = (a(Tk–1 – t) + b(t))e-c(Tk–1–t) + d(t) (13.61)

where

da(t) = va (a – ηa)dt + σadza

db(t) = vb (b – ηb)dt + σbdzb (13.62)

d ln c(t) = vc (ln c – ηc)dt + σcdzc

d ln d(t) = vd (ln d – ηd)dt + σddzd

and the vi’s and ηi’s, i = a, b, c, d, are the reversion speeds and reversion levels, re-
spectively, of a, b, lnc, and lnd. Moreover, it is assumed that the Brownian motions
are uncorrelated between the coefficients (i.e., dzidzj = 0, i, j = a, b, c, d, i ≠ j) and
between the forward rates and the coefficients (i.e., dzidzj = 0, j = a, b, c, d). σa, σb,
σc, and σd are the coefficient volatilities. Figure 13.5, from Rebonato and Joshi
(2002), shows instantaneous volatility curves when the volatility parameters are all
stochastic and given by the values in Table 13.2.

The deterministic curve is given as a reference. The instantaneous volatility
curves when only the parameter d is stochastic are shown in Figure 13.6.
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The instantaneous terminal correlation of the forward rates is assumed to be of
the form ρi,j = eβ(ti–tj) and σk is the percentage volatility of Fk(t) + α. The drift is as-
sumed to be displaced diffusion so that the no-arbitrage percentage drift coeffi-
cients are
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FIGURE 13.5 Instantaneous Volatility Curves
Source: R. Rebonato and M. Joshi, 2002, “A Stochastic-Volatility, Displaced-Diffusion Exten-
sion of the LIBOR Market Model,” see www.rebonato.com/StochasticVolatilityBGMFin.pdf;
R. Rebonato, 2002, Modern Pricing of Interest Rate Derivatives: The LIBOR Market Model
and Beyond, Princeton: Princeton Univ. Press. Used with permission from Ricardo Rebonato.
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TABLE 13.2 Stochastic Values

Parameter Reversion Speed Reversion Level Volatility

a = 0.02 va = 0.1 ηa = 0.02 σa = 0.008
b = 0.1 vb = 0.1 ηb = 0.1 σb = 0.016
c = 1 vc = 0.1 ηc = 0 σc = 0.12
d = 0.14 vd = 0.1 ηd = –1.96611 σd = 0.1

Source: R. Rebonato and M. Joshi, 2002, “A Stochastic-Volatility, Displaced-
Diffusion Extension of the LIBOR Market Model,” see www.rebonato.com
/Stochastic VolatilityBGMFin.pdf; R. Rebonato, 2002, Modern Pricing of In-
terest Rate Derivatives: The LIBOR Market Model and Beyond, Princeton:
Princeton Univ. Press. Used with permission from Ricardo Rebonato.



so that equations (13.60), (13.61), (13.62), and (13.63) and the assumptions of un-
correlated Brownian motions given earlier completely characterize the no-arbitrage
evolution of the spanning forward rates. It is important to note, however, that the
choices for the drifts of the volatility parameters are not no-arbitrage conditions as
any drift will result in a nonarbitragable price provided that the volatility of the pa-
rameter is nonzero.24 The drifts are chosen to provide a realistic evolution of the
term structure of volatilities. The extended LIBOR framework fits the stochastic
volatility coefficients so that evolution of the term structure of volatilities fits the
observed behavior in the market. Rebonato and Joshi show that their proposed
method can exactly price ATM caplets, provides a good fit to the observed volatil-
ity smile surface, and produces a desirable and well-behaved time-homogenous
evolution of the term structure of volatilities.

As an example, Rebonato and Joshi (2002) generate the implied volatility sur-
face of (Great) British Pound (GBP) forward rates over a period of three months in
1996 as shown in Figure 13.7.

They then calibrate their stochastic, jump-diffusion model to fit across strikes
to the market implied volatilities (“market” curve), obtained with the volatility
parameters a, b, c, and d stochastic (“all stochastic” curve), and with just d sto-
chastic (“fit” curve), for different maturities ranging from one to eight years. The
one-year, three-year, five-year, and eight-year maturity calibrated curves are shown
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FIGURE 13.6 Instantaneous Volatility Curves
Source: R. Rebonato and M. Joshi, 2002, “A Stochastic-Volatility, Displaced-Diffusion Extension
of the LIBOR Market Model,” see www.rebonato.com/StochasticVolatilityBGMFin.pdf; R. Re-
bonato, 2002, Modern Pricing of Interest Rate Derivatives: The LIBOR Market Model and
Beyond, Princeton: Princeton Univ. Press. Used with permission from Ricardo Rebonato.
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in Figures 13.8, 13.9, 13.10, and 13.11. As the graphs show, the “all stochastic”
model gives a fit closer to the market implied volatilities curve than the “fit” model
and the convergence is better the longer the maturity.

To calibrate the model to caplets for instance, Rebonato and Joshi modify
equation (13.50) to deal with stochastic instantaneous volatilities as follows.
They note that the minimization in (13.50) does not exactly produce the market
caplet prices so that the instantaneous volatility is computed by imposing equa-
tion (13.17) so that the multiplicative correction factor Φi’s can be determined.
Then they subdivide the interval from today to the expiry of the ith caplet [0, Ti],
i = 0, . . . , N using sufficiently small step sizes ∆sr, r = 1, . . . , N, to obtain accu-
rate sampling of the volatility path. The stochastic volatility coefficients a, b, c,
and d are evolved over each of these steps. For each step, an element of the mar-
ginal variance matrix is computed vr,i:

vr,i = ((a(sr) + b(sr))exp(–c(sr)(Ti – sr)) + d(sr))
2 ∆sr (13.64)

Then a forward-rate specific variance vector vi is formed by summing the elements
vr,i , r = 1, . . . , N:

(13.65)vi =
=
∑vr i
r

N

,
1
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FIGURE 13.7 Historical Implied Volatility of (Great) British Pound
Source: R. Rebonato and M. Joshi, 2002, “A Stochastic-Volatility, Displaced-Diffusion Extension of
the LIBOR Market Model,” see www.rebonato.com/StochasticVolatilityBGMFin.pdf; R. Rebonato,
2002, Modern Pricing of Interest Rate Derivatives: The LIBOR Market Model and Beyond, Princeton:
Princeton Univ. Press. Used with permission from Ricardo Rebonato.
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FIGURE 13.8 One-Year Caplet Volatility Calibration
Source: R. Rebonato and M. Joshi, 2002, “A Stochastic-Volatility, Displaced-Diffusion Exten-
sion of the LIBOR Market Model,” see www.rebonato.com/StochasticVolatilityBGMFin.pdf;
R. Rebonato, 2002, Modern Pricing of Interest Rate Derivatives: The LIBOR Market
Model and Beyond, Princeton: Princeton Univ. Press. Used with permission from Ricardo
Rebonato.
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FIGURE 13.9 Three-Year Caplet Volatility Calibration
Source: R. Rebonato and M. Joshi, 2002, “A Stochastic-Volatility, Displaced-Diffusion
Extension of the LIBOR Market Model,” see www.rebonato.com/StochasticVolatility
BGMFin.pdf; R. Rebonato, 2002, Modern Pricing of Interest Rate Derivatives: The LIBOR
Market Model and Beyond, Princeton: Princeton Univ. Press. Used with permission from Ri-
cardo Rebonato.
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FIGURE 13.10 Five-Year Caplet Volatility Calibration
Source: R. Rebonato and M. Joshi, 2002, “A Stochastic-Volatility, Displaced-Diffusion
Extension of the LIBOR Market Model,” see www.rebonato.com/StochasticVolatility
BGMFin.pdf; R. Rebonato, 2002, Modern Pricing of Interest Rate Derivatives: The LIBOR
Market Model and Beyond, Princeton: Princeton Univ. Press. Used with permission from Ri-
cardo Rebonato.
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FIGURE 13.11 Eight-Year Caplet Volatility Calibration
Source: R. Rebonato and M. Joshi, 2002, “A Stochastic-Volatility, Displaced-Diffusion
Extension of the LIBOR Market Model,” see www.rebonato.com/StochasticVolatility
BGMFin.pdf; R. Rebonato, 2002, Modern Pricing of Interest Rate Derivatives: The LIBOR
Market Model and Beyond, Princeton: Princeton Univ. Press. Used with permission from Ri-
cardo Rebonato.
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Similarly, for a given step, we can generate a forward-rate marginal covariance ma-
trix Cf

l. More formally, the (j, k)th entry of Cf
l is given by

Cf
l (j, k) = ((as(l) + bs(l)(tj – sl))exp(–cs(l)(tj – sl) + ds(l)) ⋅

(as(l) + bs(l)(tk – sl))exp(–cs(l)(tk – sl) + ds(l))ρjk∆sl

After forming a covariance matrix Cf by summing Cf
l for l = 1, . . . , N, we can then

compute the pseudo-square root, Af, of Cf by a Cholesky decomposition; that is, we
determine the lower triangular matrix Af such that Cf = Af (Af)′. Consequently, we
can then evolve the forward rates across the interval [Tr, Tr+1] according to

(13.66)

where zj are i.i.d. standard normal deviates. We can then improve our computa-
tions by use the predictor-corrector approximation in equation (13.45) on a path-
by-path basis. The advantage of the technique is that only the volatility process
needs to be small stepped, and the only loss of accuracy exists in the approximation
to the drifts, which already exists in the nonstochastic volatility case.25

The ith caplet is priced by computing the root-mean squared volatility out to
its expiry and using it in the displaced diffusion Black formula, Black(Ti, vi). Given
the independence between the Brownian increments of the volatility coefficients
and the forward rates, the price, ci of the ith caplet can be computed by

(13.67)

which is an adaptation of a result by Hull and White (1987). However, the density
φ(vi) is not known analytically (given it is not lognormal), though it can be sampled ef-
ficiently using low-discrepancy sequences.26 Finally, Rebonato and Joshi replicate the
minimization procedure over all parameters used in the deterministic volatility case,
but with quoted market caplet prices, ci

market, for all available maturities and strikes:

As with in the deterministic case, the agreement between the market and the model
will not be exact. In order to exactly match the model to market at-the-money

min ( ( ) ( ))
θ

c T c Ti i
i

N

i
market

i
=
∑ −

1
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prices, the result that the Black function is almost exactly linear in volatility for the
at-the-money strike (Wilmott (1998)) is used, which holds in a displaced-diffusion
framework. Let Φ(Ti) be the ratio between the market and the model price (i.e.,
ci

market/ci). Given the linearity property for ATM strikes, we can use an alternative
instantaneous volatility process σ–inst for the ith forward rate given by

(13.68)

Thus, for any given path, the root-mean squared volatility for σ–inst will simply be
equal to Φ(Ti) times the root-mean squared volatility for σinst. Given the approxi-
mate, but highly accurate, linearity, the price implied by the Monte Carlo simula-
tion will also be multiplied by the same scaling factor, thus ensuring correct pricing
for each at-the-money caplet.27 The numerical implementation is quite efficient as
only one simulation is used to price all the caplets. For a given volatility path, all
strikes are calculated, and different stopping times along a path are used for differ-
ent maturities.

European swaptions can also be quickly numerically priced in a similar manner
to caplets using the displaced diffusion LIBOR model. Denote the instantaneous
volatility of the kth swaption when the displacement of the diffusion has a value of
α by σS(k)(t). Let n(k) denote the number of forward rates underlying the kth swap
and let Sk be the kth swap rate. Then using a version of Rebonato’s swap volatility
approximation in equation (13.40),

(13.69)

where zik is given by

which will be zero when k < i.
Pricing the swaption is done as follows. Like calibrating caplets with the

model, we divide the time interval [0,T] into N small steps ∆sr, r = 1, . . . , N, gen-
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erate a single path, evolving the volatility coefficients a, b, c, and d over each step.
We can then generate the forward-rate covariance matrix of elements

Cf
l( j, k) = ((as(l) + bs(l)(tj – sl))exp(–cs(l)(tj – sl) + ds(l)) ⋅

(as(l) + bs(l)(tk – sl))exp(–cs(l)(tk – sl) + ds(l))ρjk∆sl

which can then be used to price the swaption using the Black formula for swap-
tions using the input volatility given by equation (13.68). As a result, the swaption
price is associated with a particular generated volatility path and the price under
the influence of stochastic volatility is simply obtained by Monte Carlo averaging,
as in the case of caplets.28 This approach produces highly accurate swaption
prices. Figures 13.12 and 13.13, from Rebonato and Joshi (2002), show the con-
vergence of 1 × 1 swaption and 10 × 10 swaption as a function of the number of
simulation paths.

Rebonato and Joshi (2002) also provide details for calibrating to co-terminal
swaptions using the displaced-diffusion LIBOR model as well as give numerical re-
sults from using the calibration procedure.

13.15 Stochastic Extension of LIBOR Market Model 687

FIGURE 13.12 1 × 1 Swaption
Source: R. Rebonato and M. Joshi, 2002, “A Stochastic-Volatility, Displaced-Diffusion
Extension of the LIBOR Market Model,” see www.rebonato.com/StochasticVolatility
BGMFin.pdf; R. Rebonato, 2002, Modern Pricing of Interest Rate Derivatives: The LIBOR
Market Model and Beyond, Princeton: Princeton Univ. Press. Used with permission from Ri-
cardo Rebonato.
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13.16 COMPUTING GREEKS IN FORWARD LIBOR MODELS

Price sensitivities are important in any model for pricing derivatives because the
sensitivities determine the trading strategy for hedging the derivative. The sensitivi-
ties are more commonly known as Greeks and in the LIBOR market model can be
computed using Monte Carlo methods or likelihood ratio methods (LRMs). The
difference between the two methods is in the dependence of the parameter under
consideration (i.e., the initial value of a price or interest rate), for sensitivity estima-
tion. In Monte Carlo methods, the dependence of the parameter is made in the un-
derlying stochastic process via sample paths, which lead to estimators that
differentiate the paths of the process, known as pathwise derivatives.29 The LRM
puts the dependence in the probability measure and leads to estimators based on
differentiating probability densities. The following discussion is based on the work
of Glasserman and Zhao (1999).

Assume a given tenor structure that is a finite set of dates 0 = T0 < T1 < . . . < TN

< TN+1, representing maturities spaced three months for six months apart. We also
assume that the day-count fractions δi = Ti+1 – Ti, i = 0, . . . , N, are all equal to a
fixed δ (i.e., δ = 0.25 years). However, in practice, day-count conventions lead to in-
tervals of different sizes. We assume the index of the next tenor date at time t satis-
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FIGURE 13.13 10 × 10 Swaption
Source: R. Rebonato and M. Joshi, 2002, “A Stochastic-Volatility, Displaced-Diffusion
Extension of the LIBOR Market Model,” see www.rebonato.com/StochasticVolatility
BGMFin.pdf; R. Rebonato, 2002, Modern Pricing of Interest Rate Derivatives: The LIBOR
Market Model and Beyond, Princeton: Princeton Univ. Press. Used with permission from Ri-
cardo Rebonato.
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fies Tη(t)–1 <t ≤Tη(t) where η: (0, Tn+1] → [1, . . . , N + 1] is left-continuous. The for-
ward LIBOR rate at time t over the accrual period [Ti, Ti+1], t ≤ Ti is

(13.70)

Consider a caplet with strike K paying δmax((Fn(Tn) – K), 0) at time Tn+1. Using a
change of measure, and thus a change of numeraire, using discount bond prices
Pn(Ti), where at a tenor date Ti the price of any bond Pn, n > i, that has not matured
is given by

we know that the time 0 price is

(13.71)

The expectation can be evaluated using Black’s formula. To compute the delta sen-
sitivity measure ∂Cn(0)/∂Fk(0), we compute the sensitivity of the expectation in
equation (13.71) with respect to Fk(0). Provided derivative and expectation can be
interchanged, we have

(13.72)

From the chain rule we have

With probability 1, we have

where 1 is the indicator function equal to 1 when the event in braces is true and 0
otherwise.
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The delta sensitivity measure can be generalized for estimating any payoff g
that is a Lipschitz continuous function of the forward LIBOR rates and arbitrary
dates ti

(13.73)

By bringing in the derive inside the expectation, we generate a (continuous) path-
wise delta estimator:

where

In practice, we can at best approximate continuous delta estimators with discrete-
time approximations F̂n and with a discretized pathwise delta estimator:

(13.74)

Recall the forward dynamics given in equation (13.1). One can use an Euler scheme
for logFn to approximate (13.1) by

(13.75)

where h is the time increment, Z1, Z2, . . . are independent d-dimensional standard
normal vectors,
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and F̂n(0) = Fn (0). Differentiating equation (13.75) with respect to Fk yields the ex-
act pathwise delta algorithm:

(13.77)

with the initial condition (0) = 1{n = k}. The algorithm is exact in the sense that
for every realization of Z1, . . . , Zi,

(13.78)

The pathwise method makes it possible to estimate deltas from a single simulation
path without actually having to change any initial values in the model. However,
the method requires simulating both equations (13.75) and (13.77), which is com-
putationally expensive. As Glasserman and Zhao state, “the computational effort
required by [equation (13.74)] (for all k = 1, . . . , N and all n = k, . . . , N) is com-
parable to the effort involved in resimulating all {F̂1, . . . , F̂N} an additional N
times, slightly changing the value Fk(0) on the kth of these.”30 Moreover, the recom-
putation of ∂µ̂n /∂F̂j at every time step is one of the most computationally expensive
steps in (13.77). For typical parameter values, µ̂n will be quite small (differing from
0 just enough to keep the forward rate dynamics arbitrage-free), so Glasserman and
Zhao make a first approximation by setting ∂µ̂n /∂F̂j = 0 in the derivative recursion
in (13.77) though continue to use the original µ̂n for the simulation of F̂n in
(13.75).31 Under the zero drift assumption, equation (13.77) reduces to the zero
drift pathwise approximation,

which requires just simulating the forward LIBOR rates themselves. Such an ap-
proximation is rather crude, so Glasserman and Zhao make an approximation that
lies between the exact and zero-drift methods both in terms of computing time and
the accuracy with which it estimates ∂F̂n /∂F̂k. They differentiate F̂n as though µ̂n in
equation (13.77) were
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thus, replacing the F̂j(ih) with their time 0 forward values F̂j(0) in a similar manner
to the approximations of Brace, Gatarek, and Musiela (1997). The sensitivity of the
approximate drift to Fk reduces to

(13.80)

which yields the forward drift approximation:

(13.81)

Note that the derivatives of µ^ 0 can be precomputed and, unlike the exact pathwise
algorithm, do not require simulation of an additional recursion. However, the ap-
proximation method has the significant limitation that it is restricted to payoffs
that are at least continuous.32 Consequently, the method cannot be used to esti-
mate deltas of derivatives with discontinuous payoffs such as a caplet with a digi-
tal payoff,

1{FN(TN) > K}

or a knockout caplet with payoff

max(FN(TN) – K,0)1{  min Fi(Ti) > B}
i=1,...,N

These derivatives do not allow the interchange of derivative and expectation so that
(13.72) does not hold. The problem is that the indicator function has a discontinu-
ity even though the pathwise derivative with respect to some Fk(0) actually exists
with probability 1.33 To overcome this problem, the LRM can be used for estimat-
ing deltas by moving the dependence on Fk(0) from the sample paths to the proba-
bility measure, thus removing the need for smoothness in the payoff. As
Glasserman and Zhao note, this is analogous to two ways of adding a drift to
Brownian motion (i.e., adding the drift µt at time t to each Brownian path), or leav-
ing the paths unchanged and using Girsanov’s theorem to add a drift through a
change of probability measure.34

In the likelihood ratio method, in a Gaussian framework, one estimates sensi-
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tivities with respect to a parameter of the mean of a Gaussian vector, which can be
extended with some modification to LIBOR market models. Suppose one is given
the random n-dimensional vector X, which is multivariate normal with mean vec-
tor µ(θ) and covariance Σ, where θ is a scalar parameter. One then can compute
sensitivities with respect to θ. Suppose Σ has full rank and let the multivariate nor-
mal density of X given by

so that the expectation of any payoff g : �n → � is given by

(13.82)

where the superscript on the expectation denotes the dependence of the measure on
θ. Following Glasserman and Zhao, differentiating and then interchanging the de-
rivative and integral yields

where the dot on Φ indicates differentiation with respect to θ. Some algebra yields,

(13.83)

Substituting this quantity into (13.82) and interpreting the integral there as an ex-
pectation, we get

(13.84)

The expression inside the expectation provides an unbiased estimator of the deriva-
tive on the left side. The derivation requires only smoothness in the dependence of
Φ on θ, but not smoothness in g. The key quantity in (13.83), Φ· /Φ, is the derivative
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with respect to ε of the likelihood ratio Φ(x; �(θ + ε), Σ)/Φ(x; �(θ), Σ), hence the
name “likelihood ratio method.”35

In a simulation, one would typically sample X by letting X = µ(θ) + AZ where
A is an n × n matrix satisfying the Cholesky decomposition, AA′ = Σ, and Z is a
vector of independent standard normal random variables. Substituting this expres-
sion in equation (13.84) yields

(13.85)

where the expectation of the right is respect to the n-dimensional standard normal
distribution and thus is not superscripted in θ.

To apply the LRM to the LIBOR model, we take the logarithms of both sides
of (13.75),

(13.86)

Since the drift µ̂n is a function of the forward rate LIBOR rates themselves, and thus
the Fk(0)’s, we differentiate as though the drift were deterministic (while simulating
the forward LIBOR rates with the original drift) in order to remove the dependence
of the Fk(0)’s out of the sample paths and into the probability measure.36 Under the
forward-drift approximation, equation (13.86) represents the evolution of a Gauss-
ian process so the previous discussion of the LRM applies. However, equation
(13.86) describes the evolution of a vector of N rates driven by (say) d-dimensional
vectors of normal random variables, where d is the number of factors. The covari-
ance matrix of the increments in (13.86), over a single time step, has rank d. If d <
N (and usually d << N), the matrix is singular and the matrix cannot be inverted,
and so we cannot apply equation (13.85). However, by assumption, Σ is nonsingu-
lar, and this does not stop its use. Moreover, to overcome this problem, we consider
the distribution of the increments over multiple time steps, in which case equation
(13.86) becomes,
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where the row vectors σn(jh) have been concatenated into a single vector of length 
i · d and the column vectors Zj have been stacked into a column vector Z of the
same length; that is,

For sufficiently large i*, the N × i*d matrix,

may have rank N, even if d < N.37 Consequently, the covariance matrix Λh(i*)Λh(i*)′
of the logFn(i*h), n = 1, . . . , N is invertible and we can apply the determinstic for-
ward rate approximation in equation (13.76).

Suppose that Λh(i*) has full rank. To apply the LRM method in the form
given in equation (13.84), Glasserman and Zhao make the following correspon-
dences: θ ← F̂ k (0),

X ← (logF̂1(i*h), . . . , log F̂N (i*h))′ (13.87)

(13.88)

for any i*d × i*d matrix Ah(i*)(Ah(i*)′ = Λh(i*)Λh(i*)′, µ̂ 0 is the forward drift ap-
proximation, and
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With these substitutions, we can determine the following LRM delta estimator for
an arbitrary discounted payoff g(F

^
1(t1), . . . , F

^
N(tN)):

g(F
^

1(t1), . . . , F
^

N(tN))(X – µ)′Σ–1µ̇ (13.90)

Precomputing the vector Σ–1µ reduces the computational time per simulated
path to evaluate the quadratic form in (13.90) from O(N2) to linear time O(N).38

Setting i* = N / d so that Λh(i*) is square, we can write

g(F1(t1), . . . , FN(tN))h–1/2Z′Λh(i*)–1µ̇ (13.91)

where Z is the column vector obtained by stacking the i* d-vectors of independent
normals used to simulate the d-factor model for i* steps.

