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Preface

erivative modeling is at the heart of quantitative research and development on

'Wall Street. Practitioners (i.e., Wall Street trading desk quants) and academics
alike spend much research, money, and time developing efficient models for pricing,
hedging, and trading equity and fixed income derivatives. Many of these models in-
volve complicated algorithms and numerical methods that require lots of computa-
tional power. For instance, the HJM lattice for pricing fixed income derivatives
often requires coding a nonrecombining bushy tree that cannot be easily traversed
and grows exponential in time and memory.

C++ is often the programming language of choice for implementing these mod-
els due to the language’s object-oriented features, speed, and reusability. However,
often the implementation “how-to” of these models is quite esoteric to the model
creators and developers due to their algorithmic complexity. Most journal articles
and white papers that discuss derivative models provide only a theoretical under-
standing of them as well as their mathematical derivations. While many research
papers provide numerical results, few supply the details for how to implement the
model, if for no other reason than to allow readers to replicate and validate their re-
sults. There are several reasons for this.

It is often the general nature of academics who publish leading research to be
pedantic, writing at a level geared for their academic peers, rather than to practi-
tioners. This often leads to papers that spend much time providing mathematical
formulas and proofs as opposed to discussions of practical applications and imple-
mentations. Few if any of these published papers discuss in detail how these deriva-
tive models are to be correctly and efficiently implemented for practical use in the
real world. After all, what good is a model if it cannot be used in practice in re-
search and trading environments?

Another reason for the lack of implementation discussions is that many top
quant researchers and professors, often with doctorates in mathematics and physics,
spend their time developing the mathematical and theoretical underpinnings of the
models and leave the actual code implementations to their graduate research stu-
dents. Graduate research students often are given the task of implementing the
models of their advisers as part of collaborative work. Consequently, often only the
numerical results, if any, are provided, usually generated from the code implementa-
tions of the graduate student.!

'There are instances where code is provided by the graduate research student. In the paper
“Fast Greeks in Forward LIBOR Models” by P. Glasserman and Z. Zhao, the code is given
at www-1.gsb.columbia.edu/faculty/pglasserman/Other/get_code.html and is discussed in
Chapter 13 of this book.
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However, as is more often the case, the code developed by quant researchers
and programmers working on Wall Street trading desks is highly valuable and pro-
prietary to the Wall Street institutions just as the Windows operating system code is
proprietary to Microsoft and not the developers who work on it. The code is the
powerful engine that gives trading desks their competitive advantage over other
players in the market. If Wall Street trading desks have a proprietary model that al-
lows them to capture arbitrage opportunities based on “mispricings” between de-
rivative market prices and their theoretical model values, then if this code was
readily available to all market participants, the model would be exploited by all
those using it, quickly eliminating the profit opportunity and removing the compet-
itive edge of the institution where it was developed.

Similarly, professors and researchers who own the code for the models they de-
velop often are unwilling to release it to the public because keeping it in-house can
lead to lucrative consulting contracts with Wall Street institutions and companies
that want to contract them to implement and license use of their proprietary model.
For example, GFI Group, Inc., states on its web site that two top researchers, John
Hull and Alan White, have assisted the company in its development of software for
credit derivatives pricing using the Hull-White credit model.

When I was a graduate student in the Financial Engineering Program at the
University of Michigan, the theory and mathematical derivations of the models
were taught and emphasized. An understanding of stochastic calculus, stochastic
processes, partial differential equations, and probability theory was emphasized
and was a prerequisite for being able to model, price, and hedge complicated deriv-
atives securities. Since students were assumed to know how to program in C and
use Excel, little emphasis was made on efficient coding implementation. At the
time, our code was written on Sun Sparc workstations. Upon graduating and com-
pleting several other graduate degrees in mathematics and computer science, being
able to program became more important than actually understanding the theory
behind the models because Wall Street positions for developing code and models to
support trading desks require excellent programming skills. However, since one
cannot usually program efficient models without an understanding of the theoreti-
cal and mathematical intricacies behind them, both an understanding of the theory
and being able to program well are necessary. In fact, throughout the book, the the-
ory and mathematical derivations of some of the models are based on the work and
lectures of Dr. Vadim Linetsky, who taught the financial engineering courses.?

Over time the University of Michigan Financial Engineering Program has been
modified to include more practical coding exercises through use of real-time Reuters
data feeds. Other well-known financial engineering, mathematical finance, and com-
putational finance programs, such as those at the University of California—Berkley,

2Dr. Vadim Linetsky is now an associate professor at Northwestern University in the Depart-

ment of Industrial Engineering and Management Sciences. He teaches financial engineering
courses similar to the ones he taught at the University of Michigan.
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the University of Chicago, and Carnegie-Mellon, respectively, may start to adapt
their curricula, if they have not done so already, to place more emphasis on the prac-
tical implementation and coding of models as many of their graduates head to Wall
Street to work in quantitative research and trading development groups.

I felt that since no book bridged the gap between the two and because such a
book would have helped me both in school and afterward on the job as a quantita-
tive developer, I should write such a book so as to help others. Such a book was an
enormous undertaking and required contacting many of the model developers of
some of the more complicated models to try to understand how they implemented
them and in some cases to even obtain their code. In those cases where I was not
able to get model details or code from an author, I was able to verify the accuracy
and robustness of the code I developed by being able to reproduce numerical results
of the models in published papers and books.

Modeling Derivatives in C++ is the first book to provide the source code for
most models used for pricing equity and fixed income derivatives. The objective of
the book is to fill the large gap that has existed between theory and practice of the
quantitative finance field. Readers will learn how to correctly code in C++ many de-
rivatives models used by research and trading desks. The book bridges the gap be-
tween theory and practice by providing both the theory and mathematical
derivations behind the models as well as the actual working code implementations
of these models. While there have been other books that have helped bridge this
gap such as Clewlow and Strickland’s Implementing Derivatives Models (John Wi-
ley & Sons, 1998a), they provide only pseudocode and do not emphasize robust
and efficient object-oriented code that is reusable. The assumption that readers can
easily or correctly translate pseudocode, which may have complex embedded sub-
routines of numerical computations that is needed, often is mistaken. Sometimes,
readers learn by analyzing and reviewing the complete and working code, which is
what this book attempts to accomplish. However, Implementing Derivatives Mod-
els does contain useful model discussions and pseudocode implementations, some
of which are implemented and built upon in this book using C++, such as the hedge
control variate method discussed in Chapter 2 and the alternating direction implicit
method discussed in Chapter 5.

Modeling Derivatives in C++ goes several steps beyond just providing C++
code; it discusses inefficiencies in some of the implementations and how they can be
improved with more robust object-oriented implementations by providing code
from the QuantLib, an open source quantitative pricing library, as well as by pro-
viding alternative implementations. For instance, three separate implementations
are given for the Hull-White model to show readers different coding approaches.
The book contains hundreds of classes, and there is a complete pricing engine li-
brary on the CD-ROM accompanying this book, which includes the code discussed
and given in the book. QuantPro, an MFC Windows application, for pricing many
equity and fixed income derivatives using the models discussed in the book, as well
as for simulating derivatives trades, is also provided on the CD-ROM.

It is the goal of the book that readers will be able to write their own models in
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C++ and then be able to adapt some of the coded models in this book to their own
pricing libraries and perhaps even use to trade. Most important, the book is in-
tended to guide readers through the complexities and intricacies of the theory and
of applying it in practice. The book is aimed at advanced undergraduate students
well as graduate (MBA and Ph.D.) students in financial economics, computer sci-
ence, financial engineering, computational finance, and business as well as Wall
Street practitioners working in a quantitative research or trading group who need a
comprehensive reference guide for implementing their models.

Readers should have a basic understanding of stochastic calculus, probability
theory, linear algebra, partial differential equation (PDEs), and stochastic
processes. For those readers who may be lacking the background in some of this
material or need to review, the appendixes provide a review of some of this mater-
ial. Due to the comprehensiveness of the book, it can be used by professors as ei-
ther a primary text or a supplementary text in their courses.

The chapters are grouped into two main sections: The first focuses on the pric-
ing of equity derivatives and comprises Chapter 1 to Chapter 9, and the second
part focuses on the pricing of interest rate derivatives: Chapter 10 to Chapter 14.

Chapter 1 focuses on the derivation and foundations of the Black-Scholes
model for asset pricing in the risk-neutral world. The Black-Scholes partial dif-
ferential equation describes the evolution of all derivatives whose payoff is a
function on a single underlying asset following geometric Brownian motion
(GBM) and time.

Chapter 2 discusses Monte Carlo methods for valuation of European as well as
path-dependent derivatives. Various random number generators for pseudoran-
dom, quasi-random (deterministic), Sobol, and Faure sequences are discussed. Vari-
ance reduction techniques using control variates and antithetics are discussed to
overcome the computational inefficiency of the Monte Carlo method in its basic
form, which typically requires hundreds of thousands of simulations to achieve
good accuracy.

Chapter 3 discusses the binomial tree model for pricing European and Ameri-
can equity options. The binomial tree is shown to be a two-state discrete approxi-
mation to continuous GBM: The mean and variance of the binomial model match
the mean and variance of the lognormal distribution underlying GBM. Further-
more, the binomial model can be adapted to incorporate time-varying volatility, to
pricing path-dependent options, and to pricing derivatives depending on more than
one asset with two-variable binomial trees.

Chapter 4 generalizes binomial trees to the more flexible and widely used trino-
mial trees, which approximate GBM diffusion processes with three states. It also
discusses implied trees, which are trees constructed to fit observable market prices.
Thus, this method builds trees implied by the market.

Chapter 5 discusses finite-difference methods, numerical methods (actually, ex-
tensions of the trinomial method) for discretizing PDEs that (path-dependent) de-
rivatives with complex payoffs must satisfy and then solving them over a state-time
lattice. The explicit, implicit, and Crank-Nicolson finite-difference methods are dis-
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cussed as well as the alternating direction implicit method for pricing options that
depend on multiple-state variables.

Chapter 6 discusses pricing exotic options including Asian, lookback, and bar-
rier options.

Chapter 7 discusses stochastic volatility models that are used to capture volatil-
ity skews and smiles observed in the options markets. Since the constant volatility
assumption of Black-Scholes is not valid in the real world, alternative models such
as the constant elasticity of variance (CEV), jump diffusion, and multifactor sto-
chastic volatility models can each be used to fit pricing model parameters to observ-
able option market quotes.

Chapter 8 focuses on statistical models for volatility estimation including
GARCH models. Chapter 9 deals with stochastic multifactor models for pricing de-
rivatives like basket options.

Chapter 10 begins the second part of the book and focuses on fixed income
models. The chapter discusses single-factor short rate models including the
Vasicek, Hull-White (HW), Black-Derman-Toy (BDT), and Cox-Ingersoll-Ross
(CIR) models.

Chapter 11 focuses on tree-building procedures for the short rate models dis-
cussed in Chapter 10. It shows how to calibrate the BDT and HW models initially
to the yield curve and then to both the yield and volatility curves, and explains how
to price discount bonds, bond options, and swaptions with the models.

Chapter 12 discusses two-factor models as well as the HJM model for pricing
fixed income derivatives.

Chapter 13 provides an in-depth discussion of the LIBOR market model (also
known as the Brace-Gatarek-Musiela/Jamshidian (BGM/]) model, showing how to
calibrate the model to cap and swaption volatilites for pricing. Correlation struc-
tures and stochastic extensions of the model are also discussed. The chapter shows
the difference and inconsistencies between the LIBOR forward-rate model (LFM)
for pricing caps and the Libor swap model (LSM) for pricing swaptions and swaps.

Chapter 14 discusses exotic interest rate derivatives. Bermudan swaptions,
range notes, index-amortizing swaps, trigger swaps, and quantos are discussed
along with pricing models and implementations for them. Gaussian quadrature is
also discussed as a useful tool for evaluating certain numerical integrals used in de-
rivatives pricing such as those for spread options and quantos.