It can also be shown that the LRM gamma estimator of

is given by

g(F
^

1(t1), . . . , F
^

N(tn))([(X – µ)′Σ–1µ̇]2 – µ̇′Σ–1µ̇ + (X – µ)′Σ–1µ̈)

with X, µ, Σ, µ̇ given in (13.87) to (13.89), and µ̈ given by

(13.92)

where

It can also be shown that the exact pathwise algorithm for estimating vega is
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with the initial condition

where ∂σn/∂θ and σn are row vectors, Zi+1 and σ′n are column vectors, and the differ-
entiated drift is given by

(13.94)

with σjk denoting the kth component of σj. The existence of = ∂F̂ j (t)/∂θ in this
expression makes the simulation of equation (13.93) computationally expensive,
requiring “effort comparable to simulating another copy of the LIBOR rates with a
perturbed value of θ.”39

Glasserman and Zhao then use the forward-drift approximation, which does
not have these computational problems. Differentiating µ̂0

n with respect to θ yields

(13.95)

which is independent of the simulated path and can be precomputed.40 Substituting
µ̂ with µ̂0 in equation (13.75), differentiating, and then simplifying the resulting ex-
pression yields the forward drift approximation of vega:

(13.96)
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However, as Glasserman and Zhao note, “evaluating this expression along each
simulated path requires very little effort, making [equation (13.96)] much faster
than the exact pathwise method or simulation of a second copy of the LIBOR
rates.”41 The interested reader can get the derivation details of the gamma and vega
formulas as well as obtain numerical results in Glasserman and Zhao’s paper.

The following code, developed by Glasserman and Zhao, simulates these Greek
sensitivities. The following code computes the delta of a caplet using the forward
drift approximation in equation (13.78).

define N 20
define m 1
#include “forwardDrift.h”
#include “random.h”

/**********************************************************************************
calcDeltaCaplet: computed delta of a caplet
[in]: long M : number of simulations
[out]: none
**********************************************************************************/
void ForwardDrift::calcDeltaCaplet(long M)
{

/* The program for Forward Drift method to compute Delta of Caplet */

double nyear=5, delta=.25, epsilon=.25,B=1; /* time structure */
float F0[N],sigma[N];
FILE *file_ptr;
int i,j,k,run,n,t;

double F[N],res[N][N+1],z[m],B0[N],K[N],Del[N][N],Dell[N][N];
double v,discount,lam,sen;

// Input initial term structure of Libor rates: F0[n];
// and volatility structure sigma[n].

file_ptr=fopen(“F0”,“rt”);
if(file_ptr==NULL)

cout << “File not found” << endl;

for(i=0;i<N;i++)
fscanf(file_ptr,“%f”, &(F0[i]));

fclose(file_ptr);
file_ptr=fopen(“sigma”,“rt”);
if(file_ptr==NULL)

cout << “File not found” << endl;
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for(i=0;i<(N*m);i++)
fscanf(file_ptr,“%f”, &(sigma[i]));

fclose(file_ptr);

/* Recover bond price at time 0, B0[n], from inputted Libor rates */
for ( j=0; j<N; j++)
{

B0[j]=B/(1+delta*F0[j]);
B=B0[j];
K[j]=F0[j];
for(k=0; k < N+1;k++)

res[j][k]=0;
}
B=1/(1+delta*F0[0]);

for (i=1;i<N;i++)
{

for(j=1;j<=i;j++)
{

Dell[i][j]=delta*sigma[i-1]*sigma[j-1]/(1+delta*F0[j])/(1+delta*F0[j]);
}

}

/* Starting simulation */
for (run=1; run <= M; run++)
{

for(j=1; j < N; j++)
{

F[j]=F0[j];
}
discount=1.;
for(t=1;t < N; t++)
{

random.nrandv(m,z);
for ( i=1; i<=m; i++)
{

v=0;
for(n=t; n<N;n++)
{

lam=sigma[(n-t)*m+i-1];
v=v+(delta*F[n]*lam)/(1+delta*F[n]);
F[n]=F[n]*exp((-lam/2+v)*lam*epsilon + lam*sqrt(epsilon)*z[i-1]);

}
}

// computing Delta of Caplet
discount=discount*(1+delta*F[t]);
for(k=1; k < t;k++)
{

Del[t][k]=F[t]*Dell[t][k]*t*m*epsilon;
v=0;
for(n=k;n<t+1;n++)
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v+=delta*Del[n][k]/(1+delta*F[n]);

sen=B*delta*ind(F[t],K[t])/discount*Del[t][k] - B*delta*max(F[t]-
K[t],0)/discount*v;

res[t][k]+=sen;
res[N-t][N+1-k]+=sen*sen;

}
Del[t][t]=F[t]/F0[t]+F[t]*Dell[t][t]*t*m*epsilon;
v=delta*Del[t][t]/(1+delta*F[t]);
sen=B*delta*ind(F[t],K[t])/discount*Del[t][k] - B*delta*max(F[t]-

K[t],0)/discount*v;
res[t][t]+=sen;
res[N-t][N+1-t]+=sen*sen;

}
}

for(i=1; i < N; i++)
{

cout << i << “ ”,
for(j=1;j< 2;j++)
{

sen=res[i][j]/M;
res[N-i][N+1-j]=sqrt(res[N-i][N+1-j]-sen*sen*M)/M;
cout << sen << “ ”;

}
cout << “\n ”;
for(j=1;j< 2;j++)
cout << res[N-i][N+1-j]) << “ ”;
cout << “\n ” << endl;

}
}

The following code computes the delta of a digital option using the likelihood
ratio method:

#include “lrm_dlg.h”
#include <stdio.h>
#include <iostream.h>
#define N 20
#define m 1
#define max(a,b) ((a > b) ? a : b)
#define indicator(a,b) (((a)>(b)) ? (1) : (0) )

/**********************************************************************************
digitalDelta: computes the delta of a digital option
[in]: M : number of simulations
[out]: none
**********************************************************************************/
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void LRM::digitalDelta(long M)
{

double nyear=5, delta=.25, epsilon=.25, B=1; /* time structure */
int ind = 0;
float F0[N],sigma[N*m];
FILE *file_ptr;
int i,j,k,t,run,n,a=0;
double F[N],
res[N+1][N+2],z[m],B0[N],K[N];
double v,discount,sen,lam,zz[N],b[N],Dd[N][N],am1[N][N];

// Input initial term structure of Libor rates: F0[n];
// and volatility structure sigma[n].

try
{

file_ptr=fopen(“F0”,“rt”);
if(file_ptr==NULL)

cout << “File not found” << endl;

for(i=0;i<N;i++)
fscanf(file_ptr,“%f”, &(F0[i])); // read in forward LIBOR rates

fclose(file_ptr);
file_ptr=fopen(“sigma”,“rt”);

if (file_ptr==NULL)
cout << “File not found” << endl;

for(i=0;i<(N*m);i++)
fscanf(file_ptr,“%f”, &(sigma[i])); // read in volatilities

fclose(file_ptr);

// Recover bond price, B0[n], at time 0 from inputted Libor rates;
// and compute the inverse of the matrix sigma.
j=0;
B0[j]=B/(1+delta*F0[j]);
B=B0[j];
K[j]=F0[j];
for( k=0;k<N+1;k++){ res[j][k]=0;}

b[0]=1/sigma[0];

for ( j=1; j<N; j++)
{

B0[j]=B/(1+delta*F0[j]);
B=B0[j];
K[j]=F0[j];

for( k=0;k<N+2;k++)
res[j][k]=0;
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v=0;
for (k=0; k<j; k++)

v+=b[k]*sigma[j-k];

b[k]=-v/sigma[0];
}
B=1/(1+delta*F0[0]);

for (i=1;i<N;i++)
{

for( j=0; j<N;j++)
{

Dd[i][j]=0;
}
Dd[i][i-1]=1/delta/B0[i]/F0[i];
Dd[i][i]=-B0[i-1]/delta/B0[i]/B0[i]/F0[i];

}

for(t=1;t<N;t++)
{

for (i=t;i<N;i++)
{

for( j=t; j<i+1;j++)
{

sen=epsilon*delta*sigma[(i-t)]*sigma[(j-
t)]/(1+delta*F0[j])/(1+delta*F0[j]);

Dd[i][j-1]+=sen/delta/B0[j];
Dd[i][j]+=-sen*B0[j-1]/delta/B0[j]/B0[j];

}
}
for (k=0;k<t+1;k++)
{

am1[t][k]=0;
for(j=1;j<t+1;j++)

am1[t][k]+=b[j-1]*Dd[t+1-j][k];
}

}

// Starting simulation
for (run = 1; run <= M;run++)
{

ind=0;
for( j=1;j<N;j++)

F[j]=F0[j];

discount=1.;
for( t=1;t<N;t++)
{

random.nrandv(m,z);
for ( i=1; i<=m; i++)
{

if (ind<N) { zz[ind]=z[i-1];
ind+=1;

702 LIBOR MARKET MODELS



}
v=0;
for(n=t; n<N;n++)
{

lam=sigma[(n-t)*m+i-1];
v = v+(delta*F[n]*lam)/(1+delta*F[n]);
F[n]=F[n]*exp((-lam/2+v)*lam*epsilon +lam*sqrt(epsilon)*z[i-1]);

}
}
discount=discount*(1+delta*F[t]);
for(i=0;i<t+1;i++)
{

v=0;
for(j=1;j<t+1;j++)
{

v += zz[j-1]*am1[j][i];
}
sen=B*delta*indicator(F[t]-K[t],0)/discount*v/sqrt(epsilon)-0.2*v;
res[t][i]+=sen;
res[N-t][N+1-i]+=sen*sen;

}
}

for (i=1; i < N; i++)
{

cout << “ “ << i;
for(j=0;j < 2;j++)
{

sen=res[i][j]/M;
res[N-i][N+1-j]=sqrt(res[N-i][N+1-j]-sen*sen*M)/M;
cout <<\> “ ” << sen;

}
cout << “\n ”;
for(j=0; j < 2; j++)

cout << “ ” << res[N-i][N+1-j];
cout << “\n\n”;

}
}
catch (const char* s)
{

cout << “Exception : ” << s << endl;
}

}

which uses the Random class:

#ifndef _RANDOM__
#define _RANDOM__
#include <stdlib.h>
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#include <math.h>
#include <time.h>
#define initialize srand(time(0))
#define PI 3.1415926535897932385
#define urand() ((float) rand() / (2147483647 + 1.0)) //define a function of

generating uniform random variables

class Random
{

public:
Random() {};
∼Random() {};
/******************************************************************************
nrand : generates two random numbers
[in]: vec : double array
[out]: void
******************************************************************************/
inline void nrand(double* vec) {

double R, theta;
initialize;
R = sqrt(-2.*log((float) urand()));
theta = 2.*PI*urand();
vec[0] = R*cos(theta);
vec[1] = R*sin(theta);

}
/******************************************************************************
nrandv : using Box Muller method, generates a vector of i.i.d.
Gaussian random variables of given length. Each random variable has mean zero
and variance 1.
[in]:  int i : length of the vector

double* vec : double array
[out]: double : vector of random variables
******************************************************************************/
inline void nrandv(const int i, double* vec) {

int j;
double R, theta;
for ( j = 0 ; j < i-1 ; j += 2)
{

R = sqrt(-2.*log(urand()));
theta = 2.*PI*urand();
vec[j] = R*cos(theta);
vec[j+1] = R*sin(theta);

}
if (j == i-2)

return;
R = sqrt(-2.*log(urand()));
theta = 2.*PI*urand();
vec[i-1] = R*cos(theta);
vec[i-2] = R*sin(theta);

}
};
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The following code computes the gamma approximation of a caplet using the
finite difference method:

/**********************************************************************************
capletGamma : finite different method to compute gamma of caplet.
[in] : long M : number of simulations
[out]: void
**********************************************************************************/
void FiniteDiffMethod::capletGamma(long M)
{

float nyear=5, delta=.25, epsilon=.25,B=1,delb=0.003;

float F0[N],sigma[N];
FILE *file_ptr;
int i,j,run,n,t,k,kd=10,mean;

double F[N],Fu[N],Fu0[N],Fd[N],Fd0[N],res[N][2],z[m],B0[N],K[N],Bu[N],Bd[N];
double v,vu,vd,discount,disu,disd,sig,sen,c,cu,cd,B1,B2,rr[N],cor[N];

try
{

file_ptr=fopen(“L0”,“rt”);
if(file_ptr==NULL)

cout << “File not found” << endl;

for(i=0;i<N;i++)
fscanf(file_ptr,“%f”, &(F0[i]));

fclose(file_ptr);
file_ptr=fopen(“lambda”,“rt”);

if (file_ptr==NULL)
cout << “File not found” << endl;

for(i=0;i<(N*m);i++)
fscanf(file_ptr,“%f”, &(sigma[i]));

fclose(file_ptr);

for ( j=0; j<N; j++)
{

B0[j]=B/(1+delta*F0[j]);
Bu[j]=B0[j];
Bd[j]=B0[j];
B=B0[j];
K[j]=F0[j];
res[j][0]=0;
res[j][1]=0;
Fu0[j]=F0[j];
Fd0[j]=F0[j];
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}
B=1/(1+delta*F0[0]);
Bu[kd-1]=Bu[kd-1]+delb;
Bd[kd-1]=Bd[kd-1]-delb;
B1=Bu[0];
B2=Bd[0];

Fu0[kd-1]=(Bu[kd-2]/Bu[kd-1]-1)/delta;
Fd0[kd-1]=(Bd[kd-2]/Bd[kd-1]-1)/delta;
Fu0[kd]=(Bu[kd-1]/Bu[kd]-1)/delta;
Fd0[kd]=(Bd[kd-1]/Bd[kd]-1)/delta;

for (run=1;run<=M;run++)
{

for( j=1;j<N;j++)
{

F[j]=F0[j];
Fu[j]=Fu0[j];
Fd[j]=Fd0[j];

}
discount=1.;
disu=1;
disd=1;
for( t=1;t<N;t++)
{

nrandv(m,z);
for ( i=1; i<=m; i++)
{

v=0;
vu=0;
vd=0;
for(n=t; n<N;n++)
{

sig= sigma[(n-t)*m+i-1];
v+=(delta*F[n]*sig)/(1+delta*F[n]);
vu+=(delta*Fu[n]*sig)/(1+delta*Fu[n]);
vd+=(delta*Fd[n]*sig)/(1+delta*Fd[n]);
F[n]=F[n]*exp((-sig/2+v)*sig*epsilon + sig*sqrt(epsilon)*z[i-1]);
Fu[n]=Fu[n]*exp((-sig/2+vu)*sig*epsilon + sig*sqrt(epsilon)*z[i-1]);
Fd[n]=Fd[n]*exp((-sig/2+vd)*sig*epsilon + sig*sqrt(epsilon)*z[i-1]);

}
}
discount=discount*(1+delta*F[t]);
disu=disu*(1+delta*Fu[t]);
disd=disd*(1+delta*Fd[t]);
c=B*delta*max(F[t]-K[t],0)/discount;
cu=B1*delta*max(Fu[t]-K[t],0)/disu;
cd=B2*delta*max(Fd[t]-K[t],0)/disd;
sen=(cu+cd-2*c)/(delb*delb);
res[t][0]+=sen;
res[t][1]+=sen*sen;

}
}
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cout << “ Gamma Std Err\n”;
for(i= 1; i < N; i++)
{

cout << i << “ ”;
sen=res[i][0]/M;
res[i][1]=sqrt(res[i][1]-sen*sen*M)/M;
cout << sen << “ ” << res[i][1] << endl;

}
}
catch (const char* s)
{

cout << “Exception : ” << s << endl;
}

}

Finally, the following code implements a vega approximation:

/**********************************************************************************
calcVega: computes the pathwise approximation of vega assuming del_lambda?del_theta

= 1
[in]: M : number of simulations
[out]: none
/*********************************************************************************/
void VegaApprox::calcVega(long M)
{

float nyear=5, delta=.25, epsilon=.25,B=1;
int m=1, N=20;
float F0[20],sigma[20];
FILE *file_ptr;
int i,j,run,n,t;

double F[20],res[20][2],z[1],B0[20],K[20],sumz,dd;
double v,w,discount,lam,sen,Del_dft[20],Del[20];
cout.precision(9);

try
{

file_ptr=fopen(“F0”,“rt”);
if(file_ptr==NULL)

cout << “File not found” << endl;

for(i=0;i<N;i++)
fscanf(file_ptr,“%f”, &(F0[i]));

fclose(file_ptr);
file_ptr=fopen(“sigma”,“rt”);
if (file_ptr==NULL)

cout << “File not found” << endl;
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for(i=0;i<(N*m);i++)
fscanf(file_ptr,“%f”, &(sigma[i]));

fclose(file_ptr);

for ( j=0; j<N; j++)
{

B0[j]=B/(1+delta*F0[j]);
B=B0[j];
K[j]=F0[j];
res[j][0]=0;
res[j][1]=0;
Del_dft[j]=0;
Del[j]=0;

}
B=1/(1+delta*F0[0]);

for( t=1;t<N;t++)
{

for ( i=1; i<=m; i++)
{

w=0;
v=0;
for (n=t; n<N; n++)
{

lam=sigma[(n-t)*m+i-1];
v+=(delta*F0[n]*lam)/(1+delta*F0[n]);
w+=delta*F0[n]/(1+delta*F0[n]);
Del_dft[n]+=(v+w*lam)*epsilon-epsilon*lam;

}
}

}

for (run=1;run<=M;run++)
{

sumz=0;
dd=0;
for( j=1;j<N;j++)
{

F[j]=F0[j];
}
discount=1.;
for(t=1; t<N; t++)
{

random.nrandv(m,z);
for ( i=1; i<=m; i++)
{

v=0;
for(n=t; n<N;n++)
{

lam=sigma[(n-t)*m+i-1];
v+=(delta*F[n]*lam)/(1+delta*F[n]);
F[n]=F[n]*exp((-lam/2+v)*lam*epsilon + lam*sqrt(epsilon)*z[i-1]);
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}
sumz+=z[i-1];

}
discount=discount*(1+delta*F[t]);
Del[t]=F[t]*(Del_dft[t]+sqrt(epsilon)*sumz);
dd+=delta*Del[t]/(1+delta*F[t]);
sen=B*delta*ind(F[t],K[t])/discount*Del[t]- B*delta*max(F[t]-

K[t],0)/discount*dd;
res[t][0]+=sen;
res[t][1]+=sen*sen;

}
}
cout << “ Vega” << endl;
for(i=1;i<N;i++)
{

cout << i << “ ”;
sen=res[i][0]/M;
res[i][1]=sqrt(res[i][1]-sen*sen*M)/M;
cout << sen << “ ” << res[i][1] << endl;

}
}
catch (const char* s)
{

cout << “Exception ” << s << endl;
}

}
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CHAPTER 14
Bermudan and Exotic 

Interest Rate Derivatives

This chapter focuses on the pricing of various exotic interest rate derivatives in-
cluding Bermudan swaptions, constant maturity swaps, trigger swaps, index

amortizing swaps, and quantos. These interest rate derivatives are heavily traded by
many financial institutions and an understanding of them is essential for any quant
working with traders on a fixed income trading desk.

In section 14.1, we discuss the characteristics and method to price Bermudan
swaptions. In section 14.2, we give a practical implementation for pricing Bermu-
dan swaptions. In section 14.3, we discuss Andersen’s (1999) method for pricing
Bermudan swaptions. In section 14.4, we discuss the least-squares Monte Carlo
(LSMC) technique, developed by Longstaff and Schwartz. In section 14.5, we dis-
cuss the stochastic mesh method as a technique for building lattices to value interest
rate derivatives. In section 14.6, we discuss the valuation of range notes and provide
an implementation using the HJM model. In section 14.7, we discuss the valuation
of index amortizing swaps and provide an implementation using the HJM model. In
section 14.8, we discuss the pricing of trigger swaps. In section 14.9, we discuss
pricing quanto (multicurrency) derivatives including quanto caps, floors, and swap-
tions. Finally, in section 14.10, we discuss the Gaussian quadrature procedure for
numerically evaluating integrals for valuation of derivatives.

14.1 BERMUDAN SWAPTIONS

A Bermudan swaption is an option that at each date, in a schedule of exercise dates,
0 = T0 < T1 < T2 < . . . < Tk = T, gives the holder the right, but not the obligation, to
enter into an interest rate swap, provided the right was not exercised at any previ-
ous date in the schedule. Bermudan swaptions are quoted as “X-noncall-Y,” mean-
ing that a swaption, which is noncallable, has Y years until maturity for the holder
to exercise the option and enter into an interest rate swap lasting X years.

Since Bermudan swaptions are useful hedges for callable bonds, they are ac-
tively traded and one of the most liquid fixed income derivatives with built-in early
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exercise features. To price Bermudan options, many banks use one- or two-factor
short rate models such as the BDT (1990), Black and Karasinski (1991), Hull and
White (1990), and Ritchken and Sanksarasubramanian (1995). A characteristic
common to each of these models is that they can be implemented numerically in
low-dimension lattices (such as finite differences or binomial trees), which are well
suited for handling the free boundary problem that arises for options with early ex-
ercise features.1

The ease of implementation that these models provide comes at the expense of
realism. For instance, these models usually have only one driving Brownian mo-
tion, implying perfect correlation of all forward rates. Since the models are based
on the short rate as the underlying quantity, there usually are not enough degrees of
freedom to precisely calibrate these models to quoted market instruments such as
caps and swaptions. Trying to improve the fit by using time-dependent parameters
in these short rate models can lead to a nonstationary and largely unpredictable
term structure evolution.2 LIBOR market models (LMM) provide a more realistic
framework since they can incorporate volatility skews, price liquid instruments in
closed form, and have enough degrees of freedom to allow for a good fit while
maintaining a largely stationary term structure.3 But, due to the high number of
state variables in the LMM, recombining lattices are not computationally feasible
and valuation of all contingent claims is almost always done by Monte Carlo simu-
lation. Although flexible and easy to implement, Monte Carlo has slow conver-
gence and difficulties dealing with early-exercise features of American- and
Bermudan-style options. The first problem is overcome with variance reduction
techniques such as antithetics and control variates. The second problem was long
thought to be a problem that Monte Carlo could not overcome. However, the work
of Longstaff and Schwartz (2001), Tilley (1993), and Broadie and Glasserman
(1997a) has proven this belief to be incorrect although practical implementation
obstacles still exist.