Appendix A contains a probability review of important probability concepts
used throughout the book. Appendix B contains a stochastic calculus review of
Brownian motion, stochastic integrals, and Ito’s formula. Appendix C contains a
discussion of the fast Fourier transform (FFT) method, a powerful numerical tech-
nique for valuation of higher-dimensional integrals. Appendix D discusses build-
ing models, pricing engines, and calibrating models in practice with a focus on
building robust models. Appendix E contains some useful code routines including
the random number generator for generating uniform deviates for Monte Carlo
simulation from Press et al., Numerical Recipes in C (1992). Appendix F shows
the mathematical details for solving the Black-Scholes PDE using Green’s function.



Xvill

PREFACE

(Appendixes A and B can be found at the end of the book; Appendixes C through
F are available as PDFs on the CD-ROM.)

It is my hope and intention that readers will get a lot of value from this book
and that it will help them in both their academic studies as well as at work on their
jobs. I hope that readers enjoy it as much as I enjoyed writing it. Finally, while I
have attempted to be quite complete in the topics covered, the book does not cover
everything. In particular, mortgage-backed securities and credit derivatives are not
discussed. They will, however, be included in my next undertaking.

JusTIN LONDON

Chicago, llinois
October 2004
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1

Black-Scholes and
Pricing Fundamentals

his chapter discusses the most important concepts in derivatives models, includ-

ing risk-neutral pricing and no-arbitrage pricing. We derive the renowned Black-
Scholes formula using these concepts. We also discuss fundamental formulas and
techniques used for pricing derivatives in general, as well as those needed for the re-
mainder of this book. In section 1.1, we discuss forward contracts, the most basic
and fundamental derivative contract. In section 1.2, we derive the Black-Scholes
partial differential equation (PDE). In section 1.3, we discuss the concept of risk-
neutral pricing and derive Black-Scholes equations for European calls and puts us-
ing risk-neutral pricing. In section 1.4, we provide a simple implementation for
pricing these European calls and puts. In section 1.5, we discuss the pricing of
American options. In section 1.6, we discuss fundamental pricing formulas for de-
rivatives in general. In section 1.7, we discuss the important change of numeraire
technique—useful for changing asset dynamics and changing drifts. In section 1.8,
Girsanov’s theorem and the Radon-Nikodym derivative are discussed for changing
probability measures to equivalent martingale measures. In section 1.9, we discuss
the T-forward measure, a useful measure for pricing many derivatives; and finally,
in section 1.10, we discuss considerations for choosing a numeraire in pricing. (A
probability review is provided in Appendix A at the back of the book and a sto-
chastic calculus review is provided in Appendix B.)

1.1 FORWARD CONTRACTS

A security whose value is contingent on the value of an underlying security or
macroeconomic variable such as an interest rate or commodity like oil is known as
a derivative since the security “derives” its value and is contingent on the value of
the underlying asset. Derivatives are known as contingent claims. The simplest de-
rivative and most fundamental financial transaction is a forward contract, which is
an agreement between two parties to buy or sell an asset, such as a foreign currency,
at a certain time T > 0 for a certain delivery price, K, set at the contract inception ¢,.
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Forward contracts are traded over-the-counter (OTC). Standardized exchange-
traded contracts, such as those on the Chicago Mercantile Exchange, are known as
futures.

In a forward contract, there are two parties, usually two financial institutions
or a financial institution and its customer: One party agrees to buy the asset in the
forward contract at maturity, time 7T, and is said to be long, and the counterparty
agrees to sell the asset to the buyer at T and is said to be short. The contract is set-
tled at maturity T: The short delivers the asset to the long in return for a cash
amount K.

If the price of the asset in the spot market at T is S, then the payoff, £, from
the long position at T is:

fr=S8.-K (1.1)

since the long receives an asset worth S and pays the delivery price K. Conversely,
the payoff from the short position is:

fr=K-S, (1.2)

since the short receives the amount K and delivers an asset worth S.. in exchange.

Let’s use some notation to help in the pricing analysis over time. Let S, 0 < ¢ <
T be the current underlying price at time ¢, let f, ;. be the present value of a forward
contract at time ¢ maturing at time T, let F, be the forward price at time ¢, and let
r be the risk-free rate per annum (with contmuous compounding). The forward
price is such a delivery price K that makes the present value of a forward contract
equal to zero, f ;= 0:

K =F,, =S¢ (1.3)

We can show that this must be the forward price using an absence of arbitrage
argument: If F . > §e""™), we can create a synthetic forward position and arbi-
trage an actual forward contract against this synthetic forward. At time ¢, we can
borrow S dollars for a period of T — ¢ at the risk-free rate r; we can then use these
dollars to buy the asset at the spot price S; and finally, we take a short position in
the forward contract with delivery price F . At time T, we (1) sell the asset for the
forward price F ;. and (2) use an amount e’ T, oS, of the proceeds to repay the loan
with accrued interest. This yields an arbitrage profit of F, ;. — S e"™/. Similarly, as-
suming F ;. < S;e"™), we do the reverse transaction: At time £, we go long the for-
ward contract and short the synthetic forward position—we invest the proceeds S,
at rate 7, and at time T buy the spot asset at F ;, earning an arbitrage profit of
Sye"™) — F ;.. Thus, in the absence of arbitrage we have shown that equation (1.3)
must hold. The absence of arbitrage is equivalent to the impossibility of investing
zero dollars today and receiving a nonnegative amount tomorrow that is positive

with positive probability. Thus, two portfolios having the same payoff at a given
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future date T must have the same price today. Moreover, by constructing a portfo-
lio of securities having the same instantaneous return as that of a riskless invest-
ment—that is, a money market account (MMA)—the portfolio instantaneous
return must be the risk-free rate. Investors are then said to be risk-neutral: They ex-
pect that all investments with no risk (i.e., uncertainty) should earn the risk-free
rate. Investors can always remove systematic (market) risk from the portfolio by
holding securities that can be hedged against one another.

We can also show that F . = § ") by using risk-neutral pricing and calculat-
ing the present value (PV) dlrectly

for =€ THE, [S.— K] = eT)(e™)S — K) = 0 (1.4)

where E, is the expectation operator at time #,. Thus, K = F . = ¢S . The risk-
free rate is used as both an expected growth rate of the asset E AS7] = e’T‘ S, and
the discount rate.

We can also calculate the present value of a seasoned forward position at some
time ¢ after inception, known as marking to market. At some time # after inception,

0 <t < T, the PV is generally different from zero:
fir=e"™E [S;-K]=S,- e ™K =S8, - eT)S, (1.5)

=S —F, =e™[F_—F

t 0,¢ t,T O,T]

(1.6)

Thus, the present value of a seasoned forward contract can be valued by taking the
difference between the forward price at time ¢ and the forward price at time 0 and
discounting back to get the PV. If ¢ = O (i.e., today), then the present value of the
forward contract is 0, which is what we would expect. It is important to note that
the arbitrage-free and risk-neutral arguments are valid only for traded assets. For-
wards on commodities that are held for consumption purposes cannot be valued by
these arguments.

These arguments can be used to value a forward on an asset providing a known
cash income such as coupon bonds or stocks with discrete dividend payments. Let
I, be the PV at time £, of all income to be received from the asset between times ¢,
and T (discounting at the risk-free rate). It is left as an exercise for the reader to
show that K = For= = e'™)(§) - I ) and that at 0 < ¢ < T the present value is fZ’T =
e ™E[(S. - 1) - K] =S, - IZ " (T-IK. If the asset pays a continuous known divi-
dend yield g, then the growth and discount rates are e97 and e -9T respec-
tively. If the underlying asset is a foreign currency, then we can view the yield g as
the foreign risk-free rate 7, so that the growth and discount rates of the underlying
currency S, are e and e-t="T, respectively, and the price of a forward con-
tract on S (i.e., British pounds) at time 0 is For= S e,

Forward contracts and futures contracts are relatively straightforward to value
given that the underlying is a traded asset and all variables are known at time ;: the
price of the underlying, the risk-free rate, the time to contract expiration, T, and
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any cash flows that will occur between #; and T. Most derivatives are not easy to
value because of the stochastic nature of the underlying variables. In most cases, the
underlying factors of a derivative contract are not even traded assets (i.e., volatility
and interest rates). Interest rates in a simple model are assumed constant. In actual-
ity, rates fluctuate and one must estimate and consider the evolution of the term
structure of rates. Moreover, underlying assets such as stocks, bonds, and foreign
currencies follow stochastic (diffusion) processes that must be considered in any re-
alistic financial model.

Throughout this book, we incorporate the stochastic nature of financial vari-
ables into all of our models, and our implementations incorporate time evolution.
Initially, we assume time-homogenous variables (i.e., constant interest rates), but
eventually we relax this assumption and assume variables are a function not only of
time, but also of other underlying factors. We begin our examination of derivative
models by examining and deriving the most fundamental and ubiquitous pricing
model, Black-Scholes.

1.2 BLACK-SCHOLES PARTIAL DIFFERENTIAL EQUATION

Consider a riskless asset (a money market account or bank account), A, started at
time O that grows with the constant continuously compounded risk-free rate of re-
turn 7. The value of our money market account (MMA) at time ¢ is:

A, = e (1.7)
and it is a solution to a stochastic differential equation (SDE) with zero diffusion
coefficient:

dA, = rA dt (1.8)

subject to A, = $1. Equation (1.8) states that an infinitesimal change in our MMA
value, dA,, must be equal to the risk-free rate earned over the change in time, dz. If
we know that value of our MMA at ¢ > 0, then at time T > #, the value is:

A = AT (1.9)

As will be shown, the MMA serves as a good numeraire, any positive non-
dividend-paying asset, when we need to change measures to get an equivalent mar-
tingale measure for risk-neutral pricing of many derivatives (as we discuss in
section 1.10).

Now suppose that S, is the price at time ¢ of a risky stock that pays no divi-
dends (we extend to the case with dividends later). We model its time evolution by
some diffusion process with Brownian motion (see Appendix B for a discussion
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of Brownian motion). But which one to select? The price process we select must
satisfy three requirements:

1. The price should always be greater than or equal to zero. That is, our diffusion
must have a natural boundary at zero. This immediately rules out arithmetic
Brownian motion as a candidate for the realistic stock price process since arith-
metic Brownian motion can have negative values.

2. If the stock price hits zero, corporate bankruptcy takes place. Once bankruptcy
occurs, S = 0; the price can never rise above zero again. So zero should be an
absorbing (cemetery) boundary.

3. The expected percentage return required by investors from a stock should be
independent of the stock’s price. Indeed, risk-averse investors will require some
rate of return 7z = r + 7, on the stock, where 7, is the required excess return over
and above the risk-free rate 7 that investors require to compensate for taking
the risk of holding the stock (risk premium). We will assume initially that this
excess return is constant over time.

These restrictions limit the choice of our stochastic model to:
dsS, =mSdt + b(S,, t)dz, (1.10)

where m is the drift coefficient, which in this case is the constant expected rate of
return on the stock (in the real world) and b(S,,) is some diffusion coefficient,
and z, is a Wiener process—that is, 2, ~ N(0,1). If b = 0, then it is the SDE for the
risk-free asset. For any risky asset, b cannot be zero. Since we require that zero is
an absorbing boundary for the stock price process, we impose an extra restriction
on b: b(0, t) = 0. Thus, if the stock ever hits zero, it will never rise above zero
again (both the drift and diffusion terms are equal to zero in this state, and there
is nothing to lift it out of zero). Thus, we can parameterize our diffusion coeffi-
cient as follows:

b(S, 1) = o(S, 1)S (1.11)
where G is any positive function of S and ¢, or possibly some other stochastic vari-
ables influencing the stock. It is referred to as the volatility of the stock price and is
a measure of variability or uncertainty in stock price movements. Clearly, the sim-
plest choice is a constant volatility process:

ds, =mSdt + 6Sdz,

or:

dS = mSdt + 6Sdz (1.12)
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where we have dropped the time subscript for ease of notation. Here, 7 and ¢ are
the constant instantaneous expected rate of return on the stock (drift rate) and
volatility of the stock price, respectively.