There are several methods for pricing American-style derivatives in the LMM
or closely related HJM (1992) model that have been proposed in the literature. The
first is the use of nonrecombining trees, known as “bushy” trees, which is set up to
approximate the continuous-time dynamics of interest rates (see Heath et al. (1992)
and Brace, Gatarek, and Musiela (1997)). Backward induction algorithms can be
applied and early exercise features easily incorporated. Unfortunately, as the num-
ber of time steps increases, the number of nodes (states) increases exponentially
making its use computationally expensive.4 Bushy trees are far too slow for general
pricing, especially for long-dated derivatives that require more than 15 steps to
achieve convergence (the total number of tree nodes is 1.4 billion in a three-factor

14.1 Bermudan Swaptions 711

1Andersen (1999), 1.
2Ibid. See Carverhill (1995a) and Hull and White (1995) for discussions of this issue.
3Andersen (1999), 1.
4For m stochastic factors and n time steps, the total number of nodes is ((m + 1)n+1 – 1)/m.



model). However, a nonexploding bushy tree construction technique was devel-
oped by Tang and Lange in 1999 to overcome this problem.5

Carr and Yang (1997) developed a method based on the stratification technique
of Barraquand and Martineau (1995). Carr and Yang use buckets or “cells” for the
money market account (numeraire) in the LMM and use Markov chain dynamics
for the transition between buckets. The Markov chain transitional probabilities are
computed via Monte Carlo simulation. During each simulation, each particular
bucket of the money market numeraire is associated with a state on the yield curve.
The curve is found by averaging all simulated yield curves that passed through the
bucket. Once the Markov chain of numeraires and yield curves has been con-
structed, a backward induction algorithm similar to the one applied to lattices al-
lows American and Bermudan-style options to be valued.6 While the algorithm
yields good results, it is subject to several potential problems and biases. First, the
stratification variable, the money market account, is a weak indicator of the state of
the yield curve. As Andersen (1999) points out, some of the biases include (1) a bias
from forcing Markovian dynamics on a non-Markovian variable; (2) a bias from av-
eraging yield curves at each bucket; (3) a bias from basing the exercise decision
solely on the state of the numeraire; and (4) a bias from, in effect, using the same
random paths to determine both the exercise strategy and the option price.7

A third method for pricing Bermudan swaptions was postulated by Clewlow
and Strickland. The method, as with Carr and Yang (1997), is based on reducing
the exercise decision to the state of single variable, which is chosen to be the fixed
side of a swap. Clewlow and Strickland use a two-factor Gaussian HJM, but deter-
mine the early exercise boundary by using the information extracted from a cali-
brated one-factor Gaussian model implemented as a lattice. The calculated
boundary from the one-factor model is then used in a Monte Carlo simulation of
the two-factor model. The approach generates only lower bounds on the price, and
bias potentially exists since information obtained from a one-factor model may be
of limited use in a two-factor model. However, since the bias has a predictable sign,
better control of model risk exists over that of Carr and Yang’s model.8

Andersen (1999) developed a direct search approach for an early exercise
boundary parameterized in intrinsic value and the values of still-alive swaptions.
His approach is done in an extended LMM framework—see Andersen and Andrae-
sen (1998)—using Monte Carlo simulation. In the extended LMM, the forward-
rate dynamics define a system of up to k = 1, . . . , N Markov variables and are
given by

dFk(t) = ϕ(Fk(t))λk(t)µk(t)dt + ϕ(Fk(t))λk(t)dz(t) (14.1)
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where

n(t), which is 1 plus the number of payments as of date t; that is, n(t) = {m : Tm–1 < t
≤ Tm, }, ϕ : �+ → �+, is a one-dimensional function satisfying certain regularity 
conditions, λk(t) is a bounded m-dimensional deterministic function, and z(t) is a
m-dimensional Brownian motion under the measure Q.

For a sufficiently regular choice of ϕ, Andersen and Andraesen (1998) show
how caps and European swaptions can be priced efficiently in a small set of finite
difference grids, enabling fast calibration of the λk(t) functions to market data.9 In
particular, in the constant elasticity of variance (CEV) case, ϕ is set to a power func-
tion, ϕ(x) = xα, α > 0, and prices for caps and European swaptions are analytically
tractable. Moreover, unlike Clewlow and Strickland, the early exercise boundary is
not determined by a one-factor lattice, but rather is found by optimization on the
results of a separate simulation of the full multifactor model. The method can be
decomposed into a recursive series of simple one-dimensional optimization prob-
lems. The method is quite robust and produces accurate results with a very low bias
that is in line with quoted bid-offer spreads. Moreover, both upper and lower
bounds can be established.

Finally, a very promising method, least-squares Monte Carlo, developed by
Longstaff and Schwartz, which is presented in section 14.4, allows very accurate
pricing of Bermudan swaptions.

14.2 IMPLEMENTATION FOR BERMUDAN SWAPTIONS

We will price an ATM Bermudan swaption with the Hull-White model using a ro-
bust implementation.10 First, we need to calibrate the model to the quoted swaption
matrix. We input the following swaption lengths, swaption vol matrix, swap rates,
and term structure:

using namespace QuantLib;
using namespace QuantLib::Instruments;
using namespace QuantLib::ShortRateModels;
using namespace QuantLib::Pricers;
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using CalibrationHelpers::CapHelper;
using CalibrationHelpers::SwaptionHelper;

using DayCounters::ActualActual;
using DayCounters::Actual360;
using DayCounters::Thirty360;
using Indexes::Xibor;
using Indexes::Euribor;

using TermStructures::PiecewiseFlatForward;
using TermStructures::RateHelper;
using TermStructures::DepositRateHelper;
using TermStructures::SwapRateHelper;

int numRows = 5;
int numCols = 10;

try
{

Date todaysDate(15, February, 2002);
Calendar calendar = Calendars::TARGET();

Date settlementDate(19, February, 2003);

// Instruments used to bootstrap the yield curve:
std::vector<Handle<RateHelper> > instruments;

unsigned int swaptionLengths[] = {1, 2, 3, 4, 5, 7, 10, 15, 20, 25, 30};
// length of swaptions

int swapYears[13] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30}; // length of 
// swaps

double swaptionVols[] = {
23.92, 22.80, 19.8, 18.1, 16.0, 14.26, 13.56, 12.79, 12.3, 11.09,
21.85, 21.50, 19.5, 17.2, 14.7, 13.23, 12.59, 12.29, 11.1, 10.30,
19.46, 19.40, 17.9, 15.9, 13.9, 12.69, 12.15, 11.83, 10.8, 10.00,
17.97, 17.80, 16.7, 14.9, 13.4, 12.28, 11.89, 11.48, 10.5, 9.80,
16.29, 16.40, 15.1, 14.0, 12.9, 12.01, 11.46, 11.08, 10.4, 9.77,
14.71, 14.90, 14.3, 13.2, 12.3, 11.49, 11.12, 10.70, 10.1, 9.57,
12.93, 13.30, 12.8, 12.2, 11.6, 10.82, 10.47, 10.21, 9.8, 9.51,
12.70, 12.10, 11.9, 11.2, 10.8, 10.40, 10.20, 10.00, 9.5, 9.00,
12.30, 11.60, 11.6, 10.9, 10.5, 10.30, 10.00, 9.80, 9.3, 8.80,
12.00, 11.40, 11.5, 10.8, 10.3, 10.00, 9.80, 9.60, 9.5, 9.10,
11.50, 11.20, 11.3, 10.6, 10.2, 10.10, 9.70, 9.50, 9.4, 8.60};

//Swap rates
Rate swapRates[13] = {

3.6425, 4.0875, 4.38, 4.5815, 4.74325, 4.87375, 4.9775, 5.07, 5.13, 5.1825,
5.36, 5.45125, 5.43875

};

int swFixedLegFrequency = 1; // one year
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bool swFixedLegIsAdjusted = false;
DayCounter swFixedLegDayCounter = Thirty360(Thirty360::European); // assume 360 

// days per year
int swFloatingLegFrequency = 2; // six months (semiannual payments)

for (i=0; i<13; i++)
{

Handle<MarketElement> swapRate(new SimpleMarketElement(swapRates[i]*0.01));
Handle<RateHelper> swapHelper(new SwapRateHelper(

RelinkableHandle<MarketElement>(swapRate),
swapYears[i], Years, settlementDays,
calendar, ModifiedFollowing,
swFixedLegFrequency,
swFixedLegIsAdjusted, swFixedLegDayCounter,
swFloatingLegFrequency));

instruments.push_back(swapHelper);
}

// bootstrap the yield curve
Handle<PiecewiseFlatForward> myTermStructure(new

PiecewiseFlatForward(todaysDate, settlementDate, instruments,
depositDayCounter));

RelinkableHandle<TermStructure > rhTermStructure;
rhTermStructure.linkTo(myTermStructure);

//Define the ATM swaps
int fixedLegFrequency = 1; // paid once a year
bool fixedLegIsAdjusted = false;
RollingConvention roll = ModifiedFollowing;
DayCounter fixedLegDayCounter = Thirty360(Thirty360::European); // 360 day year
int floatingLegFrequency = 2; // paid every six months (twice a year)
bool payFixedRate = true;
int fixingDays = 2;
Rate dummyFixedRate = 0.03;
Handle<Xibor> indexSixMonths(new Euribor(6, Months, rhTermStructure));

// price an ATM swap
Handle<SimpleSwap> atmSwap(new SimpleSwap(

payFixedRate, settlementDate.plusYears(1), 5, Years,
calendar, roll, 1000.0, fixedLegFrequency, fixedATMRate,
fixedLegIsAdjusted, fixedLegDayCounter, floatingLegFrequency,
indexSixMonths, fixingDays, 0.0, rhTermStructure));

// set swaption maturities
std::vector<Period> swaptionMaturities;
swaptionMaturities.push_back(Period(1, Months));
swaptionMaturities.push_back(Period(3, Months));
swaptionMaturities.push_back(Period(6, Months));
swaptionMaturities.push_back(Period(1, Years));
swaptionMaturities.push_back(Period(2, Years));
swaptionMaturities.push_back(Period(3, Years));
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swaptionMaturities.push_back(Period(4, Years));
swaptionMaturities.push_back(Period(5, Years));
swaptionMaturities.push_back(Period(7, Years));
swaptionMaturities.push_back(Period(10, Years));

// calibrate to set of swaptions
CalibrationSet swaptions;

//List of times that have to be included in the timegrid
std::list<Time> times;
for (i=0; i<numRows; i++)
{

for (unsigned int j=0; j<numCols; j++)
{

unsigned int k = i*10 + j;
Handle<MarketElement> vol(

new SimpleMarketElement(swaptionVols[k]*0.01));
swaptions.push_back(Handle<CalibrationHelper>(

new SwaptionHelper(swaptionMaturities[j],
Period(swaptionLengths[i], Years),
RelinkableHandle<MarketElement>(vol),
indexSixMonths,
rhTermStructure)));

swaptions.back()->addTimes(times);
}

}
const std::vector<Time> termTimes = myTermStructure->times();
for (i=0; i<termTimes.size(); i++)

times.push_back(termTimes[i]);
times.sort();
times.unique();
//Building time-grid
TimeGrid grid(times, 30);

Handle<Model> modelHW(new HullWhite(rhTermStructure));

std::cout << “Calibrating to swaptions” << std::endl;

std::cout << “Hull-White (analytic formulae):” << std::endl;
swaptions.setPricingEngine(

Handle<PricingEngine>(new JamshidianSwaption(modelHW)));

calibrateModel(modelHW, swaptions, 0.25);
std::cout << “calibrated to ”

<< ArrayFormatter::toString(modelHW->params(), 6)
<< std::endl
<< std::endl;

std::cout << “Hull-White (numerical calibration):” << std::endl;
swaptions.setPricingEngine(

Handle<PricingEngine>(new TreeSwaption(modelHW2, grid)));

calibrateModel(modelHW2, swaptions, 0.25);
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std::cout << “calibrated to ”
<< ArrayFormatter::toString(modelHW2->params(), 6)
<< std::endl
<< std::endl;

// Define the Bermudan swaption
std::vector<Date> bermudanDates;
const std::vector<Handle<CashFlow> >& leg = swap->floatingLeg();
for (i=0; i<leg.size(); i++)
{

Handle<CashFlows::Coupon> coupon = leg[i];
bermudanDates.push_back(coupon->accrualStartDate());

}

Instruments::Swaption bermudanSwaption(atmSwap,
BermudanExercise(bermudanDates), rhTermStructure,
Handle<PricingEngine>(new TreeSwaption(modelHW, 100)));

// do the pricing
bermudanSwaption.setPricingEngine(

Handle<PricingEngine>(new TreeSwaption(modelHW, 100)));

std::cout << “HW: ” << bermudanSwaption.NPV() << std::endl;

return 0;

}

catch (std::exception& e)
{

std::cout << e.what() << std::endl;
return 1;

}
catch ( . . . )
{

std::cout << “unknown error” << std::endl;
return 1;

}

The results are:

Calibrating to swaptions
Hull-White (analytic formulae):
1y|23.9 (-0.0)|22.1 (-0.7)|20.3 ( 0.5)|19.2 ( 1.1)|15.9 (-0.1)|15.0 ( 0.7)|13.9
( 0.3)|13.0 ( 0.3)|11.7 (-0.6)|10.7 (-0.4)|
2y|22.0 ( 0.1)|20.3 (-1.2)|18.9 (-0.6)|17.0 (-0.2)|15.1 ( 0.4)|14.1 ( 0.9)|13.2
( 0.6)|12.6 ( 0.3)|11.3 ( 0.2)|10.3 ( 0.0)|
3y|18.5 (-0.9)|18.3 (-1.1)|17.3 (-0.6)|15.9 ( 0.0)|14.3 ( 0.4)|13.5 ( 0.8)|12.7
( 0.5)|12.0 ( 0.1)|10.9 ( 0.1)| 9.9 (-0.1)|
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4y|17.1 (-0.9)|16.5 (-1.3)|15.9 (-0.8)|15.0 ( 0.1)|13.6 ( 0.2)|12.8 ( 0.5)|12.0
( 0.1)|11.5 ( 0.0)|10.5 ( 0.0)| 9.6 (-0.2)|
5y|15.9 (-0.4)|15.5 (-0.9)|14.9 (-0.2)|14.2 ( 0.2)|13.1 ( 0.2)|12.2 ( 0.2)|11.6
( 0.1)|11.1 (-0.0)|10.2 (-0.2)| 9.2 (-0.5)|
calibrated to [ 0.078657 ; 0.008783 ]

Hull-White (numerical calibration):
1y|23.8 (-0.2)|21.5 (-1.3)|20.5 ( 0.7)|19.8 ( 1.7)|16.1 ( 0.1)|15.3 ( 1.0)|14.1
( 0.5)|13.3 ( 0.5)|11.9 (-0.4)|10.7 (-0.3)|
2y|22.1 ( 0.3)|19.9 (-1.6)|19.1 (-0.4)|17.4 ( 0.2)|15.2 ( 0.5)|14.3 ( 1.1)|13.3
( 0.7)|12.8 ( 0.5)|11.4 ( 0.3)|10.3 ( 0.0)|
3y|18.1 (-1.3)|17.7 (-1.7)|17.3 (-0.6)|16.2 ( 0.3)|14.3 ( 0.4)|13.6 ( 0.9)|12.8
( 0.6)|12.1 ( 0.3)|11.0 ( 0.2)| 9.9 (-0.1)|
4y|16.6 (-1.4)|15.7 (-2.1)|15.7 (-1.0)|15.1 ( 0.2)|13.5 ( 0.1)|12.8 ( 0.5)|12.0
( 0.2)|11.5 ( 0.1)|10.5 ( 0.0)| 9.5 (-0.3)|
5y|15.3 (-0.9)|14.6 (-1.8)|14.7 (-0.4)|14.2 ( 0.2)|12.9 (-0.0)|12.2 ( 0.2)|11.6
( 0.1)|11.1 ( 0.0)|10.1 (-0.3)| 9.1 (-0.7)|
calibrated to [ 0.095098 ; 0.009294 ]

Pricing an ATM Bermudan swaption
HW: 54.077

14.3 ANDERSEN’S METHOD

Consider an increasing maturity structure 0 = T0 < T1 < T2 < . . . < TK+1. Also con-
sider an optimal stopping time τ* and an early exercise indicator I(t) that equals 1
if the exercise is optimal at time t and is zero otherwise. Thus we have

τ* = inf[t ∈ {Ts, Ts+1, . . . , Tx} : I(t) = 1]

To value an American or Bermudan swaption, we want to choose τ* that maxi-
mizes its value V, under the risk-neutral measure, at time 0:

where Ψ is the set of all exercise strategies, g(·) is the payoff, and B(·) is the money
market account numeraire. Thus, the value of payer Bermudan swaption Ss,x,e is

(14.2)

where Sk,e(Tk) is given in equation (14.3).
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Denote the price of a Bermudan swaption by Ss,x,e that is characterized by three
dates: the lockout date (the first exercise date), Ts; the last exercise date, Tx; and the
final swap maturity date, Te. We assume that Ts < Tx < Te, and that all three dates
coincide with the exercise schedule dates; that is, s, x, and e are all integers in {0,
. . . , K + 1 }. Moreover, to be consistent with market-traded swaptions, we assume
Tx = Te–1. Early exercise of the Bermudan swaption is restricted to dates in the dis-
crete set {Ts, Ts+1, . . . , Tx}. If exercise takes places at, say, τ* = Ti, then the swaption
holder receives at time Ti,

Ss,x,e(Ti) = Si,e(Ti)

where Si,e(Ti) which is the value of the remaining European swaption at Ti , with an
underlying notional amount of $1, given by

(14.3)

where X is the strike price; Ts > 0, s = 1, . . . , K, is the swaption maturity; and
the flag φ is +1 if the option is a payer swaption (option holder pays fixed and re-
ceives floating) and is –1 if the option is a receiver swaption (option holder re-
ceives fixed and pays floating). We consider only swaps with cash-flow dates
where fixed payments τk–1X are swapped against floating LIBOR (paid in arrears
at time Tk) that coincide with the maturity schedule dates (i.e., Ts+1, Ts+2, . . . , Te)
Thus, Ts and Te are the start and end dates of the underlying swap, respectively,
and we require Ts < Te ≤ Tk+1. There are many variations of Bermudan swaptions
with different features, but all can be priced in the general pricing framework
that follows.

Given the Markov dynamics in (14.1), the decision of whether to exercise a
Bermudan swaption on one of the exercise dates Ti ∈ {Ts, Ts+1, . . . , Tx} in general
depends on all of the state variables Fk(Ti), k = i, i + 1, . . . , e – 1. In order to reduce
the dimensionality of the exercise decision, Andersen considers an indicator func-
tion I(t) that is used to make exercise decisions, of the form

I(Ti) = f (Si,e(Ti ), Si+1,e(Ti ), . . . , Sx,e(Ti); H(Ti)) (14.4)

where f is a Boolean function of only the European values of all still-alive “compo-
nent” swaptions that compose the Bermudan swaption as well as a function of
time, H(t), that maximizes the value of the Bermudan swaption subject to the cho-
sen exercise strategy in equation (14.4).
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Any specification of f will satisfy

(14.5)

which means that a Bermudan swaption will be exercised (if in-the-money) on the
last exercise date if it has not been exercised earlier.

Andersen suggests two specifications of f. The first is

(14.6)

The second, and more restrictive, one is

(14.7)

That is, exercise only if the Bermudan swaption is worth more than some barrier
level and also worth more than the remaining European swaptions contained in the
Bermudan swaption.

Once a specific form for f is chosen, valuation of a Bermudan swaption
amounts to determining the values H(t) for t = Ts, Ts+1, . . . , Tx.

Following Andersen, the steps to find the values of H(t) and subsequently the
value of the Bermudan option are:

Step 1. Decide on a function form for f for the exercise strategy in equation
(14.5). The functional form is allowed to depend on the values of the Euro-
pean swaptions and one time-dependent function H(t).

Step 2. Run an n-path Monte Carlo simulation where for each path and each
time Ts, Ts+1, . . . , Tx, the following is stored in memory:

1. The instrinsic value.

2. The numeraire B.

3. Other data necessary to compute f.

For the strategy in equation (14.7), item 3 would be the maximum value of the
remaining European swaptions.

Step 3. Using equations (14.2) and (14.4) and the numbers stored in items 1
and 2 in step 2, compute the values H(Ts), H(Ts+1), . . . , H(Tx) such that
the value of the Bermudan swaption is maximized. This optimization
problem can be done using backward induction starting with H(Tx–1) and
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the boundary condition given in equation (14.5). In total, x – s simple
one-variable optimization problems need to be solved to determine the ex-
ercise strategy.11

Step 4. Change the random number generator seed to ensure independence to
steps 2 and 3. Using the exercise strategy in step 3, price the option by an
N-path (N >> n) Monte Carlo simulation of equation (14.2).

Andersen suggests that to reduce the number of one-dimension optimizations
done in step 3, the function H(t) be specified as a linear (piecewise) spline with
fewer spline points than exercise dates. This also reduces the number of simulations
needed to get a smooth estimate of the exercise boundary.

14.4 LONGSTAFF AND SCHWARTZ METHOD

Longstaff and Schwartz developed a method to value American- and Bermudan-
style options by computing both the intrinsic value and the expected value of hold-
ing the option, waiting for a later exercise date. As discussed earlier, due to
complex dynamics, the LIBOR market model doesn’t lend itself well to computa-
tional approximations with lattice methods, so Monte Carlo simulation must be
used. However, a key problem is that the holding value is not immediately facili-
tated by simulation, in contrast to lattice methods. The Longstaff and Schwartz
method (LSM) overcomes this problem by approximating the holding value by as-
suming that the holding value, considered as an expectation conditional on contin-
uation, is a simple function of state variables observable at the exercise date in
question. Using standard regression techniques, whereby ex-post realized payoffs
are regressed against the specified ex-ante observed values, these functions can be
estimated from cross-sectional information obtained in the simulation. This type of
regression is referred to as least-squares Monte Carlo (LSMC). Estimation of such
functions for each exercise date will provide an approximated functional expres-
sion for holding values at all exercise dates, which can be used to value American
or Bermudan options directly by Monte Carlo.12

The method is based on the mathematical fact that any twice-differentiable
function, such as the conditional expectation of the holding value, can be approxi-
mated by a countable set of linear independent basis functions. Except for linear in-
dependence, there are no restrictions on the choice of basis functions, except that
the chosen basis functions influence the quality of the approximation, and so those
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optimization algorithms; the Golden Search Method and Brent’s method are given in Press et
al. (1992).
12Pedersen (1999).



that give the best approximation should be used. Often, polynomial functions of
the form f(x) = α0 + α1x + α2x

2 + . . . work well. In fact, Longstaff and Schwartz
suggest using (weighted) Laguerre polynomials:13

(14.8)

Following Longstaff and Schwartz, denote the functional form of the condi-
tional expectation of the holding value at time tk–1 by F(ω; tk–1) where ω is a realized
simulation path. Denote the path of random cash flows generated by the option,
conditional on the option not being exercised at or prior to time t and on the op-
tion holder following the optimal stopping strategy for all t < s ≤ T, by C(ω, s; t, T).
Define ℑt as the filtration at time t ∈ [0, T], generated by the asset process. It is as-
sumed that the American option can be exercised only at K discrete times 0 ≤ t1 ≤ t2
≤ t3 ≤ . . . ≤ tK = T.

Note that at time tk, the cash flow from immediate exercise is known to the op-
tion holder and the value of immediate exercise is simply the cash flow. However,
the cash flows from continuation, thus choosing not exercising at tk, are not known
at tk. However, from no-arbitrage considerations, the value of continuation is given
by the expectation of the remaining discounted cash flows after tk, taken under the
risk-neutral measure Q. The expectation of the value of continuation at tk is

(14.9)

With basis functions, we can write F(ω; tK–1) as a linear function of the (ortho-
normal and independent) elements of the basis:

where the aj’s are constant coefficients that act as weights to the basis functions.
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mials. Numerical tests also show Fourier or trigonometric series and even simple powers of
the state variables yield accurate results.



The objective of the LSM algorithm is to provide a pathwise approximation to
the optimal stopping rule that maximizes the value of the American option.14 The
LSM algorithm uses least-squares to approximate the conditional expectation func-
tion at times tK–1, tK–2, . . . , t1. The algorithm works backward starting at tK–1 since
the (random) cash flows C(ω, s; t, T) generated by the option are defined recur-
sively; C(ω, s; tk, T) can differ from C(ω, s; tk+1, T) since it may be optimal to stop at
time tk+1, thus changing all subsequent cash flows along a realized path ω.15

To implement the LSM, one approximates F(ω; tK–1) using the first M < ∞ basis
functions and denotes the approximation FM(ω; tK–1). After specifying the basis
functions, FM(ω; tK–1) is estimated by regressing the discounted values of C(ω, s;
tK–1, T) onto the basis functions for the paths where the option is in-the-money at
time tK–1.

16 As Longstaff and Schwartz point out, using only in-the-money paths
limits the region over which the conditional expectation must be estimated and
greatly reduces the number of basis functions needed to obtain an accurate ap-
proximation of the conditional expectation function. It can be shown that the esti-
mated value of the regression F̂M(ω; tK–1) converges in mean square and in
probability to FM(ω; tK–1) (see Theorem 3.5 of White (1984)) and is the best linear
unbiased estimator of FM(ω; tK–1) based on a mean-squared metric (see Theorem
1.21 of Amemiya (1985)).

Once the conditional expectation function at time tK–1 is estimated by F̂M(ω;
tK–1), one can determine whether early exercise at tK–1 is optimal for an in-the-
money path ω by comparing the immediate exercise (intrinsic) value to F̂M(ω;
tK–1), and repeating for each in-the-money path. Once the exercise decision is de-
termined at tK–1, the option cash flow paths C(ω, s; tK–2, T) can then be approxi-
mated. The recursion proceeds by moving backward from tK–1 to time tK–2 and
repeating the process back to t1, so that exercise decisions at each exercise time
along each path have been determined. An American option can then be valued
by starting at time 0 and moving forward until the first stopping time occurs, dis-
counting the resulting cash flow from exercise back to time 0, and then averaging
over all paths ω.17

Convergence results of the LSM are provided by Proposition 1 and 2 by
Longstaff and Schwartz (2001). Certainly, the number paths, N; the number of dis-
crete exercise points along a path, K; and the number of basis functions, M; affect
the convergence of the American price. However, it can be shown that as N → ∞
and for a sufficiently large M < ∞, the LSM algorithm converges in probability to
the actual American price, V(x), for an arbitrary ε > 0; that is,
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(14.10)

It is assumed that the holding function value W, evaluated at time t as a func-
tion of the underlying asset St, is given by the following function:

Wt = α0 + α1St + α2S
2
t

where the parameters (α0, α1, α2) are estimated at each time t (except for the final
exercise time) by regressing the holding function Wt on Xt /β(t, t + 1) where β(t, t +
1) is the one-period discount rate at time t. Denote W*t as the observed holding
value, Xt the value of immediate exercise, and Vt the realized option value at time t
when using Wt in the exercise decision. This leads to the following set of recursions
for an American put:

The following is an implementation of the LeastSquaresMC class:

class LeastSquaresMC : public NumericalMethod
{

public:
LeastSquaresMC() { }
LeastSquaresMC(long M, long N, double initPrice, double T, double strike,

double rate, double vol);
∼LSM() { }
// runs LSM algorithm
double computeLSM(int time, Matrix& Paths, Matrix& CashFlow, Matrix& Exercise);
// computes American option value
double computeValue(Matrix& CashFlow);
// simulates Monte Carlo of asset diffusion process
void calcLeastSquaresMC();

private:
long M_; // number of simulations
long N_; // number of time steps
double rate_; // interest rate
double vol_; // volatilty
double mu;_ // drift
double initPrice_; // initial asset price
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double T_; // option maturity
double dt_; // change in time size
double strike_; // strike price
vector<double> prices[500]; // stores asset price at each time step along each 

// path
StatUtility util; // used for calling methods for generating 

// gaussian deviates
};

The following is the implementation.

/**********************************************************************************
LSM: Constructor
[in]: long M : number of simulations

long N : number of time steps
double initPrice : initial asset price
double T : time to maturity
double strike : strike price
double rate : interest rate
double vol : asset volatiliy

**********************************************************************************/
LMC::LMC(long M, long N, double initPrice, double T, double strike, double rate,

double vol)
: M_(M), N_(N), initPrice_(initPrice), T_(T), strike_(strike), rate_(rate),

vol_(vol)
{

dt_ = T/N;
}

/**********************************************************************************
calcLeastSquaresMC : runs a Monte Carlo simulation to generate prices at each time

step along each path
[in]: none
[out]: none
**********************************************************************************/
void LSM::calcLeastSquaresMC()
{

double lnS, S;
double deviate;
double voldt;
int i, j;
long seed = -2; // seed for random number generator
long* idum = &seed;

Matrix Paths(M, 4); // M x 4 matrix ; each row contains the prices for each 
// time step

Matrix Exercise(M, 4); // M x 4 matrix; each row contains early exercise value
Matrix CashFlow(M, 4); // M x 4 matrix; each row contains optimal cash flow at 

// the time step along path
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mu_ = (rate - vol*vol/2)*dt_; // drift
voldt = vol*sqrt(dt_); // diffusion

for (i = 1; i = M_; i++)
{

lnS = log(initPrice_);
prices[i-1].push_back(initPrice_);
for (j = 1; j < N_; j++)
{

// generate deviate
deviate = util.gasdev(idum);
lnS = lnS + mu_ + voldt*deviate;
S = exp(lnS);
prices[i-1].push_back(S);

}
}

// create path matrix
for (i = 1; i <= M_; i++)
{

Paths.Row(i) << prices[i-1][0] << prices[i-1][1] << prices[i-1][2] << prices[i-
1][3];

Exercise.Row(i) << max(strike_ - prices[i-1][1], 0) << max(strike_-prices[i-
1][2], 0) <<
max(strike_ - prices[i-1][3], 0);

}

// compute cash flows at maturity
for (i = 1; i <= M_; i++)

CashFlow(i, N_) = Exercise(i, N_);

// recursion
computeLSM(N_-1, Paths, CashFlow, Exercise);

}

/**********************************************************************************
computeLSM : computes recursive Longstaff and Schwartz Least Squares simulation to

value American simulation
[in]:  int time : time step

Matrix& Paths : matrix of asset prices
Matrix& CashFlow : matrix of cash flows
Matrix& Exercise : matrix of exercise

[out]: double : American price
**********************************************************************************/
double LSM::computeLSM(int time, Matrix& Paths, Matrix& CashFlow, Matrix& Exercise)
{

double val = 0.0; // value of American option
double disc = 1/(1 + rate); // discount factor
double num[100] = {0.0}; // keeps track of in-the-money paths at each time 

// step
vector<double> cashFlow[100]; // cash flows
int j;
int i = 1;
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int q = 1;
int k = 0;

try
{

for (j = 1; j <= M_; j++)
{

val = prices[j-1].back();
prices[j-1].pop_back();
if (strike - val > 0)
{

num[j] = j;
k++; // count dimension for matrices

}
}

ColumnVector Y(k); // vector of payoffs (dependent variables)
ColumnVector B(k); // vector of regression coefficients
ColumnVector C(k); // continuation
Matrix X(k, 3); // 1 X X^2 (columns)

for (j = 1; j <= M_; j++)
{

if (i <= k)
{

if (Exercise(j, time-1) > 0)
{

cashFlow[j].push_back(max(Exercise(j, time), 0)/disc);
Y(i) = cashFlow[j].back();
X.Row(i) << 1 << Paths(j, time-1) << Paths(j, time-1)*Paths(j, time-1);
i++;

}
}

}

// calculate regression coefficients
if (time > 2)
{

B = ((X.t()*X).i())*(X.t()*Y);
C = X*B; // compute continuation (expected holding values)

i = 1;
for (j = 1; j <= M_; j++)
{

if (num[j] != 0)
{

if (Exercise(j, time-1) > C(i))
{

CashFlow(j, time-1) = Exercise(j, time-1);
CashFlow(j, time) = 0.0;
if (time-1 == 2)

CashFlow(j, time+1) = 0.0;
}
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else
{

CashFlow(j, time-1) = 0.0;
}

}
else
{

CashFlow(j, time-1) = 0.0;
}

}
computeLSM(time-1, Paths, CashFlow, Exercise);

}
return computeValue(CashFlow);

}
catch (const char* s)
{

cout << s << endl;
throw s;

}
return 0.0;

}

/**********************************************************************************
computeValue : computes the value of the American option based on the option

exercise cash flows
[in]:  Matrix& CashFlow : matrix of option exercise cash flows
[out]: double American : price
**********************************************************************************/
double LSM::computeValue (Matrix& CashFlow)
{

int i, j;
double discValue = 0.0; // discounted value

for (i = 1; i <= M_; i++)
{

for (j = 2; j <= N_; j++)
{

if (CashFlow(i, j) > 0)
discValue = discValue + CashFlow(i, j)/(pow(1+rate, j-1));

}
}
return discValue/M_;

}

As an example, suppose we want to price an American put option on a nondiv-
idend stock with M = 8, T = 4, N = 4, r = 0.06, K = 53, S0 = 50, β(t, t + 1) = 1.062,
and σ = 0.25. Running the least-squares Monte Carlo, we generate the sample
paths shown in Table 14.1. The regression pertaining to the exercise decision at
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time t = 2 is shown in Table 14.2. Note that at each time step only those paths in
the regression that are in-the-money are included; that is, path 8 is excluded.

After discounting the cash flows (Table 14.3), the American price is $3.39. For
a more detailed example with all the intermediate regressions calculations, see
Longstaff and Schwartz (2001). Longstaff and Schwartz also show that the LSM
method can be applied to many types of exotic path-dependent derivatives includ-
ing an American-Bermudan-Asian call option on the average of the price of a stock
over some time horizon, where the call option can be exercised after some initial
lockout period. As basis functions in the regression, they use a constant, the first
two Laguerre polynomials evaluated at both the stock and average stock price, as
well as the cross-product of these Laguerre polynomials up to third-order terms.
Their results are compared with those using a finite-difference approximation using
an alternating direction implicit (ADI) algorithm. The results of the LSM and finite-
difference prices are quite similar and the differences in early exercise values are
quite small, within bid-ask spread cost bounds.
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TABLE 14.1 Simulations

Path Time 0 Time 1 Time 2 Time 3

1 50.00 48.44 46.01 47.36
2 50.00 50.06 48.91 49.53
3 50.00 49.23 50.59 48.00
4 50.00 46.96 47.42 48.12
5 50.00 50.07 50.80 50.64
6 50.00 49.95 52.74 52.85
7 50.00 50.09 49.28 47.99
8 50.00 50.93 54.23 54.67

TABLE 14.2 Estimated Regression at t = 2

Path V3 S2 W*2 X2 W2 V2

1 5.644 46.01 5.644 * 0.943 = 5.32 6.99 5.59
2 3.470 48.91 3.470 * 0.943 = 3.27 4.09 4.96 3.272
3 4.995 50.59 4.995 * 0.943 = 4.71 2.41 3.51 4.710
4 4.879 47.42 4.879 * 0.943 = 4.602 5.58 5.58
5 2.357 50.80 2.357 * 0.943 = 2.22 2.20 3.27 2.222
6 0.154 52.74 0.154 * 0.943 = 0.145 0.15 0.49 0.145
7 5.012 49.28 5.012 * 0.943 = 4.73 3.72 4.71 4.726
8 0.000

W2 = –302.072 + 13.182S2 –0.142S2
2 .



14.5 STOCHASTIC MESH METHOD

Broadie and Glasserman (1997b) developed an approach that combines the advan-
tages of the lattice approach with the advantages of Monte Carlo simulation into a
hybrid approach called the stochastic mesh. The method supports non-Markov
processes and the valuation of path-dependent Bermudan options. Unlike nonre-
combining trees, the stochastic mesh does not grow exponentially in size. Further-
more, a feature of many lattice methods is that the terminal nodes contribute very
little to the computation of the present value of the contingent claim. To improve
this, Broadie and Glasserman construct a hybrid lattice, or stochastic mesh, by let-
ting a node at any time level have branches to all the nodes in the next branch level.
Thus, a node at time i + 1 contributes to the valuation of all nodes at time i. The
mesh width is defined as the number of nodes per time level, which remains con-
stant over time levels. The branching probabilities are derived using the conditional
marginal densities implied by the process definition.

Valuation of contingent claims using a stochastic mesh is done the same way
for lattices. Consider a stochastic process with a state variable Xt with some dimen-
sion | I |. The initial state is denoted X0 and node j at time t in the mesh is denoted
by Xt, j. To generate the mesh, one generates as many sample paths of the state vari-
ables as the mesh width. For purposes of valuation, branching weights are required
for all branches. To compute the branch weight w(x, y, t) corresponding to the
branch from state x at time t to state y at time t + 1, the marginal transition density
of reaching state y at time t + 1 given state x at time t must be computed.18 This is
the central computational problem of the mesh method. Broadie and Glasserman
(1997b) show that the way the weights are computed affects the convergence of the
prices computed using the mesh.
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TABLE 14.3 Final Cash Flows

Path Time 1 Time 2 Time 3

1 0.00 4.48 0.00
2 0.00 0.00 3.04
3 4.49 0.00 0.00
4 0.00 0.00 0.00
5 4.96 0.00 0.00
6 0.00 0.00 1.61
7 0.00 6.82 0.00
8 0.00 4.75 0.00

18Pedersen (1999), 12.



Following Pedersen (1999), denote the conditional marginal density function at
time t + 1 given state u at time t by ϕ(u, t, ·). The weights w(x, y, t) are computed as

(14.11)

where ϕmesh(y, u) is the “mesh density” of being in state u at time t + 1 and m is the
mesh width. With the following choice of mesh density, the convergence is con-
trolled:

A sample mesh given by Pedersen (1999) is shown in Figure 14.1.19

Broadie and Glasserman (1997b) show that the price of a contingent claim us-
ing a mesh will be an upper bound to the true price.20 A lower bound is found by
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19Ibid., 13.
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FIGURE 14.1 A Sample Mesh (Hard Lines). The mesh width b is 3 and the number of time
discretization points n is 4. The dotted lines show a sample path connected at each time step
to the mesh nodes at the next time level.
Source: Reproduced from M. Pedersen, July 1999, “Bermudan Swaptions in the LIBOR
Market Model,” preprint, see www.math.ku.dk/∼brock/caroe2.pdf.
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generating additional sample paths. Both bounds are shown to converge to the true
price. For each generated sample path, the derivative is valued at each time step and
linked to the corresponding time step in the mesh.

The estimates obtained from the mesh are high-biased (asymptotically unbi-
ased) estimators. A low-biased (asymptotically unbiased) estimator can be obtained
by using a single path using the mesh only for the estimating of the holding value.
The low- and high-biased estimators are computed as follows. The high-biased esti-
mator Q̂ = Q̂(t, Xt, j ) is given by the recursion:

where Xt, i denotes the state vector at node i at time t, π(t, x) is the payoff function
from exercise in state x at time t, and w*(t, x, ·) is the normalized version of 
w(t, x, ·), namely,

The low-biased estimator q̂ is given by

q̂ = π(τ̂S, Sτ̂s
)

with τ̂S defined in terms of the entire path and the high-biased estimator:

τ̂S = arg min
t

{π(t, St) ≥ Q̂(t, St)}

Broadie and Glasserman (1997b) applied the stochastic mesh algorithm to a
multivariate version of the Black-Scholes with five elements (| I | = 5) and around
four time steps. When using stochastic meshes with the LIBOR market model, the
state vector of forward rates becomes much larger and so computation time (and
memory required) may become too high for the method to be practical. To com-
pute branching weights, the conditional marginal densities need to be computed by
numerical integration. However, approximations along the lines of the derivation
of swaption price approximations can be used; (see Brace, Gatarek, and Musiela
(1997)).21 Moreover, transitional densities cannot be computed in the LMM model
as the state vector of period forward rates has infinite dimension while the vector of
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Brownian shocks has finite dimension. Despite the fact that the stochastic mesh
method does not lend itself well to the LMM, Pedersen shows how the conditional
marginal densities can be computed for a set of forward rates in a discretized model
and shows how the stochastic mesh technique applied to the LMM model can be
used to price Bermudan swaptions. The interested reader should see Pedersen
(1999) for details.

14.6 VALUATION OF RANGE NOTES

Consider the simple interest rate, R(t, T) with maturity T – t. We can define this
rate in terms of a zero-coupon bond P(t, T) as

(14.12)

so that

(14.13)

We will make use of these relations to price exotic interest rates in a discrete-state
HJM model. Consider a range note. A range note is a financial security with a prin-
cipal of N dollars and a maturity date T that pays out spot rate of interest r(t)–1
times N—that is, (r(t) – 1)N—on any date t over the life of the contract when the
simple interest rate with maturity T*, R(t, t + T*), lies within lower and upper
bounds, kl and ku , respectively, of the range (kl , ku). The cash flow is paid at time t
+ 1. Denote the index function

(14.14)

We can write the cash flows to a range note using this index function from time t +
1 to maturity as
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Let V(t) denote the value of the range note at time t. Then using risk-neutral valua-
tion, we get

(14.16)

A range note can be used as a partial hedge against a floating rate note with a cap
and floor attached. If the floating rate note has principal N and pays based on the
spot rate, then payments are (r(t) –1)N. If the cap has a rate ku and the floor has a
rate kl then these payments occur only in the range (kl, ku). These payments are
given by equation (14.16). Outside this range, either kuN or kdN is received, but
they are not included in (14.16).

Consider a range note with a maturity of T = 3 years with a principal of N =
100. Let the lower bound be kl = 0.016 and the upper bound be ku = 0.023 on a
simple interest rate with maturity T* = 2. To value this range note, we first compute
the evolution of the simple interest rate R(t, t + 2) = [1/(P(t, t, + 2) –1]/2. We only
need to find the evolution up to time 2 because the time 3 payment is based on the
simple interest rate at time 2. We will use a single-factor HJM tree for valuation.
We assume that the volatility structure is of the exponential Vasicek form, ηe–λ(T–t),
with η = 0.0076 and λ = 0.0154.

In order to value the range note, we construct a synthetic portfolio between the
money market account and a four-year zero-coupon bond as shown in Figure 14.2.

Using the risk-neutral valuation procedure, we can compute the value of the
range note at time t using the cash flows:

(14.17)

and the number of shares held in the four-year zero-coupon bond, n4(t; st) is

(14.18)

and the number of shares held in the money market account, n0(t; st), is
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For example, at time 3, sample calculations for cash flows are

cashflow(2; uu) = 100[r(2; u) – 1]1{0.019<R(1;4;u)<0.022} = 0

since R(1, 4; u) = 0.18699, which is below the lower bound kl = 0.019. However,

cashflow(2; dd) = 100[r(2; d) – 1]1{0.019<R(1;4;d)<0.022} = 2.097

since R(1, 4; u) = 0.02167 is below the upper bound ku = 0.022. Figure 14.3
shows the constructed HJM tree to value the range note. At each node is the
range note value, the cash flow, and the number of shares held in the money
market and four-year zero-coupon bond. Note that if we used a three-year bond
to hedge the portfolio instead of a four-year bond, then we could not hedge our
position at time 2 since the number of shares in the money market account and
in the three-year zero-coupon go to infinity; the denominator in equation
(14.18), using three-year bonds, becomes 0 since the bonds in all states at time 3
are worth 1.
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The following is the code:

#include “HJMTree.h”
#include <math.h>
#include <time.h>
#define max(a, b) ((a > b) ? a : b)
#define indicator(r, kl, ku) (((kl < r) ? r : ku) < ku ? 1 : 0)
#define indicator1(r, kl) ((r < kl) ? kl : 0)
#define indicator2(r, ku) ((r > ku) ? ku : 0)

/**********************************************************************************
calcRangeNote : computes the value of a range note
[in] : none
[out]: double value of range note
**********************************************************************************/
double HJMTree::calcRangeNote()
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{
int j = pow(2, N-2); // number of nodes
double rate = 0.0; // simple short rate
double bondDiff = 0.0; // difference between zero coupon bonds
double moneyAccount = 0.0; // money market account

for (int i = pow(2, N-1); i >= 1; i--)
{

C[N-1][i].simpleRate = C[N-2][j].simpleRate;
C[N-1][i].value = 0;
C[N-1][i].cashFlow = 100*((C[N-1][i].shortRate-1)*(indicator(C[N-

1][i].simpleRate, 0.019, 0.022)));
if (i % 2 != 0)

j--;
}

for (i = N-2; i >= 0; i--)
{

for (j = pow(2, i); j >= 1; j--)
{

C[i][j].cashFlow = 100*((C[i][j].shortRate-1)*(indicator(C[i][j].simpleRate,
0.019, 0.022)));

rate = C[i][j].shortRate;

C[i][j].value = 0.5*(1/rate)*((C[i+1][2*j].value + C[i+1][2*j].cashFlow)
+ (C[i+1][2*j-1].value + C[i+1][2*j-1].cashFlow));

bondDiff = C[i+1][2*j].zeroCouponBond - C[i+1][2*j-1].zeroCouponBond;

C[i][j].numZeroCoupon = (1/bondDiff)*((C[i+1][2*j].value +
C[i+1][2*j].cashFlow)
- (C[i+1][2*j-1].value + C[i+1][2*j-1].cashFlow));

moneyAccount = C[i][j].moneyMarketAccount;

C[i][j].numMoneyMarket =(1/moneyAccount)*(C[i][j].value
- C[i][j].numZeroCoupon*(C[i][j].zeroCouponBond));

}
}
return C[0][1].value;

}

/**********************************************************************************
addNodeHJMRangeNote : adds nodes to an HJM tree to compute the value of a

range note
[in] : int key : node key
[in] : int num : node number added
[in] : int rateMaturity : maturity of interest rate (number of years)
[out]: void : value of range note
**********************************************************************************/
void HJMTree::addNodeHJMRangeNote(int key, int num, int rateMaturity)
{

TREE_PTR new_ptr = NULL; // pointer to BSTREE_NODE struct
TREE_PTR node_ptr = NULL; // node pointer
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TREE_PTR curr_ptr = NULL; // pointer to current node
double r = 0.0; // forward rate at node
double sum, sum1 = 0.0; // sum of volatilities
double volsum = 0.0; // sum*sqrt(dt)*dt
double volsum1 = 0.0; // sum1*sqrt(dt)*dt
double coshval = 0.0; // 1/cosh(volsum);
double expvalPlus = 0.0; // exp(volsum);
double expvalMinus = 0.0; // exp(-volsum)
double expvalPlus1 = 0.0; // exp(vol*exp(-lambda*cnt*dt)*sqrt(dt)*dt)
double expvalMinus1 = 0.0; // exp(-vol*exp(-lambda*cnt*dt)*sqrt(dt)*dt);
double coshRatio = 0.0; // cosh(volsum)/cosh(volsum1)
int i;

new_ptr = new BSTREE_NODE;
new_ptr->up_childptr = NULL;
new_ptr->down_childptr = NULL;

// get tree height
cnt = getTreeHeight(get_root(), num);
// Add key in the new node’s data field
new_ptr->nodeKey = key;

// initialization for tree
C[0][2].moneyMarketAccount = 1;
C[0][1].moneyMarketAccount = 1;
C[0][0].moneyMarketAccount = 1;
C[1][2].moneyMarketAccount = initRate;
// If the BST is empty, insert the new rate in root
if (root_ptr == NULL)
{

C[cnt][nodeCnt].shortRate = initRate;
C[cnt][nodeCnt].moneyMarketAccount = 1;
for (i = 0; i <= N; i++)
{

new_ptr->bondPrice[i] = 1/(pow(initRate, i));
new_ptr->forwardRate[i] = initRate;
new_ptr->moneyMarketAccount = initRate;
new_ptr->shortRate = initRate;
if (i == rateMaturity)
{

new_ptr->simpleRate = 0.5*(1/new_ptr->bondPrice[i] - 1);
}
if (i == N)

C[cnt][nodeCnt].zeroCouponBond = new_ptr->bondPrice[N];
}
root_ptr = new_ptr;
nodeCnt++;

}
else
{

TREE_PTR tree_ptr = root_ptr;
while (tree_ptr != NULL)
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{
node_ptr = tree_ptr;
if (key == tree_ptr->nodeKey)

return;
else if (key < tree_ptr->nodeKey)

tree_ptr = tree_ptr->up_childptr; // search its up side for insertion 
// location

else
tree_ptr = tree_ptr->down_childptr; // search its down side for insertion 

// location
}

// Now ‘node_ptr’ is the pointer to the parent of the new node. Now determine 
// where it will be inserted.