It turns out that this choice of constant volatility, although not entirely realis-
tic, as we will see, is very robust and leads to a tractable model. The process is
called geometric Brownian motion (geometric refers to the multiplicative nature of
fluctuations). The assumption of constant volatility is reasonable as a first approxi-
mation. It means that the variance of the percentage return in a short period of
time, dt, is the same regardless of the stock price. Then 6%dt is the variance of the
proportional change in the stock price in time dt, and 625%dt is the variance of the
actual change in the stock price, S, during dt.

The SDE in equation (1.12) can be integrated in closed form. Indeed, suppose
we know the stock price S at time ¢, S, and we are interested in the price S, at time
T. We will solve the SDE subject to this initial condition by first introducing a new
variable, x:

x =f(S) =InS (1.13)

Ito’s lemma (see Appendix B) tells us that any function f of S follows a diffusion
process:

af df 1 20 df af
df =| ——+mS——-+=-0"S"—-|dt +oS—-d 1.14
f [dt+m dS+26 5 +0 1S z ( )
In the case of the logarithmic function we have:
o>
dx = m-—- dr + odz (1.15)

or
dx = pdt + odz
where U = m - 6%/2.
Hence, a logarithm of the stock price follows an arithmetic Brownian motion

with the drift rate @ = m — 6%/2 and diffusion coefficient 6. This SDE can be imme-
diately integrated to yield:

2
xT=x+[m—%}+mﬁeT (1.16)
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where we have made use of the fact that

dzzex/a, =Tt

and ¢ is a standard normal deviate. Thus, since x = InS, then:

S

Sy = S{m - %]r n cﬁaT}

2
lnS—T = (m - %}t + ()'\/;ET

or

(1.17)

(1.18)

This is a closed-form solution to the Brownian motion SDE. We can now find the
transition probability density (the probability distribution function of S, at T given

S at t). Given x at ¢, x, is normally distributed:

2
X7 ~ N[x+[m—%](T—t),Gw/T—tJ

or:

plxr, Tlx, t)dx =

! expy— (
V2no?t 20%1

where p = 7 — 6%/2. Then InS. is also normally distributed:

InSy ~ N(lnS+u(T—t),Gw/T—t)

or:

plxr, Tz, tldxy =

exps—

1
V2ot

(Note that dx.. = dS_/dS.) This is the lognormal distribution.

(1.19)

(1.20)

(1.21)



BLACK-SCHOLES AND PRICING FUNDAMENTALS

We can now calculate the moments of the lognormal distribution around zero.
We need to calculate the mean and variance by taking expectations:

M, (0)= E, 5S¢ | = [ Sip(Sr, T1S, )ds; (1.22)
0

where E, ( is the expectation operator taken over § at time 2. However, we can actu-
ally calculate the moments without calculating the integral. Since S.. = exp(x,), we
need to calculate the expectation:

M,(0) = E, [e"1] (1.23)

n

Since x, is normally distributed, we can use the characteristic function of the nor-
mal distribution to help calculate expectations:

2 A2
o(\) = E[e™T] = exp[mx +ur)-2 ;7” ] (1.24)

Substituting /A — 7 and recalling that x = InS and p = m — 6%*/2, we have:

2.2
M,,(0) = E, s[e"7]=$" exp(nu‘c + 2 g T) (1.25)

= Sﬂ exp[an+ n(nz_ 1) GZTJ (1.26)

In particular, the mean:
E, [S;]=e"S (1.27)
and the variance is:

Vart = S2 [82mr+621 _ eZmr] - SZeZmr[eGZT - 1]

We will use these moments when we need to match moments to the binomial distri-
bution when we value options using binomial and trinomial trees (lattices). We al-
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ready made use of equation (1.27) when we calculated the present value of forward
contracts in equation (1.5).

We now have the framework to price options on stocks. Consider a derivative
security f,. = F(S,) at time T. Suppose that the underlying asset follows a geometric
Brownian motion with drift as in equation (1.12). Suppose we construct a portfolio
IT containing a short position in one option f and a certain number of shares A:

M=AS—f (1.28)

Note that we fix the number of shares at the beginning of the interval df and hold it
fixed through dt. From Ito’s lemma, a change in the portfolio value is given by:

dT1 = AdS — df (1.29)

A(mSdt +6Sdz) (df+ ms I Ls2g jsf]dt—GS fdz (1.30)

d ds 2 ds
_osl a9l _df\_df 1 a0 d'f
= GS(A 1S )dz + [ms(A dS) 5 5° S e dt (1.31)

where we have made use of equation (1.14) for df. Note that we do not have to differ-
entiate A since this is just the number of shares we keep fixed through this infinitesimal
time interval df. Let’s select the number of shares to hold (the hedge ratio) A so that:

_df
A= (1.32)

This selection makes our portfolio instantaneously riskless—the term with the
Wiener process dz (risk) falls out of equation (1.31). However, the portfolio is risk-
less only instantaneously for an infinitesimal time period dt since we have fixed our
hedge ratio A. To keep the portfolio riskless through the next time period dt, we
will need to rebalance—to change the delta to reflect the changing stock price.

Since our portfolio is now instantaneously riskless (over an infinitesimal time
period dt), its rate of return must be equal to the risk-free rate r (otherwise, there is
a clear arbitrage opportunity). The interest that accrues on our portfolio during an
infinitesimal time period dt is:

dTl = vI1dt (1.33)
The drift of the process for the portfolio must be equal to 7:

af 1 y e 82’( B (134)
g-f-zﬁ S —2+1’H—0
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or:

12 i f+ Saf f_——f (1.35)
2 N

Consequently, the option price f must satisfy the partial differential equations
(PDEs) as a consequence of the no-arbitrage assumption. This is the Black-Scholes
equation. Mathematically, this is a diffusion or heat equation.

1.3 RISK-NEUTRAL PRICING

We can also analyze equation (1.35) in the context of a risk-neutral world. We can
rewrite (1.35) as

D,,f - rf———f (1.36)

where D_, is the generator of the risk-neutral price process:

1 50 0 d
S rS— .
2(5 o5 —+ 35 (1.37)

Ds,t
Note that the true drift rate m (the drift of the real-world price process) falls out of
the equation, and the risk-neutral drift rate equal to the risk-free rate » takes its
place. The risk-neutral price process (the stock price process in a risk-neutral
world—a world where all investors are risk-neutral) is:

dS = rSdt + 6Sdz (1.38)

At the same time, the discount rate is also risk-neutral. Note also that the delta, or
hedge ratio, depends on both time and the underlying price:

of (S,2)

A(S,2) = o

(1.39)

As t and S change, we need to rebalance our portfolio at each (infinitely small) time
step. Thus, we must use a dynamic trading strategy where we adjust our delta over
a given At. Otherwise, the hedge will leak and we will not replicate the derivative
exactly. Moreover, the portfolio is not risk-free so that in fact we need to differenti-
ate the delta when calculating the change in our portfolio. Thus, we need to adjust
A as soon as S changes to be fully hedged.

We will show that the option price must also satisfy equation (1.35) via an en-
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tire dynamic trading strategy replicating the option from time 0 to maturity T. Sup-
pose there are only three securities traded in our world: a stock; a European option
on the stock expiring at time T and paying off an amount at maturity equal to
F(S,), where F is a given payoff function and S, is the stock price at T; and a risk-
free money market account A. We start at time 0. The stock price is S, and the
quoted option price is f. We also set up a money market account at time 0 with one
share priced at A = $1. At time 0, we set up our portfolio as follows: We (1) sell
one option (short) for f; (2) buy A, shares of stock; and (3) sell short N shares of
the money market account (this is equivalent to borrowing N, dollars at the risk-
free money market rate 7, since the MMA shares are worth $1 at time 0). The value
of our portfolio at time 0 is:

m,=AS,-N,-f, (1.40)

We will actively trade in shares of stock and the MMA by rebalancing our portfo-
lio every infinitesimal time increment dt by changing both A and N, at every in-
stant in time. We will keep our short option position unchanged all the way to
maturity T. At some intermediate time # (¢ is our running time parameter), our
portfolio is worth:

M=AS-NA -f (1.41)

where A, is the number of shares of stock held at time # in our portfolio, S, is the
stock price at ¢, N, is the number of shares of the money market account we are
short at #, A, is the money market share price at ¢, f, is the quoted (market) option
price at £, A = e". N A, is the total dollar value of our debt at time ¢ (our short po-
sition in the MMA).

A pair of stochastic processes {(Az, N,), 0 < ¢ < T} that is a sequence of trading
decisions is a dynamic trading strategy: The A, and N,, viewed as functions of time,
are stochastic processes since we do not know their values at the beginning of our
future trading decisions. We will make our trading decisions based on our observa-
tions of the stock price process in equation (1.12). Thus, our decisions A, = A(S,, )
and N, = N(S,, ¢) are functions of the stock price and time.

After a small time increment dt, the value of our portfolio changes according
to:

drl = AdS - NdA, —df, + dA (S, +dS) - dN, (A, + dA) (1.42)

where dA, is the change in the value of one share of the money market account over
dt—see equation (1.8); dA, is the change in the number of (long) shares of stock
made during dt; dS, is the change in the stock price given by the SDE in equation

WWW. TRADING-SOFTWARE.ORG
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(1.12); and dN, is the change in the number of (short) shares of the money market
account we made during d¢. More generally, we can define the portfolio as a linear
combination of the assets in the portfolio,

= a(t)S, + b(t)A, + c(1)f (1.43)

weighted by the position held in each security where a(z) = A, b(t) = =N, and ¢(z)
= —1. Thus, taking the differentials on both sides of equation (1.43) will yield
equation (1.42).

DEFINITION. A dynamic trading strategy ¢ = {(A, N,), 0 <z < T} is said to be self-
financing if no capital is added to or withdrawn from the portfolio I1, after the ini-
tial setup at time 0. That is, we are only reallocating the capital between our long
position in the stock and the short position in the money market account (borrow-
ing). If we buy more stock, we short more shares of the MMA to borrow the
money to fund the stock purchase. If we sell some shares of the stock, then we use
the proceeds to reduce our debt (buy back some shares in the MMA we sold short).
The self-financing condition is equivalent to the following:

t t t
I, =Ty +[ atsids + [ bisida + [ c(s)df (1.44)
0 0

0

which can occur if and only if
dA(S, +dS) - dAN(A, + dA) = 0 (1.45)

Indeed, the first term in equation (1.45), known as the balance equation, is the
change in the total dollar capital invested in the stock. The second term is the
change in our debt (short position in the MMA). The equality means that we real-
locate the capital between the stock and the MMA without adding to or withdraw-
ing from the portfolio. Hence, the portfolio is self-financing. That is, for any
self-financing strategy, the terms coming from differentiating the weights A, and N,
cancel out.

The total profit/loss (P/L) from the trading strategy at time T (maturity of
the option) is given by the sum of all individual P/Ls over each time increment

dt.

N-1 N-1
[y -I1, = lim A(S;, 2)(Si —S;) - N(S;, t;)(A(t;1) — Alt;))

at—0| &= “ (1.46)

= (f (87, T)=(Sp, 0))

~
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T T
= [ 8,dS, - [ N.dA, ~ (F(S7)- £y, 0) (1.47)
0 0

where f(S, T) = F(S,) is the payoff from the option—that is, F(S,) = max(S,. - K, 0)
for a standard European call option; f(S, 0) is the initial option price at ¢ = 0;

T
_[ A,dS,
0

is the P/L from all stock trades. In the limit of infinitesimal time changes it
is given by the stochastic Ito integral! (limit of the sum; see Appendix B for a
derivation);

T
j N,dA,
0

is the P/L from all money market account trades (this is a standard integral over
time since the price of one share of the money market account is not stochastic).

We now want to find such a self-financing dynamic trading strategy ¢ = {(A,, N,),
0 <t < T} such that it exactly replicates an option with the given payoff F(S ). If
such a strategy does exist, we call it a replicating strategy.