// compute volatilities
// sum is used for computing both bond prices and forward rates
sum = 0.0;
for (int k = cnt; k <= N; k++)
{

sum = sum + vol*exp(-lambda*(k*dt));
}
// used for coshRatio for forward rate computation
sum1 = 0.0;
for (k = cnt; k < N; k++)
{

sum1 = sum1 + vol*exp(-lambda*(k*dt));
}
volsum = sum*sqrt(dt)*dt;
volsum1 = sum1*sqrt(dt)*dt;
coshRatio = cosh(volsum)/cosh(volsum1);
coshval = 1/cosh(volsum);
expvalPlus = exp(volsum);
expvalMinus = exp(-volsum);
expvalPlus1 = exp(vol*exp(-lambda*cnt*dt)*sqrt(dt)*dt);
expvalMinus1 = exp(-vol*exp(-lambda*cnt*dt)*sqrt(dt)*dt);

if (key < node_ptr->nodeKey)
{

node_ptr->up_childptr = new_ptr;
curr_ptr = node_ptr->up_childptr;

for (i = cnt; i <= N; i++)
{

curr_ptr->forwardRate[i] = node_ptr->forwardRate[i]*coshRatio*expval
Minus1;

if (i == cnt)
{

curr_ptr->bondPrice[cnt] = 1; // bond price at maturity
if (i == rateMaturity)
{

curr_ptr->simpleRate = 0.5*(1/curr_ptr->bondPrice[i + cnt] - 1);
}
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}
else
{

// get short rate r(t) from forward rate f(t, t)
r = curr_ptr->forwardRate[cnt];
curr_ptr->shortRate = r;

// calculate bondprices
curr_ptr->bondPrice[i] = (node_ptr->bondPrice[i])*(r*coshval*expval

Plus);

C[cnt][nodeCnt].shortRate = r;
C[cnt][nodeCnt].moneyMarketAccount =

(C[cnt-1][nodeCnt/2].moneyMarketAccount)*(node_ptr->shortRate);

if (i == cnt + 2)
{

curr_ptr->simpleRate = 0.5*(1/curr_ptr->bondPrice[cnt + 2] - 1);
node_ptr->simpleRate = curr_ptr->simpleRate;
C[cnt][nodeCnt].simpleRate = node_ptr->simpleRate;

}

if (i == N)
C[cnt][nodeCnt].zeroCouponBond = new_ptr->bondPrice[N];

}
}

}
else
{

node_ptr->down_childptr = new_ptr;
curr_ptr = node_ptr->down_childptr;

for (i = cnt; i <= N; i++)
{

curr_ptr->forwardRate[i] = (node_ptr->forwardRate[i]*coshRatio*expval
Plus1);

if (i == cnt)
{

curr_ptr->bondPrice[cnt] = 1;
}
else
{

// get short rate r(t) from forward rate f(t, t)
r = curr_ptr->forwardRate[cnt];
curr_ptr->shortRate = r;

// compute bond price
curr_ptr->bondPrice[i] = (node_ptr->bondPrice[i]*r*coshval*expvalMinus);

C[cnt][nodeCnt].shortRate = r;

C[cnt][nodeCnt].moneyMarketAccount =
(C[cnt-1][nodeCnt-nodeCnt2].moneyMarketAccount)*(node_ptr->shortRate);
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if (i == cnt + 2)
{

curr_ptr->simpleRate = 0.5*(1/curr_ptr->bondPrice[cnt+2] - 1);
node_ptr->simpleRate = curr_ptr->simpleRate;
C[cnt][nodeCnt].simpleRate = curr_ptr->simpleRate;

}
if (i == N)

C[cnt][nodeCnt].zeroCouponBond = new_ptr->bondPrice[N];
}

}
}
if (nodeCnt != 1)
{

nodeCnt--;
if (nodeCnt % 2 != 0)
nodeCnt2--;

}
else
{

nodeCnt = pow(2, cnt+1);
nodeCnt2 = pow(2, cnt);

}
}

}

We call the addNodeHJMRangeNote method in the buildHJMTree method:

/**********************************************************************************
buildHJMTree : builds an HJM Tree to value a range note
[in] : none
[out]: none
**********************************************************************************/
void HJMTree::buildHJMTree()
{

int M = pow(2, N) - 1; // total number of nodes
int* key = new int[M]; // array of keys
int j = pow(2, N-1); // compute number of nodes at last time step

for (int i = 0; i < j; i++)
key[(int)pow(2, N-1)+i] = 2*i + 1;

for (i = M-j; i >= 1; i--)
key[i] = 0.5*(key[(int)2*i] + key[(int)2*i+1]);

for (i = 0; i < M; i++)
addNodeHJMRangeNote(key[i+1], i+1, 2);

}
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and can value a range note in the main method as follows:

void main()
{

HJMTree hm(1.02, 1, 4, 0.0076, 0.0154, 0.017);
hm.generateKeys1();
std::cout << “Buiding HJM Tree” << endl;
hm.buildHJMTree();
std::cout << “Valuation of Range Note\n” << endl;
hm.calcRangeNote();

}

14.7 VALUATION OF INDEX-AMORTIZING SWAPS

Index-amortizing swaps are interest rate swaps where the principal declines (amor-
tizes) when interest rates decline. Unlike plain-vanilla swaps, these exotic swaps are
path-dependent and thus difficult to value since their cash flows depend on the en-
tire past (path) movements of the spot interest rate. However, they serve as useful
(partial) hedges against prepayment risk (and thus declining principal) in mortgage-
backed securities.

Formally, we define an index-amortizing swap as, say, a payer swap—receive
fixed rate K, pay floating r(t)—with an initial principal N0 that matures at time T in
which the principal declines by an amortizing schedule based on the spot rate of in-
terest. In general, the amortizing schedule does not apply until after a prespecified
lockout T* > 0 period has elapsed. For t ≤ T*, the principal is fixed at N0. For t >
T*, the principal is reduced according to

N(t) = N(t – 1)(1 – a(t)) for t > T* (14.20)

where N(T*) = N0 and a(t) is the amortizing amount that occurs at time t. Equation
(14.20) states that the principal remaining at time t, N(t), equals the principal at
time t – 1, N(t – 1), reduced by the time t amortizing schedule amount a(t).

Following Jarrow (2002), a typical amortizing schedule might look like this:
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where k4 > k3 > k2 > k1 > k0 and 0 < b4 < b3 < b2 < b1 < b0 < 1 are positive constants
determined at the initiation of the swap. The amortizing schedule depends on the
spot rate at time t. If the spot rate is larger than k4, no reduction in principal occurs
so that a(t) = 0. If the spot rate falls between k3 and k4, a reduction of a(t) = b4 per-
cent of the principal occurs; if the spot rate falls between k2 and k3, a reduction of
a(t) = b3 percent of the principal occurs, and so on down the schedule. The schedule
can be modified to handle an arbitrary number of amortization levels.

The time t cash flow to the payer index-amortizing swap can be written as

Cash flow(t) = (K – r(t – 1))N(t – 1) (14.22)

so that the cash flow at time t is determined at time t – 1. The cash flow can be
viewed as the sum of receiving the fixed amount (K – 1)N(t – 1) and paying floating
(r(t – 1) – 1)N(t – 1), while the principal is determined by (14.20) and (14.21).

Let IA(t) denote the time t value of the index-amortizing swap. Using risk-neutral
valuation, we have

(14.23)

Expression (14.23) represents the present value of the cash flows to the index-
amortizing swap from time t + 1 until its maturity T. It differs from the valuation of
a plain-vanilla swap by the replacement of a constant principal N with the amortiz-
ing principal N(j – 1). Moreover, the principal N(j – 1) and the spot rate r(j – 1) are
correlated, and in general the principal depends on the history of the interest rate
process before time j – 1. This implies that the principal at time T – 1 is correlated
with the spot interest rate occurring earlier at time t. These factors make the valua-
tion complex.

As an example, consider a simple index-amortizing payer swap with the swap
holder receiving fixed at rate K = 1.021 and paying the floating LIBOR rate. Let the
swap’s maturity be T = 3 years, let the initial principal be N0, and let the lockout
period be T* = 1 year. Let the amortizing schedule be given by

Unlike a plain-vanilla swap, which has a zero value at time 0, an index-amortizing
swap can have negative value at time 0 since the principal decreases on the index-
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amortizing swap exactly when the payment stream is potentially the largest (i.e.,
when fixed minus floating is the largest).22 We create a synthetic portfolio to repli-
cate the index-amortizing swap by using the money market account and the three-
year zero-coupon bond.

Using risk-neutral valuation, the value at time t is calculated by

(14.24)

The position held in the three-year period bond is given by

(14.25)

and the position held in the money market account is given by

(14.26)

Figure 14.4 shows the index-amortizing swap cash flows at each node in the HJM
tree and Figure 14.5 shows the index-amortizing values at each node. At each node,
the index-amortizing swap value, the cash flow, and the positions held in the money
market account and three-year bond are listed, respectively. The value today of the
index-amortizing swap is –0.0288.

The following is the implementation:

/**********************************************************************************
addNodeHJMIndexAmortizingSwap : computes the value of an index
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int num : current node number
int lockOutPeriod : lock out time
double fixedRate : fixed interest rate received in swap
double principalAmount : principal underlying swap
vector<double> amortizingSchedule : amortization schedule

[out] none
**********************************************************************************/
void HJMTree::addNodeHJMIndexAmortizingSwap(int key, int num, int lockOutPeriod,

double fixedRate, double principalAmount, vector<double> amortizingSchedule)
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FIGURE 14.5 Index-Amortizing Swap Valuation with T = 3 Maturity
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{
TREE_PTR new_ptr = NULL; // pointer to BSTREE_NODE struct
TREE_PTR node_ptr = NULL; // node pointer
TREE_PTR curr_ptr = NULL; // pointer to current node
double r = 0.0; // short rate
double sum, sum1 = 0.0; // sum of volatilities
double volsum = 0.0; // sum*sqrt(dt)*dt;
double volsum1 = 0.0; // sum1*sqrt(dt)*dt
double coshval = 0.0; // 1/cosh(volsum);

double expvalPlus = 0.0; // exp(volsum);
double expvalMinus = 0.0; // exp(-volsum);
double expvalPlus1 = 0.0; // exp(vol*exp(-lambda*cnt*dt)*sqrt(dt)*dt)
double expvalMinus1 = 0.0; // exp(-vol*exp(-lambda*cnt*dt)*sqrt(dt)*dt);
double coshRatio = 0.0; // cosh(volsum)/cosh(volsum1)
double amortizingRate = 0; // amortizing rate
int i;

new_ptr = new BSTREE_NODE;
new_ptr->up_childptr = NULL;
new_ptr->down_childptr = NULL;

// get tree height
cnt = getTreeHeight(get_root(), num);
// add key in the new node’s data field
new_ptr->nodeKey = key;

// initialization
C[0][2].moneyMarketAccount = 1;
C[0][1].moneyMarketAccount = 1;
C[0][0].moneyMarketAccount = 1;
C[1][2].moneyMarketAccount = initRate;
C[0][2].shortRate = initRate;
C[0][0].amortizedPrincipal = principalAmount;
C[0][2].amortizedPrincipal = principalAmount;

// if the BST is empty, insert the new rate in root
if (root_ptr == NULL)
{

C[cnt][nodeCnt].shortRate = initRate;
C[cnt][nodeCnt].moneyMarketAccount = 1;
C[cnt][nodeCnt].indexAmortizingCashFlow = 0;
C[cnt][nodeCnt].amortizingRate = 0;
C[cnt][nodeCnt].amortizedPrincipal = principalAmount;
C[cnt][nodeCnt].shortRate = initRate;

for (i = 0; i <= N; i++)
{

new_ptr->bondPrice[i] = 1/(pow(initRate, i));
new_ptr->forwardRate[i] = initRate;
new_ptr->moneyMarketAccount = initRate;
new_ptr->shortRate = initRate;
if (i == N)

C[cnt][nodeCnt].zeroCouponBond = new_ptr->bondPrice[N];
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}
root_ptr = new_ptr;
nodeCnt++;

}
else
{

TREE_PTR tree_ptr = root_ptr;
while (tree_ptr != NULL)
{

node_ptr = tree_ptr;
if (key == tree_ptr->nodeKey)

return;
else if (key < tree_ptr->nodeKey)

tree_ptr = tree_ptr->up_childptr; // search its up side for insertion 
// location

else
tree_ptr = tree_ptr->down_childptr; // search its down side for insertion 

// location
}

// Now ‘node_ptr’ is the pointer to the parent of the new node. Now determine 
// where it will be inserted
// compute volatilities sum is used for computing both bond prices and forward 
// rates
sum = 0.0;
for (int k = cnt; k <= N; k++)
sum = sum + vol*exp(-lambda*(k*dt));

// used for coshRatio for forward rate computation
sum1 = 0.0;
for (k = cnt; k < N; k++)

sum1 = sum1 + vol*exp(-lambda*(k*dt));

volsum = sum*sqrt(dt)*dt;
volsum1 = sum1*sqrt(dt)*dt;
coshRatio = cosh(volsum)/cosh(volsum1);
coshval = 1/cosh(volsum);
expvalPlus = exp(volsum);
expvalMinus = exp(-volsum);
expvalPlus1 = exp(vol*exp(-lambda*cnt*dt)*sqrt(dt)*dt);
expvalMinus1 = exp(-vol*exp(-lambda*cnt*dt)*sqrt(dt)*dt);

if (key < node_ptr->nodeKey)
{

node_ptr->up_childptr = new_ptr;
curr_ptr = node_ptr->up_childptr;

for (i = cnt; i <= N; i++)
{

curr_ptr->forwardRate[i] = node_ptr->forwardRate[i]*coshRatio*expval
Minus1;

if (i == cnt)
{
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curr_ptr->bondPrice[cnt] = 1; // bond price at maturity
}
else
{

// get short rate r(t) from forward rate f(t, t)
r = curr_ptr->forwardRate[cnt];
curr_ptr->shortRate = r;
// calculate bondprices
curr_ptr->bondPrice[i] = (node_ptr->bondPrice[i])*(r*coshval*expval

Plus);
C[cnt][nodeCnt].shortRate = r;

r = node_ptr->shortRate;
if (lockOutPeriod < cnt)
{

// compute amortization level
if (r > amortizingSchedule[0])

amortizingRate = 0;
else if ((r <= amortizingSchedule[0]) && (r > amortizingSchedule[1]))

amortizingRate = 0.25;
else if ((r <= amortizingSchedule[1]) && (r > amortizingSchedule[2]))

amortizingRate = 0.50;
else if ((r <= amortizingSchedule[2]) && (r > amortizingSchedule[3]))

amortizingRate = 0.75;
else if (r <= amortizingSchedule[3])

amortizingRate = 1;
}

C[cnt][nodeCnt].amortizingRate = amortizingRate;

C[cnt][nodeCnt].amortizedPrincipal =
C[cnt-1][nodeCnt/2].amortizedPrincipal*(1-amortizingRate);

C[cnt][nodeCnt].indexAmortizingCashFlow =
(fixedRate - C[cnt-1][nodeCnt/2].shortRate)

*C[cnt][nodeCnt].amortizedPrincipal;

C[cnt][nodeCnt].moneyMarketAccount =
(C[cnt-1][nodeCnt/2].moneyMarketAccount)*(node_ptr->shortRate);

// price bond if at maturity
if (i == N)

C[cnt][nodeCnt].zeroCouponBond = new_ptr->bondPrice[N];
}

}
}
else
{

node_ptr->down_childptr = new_ptr;
curr_ptr = node_ptr->down_childptr;

for (i = cnt; i <= N; i++)
{
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curr_ptr->forwardRate[i] =
(node_ptr->forwardRate[i]*coshRatio*expvalPlus1);

if (i == cnt)
{

curr_ptr->bondPrice[cnt] = 1;
}
else
{

// get short rate r(t) from forward rate f(t, t)
r = curr_ptr->forwardRate[cnt];
curr_ptr->shortRate = r;

// compute bond price
curr_ptr->bondPrice[i] = (node_ptr->bondPrice[i]*r*coshval*expvalMinus);

C[cnt][nodeCnt].shortRate = r;
r = node_ptr->shortRate;
if (lockOutPeriod < cnt) // check that we are past the lockout period
{

// compute amortization level
if (r > amortizingSchedule[0])

amortizingRate = 0;
else if ((r <= amortizingSchedule[0]) && (r > amortizingSchedule[1]))

amortizingRate = 0.25;
else if ((r <= amortizingSchedule[1]) && (r > amortizingSchedule[2]))

amortizingRate = 0.50;
else if ((r <= amortizingSchedule[2]) && (r > amortizingSchedule[3]))

amortizingRate = 0.75;
else if (r <= amortizingSchedule[3])

amortizingRate = 1;
}

C[cnt][nodeCnt].amortizingRate = amortizingRate;

C[cnt][nodeCnt].amortizedPrincipal =
C[cnt-1][nodeCnt/2].amortizedPrincipal*(1-amortizingRate);

C[cnt][nodeCnt].indexAmortizingCashFlow =
(fixedRate - C[cnt-1][nodeCnt/2].shortRate)*C[cnt][nodeCnt].amortized

Principal;

C[cnt][nodeCnt].moneyMarketAccount =
(C[cnt-1][nodeCnt/2].moneyMarketAccount)*(node_ptr->shortRate);

if (i == N)
C[cnt][nodeCnt].zeroCouponBond = new_ptr->bondPrice[N];

}
}

}

if (nodeCnt != 1)
{
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nodeCnt--;
if (nodeCnt % 2 != 0)

nodeCnt2--;
}
else
{

nodeCnt = pow(2, cnt+1);
nodeCnt2 = pow(2, cnt);

}
}

}

/**********************************************************************************
calcIndexAmortizingSwap : computes the value of an index amortizing swap after HJM

tree is built
[in] : none
[out]: double : value of index amortizing swap
**********************************************************************************/
double HJMTree::calcIndexAmortizingSwap()
{

int j = pow(2, N-2); // stores number of nodes needed
double floatRate = 0.0; // floating short rate
double bondDiff = 0.0; // difference between zero coupon bonds
double moneyAccount = 0.0; // money market account
cout.precision(4); // set output precision

for (int i = pow(2, N-1); i >= 1; i--)
C[N-1][i].indexAmortizingValue = 0;

for (i = N-2; i >= 0; i--)
{

for (j = pow(2, i); j >= 1; j--)
{

floatRate = C[i][j].shortRate;

C[i][j].indexAmortizingValue =
0.5*(1/floatRate)*((C[i+1][2*j].indexAmortizingValue
+ C[i+1][2*j].indexAmortizingCashFlow) + (C[i+1][2*j-

1].indexAmortizingValue + C[i+1][2*j- 1].indexAmortizingCashFlow));

bondDiff = C[i+1][2*j].zeroCouponBond - C[i+1][2*j-1].zeroCouponBond;

C[i][j].numZeroCoupon = (1/bondDiff)*((C[i+1][2*j].indexAmortizingValue
+ C[i+1][2*j].indexAmortizingCashFlow)- (C[i+1][2*j-1].indexAmortizing

Value + C[i+1][2*j-1].indexAmortizingCashFlow));
moneyAccount = C[i][j].moneyMarketAccount;

C[i][j].numMoneyMarket =(1/moneyAccount)*(C[i][j].indexAmortizingValue –
C[i][j].numZeroCoupon*(C[i][j].zeroCouponBond));

// output results at each node
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cout << “C[ “ << i << ”][“ << j << ”].shortRate = ” << C[i][j].shortRate <<
endl;

cout << “C[ “ << i << ”][“ << j << ”].moneyAccount = ” <<
C[i][j].moneyAccount << endl;

cout << “C[ “ << i << ”][“ << j << ”].moneyMarket = ” <<
C[i][j].numMoneyMarket << endl;

cout << “C[ “ << i << ”][“ << j << ”].amortizedPrincipal = ” <<
C[i][j].amortizedPrincipal << endl;

cout < “C[ “ < i < ”][“ < j < ”].numZeroCoupon = ” << C[i][j].numZeroCoupon
<< endl;

cout << “C[ “ << i << ”][“ << j << ”].indexCashFlow = ” <<
C[i][j].indexAmortizingCashFlow << endl;

cout << “C[ “ << i << ”][“ << j << ”].indexValue = ” <<
C[i][j].indexAmortizingValue << endl;

cout << “C[ “ << i << ”][“ << j << ”].amortizingRate = ” <<
C[i][j].amortizingRate << endl;

}
}
return C[0][1].value;

}

We can build an HJM tree to value an index-amortizing swap with the follow-
ing code:

/**********************************************************************************
buildHJMTree1 : builds an HJM Tree to value an index-amortizing swap
[in]: none
[out]: none
**********************************************************************************/
void HJMTree::buildHJMTree1()
{

int M = pow(2, N) - 1; // total number of nodes
int* key = new int[M]; // array of node keys
int j = pow(2, N-1); // number of nodes at last time step
vector<double> as; // amortization schedule

// build amortization schedule
// could overload method and pass schedule in as a parameter
as.push_back(1.022);
as.push_back(1.021);
as.push_back(1.020);
as.push_back(1.019);

// generate keys

for (int i = 0; i < j; i++)
key[(int)pow(2, N-1)+i] = 2*i + 1;

for (i = M-j; i >= 1; i--)
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key[i] = 0.5*(key[(int)2*i] + key[(int)2*i+1]);

for (i = 0; i < M; i++)
addNodeHJMIndexAmortizingSwap(key[i+1], i+1, 1, 1.020, 100, as);

}

An index-amortizing swap can then be valued in the main method:

void main()
{

HJMTree hm(1.02, 1, 4, 0.0076, 0.0154, 0.017);
std::cout << “Buiding HJM Tree” << endl;
hm.buildHJMTree();
std::cout << “Valuation of Index Amortizing Swap” << endl;
hm.calcIndexAmortizingSwap();

}

In addition to valuation by trees, Longstaff and Schwartz (2001) show how the
Monte Carlo least-squares approach can be used to value index-amortizing swaps.