DEFINITION. If such a self-financing strategy exists using a finite number of
securities then the contingent claim (i.e., option) is said to be attainable. We
wish to find such a trading strategy ¢ that its P/L at time T always exactly
matches the option payoff F(S,) for every possible terminal stock price S, € (0,e0).
If such a trading strategy does exist that matches the option payoff in all possible
states of the world, the no-arbitrage principle requires that the fair value of the
option f, at any time £, 0 < ¢ < T, should equal the value of the replicating portfo-
lio (A,S,— N,A,) at time ¢:

AS,-NA,-f=0 (1.48)
From Ito’s lemma we can express the process for the option’s price:

df = mfdt + o fdz (1.49)

"We need Ito’s stochastic integrals in finance to express P/Ls of continuous-time dynamic
trading strategies.
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where m; and o, are, respectively, the instantaneous expected rate of return on
the option and the instantaneous volatility of the option. From equation (1.14),
we know:

o s 1 ag of

o as 2" o8
my = ; (1.50)
and
of
S -
o =008 (1.51)
LT

Equation (1.50) states that the drift rate is equal to the rate of return on the option,
that is, the drift coefficient divided by the option price. From equation (1.48), we
have for an infinitesimal time increment dt,
AdS-NdA-df,=0

and

mfdt + 6 fdz — AmSdt - AcSdz + rNAdt = 0 (1.52)
Recall that NA = AS — /. Substituting this into equation (1.52), we get

(mf—r)f— AS(m —7))dt + (o f AcS)dz =0 (1.53)

This can be true if and only if:

_oif
oS 38 (1.54)
and
Of
mp =r+——(m-r)
c

or

my —vr -

f_zuzx (1'55)

Gf ()
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Equation (1.54) expresses the delta (the hedge ratio) as the ratio of the actual price
volatility of the option to the actual price volatility of the stock. Equation (1.55) is
the central relation of arbitrage pricing theory. It is known as the market price of risk
and is fundamental to general derivatives pricing since it is used to change probability
measures in one stochastic process to an equivalent martingale measure in another
process according to Girsanov’s theorem discussed in section 1.8. Note, however, we
have already made use of Girsanov’s theorem when we moved from the real-world
asset price dynamics in equation (1.12) to the risk-neutral one in equation (1.38).
Changing measures allowed us to use the risk-free rate  for the drift instead of 1,
which is unobservable. The market price of risk relates the risk premium required by
investors in the option to the option’s volatility, the stock’s volatility, and the risk pre-
mium on the stock. What does it tell us about the fair (arbitrage-free) price of the op-
tion? Substitute the expression for 72, and 6, from Ito’s lemma into equation (1.50):

of af 2zaf
ms oL s
a ot z

g9

—rf+ (m—r)S oS

The two terms with 2 cancel out and we arrive at the Black-Scholes PDE:

a’;+sgg ;2237{ f (1.56)

To summarize: (1) To prevent arbitrage, the fair price of the option f = f(S, #)
must satisfy the Black-Scholes PDE subject to the payoff condition. (2) There exists
a unique dynamic replicating strategy {(A, N,), 0 < ¢ < T} with the P/L matching the
option’s payoff in all states of the world. The weights in the replicating portfolio are:

= %(St, ) and N, = —Af‘g;‘t_ f
where f = f(S, t) is the fair (arbitrage-free) price of the option—a unique solution to
the Black-Scholes PDE subject to the payoff condition. In practice, the option can-
not be replicated exactly due to transaction costs, which we are assuming to be 0.
The solution to the PDE in equation (1.56) if C = f(S, t) is a call option such
that the payoff at T is max(S, — X) is (see Appendix E in the CD-ROM for a de-
tailed derivation of the solution to the Black-Scholes PDE):

C(S, ) = SN(d,) — Xe "*N(d,) (1.57)

where N(-) is the cumulative normal distribution,

In(S/X) + (r+0%/2)t

ot

d1:
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and
dy =d, -t
where 1= T -t If P = f(S, t) is a put option with a payoff at T of max(X - S,) then
P(S,t) = Xe"*N(-d,) - SN(-d,) (1.58)

Note that A = N (d,) for a call and N (-d,) for a put. If the stock pays a continuous
dividend yield g, then the formula for a call option becomes:

C(S, #) = Se™N(d,) - Xe"™N(d,) (1.59)
where
g = InS/X) +(r—q+ o’/2)n
1 =
oVt
and

dz S d] - G\/;
A put option on a stock paying a continuous dividend yield is priced analogously:
P(S,t) = Xe"*N(-d,) — Se " N(-d,) (1.60)

There is an important relationship between European calls and puts, known as
put-call parity:

C(S, t) + Xe™ = P(S, 1) + Se-® (1.61)

If this relationship does not hold, then arbitrage opportunities may exist de-
pending on transaction costs. As an example, if we assume there are zero transac-
tion costs and C(S, #) + Xe7™ > P(S, t) + Se?", then we can sell the call short
(receiving the call premium C), borrow an amount Xe™", go long one put option,
and purchase Se™9* shares of the underlying security with the amount borrowed. If
the call option expires in-the-money, S > X, the put expires worthless, but we give
the stock to the call buyer (who exercises the call against us) and receive X, which
is used to pay of the loan. We make a profit of C — P. If the call expires out-of-the-
money, then we exercise the put option, selling the stock we are long for X, which
is used to pay off the loan. We get to keep the premium we received for selling the
call short, and make a profit of C — P. Thus, in the absence of arbitrage, put-call
parity must hold.
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There is an intuitive meaning behind the Black-Scholes formula. The first
term in equation (1.57), SN(d,), is the stock price multiplied times the probability
the stock price will finish in-the-money—thus, it is the expected value of receiving
the stock if and only if S, > X, while the second term, Xe""N(d,), is the dis-
counted strike price multiplied by the probability that the stock finishes in-the-
money—it is the present value of paying the strike price if and only if .. > X.
There is another useful interpretation of the formula based on portfolio replica-
tion. As we have shown, a call option, C, is equivalent to a portfolio that is long
delta shares of the stock, AS, and short the money market account (or equiva-
lently, risk-free bonds) so that C = AS — B. Consequently, the first term in the
Black-Scholes formula, SN(d, ), is the amount invested in the stock, and the sec-
ond term, Xe""N(d,), is the amount borrowed.

It is important to note that the asset price process that led to the Black-Scholes
formula has an important property: Possible percentage changes in the asset price
over any period do not depend on the level of the initial asset price. In fact, changes
in the asset price over any time interval are independent and identically distributed
(i.i.d.) to the changes in any other time interval. Thus, the Black-Scholes world as-
sumes a stationary process of the asset price dynamics—it is independent of time.
Since the drift term under geometric Brownian motion (GBM) is deterministic (i.e.,
all variables are known at time ¢) and has a zero expectation if the asset is valued in
a risk-neutral world under an equivalent martingale measure, then the only uncer-
tain component is from the diffusion term with the Wiener process z(¢). But the
Wiener term is normally distributed with mean zero and variance dt, and changes
in Wiener processes—that is, z(# + At) — z(¢#)—have i.i.d. increments so that the price
process has i.i.d. percentage change increments.?

The price process that generates the Black-Scholes model also has the impor-
tant property that the sizes of asset price changes are small over a very small time
interval so that there are no large jumps over this time interval. This assumption is
relaxed in alternative models to the Black-Scholes such as the jump diffusion
volatility model.

1.4 BLACK-SGHOLES AND DIFFUSION PROCESS IMPLEMENTATION

Since we are interested in implementing an option pricing model, we can now de-
fine an Option class since we know what attributes compose an option—underly-
ing security price, strike, maturity, volatility, risk-free rate, and dividend yield. We
will use this class throughout the book and build on it by adding functionality and

2This assumption is no longer true with other alternative models presented in this book such
the constant elasticity of variance (CEV) volatility model, in which volatility is dependent on
the level of the stock price so that changes (and the distribution of changes) in the stock price
are then dependent on its level.
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implementing more methods. First, we want to define new diffusion process classes
including a BlackScholesProcess and an OrnsteinUblenbeckProcess that will be
useful as well when we start to approximate them with trees and lattices later in the
book. These classes contain methods to compute means (expectations) and vari-
ances of the process.

typedef double Time;
typedef double Rate;

/**********************************************************************************
General diffusion process classes

This class describes a stochastic process governed by dx(t) = mu(t, x(t))dt +
sigma(t, x(t))dz(t).
**********************************************************************************/

class DiffusionProcess

{

public:
DiffusionProcess (double x0) : x0_(x0) {}
virtual ~DiffusionProcess() {}
double x0() const { return x0_; }

// returns the drift part of the equation, i.e. mu(t, x t)
virtual double drift (Time t, double x) const = 0;

// returns the diffusion part of the equation, i.e. sigma(t,x t)
virtual double diffusion(Time t, double x) const = 0;

// returns the expectation of the process after a time interval

// returns E(x_{t_0 + delta t} | x {t 0} = x 0) since it is Markov.

// By default, it returns the Euler approximation defined by

// x_ 0 + mu(t_0, x_0) delta t.

virtual double expectation(Time t0, double x0, Time dt) const {
return x0 + drift(t0, x0)*dt;

// returns the variance of the process after a time interval

// returns Var(x {t 0 + Delta t} | x {t 0} = x 0).

// By default, it returns the Euler approximation defined by

// sigma(t_0, x 0)"2 \Delta t

virtual double variance (Time t0, double x0, Time dt) const {
double sigma = diffusion(t0, x0);
return sigma*sigma*dt;

1

private:
double x0_;

}i

/**********************************************************************************

Black-Scholes diffusion process class
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This class describes the stochastic process governed by dS = (r - 0.5{sigma”2}) dt
+ sigmadz (t) .
**********************************************************************************/

class BlackScholesProcess : public DiffusionProcess
{
public:
BlackScholesProcess (Rate rate, double volatility, double s0 = 0.0)
DiffusionProcess(s0), r (rate), sigma_(volatility) {}
double drift (Time t, double x) const ({
return r_ - 0.5*sigma_*sigma_;
1

double diffusion(Time t, double x) const {
return sigma_;
}

private:
double r , sigma_;

}i

/**********************************************************************************
Ornstein-Uhlenbeck process class

This class describes the Ornstein-Uhlenbeck process governed by dx = -a x(t) dt +
sigma dz(t) .
**********************************************************************************/

class OrnsteinUhlenbeckProcess : public DiffusionProcess
{
public:
OrnsteinUhlenbeckProcess (double speed, double vol, double x0 = 0.0)
DiffusionProcess (x0), speed (speed), volatility (vol) {}

double drift (Time t, double x) const {
return - speed_ *x;
1

double diffusion(Time t, double x) const {
return volatility ;
1

double expectation(Time tO0, double x0, Time dt) const {
return x0*exp (-speed_*dt) ;
}

double variance(Time t0, double x0, Time dt) const {
return 0.5*volatility *volatility /speed * (1.0 - exp(-2.0*speed *dt));
}

private:
double speed , volatility ;

i

/**********************************************************************************
Square-root process class

This class describes a square-root process governed by dx = a (b - x t) dt + \sigma
sgqrt{x t} 4w _t.
**********************************************************************************/

class SquareRootProcess : public DiffusionProcess
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public:
SquareRootProcess (double b, double a, double sigma, double x0 = 0)
DiffusionProcess (x0), mean (b), speed (a), volatility (sigma)
double drift (Time t, double x) const {
return speed_ * (mean_ - Xx);
}
double diffusion(Time t, double x) const {
return volatility *sqgrt(x);
}
private:
double mean , speed_, volatility ;

{1

Next we define an Instrument class that will serve as the abstract parent for all
derivative securities:

/**********************************************************************************
Abstract Instrument class

This class is purely abstract and defines the interface of concrete instruments
which will be derived from this one. It implements the Observable interface

**********************************************************************************/

class Instrument : public Patterns::0bserver, public Patterns::0Observable
{
public:
Instrument (const std::string& isinCode, const std::string& description)
NPV_(0.0), isExpired (false), isinCode_(isinCode),
description (description), calculated(false) {}
virtual ~Instrument () {}

// inline definitions
// returns the ISIN code of the instrument, when given.
inline std::string isinCode() const {
return isinCode_;
1

// returns a brief textual description of the instrument.
inline std::string description() const {
return description_;

// returns the net present value of the instrument.
inline double NPV () const {

calculate() ;

return (isExpired ? 0.0 : NPV );
1
// returns whether the instrument is still tradable.
inline bool isExpired() const {

calculate() ;

return isExpired_;
1

// updates dependent instrument classes
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inline void update() {
calculated = false;
notifyObservers() ;

}
/*

This method forces the recalculation of the instrument value and other results
which would otherwise be cached. It is not declared as const since it needs to
call the non-const notifyObservers method. Explicit invocation of this method
is not necessary if the instrument registered itself as observer with the
structures on which such results depend.

*/
inline void recalculate() ({
performCalculations() ;
calculated = true;
notifyObservers() ;
}
/*
This method performs all needed calculations by calling the performCalculations
method.

Instruments cache the results of the previous calculation. Such results will be
returned upon later invocations of calculate. The results depend on arguments
such as term structures which could change between invocations; the instrument
must register itself as observer of such objects for the calculations to be
performed again when they change.

This method should not be redefined in derived classes. The method does not
modify the structure of the instrument and is therefore declared as constant.
Temporary variables are declared as mutable.
*/
inline double calculate() const {

if (!calculated)

performCalculations() ;

calculated = true;

return 0.0;
1

protected:

// This method must implement any calculations which must be
// (re)done in order to calculate the NPV of the instrument.
virtual void performCalculations() const = 0;

// The value of these attributes must be set in the body of the
// performCalculations method.
mutable double NPV_;
mutable bool isExpired_;

private:
std::string isinCode , description ; // description of instrument
mutable bool calculated; // tracks if instrument was calculated

i
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The Instrument class implements the Observable interface that allows all (de-
pendent) subclasses to be notified and updated if observed changes are made to
their parent class. (See Appendix D in the CD-ROM for interface definition.)

We now define a generic Option class that subclasses Instrument (i.e., Option
is a subclass of Instrument). Other classes that Option uses can be seen in the
source code on the CD-ROM that comes with the book.

class Option : public Instrument

{

public:
enum Exercise { European = ‘E’, American = ‘A’ };
enum Type { Call = ‘C’, Put = ‘P’ };
Option () ;

Option(double price, double strike, double vol, double rate, double div, double
T, char type, char exercise);

Option (const Handle<PricingEngines>& engine) ;

virtual ~Option() {}

friend class OptionGreeks;

void setPricingEngine (const Handle<PricingEngine>& engine) ;

virtual void performCalculations () const;
virtual void setupEngine() const = 0; // set up pricing engine
virtual double calculate() const = 0; // compute price

// option greeks
class OptionGreeks

{
public:

StatUtility util; // statistical utility class

OptionGreeks () {}

double calcVega (double price, double strike, double rate, double div,
double vol, double T);

double calcDelta(double price, double strike, double rate, double div,
double vol, double T, char type);

double calcGamma (double price, double strike, double rate, double div,
double vol, double T);

double calcRho (double price, double strike, double rate, double div,
double vol, double T, char type);

double calcTheta(double price, double strike, double rate, double div,
double vol, double T, char type);

private:

// Greek sensitivities

double delta; // delta

double gamma; // gamma

double theta; // theta

double vega; // vega

double rho; // rho

}i
protected:

double strike ; // strike price
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double rate_ ; // interest rate

double T ; // maturity

double price ; // underlying asset

double vol ; // volatility

double dividend ; // dividend yield

char type ; // option type ‘C’all or ‘P’ut
char exercise ; // exercise type ‘E’uropean and ‘A’merican
Handle<PricingEngine> engine ; // pricing engine

OptionGreeks og; // option greeks

StatUtility util; // statistical utility class
MatrixUtil mu; // matrix utility class

The class has the following method definitions:

// default constructor

Option: :0Option ()
price_ (50.0), strike (50.0), rate (0.06), dividend (0.0), T_(1), type_ (‘C’),
exercise (‘E’)

{}

// overloaded constructor
Option: :0ption(double price, double strike, double vol, double rate, double div,
double T, char type, char exercise)
price (price), strike (strike), vol (vol), rate (rate), dividend (div), T (T),
type (type), exercise_ (exercise)

{}

/*********************************************************************************/

calcDelta : calculates delta (sensitivity to the underlying stock price)
[in] : double price : stock price

double strike : strike price

double rate : interest rate

double div : dividend yield

double vol : volatility

double T : time to maturity

char type : ‘C’all or ‘P’ut
[out] : double : delta

**********************************************************************************/

double Option::OptionGreeks::calcDelta(double price, double strike, double rate,
double div, double vol, double T, char type)
{

double dl, delta;

dl = (log(price/strike) + (rate - div + (vol*vol/2))*T)/(vol*sqgrt(T));
if (type == ‘C’)

delta = exp(-div*T)*util.normalCalcPrime (dl) ;
else
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delta = exp(-div*T)* (util.normalCalc(dl) - 1);

return delta;

/**********************************************************************************

calcvVega : calculates vega (sensitivity to volatility)
[in] : double price : stock price

double strike : strike price

double rate : interest rate

double div : dividend yield

double vol : volatility

double T : time to maturity
[out] : double : vega

**********************************************************************************/

double Option::0OptionGreeks::calcVega (double price, double strike, double rate,
double div, double vol, double T, double t)

double dl, vega, normalPrime;
dl = (log(price/strike) + (rate - div + (vol*vol/2))*T)/(vol*sqgrt(T)) ;
normalPrime = util.normalCalcPrime (dl) ;

vega = (normalPrime*exp (-div*T))*price*sqgrt (T) ;

return vega;

/**********************************************************************************

calcGamma : calculates gamma (sensitivity to the change in delta)
[in] : double price : stock price

double strike : strike price

double rate : interest rate

double div : dividend yield

double vol : volatility

double T : time to maturity
[out] : double : gamma

**********************************************************************************/

double Option::0OptionGreeks: :calcGamma (double price, double strike, double rate,
double div, double vol, double T)

double dl, gamma, normalPrime;

dl = (log(price/strike) + (rate - div + (vol*vol)/2)*T)/(vol*sqrt(T)) ;
normalPrime = util.normalCalcPrime (dl) ;
gamma = (normalPrime*exp (-div*T))/ (price*vol*sqgrt (T)) ;

return gamma;

/**********************************************************************************
calcDelta : calculates rho (sensitivity to the risk-free rate)
[in] : double price : stock price

double strike : strike price
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double rate : interest rate

double div : dividend yield

double vol : volatility

double T : time to maturity

char type : ‘C’all or ‘P’ut
[out] : double : rho

**********************************************************************************/

double Option::0OptionGreeks: :calcRho (double price, double strike, double rate,
double div, double vol, double T, char type)
{

double dl = (log(price/strike) + (rate - div + (vol*vol)/2)*T)/(vol*sqrt(T));
double d2 = dl - vol*sqgrt(T);
double rho = 0.0;

if (type == ‘C’)

rho = strike*T*exp (-rate*T)*util.normalCalc (d2) ;
else

rho = -strike*T*exp (-rate*T)*util.normalCalc(-d2) ;

return rho;

/*********************************************************************************/

calcTheta : calculates theta (sensitivity to time to maturity)
[in] : double price : stock price

double strike : strike price

double rate : interest rate

double div : dividend yield

double vol : volatility

double T : time to maturity

char type : ‘C’all or ‘P’ut
[out] : double : theta

**********************************************************************************/

double Option::OptionGreeks::calcTheta (double price, double strike, double rate,
double div, double vol, double T, char type)
{

double dl1 = (log(price/strike) + (rate - div + (vol*vol)/2)*T)/(vol*sqgrt(T));
double d2 = dl - vol*sqgrt(T);
double theta = 0.0;
if (type == ‘C’)
theta = (-price*util.normalCalc(dl)*vol*exp (-div*T))/ (2*sqrt(T)) +
div*price*util .normalCalc(dl) *exp (-div*T) -
rate*strike*exp (-rate*T) *util.normalCalc (d2) ;
else
theta = (-price*util.normalCalc(dl)*vol*exp (-div*T))/ (2*sqrt(T)) -
div*price*util.normalCalc(-dl) *exp (-div*T) +
rate*strike*exp (-rate*T) *util.normalCalc (-d2) ;

return theta;

// overloaded constructor
Option: :0ption(const Handle<PricingEngine>& engine)
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engine (engine)
QL _REQUIRE (!engine .isNull(), “Option::0ption : null pricing engine not
allowed”) ;

/**********************************************************************************
setPricingEngine : initializes pricing engine

[in] : Handle<PricingEngine>& engine : pricing engine

[out] : void
**********************************************************************************/

void Option::setPricingEngine (const Handle<PricingEngine>& engine)

{

QL REQUIRE (!engine.isNull(), “Option::setPricingEngine : null pricing engine not
allowed”) ;

engine_ = engine;

// this will trigger recalculation and notify observers

update () ;

setupEngine () ;

/**********************************************************************************

performCalculations : calculates and stores price of security
[in] : none
[out] : void

**********************************************************************************/

void Option::performCalculations () const
{
setupEngine () ;
engine ->calculate();
const OptionValue* results = dynamic_cast<const OptionValue*>(engine_ -
>results()) ;
QL ENSURE (results != 0, “Option::performCalculations : no results returned from
option pricer”);
NPV_ = results->value;

We can now define a plain-vanilla option class for computing Black-Scholes
option prices:

// Vanilla option (no discrete dividends, no barriers) on a single asset
class VanillaOption : public Option
{
public:
VanillaOption() { }
VanillaOption (double price, double strike, double rate, double div, double vol,
double T,
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Option: :Type type, Option::Exercise exercise, const Handle<PricingEngines>&
engine) ;
double impliedVolatility(double targetValue, double accuracy = 1.0e-4,
Size maxEvaluations = 100, double minVol = 1.0e-4, double maxVol = 4.0)

const;

double delta() const; // get delta

double gamma () const; // get gamma

double theta () const; // get theta

double vega () const; // get vega

double rho() const; // get rho
protected:

void setupEngine () const;

void performCalculations() const;

virtual double calculate() const { return NPV _; }

Date exerciseDate ; // exercise Date

RelinkableHandle<TermStructure> riskFreeRate; // spot rate term structure
// results

mutable double delta , gamma_, theta , vega_, rho_, dividendRho_;

// arguments

Option: :Type type_ ;

Option::Exercise exercise_;

double underlying ; // underlying price
double strike ; // strike price
double dividendYield ; // dividend yield
double riskFreeRate ; // spot risk-free rate
double maturity ; // time to maturity (years)
double volatility ; // volatility

private:

// helper class for implied volatility calculation
class ImpliedVolHelper : public ObjectiveFunction
{
public:
StatUtility util;

ImpliedVolHelper (const Handle<PricingEngine>& engine, double targetValue) ;
std: :map<int,double> calcImpliedVols (double price, std::vector<double>
opPrices,
std: :vector<ints>strikes, double rate, double dividend, double T,
Option: :Type type);

std: :map<std: :pair<double, int>,double> calcImpliedSurface (double price,
std: :vector<double> opPrices, std::vector<ints>strikes,

std: :vector<double> T, std::map<double,double> rates, double dividend,
Option: :Type type) ;

double operator () (double x) const;

private:

Handle<PricingEngine> engine ;

double targetValue_;

const OptionValue* results ;
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We can now define a BlackScholesOption class that inherits from the Vanilla
Option, which can provide the methods to compute European option values:

// Black-Scholes-Merton option
class BlackScholesOption : public VanillaOption {

public:

BlackScholesOption() { }

BlackScholesOption (Option: :Type type, double underlying, double strike, double
dividendYield, double riskFreeRate, double residualTime, double volatility);

virtual ~BlackScholesOption() {}

// modifiers

virtual void setVolatility(double newVolatility) ;

virtual void setRiskFreeRate (double newRate) ;

virtual void setDividendYield (double newDividendYield) ;

double calcBSCallPrice (double price, double strike, double vol, double rate,
double div, double T);

double calcBSPutPrice (double vol, double rate, double div, double strike,
double price, double T);

protected:

Option: :Type type_ ;
Option::Exercise exercise ;
double underlying ;

double strike ;

double dividendYield ;
double riskFreeRate_;
double residualTime ;
double volatility ;

double value_;

Since we know the values of a European call and a European put using Black-
Scholes we can write the code to implement calcBSCallPrice() and calcBSPut-
Price(). We will make use of Hull’s approximation of the cumulative normal
distribution.3