14.8 VALUATION OF TRIGGER SWAPS

A trigger swap is an interest rate swap where fixed payments are exchanged with a
certain reference rate. The swap becomes “alive” or “terminates” when a certain
index rate hits a prespecified level H. It is similar to barrier options in the equity
markets. Usually the reference rate and the index rate are the same, but the index
rate is observed at a higher frequency than the payment frequency of the reference
rate. For example, the index rate and the reference rate can both be the six-month
LIBOR rate, which can be observed daily for indexing and every six months for the
payments. There are four standard basic types of trigger swaps: down and out
(DO), up and out (UO), down and in (DI), and up and in (UI).

In a DO swap, the initial index rate is above H. The swap terminates its pay-
ments (goes out) as soon as the index rate hits the level H (from above, going
down). In a UO swap, the initial index is below H. The swap terminates its pay-
ments (goes out) as soon as the index rate hits the level H (from below, going up).
In a DI, the initial index rate is above H. The swap starts its payments (goes in) as
soon as the index rate hits the level H (from above, going down). Finally, in a UI
swap, the initial index rate is below H. The swap starts its payments (goes in) as
soon as the index rate hits the level H (from below, going up).

Consider a DO trigger swap. Suppose the set of payment dates is T0, . . . , Tn

and suppose the dates are equally spaced by an amount δ (i.e., δ = 6 months). De-
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note by Γ = {τ1, . . . , τm} the set of future dates at which the reference rate (typically
the six-month LIBOR rate) is quoted in the market up to time Tn. Denote by L(t)
the reference rate at the time instant t with maturity t + δ.

Assume that the index rate and reference rate coincide and that the notional
amount underlying the swap is N. We will consider forward rate dynamics consid-
ered under the forward-adjusted measure Qn corresponding to the final payment
date so that the forward rate is a martingale. Suppose the swap is still alive at time
t = Ti–1; then at time Ti the following will occur:

Institution A (the fixed leg) pays to B (the floating leg) the fixed rate K at time
Ti–1 if at all previous instants in the interval [Ti–1, Ti] the index rate L is above the
triggering level H. If the swap is still alive at time Ti–1, then at time Ti institution A
pays to B a cash flow CFfixed.

where τi is the year fraction between the payment dates Ti–1 and Ti, and 1 is the in-
dicator function. Institution B pays to A (a percentage α of) the reference rate L at
the last reset date Ti–1 (plus a spread Q) if at all previous instants of the interval 
[Ti–1, Ti] the index rate L is above the triggering level H. Formally, at time Ti, insti-
tution B pays to A the cash flow CF floating:

CFfloating = (αL(Ti–1) + Q)Nτi1{min{L(τ), τ ∈ Γ ∩ (Ti–1, Ti) } > H }

The complete discounted payoff as seen from institution A can be expressed as

and the contract value to institution A (under the Qn) measure23 is
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We can numerically compute this value via Monte Carlo by recovering the spot
rates L(Ti) = F(Ti; Ti, Ti+1) = Fi+1(Ti) and discount factors P(Ti, Tn) by generating for
all i’s spanning forward rates Fi+1(Ti), Fi+2(Ti), . . . , Fn(Ti) under Qn according to dis-
cretized (Milstein) dynamics (see section 2.1). To recover spot rates in between
rates L(τ), either a drift-interpolation or bridging technique can be used; see Brigo
and Mercurio (2001c), Jackel (2002), and section 2.9.

14.9 QUANTO DERIVATIVES

Quantos are derivatives that have multicurrency features so that their value de-
pends in general on both domestic and foreign interest rates and exchange rates.

Denote Pf (t, T) as the foreign discount bond, rf as the foreign risk-free rate,
and χ(t) as the exchange rate at time t between the currencies in the domestic and
foreign markets24 so that 1 unit of the foreign currency equals χ(t) unit of the do-
mestic currency. The reciprocal exchange rate χ

_
(t) is the number of units of foreign

currency per unit of the domestic currency. We assume that the term structure of
discount factor is observable in both the domestic and foreign markets at time t.

Let Ff (t; T1, T2) be the forward rate in the foreign market at time t for the in-
terval [T1, T2] defined by

(14.27)

where τ1,2 is the year fraction between T1 and T2, and is assumed to be the same in
both the domestic and foreign markets. Given the future times T1 and T2, we can
compute the value of a quanto caplet that pays off at time T2,

τ1,2Nmax(Ff(T1; T1, T2) – K, 0) in domestic currency (14.28)

The no-arbitrage value at time t of the caplet payoff in (14.28) is given by taking
the expectation of (14.28) under the domestic forward measure Q2, denoted E2,
with numeraire P(t, T):

QCpl(t, T1, T2, N, K) = τ1, 2NP(t, T2)E
2[max(Ff(T1; T1; T2) – K, 0|ℑt]

In order to compute this expectation, it is necessary to know the distribution of
Ff(T1; T1, T2) under the measure Q2. While the foreign forward measure, associated
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with the numeraire Pf(t, T2), is a martingale, it is not so under the domestic forward
measure P(t, T2). Since Pf(t, T1) – Pf(t, T2) and P(t, T2) are tradable assets in the for-
eign market, then χ(t)[Pf(t, T1) – Pf(t, T2) and χ(t)Pf(t, T2) are both tradable assets in
the domestic market. The processes X and Y defined by

are both martingales under Q2, where Fχ(t, T2) denotes the forward exchange
rate at time t maturing at time T2. Under Q2, with lognormal assumptions, we
have the SDEs

dX(t) = σX(t)X(t)dzX(t)

dY(t) = σY(t)Y(t)dzY(t)

where zX and zY are two Brownian motions with dzXdzY = ρXYdt. Then, under Q2,
using Leibnitz’s rule (see Appendix B), we have

so that rewritten,

dFf (t; T1, T2) = Ff (t; T1, T2)(σ
2
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and z is a Brownian motion under Q2. Thus, under Q2, Ff(T1; T1, T2) is lognormally
distributed with

which implies that

QCpl(t, T1, T2, N, K) = τ1,2NP(t, T2)[F
f(t; T1, T2)e

µ(T1–t)Φ(d1) – KΦ(d2)]

where

In order to compute the price QCpl(t, T1, T2, N, K) we need to determine the values
of µ and σ in terms of observable quantities. The value σ can be implied from mar-
ket data since it is the (proportional) volatility of the foreign forward rate Ff (T1;
T1, T2).

25 We can determine the drift µ by the change of drift formula in (1.68) with
U = P(·, T2), S = Pf (·, T2), and mS = 0: where X(t) in the foreign exchange rate:

(14.29)

where σFχ
is the level (proportional) volatility of the forward exchange rate and

ρFχFf is the instantaneous correlation between Fχ(t, T2) and Ff (t; T1, T2). Both 
σFχ

and ρFχFf are observable in the market so that the drift in equation (14.29) can
be determined.
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Similarly, the arbitrage-free price of a quanto floorlet that pays off at time T2,

τ1,2Nmax(K – Ff (t; T1, T2), 0) in domestic currency

is

QCpl(t, T1, T2, N, K) = τ1,2NP(t, T2)(KΦ(–d2) – Ff (t; T1, T2)e
µ(T1–t)Φ(–d1))

It is easy to price quanto caps and floors. Let Γ = {t0, t1, . . . , tn} denote the set of re-
set and payment times where t0 is the first reset time and t1 is the first payment time.
Let τi denote the year fraction for the time interval (ti–1, ti], i = 0, . . . , n.

Since the price of a cap (floor) is the sum of prices of the underlying caplets
(floorlets), the price at time t of a cap with cap rate (strike) K, nominal value N, and
set of times Γ is then given by

and the corresponding quanto floor price is

A quanto swaption is an option on the difference between the foreign swap
rate and the domestic swap rate, where the difference is denominated in domestic
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currency. Let the domestic swap rate at time t corresponding to the swap starting at
T and with payments ti , i = 1, . . . , n, where 0 < T < t1 < t2 < . . . < tn be given by

where

and τi is the tenor (year fraction) from ti–1 to ti. Let the foreign swap rate at time t
corresponding to the swap starting at time T and with payment times ti, i = 1, . . . ,
n, be given by

where

and we assume that the year fraction τi is the same in both the domestic and foreign
markets.

The quanto swaption payoff at time T, given a strike X, is

C(T)max(ωSf (T) – ωS(T) – ωK, 0) (14.31)

where ω = 1 for a payer quanto swaption and ω = –1 for a receiver quanto swap-
tion. We can compute the value at time t, by choosing C(t) as the numeraire and
taking the expectation, denoted EC under the domestic forward-swap QC measure:

QS(t, T, X) = C(t)EC{max(ωSf (T) – ωS(T) – ωK, 0) | ℑt}

While the forward-swap process Sf is a martingale under the foreign forward-
swap measure, it is not under QC and has a drift computed by Hunt and Pelsser
(1998) by assuming that under QC the following martingales
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are lognormally distributed, so that

is lognormally distributed with the dynamics

dSf (t) = µf Sf (t)dt + σf Sf (t)dzf (t)

where Zf is a Brownian motion under QC and µf and σf are constants.26 Hunt and
Pelsser state that M2(t) can be approximated by the time T forward exchange rate

and showed that the foreign drift rate (using the change of drift formula) is approx-
imated by minus the instantaneous covariance of lnM2 (t) and ln Sf so that

where σF is the (assumed constant) proportional volatility of the process Fχ, and ρF, f is
the instantaneous correlation between the foreign exchange rate Fχ and the foreign
swap rate Sf.27 (We have assumed the exchange rate χ(t) to be 1 for simplifying the
drift computation.)

It can be shown—see Brigo and Mercurio (2001c) for details—using the fact
that under QC, the joint distribution of

conditional on ℑt is bivariate normal, that taking this expectation leads to the
unique arbitrage-free price of the quanto swaption
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where

and

and dz(t)dzf (t) = ρdt. The integral equation in (14.32), as well as many multidi-
mensional problems, can be computed numerically using Gaussian quadrature (as
discussed in section 14.10). The volatilities σf, σ, and σF can be obtained from mar-
ket data of implied volatilities, and the correlations ρ and ρF, f can be estimated
from historical data.28

14.10 GAUSSIAN QUADRATURE

In many instances, computational speed and efficiency gains (while maintaining ac-
curacy) can be made by using Gaussian quadrature for numerical evaluation of the
integral equations in option pricing problems such as equation (14.32). Gaussian
quadrature can be used to approximate option values via weighted functional val-
ues at discrete location points in the state space known as abscissas. Through a ju-
dicious choice of weighting coefficients and abscissas at which the function,
typically a function like the lognormal density, is evaluated, a convergence order
higher than that of the Newton-Cotes formula (such as Simpson’s rule) can be
achieved with the same number of points.
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In a typical option valuation problem, the value V of an option on an asset Si at
time ti is given by

V(Si, ti) = EQ[e–r∆ti+1V(Si+1, ti+1)]

where ∆ti+1 = ti+1 – ti and Q is the risk-neutral measure, which is essentially com-
puted using the numerical integration problem (a form of the Feynman-Kac pricing
formula)

We can solve this integral problem by noting that the integral of the function
can be approximated with a linear combination of function values over a finite in-
terval. A particular rule of this approximation specifies a set of abscissas xi and as-
sociated weights wi for estimating the value of the integral by a weighted sum:

(14.33)

In classic techniques to evaluate the integral in (14.32) such as the trapezoid
rule or Simpson’s rule, a fixed number of equally spaced abscissas are used and the
weights are chosen to maximize the order. Typically, the interval of integration is
divided into n subintervals of equal size, the rule is applied to each subinterval, and
the sum of the results is used as an estimate of the integral. The classic rule con-
verges to the actual integral as n increases when the integrand is a continuous func-
tion. However, convergence can be slow so that an accurate estimate may require a
large n and many function evaluations.

It is possible to devise routines that give exact results when f(x) is a polyno-
mial function of a given degree. The highest-degree polynomial that can be com-
puted exactly is called the order of the quadrature rule. Gaussian rules choose the
n abscissas and n weights to produce a 2n – 1 order rule, the highest possible with
n points.

In quadrature, the choice of weights and abscissas can be made so that the inte-
gral is exact for a class of integrands “polynomials times some known function
W(x)” rather than for just the usual class of integrand “polynomials.”29 Moreover,
the function W(x) can be chosen to remove singularities from the desired integral.
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Given W(x) and a chosen n, it is possible to find a set of weights wi and abscissas xi

such that the approximation

(14.34)

is exact if f(x) is a polynomial.30 Define g(x) = W(x)f(x) and vj = wj /W(xj). We can
then rewrite (14.34) as

(14.35)

so that (14.34) can be written in the form of (14.33).
In general, weight functions W(x) are chosen to be orthogonal polynomials

such that the scalar product between two functions over the weight function is
zero, that is,

We can find W(x) as a set of polynomials that include exactly one polynomial of or-
der j, and pj(x) for each j = 1, 2, . . . , and which are mutually orthogonal over the
specified weight function W(x). To construct such orthogonal polynomials for the
weight function, a recurrence relationship can be constructed:

p–1(x) = 0

p0(x) = 1    (14.36)

pj+1(x) = (x – aj)pj(x) – bjpj–1(x)

where

(14.37)
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The coefficient b0 is arbitrary; we can take it to be zero. 
The polynomial pj(x) can be shown to have exactly j roots in the interval (a, b).

Moreover, it can be shown that the roots of pj(x) “interleave” the roots of j – 1
roots of pj–1(x); that is, there is exactly one root of the former in between each two
adjacent roots of latter.31 Based on this fact, one can find all the roots by starting
with p1(x) and then, in turn, bracket the roots of each higher j, determining them at
each stage more precisely via an iterative root-finding procedure like Newton-
Raphson.

The fundamental theorem of Gaussian quadrature tells how to find all the ab-
scissas. This states that the abscissas of the n-point Gaussian quadrature formulas
(14.34) and (14.35) with the weighting function W(x) in the interval (a, b) are ex-
actly the roots of the orthogonal polynomial pn(x) for the same interval and
weighting function. Thus, computing all the roots of pn(x) will yield the abscissas
to use for the Gaussian quadrature formulas. Once the abscissas are calculated,
x1, . . . , xn, the weights need to be computed. They can be found by the following
formula:

(14.38)

where p′n(xj) is the derivative of the orthogonal polynomial evaluated as its zero xj.
Following Press et al. (1992), the computation of Gaussian quadrature involves

two distinct stages: (1) the generation of the orthogonal polynomials p0, . . . , pn for
the computation of the coefficients aj and bj in (14.37); and (2) the determination of
the zeros of pn(x), and the computation of the associated weights. For certain classi-
cal cases such as Gauss-Hermite and Gauss-Legendre quadrature, the coefficients
are known and the first stage can be omitted.

In Gauss-Hermite quadrature, W(x) = e–x2, – ∞ < x < ∞, and the recurrence rela-
tionship of the orthogonal polynomials is given by pj+1 = 2xpj – 2jpj–1. Given this
fact, we can use Gauss-Hermite quadrature to evalute equation (14.32) as well as
many multidimensional integral problems given the fact that the transitional proba-
bility density function of a multidimensional diffusion process is known to be a
Green’s function that can be reduced to the Gauss-Hermite weight. In general,
given x ∈ �d, the analytical form of the multistep Green’s function is not known.
However, it is known over a short time step ∆t = t – t′ so that the Green’s function is
given by

G(x, t, x′, t′) = (2π∆t)–d/2(det(A)x, t)))–1/2 exp(–∆tQ(x, x′; ∆t)) (14.39)
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where

bn(x, t) is the local drift of the multidimensional diffusion process, and A(x, t) the
covariance matrix with elements amn(x, t). In statistics, Q is known as the infinitesi-
mal generator for the corresponding Markov process. If the coefficients are con-
stant, the transition function is just the standard multivariate normal density
function. Equation (14.39), the Green’s function, can be used to express the price of
f (x, t) at time t by acting as the kernel or transitional probability density function
in the Feynman-Kac formula:

(14.40)

Equation (14.40) reduces to a finite state d-dimensional Markov process:

(14.41)

where p is the multidimensional probability density function defined by

pi1...id; j1...jd
(∆t) = G(xi1

, . . . , xid
, t – ∆t; xj1

, . . . , xjd
, t) (14.42)

We can write the formula for the transition function in matrix notation as

where x(j) = (xj1
, . . . , xjd

) is the vector of states over a discrete set of times j = 1, 
. . . , M.32 For simplicity the mean x(j) = x(j) + ∆tb(x(j)) has been subtracted and the
time arguments omitted on the right-hand side. Since the covariance matrix is sym-
metric, it can be diagonalized. Since we assume the covariance matrix is positive-
definite, there exists a basis for which all diagonal coefficients are equal to +1.
Making a change of variables,
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with Jacobian

for each x(i), the transition function can be written as an exponential sum of
squares:

(14.44)

where

It turns out that the standardized u(j) variables are the abscissas in a multidimen-
sional Gauss-Hermite quadrature, one for each given x(i). In just one dimension one
can write the Feynman-Kac pricing formula at fixed time point i = 0, say, and M
standardized abscissas u(j) as

(14.45)

where w(j), j = 1, . . . , M are the Gauss-Hermite weights.33 If this process is re-
peated, the weights for each point and dimension multiply just as they do in the an-
alytical transition function. The weights are all that is left in the transition function
aside from the constant π–d/2; that is,

pi1... id; j1... jd
(∆t) = G(u(i), t – ∆t; u(j), , t) = π–d/2wj1

. . . wjd
(14.46)

Thus, the standardized weights are pm
(j ) = w(j)/√π—. This change of variable technique

saves a lot of computational time and both weights and standardized abscissas can
be computed using the methodology discussed and precomputed from values given
in books; see Press et al. (1992).

Thus, we can now evaluate (14.33) using (14.45). However, before we com-
pute the quadrature, we need to rescale back to the original prices x(j) using an in-
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verse transformation of (14.43) and then evaluate the original function at these cor-
responding rescaled prices.34 Following Gustafsson and Merabet (2002), a general
backward-induction multinomial algorithm for computing option values on a fi-
nite-space grid (x(i), tk) can be found by: (1) using precomputing abscissas, weights,
and transition probabilities; (2) calculating for each point and time step (and rele-
vant boundary conditions) the rescaled original price and time grid (x(i), tk); and (3)
starting from the terminal payout, evaluating the payout f(x(i), tk) for each price
level, and using equation (14.41) recursively to find the option price for each time
step.35

Gauss-Hermite quadrature is very useful in computing the value of spread op-
tions because, as it turns out, the unique arbitrage price of a spread option given by

πt = e–r(T–t) EQ[max(S1(T) – S2(T) – K, 0)]

can be computed from (14.33); see Brigo and Mercurio (2001c). Thus, we can com-
pute the value of spread options (as well as quanto swaptions and many other de-
rivatives) using Gauss-Hermite quadrature.

The following code computes the integral in (14.32) using Gauss-Hermite
quadrature. It utilizes the algorithm given in Press et al. (1992) for computation of
the weights and abscissas.

#include <iostream.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include “Utility.h”
#include “SpreadOption.h”
#define PI 3.141592653589793

/**********************************************************************************
GaussianQuadrature class :
Approximates the integral in equation (14.31) using quadrature to value spread

options
**********************************************************************************/
class GaussianQuadrature
{

public:
GaussianQuadrature(const int order);
GaussianQuadrature(const int order, double S1, double S2, double strike,

double sig1, double sig2, double rho, double r, double q1, double q2, double
T);
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double g(double x); // function to be evaluated
double g(double v, double (*pf_g)(double)); // use a function pointer to

// evaluate g
double h(const double x); // helper function of g
void gaussHermite(double x[], double w[], int n); // computed Gauss-Hermite 

// abscissas and weights
StatUtility util; // utility for computing 

// normal densities
private:

// variables used for spread option calculation – could also define friend class 
// SpreadOption
// to separate SpreadOption objects from GaussianQuadrature class functionality
double S1; // asset price 1
double S2; // asset price 2
double strike; // strike price
double mu1; // drift for asset price 1
double mu2; // drift for asset price 2
double r; // risk-free rate
double q1; // dividend yield for asset 1
double q2; // dividend yield for asset 2
double T; // maturity
double sig1; // volatility for asset 1
double sig2; // volatility for asset 2
double rho; // correlation between asset 1 and 2
int order; // order of quadrature
double sum; // gaussian quadrature sum

};

The class has the following method definitions:

#include “GaussianQuadrature.h”
#define PIM4 0.7511255444649425 //(1/(P1)^(1/4))
#define MAXIT 10
#define EPS 3.0e-14 // relative precision

/**********************************************************************************
GaussianQuadrature constructor
**********************************************************************************/
GaussianQuadrature::GaussianQuadrature(const int order, double S1, double S2,

double strike, double sig1, double sig2, double rho_, double r, double q1, double
q2, double T)
: order(order), S1(S1), S2(S2), strike(strike), mu1(r-q1), mu2(r-q2), sig1(sig1),

sig2(sig2), rho(rho), r(r), q1(q1), q2(q2), T(T), sum(0.0);
{ }

/**********************************************************************************
g: the function to evaluate
[in]:  double v : the abscissa
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[out]: double : the value of the computed function evaluated at the abscissa
**********************************************************************************/
double GaussianQuadrature::g(double v)
{

double x =(S1*exp(-q1*T - 0.5*rho*rho*sig1*sig1*T + rho*sig1*sqrt(T)*v))*
util.normalCalc((log(S1/h(v)) + (mu1 + (0.5 - rho*rho)*sig1*sig1)*T
+ rho*sig1*sqrt(T)*v)/(sig1*sqrt(T)*sqrt(1-rho*rho))) – h(v)*exp(-

r*T)*util.normalCalc((log(S1/h(v))
+ (mu1 - 0.5*sig1*sig1)*T + rho*sig1*sqrt(T)*v)/(sig1*sqrt(T)*sqrt(1-

rho*rho)));

return x;
}

/**********************************************************************************
h: helper function of g
[in]: double v : the abscissa
[out]: double : the value of the helper function evaluated at the abscissa
**********************************************************************************/
double GaussianQuadrature::h(double v)
{

return strike + S2*exp(((r - q2) - 0.5*sig2*sig2)*T + sig2*sqrt(T)*v);
}

/**********************************************************************************
gaussHermite: computes the Gauss-Hermite quadrature –from Press, et al. (1992)
[in] double x[] : array of abscissas to be computed and stored

double w[] : array of weights to be computed and stored
int n : order of quadrature

[out] : returns the filled in arrays of x and w
**********************************************************************************/
void GaussianQuadrature::gaussHermite(double x[], double w[], int n)
{

double p1, p2, p3, pp, z, z1;
int i, its, j, m;
m = (n + 1)/2;

// the roots are symmetric about the origin so we have to find only half of them
for (i = 1; i <= m; i++) // loop over desired root
{

if (i == 1) // initial guess for the largest root
z = sqrt((double)(2*n+1))-1.85575*pow((double)(2*n+1),-0.16667);

else if (i == 2) // initial guess for the second largest 
// root

z -= 1.14*pow((double)n,0.426)/z;
else if (i == 3) // initial guess for the third largest 

// root
z = 1.86*z - 0.86*x[1];

else if (i == 4) // initial guess for the fourth largest 
// root

z = 1.91*z - 0.91*x[2];
else // initial guess for the other roots

z = 2.0*z - x[i-2];
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for (its = 1; its <= MAXIT; its++) // refinement by Newton’s method
{

p1 = PIM4;
p2 = 0.0;
for (j = 1; j <= n; j++)
{

p3 = p2;
p2 = p1;
p1 = z*sqrt(2.0/j)*p2-sqrt(((double)(j-1))/j)*p3;

}

// p1 is now the Hermite polynomial. We next compute pp, its derivative,
// by the relation (4.5.21) using p2, the polynomial of one lower order
pp = sqrt((double)2*n)*p2;
z1 = z;
z = z1 - p1/pp; // Newton’s formula
if (fabs(z-z1) <= EPS)

break;
}
if (its > MAXIT)

cout << “Too many iterations in GaussHermite” << endl;

x[i] = z; // store the root
x[n+1-i] = -z; // and its symmetric counterpart
w[i] = 2.0/(pp*pp); // compute the weight
w[n+1-i] = w[i]; // and its symmetric counterpart

}
}

Suppose we want to compute the value of a spread option with S1 =100, S2 =
96, X = 4, ρ = 0.5, σ1 = 0.1, σ2 = 0.2, q1 = 0.05, q2 = 0.05, r = 0.1, and T = 1. We
can run the main function

void main()
{

double sum = 0.0;
int order = 12; // order of gaussian quadrature
double *x = new double[200]; // store abscissas
double *w = new double[200]; // store weights

GaussianQuadrature gq(order,100, 96, 4, 0.10, 0.20, 0.5, 0.10, 0.05, 0.05, 1);
gq.gaussHermite(x,w,order);
for (int i = 1; i <= order i++)
{

// compute sum of weighted function g at rescaled original values
sum += w[i]*gq.g(x[i]*sqrt(2)/(0.1*0.2*sqrt(1-0.5*0.5)));

}
cout << “value = ” << sum*(1/(sqrt(PI)) << endl;

}
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The value of the spread option using Gauss-Hermite quadrature with 12 ab-
scissas is $7.138. Notice that it was necessary to rescale back to the original price
from the standardized price by multiplying by

where the denominator is the square root of the determinant of the covariance
matrix.