/**********************************************************************************

normalCalc : computes cumulative normal distribution probabilities

[in]

double d : critical value argument

[out] : double : probability

**********************************************************************************/

double StatUtility::normalCalc (double d)

{

SHull (1996), 234-244.
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const double al

0.319381530;

const double a2 = -0.356563782;
const double a3 = 1.781477937;
const double a4 = -1.821255978;

const double a5 = 1.330274429;

const double gamma = 0.2316419;

const double k1l = 1/(1 + gamma*d) ;

const double k2 = 1/(1 - gamma*d) ;

const double normalprime = (1/(sgrt(2+*PI)))*exp(-d*d/2);
double value = 0.0;

double h = 0.0;

if (d >= 0)
value = 1- normalprime* (al*kl + a2*pow(kl,2) + a3*pow(kl,3) + ad*pow(kl,4) +
a5*pow (k1,5)) ;
else

value = normalprime* (al*k2 + a2*pow(k2,2) + a3*pow(k2,3) + ad*pow(k2,4) +
a5*pow (k2,5)) ;

return value;

/**********************************************************************************

calcBSCall Price : calculates Black Scholes call price
[in] : double vol : volatility

double rate : interest rate

double div : dividend yield

double strike : strike price

double price : stock price

double T : time to maturity
[out] : double : call price

**********************************************************************************/

double BlackScholesModel::calcBSCallPrice (double vol, double rate, double div,
double strike, double price, double T)

double probl;

double prob2;

double di, d4d2;

double callprice;

dl = (log(price/strike) + (rate - dividend + (vol)*(vol)/2)*T)/(vol*sqrt(T));
d2 = dl - vol*sgrt(T);

probl = normalCalc(dl) ;
prob2 = normalCalc(d2) ;
callprice = price*exp (-div*T)*probl - strike*exp(-rate*T) *prob2;

return callprice;

/**********************************************************************************

calcBSPutPrice : calculates Black Scholes put price
[in] : double vol : volatility
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[out] :
**********************************************************************************/
double BlackScholesModel: :caleBSPutPrice (double vol, double rate, double div,
double strike, double price, double T)

{

double rate : interest rate
double div : dividend yield
double strike : strike price
double price : stock price
double T : time to maturity
double : put price

double probl;
double prob2;
double putprice;
double dil, d2;

dl = (log(price/strike) + (rate - div + (vol)*(vol)/2)*T)/(vol*sqgrt(T)) ;
d2 = dl - vol*sgrt(T);

probl = normalCalc(-dl) ;

prob2 = normalCalc(-d2);

putprice = strike*exp (-rate*T) *prob2 - price*exp (-div*T) *probl;

return putprice;

1.5 AMERICAN OPTIONS

While the Black-Scholes option pricing model can be used to price European op-
tions, it cannot be used to price American options since it cannot account for the
early exercise feature. With the valuation problem of European options, we know
which boundary conditions to use and where to apply them. However, with the val-
uation problem of American options, we do not know a priori where to apply
boundary conditions and so have a free boundary S,. The valuation of American
options is more complicated since we have to determine not only the option value,
but also, for each value of S, whether to exercise early. In general, at each time ¢,
there is a particular value of S that delineates the boundary S, between the early ex-
ercise region and the holding region. Consequently, lattice methods and finite dif-
ference schemes must be used to price American options. The Black-Scholes PDE
was derived through arbitrage arguments. This argument is only partially valid for
American options.

As before, we can set up a delta-hedged portfolio between the underlying asset
and the money market account to synthetically replicate the option. However, be-
cause the option is American, it is not necessarily possible for positions in the repli-
cated option to be both long and short since there are times when it is optimal to
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exercise the option so that the writer of an option may be exercised against early.*
Consequently, the arbitrage arguments used for the European option no longer lead
to a unique value for the return on the portfolio. It turns out that the price of an
American put option P satisfies only the Black-Scholes PDE inequality:

B LppdP P+ s _p<o
ot 2 982 oS

When it is optimal to hold the option (not exercise), the equality holds, and when it
is optimal to exercise early, strict inequality holds. To see why this is true, suppose
we have an American put option. If we plug the put payoff P = X — S into the pre-
ceding equation we get —X < 0. It turns out the price of an American call option on
a non-dividend-paying asset satisfies the Black-Scholes PDE with equality, but satis-
fies an inequality if the option is on a dividend-paying asset.

The American put problem can be written as a free boundary problem. For each
time ¢, we divide the asset price axis into two distinct regions. The first, 0 < S < S, is
the early exercise region so that for P = X - S,

P 1 ,, 9P P
—+=-0°8 +7rS——-rP<0
ot 20 352 S <

The other region, S, < § < e, is where early exercise is not optimal so that for
P>X-38,

o 102SZaP+Sa—P—P 0
o 2 982 S

The boundary conditions at § = Sf(t) are that P and its slope (delta) are
continuous:

P(S; (1), 1)=max(X—S;(0), 0), 25(5;(0), 11=-1

The payoff boundary condition determines the option value on the free boundary,
and the slope determines the location of the free boundary. Since we do not know a
priori where S, is, an additional condition is required to determine it. Arbitrage ar-
guments show that the gradient of f should be continuous. Thus, the condition

“Wilmott, Howison, and Dewynne (1995), 112.
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(0P/3S)(S f(t), t) = -1 helps us determine it. Arbitrage arguments show why the slope
cannot be greater or less than —1.5

Since an American option gives us the right to exercise early then it should be
worth more than a European option that does not gives us that right. Consider that
we can exercise an American put early and invest the proceeds in a money market
account earning the risk-free rate, which we cannot do with a European put. We
know then that an American option should be worth at least as much as a Euro-
pean option. For an American call value CA™¢ricn e know that

CAmerican > (CEuropean > max (S — X, 0)
and for an American put value PAnerican
PAmerican > PEuropean > maX(X - S, 0)

In fact, equation (1.57) gives the value of an American call option on a non-dividend-
paying stock since an American option on a non-dividend-paying stock satisfies the
Black-Scholes PDE. There are no exact analytic formulas for the value of an Amer-
ican put option on a non-dividend-paying stock, so numerical procedures have to
be used.

For an American call option on dividends, the price must satisfy the Black-
Scholes PDE inequality:

oOP 1 ,.,9°P oP
—+-0’8* —+(r—q)S—-rP<0
8t+26 aSZ+(r q) S r

where ¢ is the dividend yield and we assume 7 > g > 0. At the optimal exercise
boundary S = §,, we have the free boundary conditions:

oC
CSy (0, £) = max(Sy ()= X, 0), S(8;(0), 1)=1
Only if C > S — X does the American call price satisfy the PDE with equality at the
boundary S = S,. Note that C = § - X is not a solution and therefore does not satisfy
the equality; that is, plugging the payoff in the PDE results in 7X — gS < 0. Local
analysis of the free boundary shows that as ¢ — T,

X 1
Sf(t)~%[l+§o EGZ(T—t)-i-...]

STbid., 113.
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where &, = 0.9034 ... is a “universal constant” of call option pricing and is the
solution of a transcendental equation; see Wilmott, Howison, and Dewynne
(1995) for the derivation details. Moreover, an exact numerical procedure for cal-
culating values of American calls on dividend-paying stocks is given by Roll,
Geske, and Whaley.®

1.6 FUNDAMENTAL PRIGING FORMULAS

Any attainable contingent claim with a payoff H, at time T > ¢ can be priced in a
risk-neutral world by assuming the existence of a risk-neutral measure Q. Denote
by =, the price of a derivative at time z. Then the value of &, can be given by the risk-
neutral expectation:

—| r(s)ds
m,=Ele '  Hgl3, (1.62)

where the expectation is conditional on 3, the sigma field (information set) gener-
ated up to time .

There is a fundamental relationship between the absence of arbitrage and the
mathematical property of the existence of a probability measure known as the
equivalent martingale measure (or risk-neutral measure or risk-adjusted measure).

DEFINITION. An equivalent martingale measure Q is a probability measure on
the probability space (Q, 3) where Q is the event set and 3 is a filtration, that is, an
increasing sequence of sigma algebras included in 3 : 3, 3,, ..., 3 )7 such that:

= Q,and Q are equivalent measures where O (A) = 0 if and only if O(A) = 0, for
every Ae S.

» The Radon-Nikodym derivative dO/dQ,, belongs to L*(Q, 3, O,); that is, it is
square integrable with respect to Q.

m The discounted asset process S/B(0,-) is a O-martingale, that is, EC (S(¢)/B(0, t)!
3,) = S(u)/B(0, u), for 0 <u <t < T, with E9 denoting expectation under O and

*Hull (1996), 219-220.
73, can be interpreted as the information available at time 7 and is sometimes called the
sigma algebra of events up to time 7.
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The following proposition, proved by Harrison and Pliska (1981), provides the
mathematical relationship of the unique no-arbitrage price associated with any at-
tainable contingent claim:

PROPOSITION. Assume there exists an equivalent martingale measure Q and let
H be an attainable contingent claim. Then, for each time ¢, 0 < # < T, there exists a
unique price 7, associated with H, that is,

n = E9 (D(t, T)HIS ) (1.63)

This result generalizes that of Black and Scholes (1973) to the pricing of any claim,
which may be path-dependent.

DEFINITION. A financial market is complete if and only if every contingent claim
is attainable.

Harrison and Pliska (1983) proved that a financial market is (arbitrage-free
and) complete if and only if there exists a unique equivalent martingale measure.
Thus, the existence of a unique equivalent martingale measure both makes mar-
kets arbitrage-free and allows for the derivation of a unique price associated with
any contingent claim.® Consequently, the following three results characterize no-
arbitrage pricing by martingales:

1. The market is arbitrage-free if (and only if) there exists a martingale measure.

2. The market is complete if and only if the martingale measure is unique.

3. In an arbitrage-free market, not necessarily complete, the price of any attain-
able claim is uniquely given either by the value of the associated replicating
strategy or by the risk-neutral expectation of the discounted claim payoff under
any of the equivalent (risk-neutral) martingale measures.’

We see that a self-replicating strategy must yield the same price as the dis-
counted claim payoff under a risk-neutral measure if and only if there is to be an
absence of arbitrage. Equation (1.63) gives the unique no-arbitrage price of an at-
tainable contingent claim H under a given equivalent martingale measure Q. How-
ever, Geman et al. (1995) noted that an equivalent martingale measure is “not
necessarily the most natural and convenient measure for pricing the claim H.”'° For
example, under stochastic interest rates, the presence of the stochastic discount fac-
tor D(t, T) can considerably complicate the calculation of the expectation. In such
cases, a change of numeraire can help simplify the calculation. Jamshidian (1989)

uses the change of numeraire approach to compute bond-option prices under the
Vasicek (1977) model.

8Brigo and Mercurio (2001a), 26.

“Ibid., 26.
10bid., 26.
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1.7 CHANGE OF NUMERAIRE

Geman et al. (1995) introduced the concept of a numeraire, which is defined as any
positive non-dividend-paying asset. A numeraire N is identifiable with a self-financing
strategy ¢ = {(A,, N,), 0 <z < T} in that N, = V(¢), where V is the market value of
the portfolio ¢, for each ¢. Thus, a numeraire is a reference asset chosen so as to
normalize all other asset prices S, k = 0, . .., n, with respect to it so that relative
prices S,/N are considered rather than the asset prices themselves.

PROPOSITION. Let ¢ be a trading strategy and let N be a numeraire. Then, ¢ is
self-financing if and only if

V,(0)
N

= V,(0)= V5 (0)+ > 0,48, (1.64)

i=1

where §, = S/N. This proposition can be extended to any numeraire, so that any

self-financing strategy remains self-financing after a change of numeraire. The self-
financing condition

dv, (o)=Y ¢;ds
k=0

implies that:!!
V<¢>) v ok St
d| - =)y o;dl—+
SRS

so that an attainable claim is also attainable under any numeraire.

PROPOSITION. Assume there exists a numeraire N and a probability measure
ON, equivalent to the initial measure Q, such that the price of any traded asset X
(without intermediate payments) relative to N is a martingale under OQN; that is,?

X _pn[Xeg,
N, Nt
Let U be an arbitrary numeraire. Then there exists a probability measure QU,

equivalent to the initial Q, so that the price of any attainable claim X normalized
by U is a martingale under QVY; that is,

&: EU ﬁ|3t
U, Ur

1bid., 27.
12bid.
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DEFINITION. The Radon-Nikodym derivative defining the measure QY is given
byl3
Ur
do¥ _\Uy ) _UrN,
do™ [Ny ) UoNy
Ny

(1.65)

By definition of ON, we know that for any tradable asset Z,

Z U, Z
EN[—T}=EU[—°—T} (1.66)
Nt Ny Uy

By definition of the Radon-Nikodym derivative, we know also that for all Z,

N
EN[i—ﬂzEUlfl—;g—U} (1.67)

By comparing the right-hand sides of equations (1.66) and (1.67) (both equal
Z/N,), we get equation (1.65). To see this, note:

pu| Zr dOY E[Z_U_}U_E[Z_]Z_
Ny dQU Ur Ny Ny Ur| N

When it is necessary to compute the expected value of an integrable random vari-
able X, it may be useful to switch from one measure Q to another equivalent mea-

sure QO:

fXdQ JXd—QdQ E{ Zg]

where the tilde on the expectation denotes the expectation under the measure O.
Thus, the expectation under the new measure is the expectation of the random vari-
able X multiplied by the Radon-Nikodym derivative. When dealing with condi-
tional expectations, it can be shown that:

BIbid.
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When changing from a first numeraire N (associated with a measure ON) to a
second numeraire U (associated with a measure QU), we also change the drift in the
dynamics of the asset. Following Brigo and Mercurio,'* we can make use of the fol-
lowing proposition to characterize the change in drift:

PROPOSITION. Assume that the two numeraires S and U evolve under QU ac-
cording to

ds(t) = (...)dt+o%t)CdzV(z)
dU(t) = (...)dt + o¥(t)CdzY ()

where both 65(¢) and 6Y(¢) are 1 X vectors, zU is an n-dimensional standard Brown-
ian motion, and C is a variance-covariance matrix of the Brownian motions such
that CC’ = p. Then, the drift of the process X under the numeraire U is:

4

U _yN _ SN _Su
Lo (X, t)=u" (X, 1) G(Xt,t)p(s(t) U(t)J (1.68)

We can also make use of the following proposition provided by Brigo and Mercurio
(2001a):

PROPOSITION. If we assume “level-proportional” functional forms for volatili-
ties, that is,

os(t) = v5(2)S(¢)
oV(t) = vY(t)U(¢)
6(X,, t) = diag(X )diag(v*(t))

where the v’s are deterministic 1 X n-vector functions of time, and diag(X,) de-
notes the diagonal matrix whose diagonal elements are the entries of vectors X.
Then we get

wY(X,, t)=p(X,, t)-diag(X,)diag™ ¢)pw® (t) - v )y
d<InX, In(S/U) >,
dt

=u’(X,, t)-diag(X,)

where the quadratic covariation and the logarithms, when applied to vectors, are
meant to act componentwise. In the “fully lognormal” case, where the drift of X
under QS is deterministically level proportional, that is,

W(X,) = diag(X,)m(t)

141bid., 30.
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with 72% a deterministic # X 1 vector, it turns out that the drift under the new mea-
sure QU is of the same type; that is,

MU(X,) = diag(X,)mY(2)

where

_d<InX,In(S/U) >,
dt

mY (t) = m® ()~ diag(w™ ¢))p® (t) - vV () =m> (t)

which is often written as:

mU(t) = m3(t) - (dln X )(dIn(S,/U,)) (1.69)

1.8 GIRSANOV'S THEOREM

We now give Girsanov’s theorem, a fundamental theorem when we need to change
the drift of a stochastic differential equation. Consider an SDE,

dx(t) = W(x(t), t)dt + o(x(2), t)dz(¢)

under the measure Q. Let there be a new drift fi(x(z),t), and assume

~ t 2 t
dQ _ 1 pl(xa 5)‘”(% S) a(xa S)_“’(xa 5)
E—CXP{—EJ(—)) dS+£—)dZ(S)} (170)

Then Qis equivalent to Q. Moreover, the process z defined by

d3(t) = —{w}dt T dz ()
o(x, t)

is a Brownian motion under O, and

dx(t)=N(x(t), t)dt +o(x(¢), )dz(t)
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As we have seen, by defining a new probability measure O via a suitable
Radon-Nikodym derivative, we can change the drift of the SDE in terms of the dif-
ference of the new drift minus the given drift. A classic example of the application
of Girsanov’s theorem is when one moves from the real-world asset price dynam-
ics of:

dx(t) = ux(t)dt + ox(t)dz(t)
to the risk-neutral dynamics of:

dx(t) = rx(t)dt + ox(t)dz(t)

Using Girsanov’s theorem, we get:

- 2
Ex)=E x9Q |_ g Xexplo o[ B2 ] e[ B2 L
dQ 2{ © c
The expectation term contains geometric Brownian motion if we define the process

Y(¢) = ¢¥9. Since z(t) is normal with mean 0 and variance ¢, its moment-generating
function is given by:

E[ esz(t)] _ etsz/Z

so that:

which shows the equivalence between Qand Qj; that is, O~ O.
The quantity
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as noted from (1.55) is known as the market price of risk. Girsanov’s theorem al-
lows for a change in measure via the Radon-Nikodym derivative, which can be ex-
pressed in terms of the market price of risk:

dO _ 1.5
E—exp( 27» t+7»z(t)]

We can also write the Brownian process %:

then we use

~ t t
49 = exp| —ljkz(s)ds + J'Ms)dz(s)
dQ 2
0 0
In interest rate derivative pricing, Girsanov’s theorem plays an important role
when changing measures. In the Vasicek model (discussed in Chapter 10), for ex-
ample, the market price of risk can have the functional form

A2) = Ar(2)

so that the Girsanov change of measure is:

——exp J'xz ds+JM (s)dZ(s)

Under this formulation, the short rate process is tractable under both risk-neutral
and objective measures. Tractability under the risk-neutral measure Q allows
computations of the expected payoff so that claims can be priced in a simplified
manner in the risk-neutral world. Tractability under the objective measure is use-
ful for estimation of the objective parameters a, 7, A, and o, since historical ob-
servations of interest rate data in the real world are made under the objective
measure Q. Historical (daily) series of interest rate data are collected for estimation
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purposes. The statistical properties of the data also characterize the distribution of
the interest rate process under the objective measure. However, the market price of
risk can also be chosen to be constant—that is, A(¢) = A—as well, while still retain-
ing tractability. Similarly, in the Cox-Ingersoll-Ross (CIR) model (see Chapter 10),
the market price of risk is assumed to have the following functional form:

AMt) = A7 (2)

so that the change of measure is:

t t
Z—g = exp —%;!'Kzr(s)ds+ b'.kmdi(s)

1.9 THE FORWARD MEASURE

A useful numeraire to use is the zero-coupon bond whose maturity T coincides with
that of the derivative to price. The T-maturity zero-coupon bond simplifies deriva-
tives pricing since S, = P(T, T) = 1. Thus, pricing the derivative involves computing
the expectation of the payoff, which in turn involves dividing by 1. We denote by OT
the T-forward risk-adjusted measure (or just T-forward measure), the measure asso-
ciated with the bond maturing at time T. The related expectation is denoted ET.

The T-forward measure is useful because a forward rate spanning a time inter-
val up to T is a martingale under the measure; that is,'’

ET[F(t; S, T)

Su]=F(u; S, T) (1.71)

for each 0 < ¢ < S < T. In particular, the forward rate spanning the interval [S, T] is
the OQ,—the expectation of the future simply compounded spot rate, R(S, T), at
time S for the maturity T; that is,

ET[R(S, T)|S,] = F(t; S, T) (1.72)

foreach0<t<S<T.
PROOF. To see this, note that from the definition of a simply compounded for-
ward rate!®

F(t; S T)z# M_l
7 S, T)| P, T)

5Ibid., 34.
16Ibid.
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where 1(S, T) is the year fraction from S to T, so that

1

F(t; S, T)P(t, T)= ST

[P(t, S)-P(t, T)]

is the price of a traded asset since it is a multiple of the difference of two bonds.
Thus, by definition of the T-forward measure,

Fit; S, T)P(t, T)

=F(t; S, T)
P(t, T)

is a martingale under the measure. The relation indicated in equation (1.70) then
follows since F(S; S, T) = R(S, T).

Equation (1.70) can be extended to instantaneous rates as well. The expected
value of any future instantaneous spot interest rate is related to the instantaneous
forward rate, under the T-forward measure:

ET[r(T)|St] =f(t, T)

foreach0<¢<T.
PROOF. Let b, = #(T) and using the risk-neutral valuation formula shown in
equation (1.63) we get!”

—}r(s)ds
ET[rriS )= g B e I8,
~ 1 Py —?r(s)ds
T OPw, T) | oT [
1 9Pw, T)
- P, T) OT
=f(t, T)

1.10 THE CHOICE OF NUMERAIRE

In pricing derivatives, a payoff h(S,) is given that depends on an underlying vari-
able S, such as a stock price, an interest rate, an exchange rate, or a commodity

Ibid., 35.
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price, at time T. Typically, pricing such a payoff amounts to computing the risk-
neutral expectation

E° h(ST)
B(T)

The risk-neutral numeraire is the money market (bank) account:
t
B(t)= D(0, )" = exp Jr(s)ds
0

By using equation (1.66) for pricing under a new numeraire N, we obtain'®

EQ h(St) _ NOEQN h(St)
B(0, T) Ny
As an example, suppose the payoff 5(S,) is that of a European call option with ma-

turity T and strike X, and written on a unit-principal zero-coupon bond P(T, S) with
maturity S > T. Under the risk-neutral measure (using the bank-account numeraire):

_ 7_t[r(s)ds
EQ|:maX(O, P(T, §)-X) |3t}=EQ e 0
B0, T)

max(0, P(T, $)- X3,

Suppose we change the measure from the bank-account numeraire B(t) to the
zero-coupon bond P(t, T) (the T-bond numeraire) such that:

T
Pt, T)=E exp{—J.r(t)dtJ

t

Then we need to change the underlying probability measure to the T-forward mea-
sure QT defined by the Radon-Nikodym derivative:"’

(P(T, T)) frterds

do’ _\PO, T)) P(T, T)BO) _e° _D©, T) (1.73)

dO B(T) P, T)B(T) PO, T) P, T) '
(50

18Tbid., 33.
bid., 36.
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Note P(T, T) = B(0) = E[dQ"/dQ] = 1, so that the price of at time ¢ of the deriv-
ative is:

=P(t, T)E" [W(T)3,]
Thus, the value of the bond call option on the zero-coupon bond is:
Cit, T, S, X)=P(t, T)E" [max(0, P(t, $)- X3,

The preceding expectation reduces to a Black-like formula if P(T, S) has a lognor-
mal distribution conditional on 3, under the T-forward measure. Note that we can
go back to the original bank-account (i.e., MMA) measure by evaluating

!

In general, a numeraire should be chosen so that S(z)N, is a tradable asset. If so,
then (S(2)N)/N, = S(¢) is a martingale under the measure QM. This eliminates the
drift for the dynamics of S:

=P(t, T)EQ|:19(T) d

ds(t) = o(2)S(t)dz(t)

and simplifies computing expected values of functions of S. Moreover, under a mar-
tingale measure, one can use lognormal dynamics:

for [t

InS(#)~ N| InS, -

NIH
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Monte Carlo Simulation

In this chapter we discuss Monte Carlo simulation, a technique for pricing many
types of derivatives when closed-form analytical solutions are not available as well
as for pricing (complex) path-dependent derivatives and for simulating multifactor
stochastic diffusion processes. The technique was first used by Boyle (1977).! In its
basic form, Monte Carlo simulation is computationally inefficient. A large number
of simulations (i.e., 100,000) generally are required to achieve a high degree of pric-
ing accuracy. However, its efficiency can be improved using control variates and
quasi-random numbers (deterministic sequences).