We can make the GaussianQuadrature class more generic and reusable for eval-
uating functions by using function pointers in the overloaded g method signature:

double GaussianQuadrature::g(double v, double (*pf_g)(double))
{

return (*pf_g)(v);
}

Any function that has the prototype double function_name(double) can then be
passed in as a second argument to g and evaluated at the v abscissas.

2 1 2 0 1 0 2 1 0 25 2 0 0151 2
2/ ( ( )) / (( . )( . )( . )) / .σ σ ρ− = − =
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APPENDIX A

Probability Review

A.1 PROBABILITY SPACES

A probability space (Ω, ℑ, P) is defined by a state space Ω, the event space (or the
sigma algebra) ℑ (i.e., the set of measurable or observable events which are subsets
of Ω), and a probability measure P. A state space Ω is the set of all possible states in
the system. Typically, a probability space with an increasing sequence of sigma alge-
bras is said to be equipped with a filtration that is augmented as time goes by since
more information is obtained about the past. The defining properties of the proba-
bility measure P are:

Condition (i) states that it is certain that an event will occur in the state space. Con-
dition (ii) states that P is countably additive, and condition (iii) states that the prob-
ability measure assigns a positive number between 0 and 1 to any measurable event
A ∈ ℑ.

DEFINITION. A collection ℑ of subsets of Ω is a sigma algebra if the following
three conditions are satisfied:
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Condition (ii) states that if an event is measurable then its complement must also be
measurable. Condition (iii) states that if a collection of sets Aα where α is an index
is measurable, then the union must also be measurable.

As an example, consider a one-period binomial model where the underlying as-
set S can go up with probability p = 1/2 to Su or down with probability 1 – p = 1/2 to
Sd as shown in Figure A.1.

The state space is Ω = {Su, Sd}. One possibility for the event space is ℑ = {Ω, φ,
{Su}, {Sd}} (i.e., the set of all subsets of Ω). An interpretation of ℑ is that it gives the
amount of information available about the system. Since every subset of Ω is mea-
surable, this case represents complete information.

Consider a basic two-period binomial model as shown in Figure A.2. In this
model, there are four possible states: Ω = {Suu, Sud, Sdu, Sdd}. In a three-period model,
there are eight possible states, and so forth. In general, in an n-period model there
are 2n states. We can define the event space for each time step:

ℑ2 = {φ, Ω, {Suu}, {Sud}, {Sdu}, {Sdd}}
ℑ1 = {φ, Ω, {Suu, Sud}, {Sdu, Sdd}}
ℑ0 = {φ, Ω}

where φ is the null set and ℑt is the filtration at time t. ℑ1 represents partial infor-
mation in the two-period model since it is exactly the information that is available
after just one period. The probability measure is P({Suu, Sud}) = P({Sdd, Sdu}) = 1/2.
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FIGURE A.1 One-Period Binomial Model
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A.2 CONTINUOUS PROBABILITY SPACES

The state space Ω may be a continuous space. For example, Ω = (–∞, +∞). In this
case, the sigma algebra of measurable events ℑ is the Borel sigma algebra. By defin-
ition, this is the smallest sigma algebra that contains all open intervals of the form
(a, b). It can be shown that such a sigma algebra is quite rich as it contains all open
and closed sets.

For the probability measure, one example is the normal distribution measure:

where P{(–∞, +∞)} = 1 is a probability measure. Since stock prices always positive,
Ω is not a realistic space. A more realistic situation is obtained by making a change
of variables: x = ln(S). This changes Ω from (–∞, +∞) to (0, +∞), or, if we allow –∞
in the original space, to (0, ∞). The new probability measure is

which is the standard lognormal distribution, commonly used to describe the be-
havior of stock prices.

A.3 SINGLE RANDOM VARIABLES

A random variable defined on a probability space (Ω, ℑ, P) is a real valued function
on Ω that is measurable with respect to ℑ. Formally, X is a random variable if it is a
function such that X–1(a, b) ∈ ℑ for any interval (a, b) of the real line.

Let X be a real random variable with the probability density function p(x). Let
x be the real value of X. The probability of X ∈ (–∞, y] is

where p(x)dx is the probability measure of the infinitesimal interval dx. If f (X) is a
function of the random variable X, then its expected value is
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In particular, moments about some value a are defined as

The mean is defined as

Moments are called central if a = X
—

:

Mn = E[(X – X
—

)n]

The variance is the second central moment:

Var[X] = M2 = E[(X – X
—

)2] = E[X2] – X
—

2

A characteristic function is defined as a Fourier transform of the probability density:

The moments expansion of the characteristic function is:

where Mn(0) = E[xn] are moments about zero. The density of inverse Fourier
transform:

A.4 BINOMIAL RANDOM VARIABLES

The binomial probability density (probability mass function) is given by
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with mean:

E[ j] = Np

and variance:

Var [ j] = Np(1 – p)

A.5 NORMAL RANDOM VARIABLES

The normal density with mean µ and variance σ2 is given by

The characteristic function is obtained by calculating the Gaussian integral

The moments are:

E[X] = µ
Var[X] = σ2

E[(X – µ)2n+1] = 0, n = 0, 1, . . .
E[(X – µ)2n] = (2n – 1)!!σ2n, n = 0, 1, . . .

where the odd factorial is defined as (2n – 1)!! = (2n – 1) × (2n – 3) . . . 3 × 1. These
formulas for the moments can be checked by expanding the characteristic function
in Taylor series. If µ = 0 and σ = 1, we have

Comparing the moments expansion,
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we have

M2n+1(0) = 0

and

The case with mean µ and standard deviation σ is obtained by simply changing the
variable x → (x – µ)/σ. The term x is called standard normal variable or standard
normal deviate if µ = 0 and σ = 1. Its probability density and probability distribu-
tion are

A.6 CONDITIONAL EXPECTATIONS

If X and Y are random variables that have a joint probability density f (x, y) the
conditional probability density of X, given Y = y, is defined for all y such that 
fY(y) > 0 by

and the conditional probability distribution of X, given Y = y, by

The conditional expectation of X, given Y = y, is defined, in this case, by

We can use this fact in the law of iterated expectations:

E X E E X Y y E X Y y p y dy[ ] [ [ | ]] [ | ] ( )= = = =
−∞

∞

∫

E X Y y xp x y dx[ | ] ( | )= =
−∞

+∞

∫

P x y P X x Y y p x y dz
x

( | ) ( | ) ( | )= ≤ = =
−∞
∫

p x y
p x y
p yY

( | )
( , )

( )
=

n x e N y e dx
x xy

( ) ( )= =
− −

−∞
∫1

2

1

2

2 2

2 2

π π
 and 

M
n

n
nn n2 0

2

2
2 1( )

( )!

!
( )!!= = −

776 PROBABILITY REVIEW



We now want to define the conditional expectation of a random variable with re-
spect to not just one event, but a sigma algebra of events. In this case the condi-
tional expectation will be itself a random variable and not just a number.
Intuitively, it will represent the best guess at X given the information given by the
sigma algebra.

DEFINITION. The conditional expectation of random variable X with respect to
a sigma algebra ℑ is the random variable Y = E(X | ℑ), which has the following
properties:

Condition (ii) is equivalent to the seemingly stronger

It can be shown that there exists a unique Y with these properties, though we
do not show it here. We consider how to compute such expectation. When Ω is a
discrete space, it turns out that the procedure is rather simple. We start by parti-
tioning ℑ into pairwise disjoint sets Bi with the property that any A ∈ ℑ can be ex-
pressed as union of parts,

A = ∪ Bk

The interpretation here is that the information contained in ℑ is equivalent to the
fact that one knows which set Bk of the partition contains the true state of the
world, but that is all that is known.

As an example, consider the two-period model and the sigma algebra containing
the information at time t = 1, ℑ1. This can be decomposed into two disjoint sets: B1
= {uu, dd} and B2 = {du, dd}. The information at time t = 2, ℑ2 is decomposed into
the four parts that make up Ω (i.e., B1 = {uu}, B2 = {ud}, B3 = {du}, and B4 = {dd}).

PROPOSITION. Let Bi be the partition of ℑ. Then the conditional expectation Y =
E(X | ℑ) is given by

PROOF. We need to show that the formula for Y given satisfies (i) and (ii) of the
definition of conditional expectation with respect to a sigma algebra. Part (i) is triv-
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ially satisfied, since Y is constant on each Bi and hence the event Y ∈ (a, b) consists
of the union of Bi’s. As for part (ii), for any A ℑ

Suppose we have a two-period binomial model as shown in Figure A.3. We
wish to compute Y = E(S(2) | ℑ1). The probabilities are written alongside each
branch, and the payoff is given at the end of the branch. We can partition the σ al-
gebra ℑ1 into two events, corresponding to the heads or tails flip on the first toss: B1
= {uu, ud} and B2 = {du, dd}. Then,

A.7 PROBABILITY LIMIT THEOREMS

Let Xi be independent random variables with finite means µi and finite variances.
Then
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FIGURE A.3 Probabilities of Two-Period Binomial Model
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That is, all random fluctuations around the means cancel out in the limit when we
add up a very large number of random variables with finite means and variances.
This is known as the law of large numbers.

If, furthermore, the Xi’s are independent and identically distributed (i.i.d.) with
the common mean µ and variance σ2, then the central limit theorem applies. This
theorem states that the approach to the limit is asymptotically normal with mean µ
and variance σ2/n:

A.8 MULTIDIMENSIONAL CASE

We can extend all previous sections to the multidimensional case. Consider a D-
dimensional random vector X = {Xi, i = 1, 2, . . . , D} with means E[Xi] = µi and the
covariance matrix Cov(Xi, Xj) = E[(Xi – µi)(Xj – µj)] = Σij. The correlation matrix is
defined by a covariance matrix normalized by the variances:

where σ2
i ’s are individual variances of Xi.

Consider the characteristic function:

The D-dimensional normal density is obtained by taking the inverse Fourier trans-
form (Gaussian integral):
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where Σ–1 is the inverse covariance matrix. The standard multivariate normal prob-
ability density is obtained by introducing new variables (standardizing)

and the multivariate standard normal density is given by

Moreover, we can introduce a new basis in �D:

where bi, j are elements of the matrix B such that elements of the inverse matrix B–1,
(b–1)i, j,

have the following orthogonal transformation property:

so that the zi’s are uncorrelated and have unit variances:

E[zizj] = δij

where δi, j are elements of the identity matrix, that is, δi, j = 1 (0) if i = j (i ≠ j), and

A.9 DIRAC’S DELTA FUNCTION

Dirac’s delta function, written δ(x), is a generalized function that can be interpreted
as a probability density function of a deterministic random variable X that can take
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only one value with probability 1. It has the property that has a mean and variance
of zero; that is,

and the total probability is 1,

More formally, the delta function is the limit of the (delta) sequence of one-parameter
family of functions δε (x) as ε → 0 with the following properties:

The delta function may be thought of as a limit of a sequence of normal distribu-
tions as the variance (the variance acts as ε) goes to zero:

It is easy to show that the integral of this function is 1, and that for x ≠ 0 its value
tends to zero, while for x = 0 its value tends to infinity. The limiting function is not
well behaved around x = 0. However, the integration smooths out the bad behavior.
In fact, for any smooth test function φ(x)

so that its integral action defines the delta function as the continuous linear map
from smooth functions φ(x) to real numbers that have the value φ(0). Moreover,
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for any test function φ(x). We also have that

where H(x) is the Heavyside function, defined by

so that H′(x) = δ(x). Delta functions are useful in analysis of differential equations
with discontinuous functions or coefficients.
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APPENDIX B

Stochastic Calculus Review

B.1 BROWNIAN MOTION

A Brownian motion is a continuous time process, Z(t), with the following properties:
1. For any t1, t2, . . . , tn, the increments Z(t2) – Z(t1), Z(t3) – Z(t2), . . . , Z(tn) –

Z(tn–1)are independent random variables with a normal distribution of mean 0 and
variance t2 – t1, t3 – t2, . . . , tn – tn–1, respectively.

2. Z(t) is continuous almost surely (a.s.), that is, with probability 1.
3. The Brownian motion process is uniquely described by the finite-dimensional

distribution functions (f.d.d.), Ft1,t2,..., tn
(x1, x2, . . . , xn), which are joint distribu-

tion functions of (W(t1), W(t2), . . . , W(tn)). Specifically,

for any A ∈ �n. For example,

In general,

which is the multivariate normal distribution (we assume t0 = 0).
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If we define the transitional probability density function roughly as the proba-
bility to go from a point x at time s to a point y at time t,

so that

then

B.2 BROWNIAN MOTION WITH DRIFT AND VOLATILITY

Consider the random walk

Xk+1 = Xk + ξk+1

where

with a drift of zero. We can construct a continuous time process as follows. For 0 ≤
t ≤ T = n∆t, let

It is proven by Donsker that as ∆t → 0, the asset price S∆t(t) converges in distribu-
tion to that of Brownian motion.
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Let Z(t) be a Brownian motion. To make its volatility rate equal to σ we define:

X(t) = σZ(t) (B2.1)

Then one can check that X(t) – X(s) ∼ N(0, σ2 (t – s)). To introduce a drift µ in ad-
dition to the volatility, set

X(t) = µt + σZ(t) (B2.2)

Then, X(t) – X(s) ∼ N(µ(t – s), σ2 (t – s)). Taking the differentials on both sides of
(B2.2), we get

dX(t) = µdt + σdZ(t) (B2.3)

where dW is the infinitesimal change in the Brownian motion W. The process X is
called a Wiener process, and is the continuous limit of the random walk process
with drift. Taking the integral of (B2.3) from 0 to t, we get

The dW integral (i.e., the integral with respect to the Brownian motion) is well de-
fined and is called a stochastic integral. We define this integral in detail in the next
section. In this case, the integral is simply equal to σ(Z(t) – Z(0)) = σZ(t).

It is important to note that we cannot take the derivatives of (B2.2), that is,

since W(t) is, with probability 1, nondifferentiable at every point.

B.3 STOCHASTIC INTEGRALS

The meaning of

dS = µSdt + σSdZ

is given by the following integral equation:

S t S S s ds S s dZ s
t t

( ) ( ) ( ) ( ) ( )− = +∫ ∫0
0 0

µ σ

dX
dt

dW
dt

= +µ σ

X t X t dZ
t

( ) ( )− = + ∫0
0

µ σ

B.3 Stochastic Integrals 785



The first integral on the right is an ordinary integral with respect to the usual mea-
sure ds. The second integral is a stochastic integral with respect to Brownian mo-
tion. Both integrals are random variables, since integrands are random processes.

Let us now try to define what a stochastic integral is. We start with the follow-
ing example:

If Z(s) is deterministic—for example, a smooth function of s—then the integral is
easily solved:

When Z(s) is a random Brownian motion, the answer is more complicated. We
consider the approximating Riemann sums of the form

where λ is some parameter between 0 and 1 and tk = a + k∆t, n∆t = b – a.
For a deterministic Z, the limit should be independent of λ. When Z is a

Brownian motion, we have the following result:

To prove this result, we first take λ = 0, (i.e., the left Riemann sum). Then
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At the same time,

Adding these two expressions, we get

Since (Z(tk) – Z(tk–1))
2 are independent random variables with mean ∆t, by the law

of large numbers, the summation tends to n∆t = (b – a). Therefore,

Similarly,

Finally,

This shows that the value of a stochastic integral depends on which Riemann sum
is used. The definition that we shall use is the one in which λ = 0 (i.e., the one cor-
responding to the Riemann sums). This is called the Ito integral. Since for any t,
Z(t) is measurable with respect to ℑt, the information at time t, Z(tk–1) is indepen-
dent of the increment Z(tk) – Z(tk–1). In this case, we say that the integrand Z is
nonanticipating.

DEFINITION. Let X(t) be a stochastic process. Suppose X is nonanticipating with
respect to the Brownian motion Z (i.e., X is measurable with respect to ℑt). The Ito
integral of X with respect to the Brownian motion is defined as
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The limit exists and defines the Ito integral as a random variable. Note that
E(I∆t) = 0 since X is nonanticipating and the increments in Z have mean zero. In 
addition,

Therefore,

Note: The integral

is not well defined as an Ito integral since Z(2s) is not a nonanticipating process.

B.4 ITO’S FORMULA

We provide the derivation for Ito’s formula. Let S(t) be the process

dS = µSdt + σSdZ

and consider the process f (S(t), t) where f is a smooth function. Using a Taylor se-
ries expansion, we obtain

(B2.4)
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where we have used the fact (dZ)2 = dt, and ignored higher-order terms. Note that
the drift term is the backward Black-Scholes partial differential diffusion equation.
In a risk-neutral world, the drift must earn the risk-free rate so that

If we let X = f (S) = lnS, in (B2.4), we obtain the following Wiener process:

which is the continuous lognormal model for stock behavior.

B.5 GEOMETRIC BROWNIAN MOTION

If {X(t), t ≥ 0} is a Wiener process that follows dX = µdt + σdZ, then the process
{S (t), t ≥ 0}, defined by

S(t) = eX(t)

is called geometric Brownian motion. Let f (X) = eX(t). From Ito’s lemma we have

so that

which is the continuous geometric random walk.

B.6 STOCHASTIC LEIBNITZ RULE

Suppose X and U evolve under the measure QU according to

dX(t) = ( . . . )dt + σX (t)CdZU (t)

dU(t) = ( . . . )dt + σU (t)CdZU (t)
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where both σX (t) and σU (t) are 1 × n vectors, ZU is an n-dimensional driftless (un-
der QU) standard Brownian motion, and CC′ = ρ. Then

(B2.5)

where

from Ito’s formula.

B.7 QUADRATIC VARIATION AND COVARIATION

The quadratic variation of a stochastic process X(t) with continuous paths t → X
(t, ω) is defined as

We can write this as a second-order integral:

or, in differential form,

d < X, X >t = dX (t, ω)dX (t, ω)

If X is a Brownian motion, then

dZ (t, ω)dZ(t, ω) = dt

One can also define the quadratic covariation of two processes X and Y with
continuous paths as
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We can write this as a second-order integral:

or, in differential form,

d < X, Y >T = dX (t, ω)dY(t, ω)

< > = ∫X Y dX t dY tT

T

, ( , ) ( , )   
0

ω ω
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About the CD-ROM

INTRODUCTION

This CD-ROM contains the application, Excel spreadsheets, and code libraries for
the information discussed in the text, as well as Appendixes C through F.

SYSTEM REQUIREMENTS

■ A computer with a processor running at 120 Mhz or faster.
■ At least 32 MB of total RAM installed on your computer; for best performance,

we recommend at least 64 MB.
■ A CD-ROM drive.

NOTE: Many popular word processing programs are capable of reading Microsoft
Word files. However, users should be aware that a slight amount of formatting
might be lost when using a program other than Microsoft Word.

WHAT’S ON THE CD

The following sections provide a summary of the software and other materials
you’ll find on the CD.

QuantPro

QuantPro is a Windows application for doing quantitative analysis of equity and
fixed income derivatives. QuantPro computes Monte Carlo simulations, binomial
trees, trinomial trees, implicit difference, and explicit difference methods for equity
derivatives. It builds interest rate trees to price bonds, bond options, swaptions,
caps, and floors using different interest rate models such as Hull-White, Black-
Karasinski, and Black-Derman-Toy.

Note: QuantPro does not include VC++/MFC source code—code for the appli-
cation can be purchased separately. This application is an ongoing project that will
include additional functionality in the next release, including database and charting
support.
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Quantitative Pricing Engine Library

Quantitative Pricing Engine Library includes many derivatives classes in C++ for
pricing and valuation of most derivative securities, including most equity, fixed in-
come, and exotic derivatives.

■ Includes many of the author’s own proprietary C++ classes such as HJM.
■ Includes many complex pricing, statistical, and numerical algorithms and

classes.
■ Utilizes various numerical library classes such as QuantLib, Newmat matrix

classes, and GNU scientific classes in C++.

Excel Spreadsheets and QuantLibXL

Excel spreadsheets and QuantLibXL add-ins are included for doing quantitative
analysis such as modules for computing local volatility surfaces and option valuation.

Additional and Other Open Source C++ Libraries

Other libraries that can be installed and used separately on the user’s machine include:

■ QuantLib.
■ Newmat matrix library.
■ GNU Scientific Library.

Appendices

■ Appendix C—Fast Fourier Transform Method
■ Appendix D—Building Models, Pricing Engines, and Calibration in Practice
■ Appendix E—Code Routines
■ Appendix F—Solving the Black-Scholes PDE

APPLICATIONS

The following applications are on the CD-ROM:

Adobe Reader

Adobe Reader is a freeware application for viewing files in the Adobe Portable
Document format.

Word Viewer

Microsoft Word Viewer is a freeware viewer that allows you to view, but not
edit, most Microsoft Word files. Certain features of Microsoft Word docu-
ments may not display as expected from within Word Viewer.
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Excel Viewer

Excel Viewer is a freeware viewer that allows you to view, but not edit, most
Microsoft Excel spreadsheets. Certain features of Microsoft Excel docu-
ments may not work as expected from within Excel Viewer.

Shareware programs are fully functional, trial versions of copyrighted pro-
grams. If you like particular programs, register with their authors for a nominal fee
and receive licenses, enhanced versions, and technical support.

Freeware programs are copyrighted games, applications, and utilities that are
free for personal use. Unlike shareware, these programs do not require a fee or pro-
vide technical support.

GNU software is governed by its own license, which is included inside the
folder of the GNU product. See the GNU license for more details.

Trial, demo, or evaluation versions are usually limited either by time or by
functionality (such as being unable to save projects). Some trial versions are very
sensitive to system date changes. If you alter your computer’s date, the programs
will “time out” and no longer be functional.

CUSTOMER CARE

If you have trouble with the CD-ROM, please call the Wiley Product Technical
Support phone number at (800) 762-2974. Outside the United States, call 1(317)
572-3994. You can also contact Wiley Product Technical Support at www
.wiley.com/techsupport. John Wiley & Sons will provide technical support only
for installation and other general quality control items. For technical support on
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GNU General Public License

Version 2, June 1991
Copyright © 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies 
of this license document, but changing it is not allowed.

PREAMBLE

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee
your freedom to share and change free software—to make sure the software is free
for all its users. This General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to using it.
(Some other Free Software Foundation software is covered by the GNU Library
General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to dis-
tribute copies of free software (and charge for this service if you wish), that you re-
ceive source code or can get it if you want it, that you can change the software or
use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny
you these rights or to ask you to surrender the rights. These restrictions translate to
certain responsibilities for you if you distribute copies of the software, or if you
modify it.

For example, if you distribute copies of such a program, whether gratis or for a
fee, you must give the recipients all the rights that you have. You must make sure
that they, too, receive or can get the source code. And you must show them these
terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer
you this license which gives you legal permission to copy, distribute and/or modify
the software.

Also, for each author’s protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If the soft-
ware is modified by someone else and passed on, we want its recipients to know
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that what they have is not the original, so that any problems introduced by others
will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We
wish to avoid the danger that redistributors of a free program will individually ob-
tain patent licenses, in effect making the program proprietary. To prevent this, we
have made it clear that any patent must be licensed for everyone’s free use or not
licensed at all. The precise terms and conditions for copying, distribution and
modification follow.

TERMS AND CONDITIONS FOR COPYING, 
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms of this
General Public License. The “Program”, below, refers to any such program or
work, and a “work based on the Program” means either the Program or any deriv-
ative work under copyright law: that is to say, a work containing the Program or a
portion of it, either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in the term “mod-
ification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by
this License; they are outside its scope. The act of running the Program is not re-
stricted, and the output from the Program is covered only if its contents constitute a
work based on the Program (independent of having been made by running the Pro-
gram). Whether that is true depends on what the Program does.
1. You may copy and distribute verbatim copies of the Program’s source code as
you receive it, in any medium, provided that you conspicuously and appropriately
publish on each copy an appropriate copyright notice and disclaimer of warranty;
keep intact all the notices that refer to this License and to the absence of any war-
ranty; and give any other recipients of the Program a copy of this License along
with the Program.

You may charge a fee for the physical act of transferring a copy, and you may
at your option offer warranty protection in exchange for a fee.
2. You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such modifications
or work under the terms of Section 1 above, provided that you also meet all of
these conditions:

■ a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

■ b) You must cause any work that you distribute or publish, that in whole or in
part contains or is derived from the Program or any part thereof, to be licensed
as a whole at no charge to all third parties under the terms of this License.
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■ c) If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the most or-
dinary way, to print or display an announcement including an appropriate
copyright notice and a notice that there is no warranty (or else, saying that you
provide a warranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this License. (Exception:
if the Program itself is interactive but does not normally print such an an-
nouncement, your work based on the Program is not required to print an an-
nouncement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do
not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to each and
every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with
the Program (or with a work based on the Program) on a volume of a storage or
distribution medium does not bring the other work under the scope of this License.
3. You may copy and distribute the Program (or a work based on it, under Section
2) in object code or executable form under the terms of Sections 1 and 2 above pro-
vided that you also do one of the following:

■ a) Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

■ b) Accompany it with a written offer, valid for at least three years, to give any
third party, for a charge no more than your cost of physically performing
source distribution, a complete machine-readable copy of the corresponding
source code, to be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

■ c) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommer-
cial distribution and only if you received the program in object code or exe-
cutable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making mod-
ifications to it. For an executable work, complete source code means all the source
code for all modules it contains, plus any associated interface definition files, plus
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the scripts used to control compilation and installation of the executable. However,
as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the source code
from the same place counts as distribution of the source code, even though third
parties are not compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program except as ex-
pressly provided under this License. Any attempt otherwise to copy, modify, subli-
cense or distribute the Program is void, and will automatically terminate your
rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.
5. You are not required to accept this License, since you have not signed it. How-
ever, nothing else grants you permission to modify or distribute the Program or its
derivative works. These actions are prohibited by law if you do not accept this Li-
cense. Therefore, by modifying or distributing the Program (or any work based on
the Program), you indicate your acceptance of this License to do so, and all its
terms and conditions for copying, distributing or modifying the Program or works
based on it.
6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distrib-
ute or modify the Program subject to these terms and conditions. You may not im-
pose any further restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to this License.
7. If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of
this License, they do not excuse you from the conditions of this License. If you can-
not distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent license would not permit royalty-free
redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be
to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any partic-
ular circumstance, the balance of the section is intended to apply and the section as
a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or
other property right claims or to contest validity of any such claims; this section has
the sole purpose of protecting the integrity of the free software distribution system,
which is implemented by public license practices. Many people have made generous
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contributions to the wide range of software distributed through that system in re-
liance on consistent application of that system; it is up to the author/donor to de-
cide if he or she is willing to distribute software through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a con-
sequence of the rest of this License.
8. If the distribution and/or use of the Program is restricted in certain countries ei-
ther by patents or by copyrighted interfaces, the original copyright holder who
places the Program under this License may add an explicit geographical distribu-
tion limitation excluding those countries, so that distribution is permitted only in
or among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.
9. The Free Software Foundation may publish revised and/or new versions of the
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or con-
cerns. Each version is given a distinguishing version number. If the Program speci-
fies a version number of this License which applies to it and “any later version”,
you have the option of following the terms and conditions either of that version or
of any later version published by the Free Software Foundation. If the Program
does not specify a version number of this License, you may choose any version ever
published by the Free Software Foundation.
10. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.
NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS
NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PRO-
GRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF
THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED
TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER
PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS
PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING
ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
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ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (IN-
CLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING REN-
DERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES
OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-
GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
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Inverse Fourier transform, 779
Iterative finite-difference methods,

232–235, 237
Ito integral, 787
Ito’s formula, 788–789
Ito’s lemma, 6, 13, 292, 303,

321–322, 368, 388–389,
398–399, 421–422, 495, 581,
626, 647, 789

Jacobi method, iterative finite-
difference, 232–233

Jamshidian’s decomposition, 395,
429–431, 524

Jarrow-Rudd (JR) trees, 132–137,
166–167

Jump diffusion, 17, 98–102, 290,
313–315, 681

Karhunen-Loeve decomposition, 289
Knockout barrier option, 250, 253

Laguerre polynomials, 722
Lambda (λ), implications of, 169,

189, 339, 344–345, 348–349,
393, 432, 589–590, 597, 626,
640

Lattice(s), 8, 30, 190, 229–231, 710
Law of large numbers, 787
Least-squares Monte Carlo (LSMC)

technique, 710, 721, 724–725
Least-squares regression, 78–79
Leibnitz’s rule, 789–790
Leptokurtic models, 339
Leverage effect, 102
LIBOR market models (LMMs):

advantages of, 630–631
characteristics of, 631–642,

644–678, 686–709, 732–733
defined, 630

Likelihood density function, 343
Likelihood ratio methods (LRMs),

688, 694
Likelihood ratio test statistics, 325
Linear regression, 78
Linear sum operator, 345
Lipschitz continuous function, 690
Li-Ritchken-Sankarasubramanian

(LRS) two-factor model, 556,
626–629

Local volatility surfaces, 288,
309–313

Lockout period, 150
Log-Euler scheme, 656–657
Log-likelihood function, 343
Lognormal distribution, 7–8, 37,

46, 93, 125, 130, 260, 314,
412, 447, 496, 759

Lognormal dynamics, 44
Lognormal forward model (LFM):

calibration, 641
correlation structures, 665–666
characteristics of, 631
forward-swap model,

incompatibility with, 631,
663–664

swaption pricing with, 642–646
swaption volatilities formula,

648–655, 663–664, 673–677
Lognormal forward-swap model

(LSM), 631, 645, 663–664
Lognormal Hull-White short rate

model, see Black-Karasinski
short rate model

Lognormal process, stochastic
multifactor models, 368,
376–388

Log-Poisson distribution, 314
London Interbank Offered Rate

(LIBOR), 439–442, 455–456,
562. See also LIBOR market
models (LMMs)

Long positions, forward contracts,
2

Longstaff and Schwartz method
(LSM), 721–730

Lookback options, 262–273
Low-discrepancy sequence, 98
LU decomposition, 194–196, 199,

232, 237–238

Market conditions, 325–326
Market risk, 3
Markov chain dynamics, Bermudan

swaptions, 712, 719
Markov diffusion process, single-

factor interest rate models, 
402

Markov short rate process, 581–582
Mark to market, 3
Martingale, implications of, 33–34,

304, 311, 422–423, 442, 447,
616, 632, 635, 755, 758–759.
See also Equivalent martingale
measure
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Matrix, see specific types of
matrices

Maximum likelihood estimates,
325, 341–342, 344, 346, 353

Mean, defined, 774
Mean reversion, 316, 403–404,

424, 486–487
Mean tracking (MT) option price

tree, 359–360
Merton-Ho-Lee model, 424, 449
Mesh density, 731
Milstein:

approximation, 47
dynamics, 666

Minimand, defined, 295
Modified barrier, 253–255
Moment-generating function, 39, 

46
Moments expansion, 774–775
Money market account (MMA),

3–4, 11–13, 17, 321, 456–457,
608, 634, 712, 734

Monte Carlo simulation(s), 45–67,
69–122, 246, 320, 323, 362,
365, 367–368, 375–376,
401–402, 585–587, 640, 648,
657, 667, 711–712, 720–721

Monte Carlo swaption price
estimate, 631, 655–663

Mortgage-backed securities, see
Index-amortizing swaps,
valuation of

Moving average (MA):
characteristics of, 329–330
exponential weighted (EWMA),

331–334, 341
high-frequency data, 341

Multidimensional stochastic
simulations, 50

Multinomial tree, 359–360
Multivariate diffusion processes,

50, 374–376
Municipal bonds, 398

Nadaraya-Watson estimator, 288
Newmat matrix library, 56, 346
Newton-Cotes formula, 760
Newton-Raphson equation,

274–276, 278, 297
Newton-Raphson method, 430,

449, 469, 472–474, 477–478,
480, 489, 497, 670

No-arbitrage:
drift, 579
implications of, 10

pricing, 1, 13, 34
relationships, trinomial trees, 179

Non-Markovian short rate process,
585–586

Nonlinear asymmetric GARCH 
(N-GARCH), 355

Nonlinear regression, 584
Nonrecombining trees, Bermudan

swaptions, 711
Normal distribution, 7–8, 15, 68,

101, 130, 178, 339, 406, 773
Normal random variable, 355
Numeraire, 1, 4, 35–38, 41–44,

421, 442, 632–634, 645–646

One-step-ahead forecast, 364
Optimization methods, 342–343,

458–462, 465, 721
Options, see specific types of options

characteristics of, 17–18
classes of, 18–30
writing, 77

Ordinary differential equation
(ODE), single-factor interest
rate models, 405, 437–438

Ordinary least squares (OLS)
estimation, 344–345

Ornstein-Uhlenbeck process,
18–19, 290, 405–406, 428

Orthogonality, 290–291
Out-of-the-money (OTM) options,

127, 281–283, 309, 440
Out-of-the-money swaption, 645
Over-the-counter (OTC) market, 2,

276
Overdetermined diffusion

equations, 374

Parity, 16, 152, 445
Partial differential equation (PDE),

1, 4–10, 15, 30–31, 163–164,
184, 242–243, 292–293, 311,
322–323, 395, 399–401, 413,
433, 436

Path-dependent derivatives, 246
Payer swaption, 443
Plain-vanilla options, 26–28,

223–224, 679
Plain-vanilla swaps, 742–743
Poisson process, 98–102
Polar rejection method, 49
Portfolio rebalancing, 11
Prepayment risk, 742
Present value (PV), 2–3, 456
Price caps, see Caps

Pricing, generally:
Bermudan swaptions, 710, 713
caps, Black’s model, 395, 439–443
formulas, 33–35
range note, 733–734
trigger swaps, 752–754
types of options, 69, 182,

246–247, 250–252, 258–259,
261–264, 549

Primary securities, 374
Principal component analysis

(PCA), 289–290, 319, 324,
367, 389–394, 555, 639

Principal components
representation, 391

Probability, overview of, 771–782
Probability density function, 764,

773–774, 776, 781, 784
Probability distribution function, 7
Probability spaces, characteristics

of, 771–773
Profit/loss (P/L), 12–13, 72–73
Pseudorandom number generation,

48
Pseudo-RNGs, Monte Carlo

simulations, 56–57
Put-call parity, 16
Put options, 16, 141, 143, 182,

197–198, 200–201, 262–263,
265–273, 443

Put provisions, convertible bonds,
151

Quadratic variation/covariation,
790–791

Quadrinomial trees, two-factor
models, 565

Quantitative Pricing Engine Library,
804

Quantization error, 250
QuantLibXL, 804
Quanto (multicurrency) derivatives:

caps, 710, 754, 757
characteristics of, 710, 754–757
floors, 710, 757
swaptions, 710, 757–760

QuantPro, 803
Quasi–Monte Carlo integrals, 98
Quasi-random number generators

(RNGs), Monte Carlo
simulations, 56–57, 63

Radon-Nikodym derivative, 3, 33,
36, 39–40, 43, 369–370, 422,
432, 559–560
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Random variables, 49–56,
368–371, 773–777

Random walk, 93, 165, 367,
371–373, 784

Range note, 733–734
Rate of return, 6, 9, 128
RATS (Regression Analysis of Time

Series), 341
Rebonato’s two-stage approach,

LIBOR market models
(LMMs), 639–640, 667–668

Receiver swaption, 443, 445–446,
564

Recombining lattices, LIBOR
market models (LMMs), 711

Recombining trees, 598, 627–628
Recovery rate, 162
Recursion, 598
Regularizing parameters, 295
Replicated option, 30
Replicating portfolio, 13, 15, 

399
Research Seminar in Quantitative

Economics (RSQE) database,
364

Returns, implications of, see specific
types of returns

Rho, 25, 143
Riccati differential equation, 437
Riemann sums, 786–787
Risk-adjusted martingale, 520
Risk-free rate, 2–5, 9–10, 15, 46,

77, 99, 123–124, 152, 162,
399, 590

Riskless no-arbitrage portfolio, 
292

Riskless portfolio, 9, 399
Risk-neutral, generally:

binomial probability, 124
drift, 323, 419, 589–590
investors, characteristics of, 3
measure, 556, 580, 761
numeraire, 43
pricing, 1, 4, 10–17, 84–85,

263–264, 423, 549
process, 70, 400–401, 434
valuation, 734–735

Risk-neutral probabilities, 354,
589, 592–594, 616

Ritchken and Sankarasubramanian
(RS) two-factor model,
555–556, 622–626

Ritchken and Trevor (RT)
algorithm, 354–355, 357–359,
361–362

S&P 500 index, 282, 286–287,
291, 303, 316, 352, 364

Scalar random variable, stochastic
multifactor models, 369

Schwartz inequality, 673
Seasoned Asian options, 261–262
Self-financing strategy, 35
Self-replicating strategy, 34
Shareware, 805
Shift-extension process, in tree

construction, 520–524
Short position, forward contracts, 2
Short rate process, 395, 398–402
Short-rate-tree-building procedures:

BDT short-rate model, 467–485,
501–502, 551, 553

Black-Karasinski short-rate
model, 467, 495–501, 509,
511–515

Cox-Ingersoll-Ross (CIR) model,
515–521, 541–549

deterministic-shift extension,
520–524

fixed income derivatives,
549–553

Hull-White short rate process,
467, 485–495, 501, 504–509,
520, 526–541, 584

lognormal Hull-White, 467,
495–501

Vasicek model, 467, 509–511,
521, 524–541

Short sales, 16
Sigma field, 33, 557, 561
Simpson’s rule, 760–761
Single-factor interest rate models:

arbitrage-free restrictions,
591–594

Black-Derman-Toy (BDT) model,
395, 438–439

bond pricing partial differential
equation, 395, 399–401

calibration, 457–466
Cox-Ingersoll-Ross (CIR) model,

395, 431–438
European swaption pricing, 395,

443–448
Heath-Jarrow-Morton model,

599–607
Hull-White model, 395, 425–429,

449, 451
implementation process, 395
Jamshidian’s decomposition

technique, 395, 429–431
overview of, 395–398, 402–404

pricing caps, 395, 439–443
short rate process, 395, 398–399,

401–402, 448–455
swaps, valuation of, 455–457
Vasicek model, 395, 404–425, 441

Six-step-ahead forecast, 364–365
Skew, 276–283, 289, 674, 711
Smiles, 277–282, 284, 289,

673–677
Smoothing, 288–289
Sobol sequences, Monte Carlo

simulation, 57–59, 61–63
Specification error, 250–251
Specified barrier, 253–255
Spectral decomposition, 656
S-PLUS, 341
Spot rate(s), 414–416, 428, 442,

520, 579, 581, 622, 624–626,
631, 743

Spread options, 50, 149
Spread option stochastic volatility

model, 316–317
Square-root process, 176, 316
Stability condition, 181–182
Standard deviation, 47–50, 67, 70,

72, 171, 173, 313, 392, 447,
588–589, 628, 776

Standard error, 72
State prices, 178, 180
Stationary process, 17
Statistical models:

estimation problems, 353–354
GARCH, 334–366
moving average (MA), 329–334
overview of, 324–329

Step-ahead forecast, 363–364
Stochastic calculus, review of,

783–791
Stochastic differential equation

(SDE), 4, 6–7, 11, 38–39,
46–47, 69–70, 92, 374–375,
378, 389, 398, 405–406,
408–410, 422, 439, 521, 582,
657, 675, 755

Stochastic discount factor, 34
Stochastic integrals, 785–788
Stochastic Leibnitz rule, 789–790
Stochastic mesh, 730–733
Stochastic multifactor models:

Brownian motion, n-dimensional,
368, 371–373, 375

correlated random variables,
change of measure, 370–371

independent random variables,
change of measure, 368–370
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lognormal process, 
n-dimensional, 368, 376–388

multivariate diffusion processes,
374–376

overview of, 367–368
principal component analysis

(PCA), 367, 389–394
random walks, n-dimensional,

367, 371–373
vector-valued diffusion processes,

Ito’s lemma, 368, 388–389
Wiener process, n-dimensional,

367, 372–373, 376–377, 388
Stochastic volatility, 53, 286, 315,

317, 322–323, 411. See also
Volatility/volatilities

Successive overrelaxation (SOR)
method, iterative finite-
difference, 232–234, 237

Supply and demand, 282
Swap rate, 444–446, 456, 607–608
Swaps, types of, 455–457, 710,

742–754
Swaptions, 395, 443–450, 466,

551–553, 561–564, 579, 631,
644–645, 648–650, 657–662,
670–673, 686–688, 710–733,
757–760

Symmetric GARCH, 337, 343
Synthetic forward, 2
Synthetic swaps, 457, 607–615
Systematic risk, 3

Taylor series, 775, 788
Terminal correlation, 665–669, 680
Term structure, 396–397, 522, 582,

596–599
T-forward measure, 41–44, 310,

559
Theta, 25, 143, 296
Three-factor model, 555
Tikhonov regularization, 300, 308
Time-changed Brownian motion,

407, 409
Time horizon, 341
Trading strategy, 11–12
Transcendental equation, 33
Transitional probabilities, 179–181,

766
Treasury bills, 277

Treasury bonds, 391–393, 397–398
Treasury notes, 455
Tree-building procedures, single-

factor interest rate models, see
Short-rate-tree-building
procedures

Trigeorgis model, 135
Trigger swaps, 710, 752–754
Trinomial diffusion process, 189,

232
Trinomial tree(s), 8, 165–182,

251–252, 264, 268–269, 273,
356–361, 485–495, 501–509,
626–629

lookback options, 264, 268
Tsiveriotis-Fernandes (TF) model,

164
Two-factor models:

characteristics of, 554–556
discount bond pricing, 584–587
G2++ model, 555–576
Heath-Jarrow-Morton model,

555, 580–592, 615–622
Hull-White model, 555, 576–580
Li-Ritchken-Sankarasubramanian

(LRS) model, 556, 626–629
Ritchken and

Sankarasubramanian model,
555–556, 622–626

synthetic swap valuation,
607–615

Underdetermined diffusion
equations, 375

Underrelaxation, iterative finite-
difference, 234

Up-and-in calls/puts, 247
Up and in (UI) trigger swaps, 752
Up-and-out calls/puts, 247, 257
Up and out (UO) trigger swaps, 752

Valuation techniques, 79–81,
84–92, 124, 150–164,
455–457, 597, 598, 607–615,
710, 733–754

Value at risk (VaR), 73, 362,
365–366

Vanilla GARCH, 337
Vanilla options, 252, 264, 308. See

also Plain-vanilla options

Variance-covariance matrices, 
367

Variance diffusion, 98–102
Variance reduction, 67–69
Vasicek single-factor interest rate

model:
characteristics of, generally, 395,

404–425
Hull-White extended process,

425–429, 449, 451
tree construction, 467, 509–511,

521, 524–541
volatility, 607, 626

Vega, 143, 276, 280, 322, 696,
698, 707–709

Volatility/volatilities:
hedging and, 321–323
impact of, 4, 50, 261, 283,

303–305, 313–315, 343,
418–420, 598–599, 607, 631,
665

implied, 274–277, 284–303,
307–309

influential factors, 5–6, 14, 37,
94, 102, 274, 276–282, 289,
305–307, 315–321, 398–399,
579–582, 584–586, 622–623,
626–627

local surfaces, 309–313
term structure of, 277
time-varying, 144

Voltera equation, 438

Wiener process, 5, 17, 93–94, 290,
315, 367, 372–373, 376–377,
388, 409, 412, 426, 470, 576,
785, 789

Word Viewer, 804
Writing options, 77

Yield curve(s), 396, 469, 471–495,
501–509, 640

Zero-coupon bonds, 41, 43–44,
400–401, 404, 411–425, 434,
439–440, 457, 521–525, 542,
557–558, 561, 581, 583, 588,
592, 596–599, 608, 617, 632,
734–735, 744

Zero-coupon curve, 554

Index 819



CUSTOMER NOTE: IF THIS BOOK IS ACCOMPANIED BY SOFTWARE, PLEASE
READ THE FOLLOWING BEFORE OPENING THE PACKAGE.

This software contains files to help you utilize the models described in the accompa-
nying book. By opening the package, you are agreeing to be bound by the following
agreement:

This software product is protected by copyright and all rights are reserved by the au-
thor, John Wiley & Sons, Inc., or their licensors. You are licensed to use this software
on a single computer. Copying the software to another medium or format for use on a
single computer does not violate the U.S. Copyright Law. Copying the software for
any other purpose is a violation of the U.S. Copyright Law.

This software product is sold as is without warranty of any kind, either express or im-
plied, including but not limited to the implied warranty of merchantability and fitness
for a particular purpose. Neither Wiley nor its dealers or distributors assumes any lia-
bility for any alleged or actual damages arising from the use of or the inability to use
this software. (Some states do not allow the exclusion of implied warranties, so the
exclusion may not apply to you.)

For more information about the CD-ROM 
see the About the CD-ROM section on page 803.