In section 2.1, we describe the general Monte Carlo framework. In section 2.2,
we discuss simulating sample paths and how to generate normal deviates to simu-
late Brownian motion. In section 2.3, correlated deviates and how to generate them
are discussed. In section 2.4, quasi-random sequences are discussed as an improve-
ment over pseudorandom number generators. In section 2.5, variance reduction and
control variate techniques are discussed as means for improving Monte Carlo esti-
mates. In section 2.6, a Monte Carlo implementation is provided. In section 2.7, we
discuss hedge control variates—an improved control variate technique that uses the
Greek hedge statistics as variates. In section 2.8, we discuss Monte Carlo simulation
for valuation of path-dependent securities such as Asian options. In section 2.9, we
discuss the Brownian bridge technique for simulating long-term horizon paths. In
section 2.10, we discuss simulating jump-diffusion and constant elasticity of vari-
ance processes by generating Poisson and gamma deviates. Finally, in section 2.11,
we give a more robust object-oriented implementation of the Monte Carlo method.

2.1 MONTE CARLO

We are interested in actually implementing the model in equation (1.18) using a
Monte Carlo simulation. Suppose we wish to simulate a sample path of geometric
Brownian motion process for the stock price. We divide the time interval T — ¢ into

1Boyle (1977), 323-338.
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N equal time steps Az = (T — ¢)/N and simulate a path {S(z),7=0, 1, ..., N} start-
ing at the known state (initial price) S, at time #,. Since we already found an exact
solution to the stochastic differential equation (SDE) in equation (1.8), we know
that over a time step At the stock price changes according to:

2
Si1=5; exp{[m - %]At + G\/ESM}

(2.1)

where €, is a standard normal deviate and u = 7 — 6*2. Note that the term in
the drift coefficient, 6?1/2, came from the square of the Wiener increment,
(0%/2)Ate; . We know that the variance of this random variable is of the second or-
der in At and we can assume that it is a deterministic quantity equal to its mean. If
the stock pays a dividend, then the discretization becomes

2
5. =S, exp{[m —q- %}At + c@sm} (2.2)

where ¢ is the dividend yield, so that @ = m - g — (62/2).

It is important to note that we cannot use equation (2.2) directly since 7 is un-
observable in the real world as it depends on the risk preferences of investors. Thus,
we let m = r, the risk-free rate, so that @ = » — g — 6%2 and we are now pricing in the
risk-neutral world. Equation (2.1) holds if we assume the log of the stock price fol-
lows an arithmetic Brownian motion as in (1.15). This is an exact approximation
to the continuous-time process. This approximation matches the mean and vari-
ance of the lognormal distribution exactly. Indeed,

ELS;,115;1= ELS; exp(uz + o\re;,1)]
= S e |

The term inside the expectation operator is the moment-generating function of the
standard normal. Thus,

E[S;,,1S,]=S,e"e 2 =S8

— S_erAt

1
which is the same mean as the lognormal distribution in continuous time. The same
holds true for the variance (the exercise is left to the reader). The only problem with

(2.3)
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the exact solution is that there is some computational overhead since one needs to
call the exponential function every time. Note that

o’ At

I Ar a2
E[QGS,H\/E eoxxAt x /de:e 2

__1
=5

In many cases, an exact solution to an SDE cannot be found, and a first- or second-
order Euler approximation can be used. If we expand equation (2.1) into a Taylor
series and keep only the terms of the first order in A¢, we have:

S, = Si(l+rAt N G@SM) (2.4)

The differences between using the exact simulation in equation (2.1) and the first-
order approximation in (2.4) is O(A#?).

One could also use a higher-order approximation scheme for SDEs such as a
Milstein approximation. For simplicity, assume that the drift and the diffusion co-
efficients depend on the state variable only and not on time; that is, dx, = p(x,)dt +
6(x,)dz,. The Milstein approximation is given by

xi+1=xi+{u(x,—)—%6( )07(x;) [Af + o(x, W At Mg+ L ()07 (x, )62, At

3
+ 0,841 (A2 +1(x;)(AL)

2.5
where v(x )=%u() <>+%u'(x)o(x)ﬁc(x)zcs"(x) 29)
( )=%u( W) + = x)o(x)?

and prime indicates a derivative with respect to x.

2.2 GENERATING SAMPLE PATHS AND NORMAL DEVIATES

To generate sample paths you need to generate a sequence of standard normal devi-
ates {€, €,, . . ., €,}. First it is necessary to generate uniform random numbers from
0to1,{€,&,,...,¢&) and then transform them into standard normal deviates. The
graph in Figure 2.1 shows a plot of some simulated asset price paths using Monte
Carlo simulation. The path are computed by equation (2.1) and are driven by the
random standard normal deviates.?

2Note that to compute each simulated path, the initial asset price, asset volatility, time to ma-
turity, number of time steps, and drift term need to be specified.
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FIGURE 2.1 Simulated Asset Price Paths

No deterministic random number generators built into computer compilers are
capable of producing true random numbers. These algorithms produce pseudoran-
dom numbers usually generated from the internal computer clock. The algorithms
are based on huge deterministic sequences of numbers though you provide a seed to
tell the algorithm where in the sequence to start.

There are two serious problems that can occur with pseudorandom number
generators: (1) The number of trials in simulation performed is larger than the size
of the sequence or cycle of the random number generator, and (2) serial correlation
between the numbers exists. Thus, in practice, pseudorandom number generators
are not good enough for simulations for many runs since they have cycles not long
enough and/or may produce “random” numbers with serial correlation.

To solve this problem and generate uniform random numbers, we will use the
random number generator, ranl, found in Press et al., Numerical Recipes in C
(1992). The function uses a Box-Muller transformation (described later) to ensure
that a randomly generated number, using the ran1 function, will lie in a unit circle.
In turn, gasdev generates a Gaussian (normal) deviate from the uniform random
number generated in ranl and takes a pointer to a long integer, which is the address
of an arbitrary seed number.3

In the early days of simulation, one approach to generating a standard normal,
N(0, 1), deviate was to use the central limit theorem. Note that

DU - (n/2)
i=1
n/12

provided U,, ..., U, are independent uniform (0, 1) random variables. Setting »
=12 yields

— N(0, 1) asn—> oo

12
YU, -6—L5N(0, 1)
=1

3While the algorithm is good for research and projects, it is not good enough to use in commer-
cial systems. It has been shown to produce subtle statistical biases if a sequence of “standard
normal deviates” is generated with it. For commercial system, a Mersenne Twister generator
can be used.
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This convolution method is quite fast, but is not exact.

The most commonly used exact algorithms for generating normal random
variables is to generate them in pairs. The reason is that the bivariate normal
density for two independent normal random variables having mean zero and
unit variance:

Nih- | y_exp(__(x ) sty

—o0 —oo

has a particularly nice structure in polar coordinates. Specifically, suppose (N,, N,)
is such a pair of normal random variables. Then, (N, N,) can be expressed in polar
coordinates as:

(N,, N,) = Rcos0, Rsin0

where 6 (0 <0 < 27) is the angular component (in radians) and R is the radial com-
ponent. Due to the spherical symmetry of such a bivariate normal density, 0 is nor-
mally distributed on [0, 2rt] and independent of R. Furthermore,

R=yN? +N? = %2 (2)

where ¥*(2) is a chi-square random variable with two degrees of freedom. Since a
%*(2) random variable has the same distribution as 2X, where X is exponential with
parameter 1—that is, X ~ e"*!'—we can utilize the following algorithm, known as
the Box-Muller algorithm:

1. Generate two independent uniform (0, 1) random variates U, and U,.
2. Set Ny =4-2logU, cos(2nU,) and N, \/-2logU, sin2nU, ).

This can be a bit slow because of the cosine and sine calculation that needs to be
performed. A variant (that is typically fast) is the polar rejection (transformation)
method. This method also involves an acceptance-rejection procedure. Generate
two independent uniform (0, 1) random variates U, and U,

1. Set V,=2U,-1and V, =2U, - 1.
2. Compute W =V7 + V3.
3. If W> 1, return to step 1. Otherwise, set

(—2log W)

le W

V, and N, =
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These algorithms generate pairs of independent N(0, 1) random variates. To gener-
ate N(l, 6%) random variates, use the following relationship:

N(y, 62) -+ oN(0, 1)

2.3 GENERATING CORRELATED NORMAL RANDOM VARIABLES

In many Monte Carlo simulations, especially in simulations of multivariate (multi-
factor) diffusion processes and multidimensional stochastic simulations (i.e., spread
option models), correlation between the variates exists and must be considered
since the underlying factors themselves are correlated. For example, in a stochastic
volatility model, the underlying asset and its stochastic volatility are correlated, and
this correlation must be captured in the correlation between variates driving the
diffusion process of the underlying asset and the diffusion process of its volatility.
In general, any model with multivariate normal random variables has a correla-
tion/covariance matrix that exists. Such correlation/covariance matrix can be used
to generate the joint probability distributions between the random variables.
Suppose that we wish to generate a random variable X that is multivariate
normal with mean vector B and covariance X. Suppose furthermore that X is a
two-dimensional vector, with mean vector and covariance matrix:

p:[ulJandiz(Gll 012): 61 po;0, )6
Hy 031 061 ) |\pojo, o3 (2.6)

Here, u= E(X,), 67 = Var(X)), and p is the correlation between X, and X,. We now

describe a means of generaiting X, and X, from a pair of independent N(O, 1) ran-
dom variables N, and N,. Note that we may express X, in terms of N, as follows:
X, =y, +0o,N,
For X,, we try to write it in the form:
X, =, +aN, + bN,
Recall that since N, is independent of N,
Var(X)) = E[(X, - u,)*] = a*> + b* = 63
Also,

COV(XP Xz) = E[(X1 - u1)(X2 - uz)] = 6161 - pGlGZ
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Solving these two equations, we get

a=po, and b=+(1-p*)o,

YR =
X, %) po, l—pzcs2 N, '

or in matrix notation, X = )L + LN where L is lower triangular. Thus, by generating
a pair of independent N(0, 1) random variables, we can obtain X via the preceding
affine transformation. That methodology works in general (for X having more than
2 components). In general, X can be written in the form

In other words,

X =p+LN (2.8)

where N has the same number of components as does X (i.e., same vector size) and
consists of N(0, 1) random variables. To connect the matrix L to X, observe that

Z = E[(X - p)(X - )T = E[(LN)(LN)'] = E[(LN)(N'L’)]

Since N consists of N(0, 1) random variables, E[NN’] = I, the identity matrix,* and
we can write X as

T =E[(LL)] = I (2.9)

Let L = X2 so that L is a “square root” of X. Furthermore, because X is symmetric
and positive semidefinite, L can always be chosen to be a lower triangular matrix
with real entries. Writing

T=LL (2.10)

is called the Cholesky factorization® of X. Clearly, the key to generating X is the
computation of the Cholesky factor L. Thus, to produce correlated variables from

4

E[NN’]—E[XZ(D 0 ]—[l 0]—1
_ A
0 x~ (1)

Note that the expectation (mean) of chi-squared random variable is its number of degrees
of freedom.

5See Press et al. (1992), 96-98. See also R. B. Davies’ Newmat matrix library (www
.robertnz.net).
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uncorrelated (independent) ones, we need to find an L that solves the matrix equa-
tion (2.10).

We can use a Cholesky decomposition for # = 3 deviates. Suppose z,, z,, and z,
are random samples from three independent normal distributions with the follow-
ing correlation structure:

1 P12 P13
p=|py 1 P23
P31 P 1

where p, = p, since p is symmetric. Random deviates with this correlation struc-
ture are

X =2

/ 2
X1 =P122 ty1-p12 2y

(2.11)
X3 = (X1Z1 +(X2Z2 +G3Z3
where

0 =pP13
P23 —P12P13

\/1—9%2
oy =1-0f +03

(XZZ

so that

1 0 0
L=|pp 1-pp, 0 (2.12)
P23 —P12P13 \/1 _ P%s (P23 = P12P13 )2

2
\1-p7, I-pia

An alternative approach to generating 7 correlated deviates, z,i=1,..., 7,
that are jointly normally distributed with mean zero and variance 1 with infin-
itesimal increments dz,, is to use principal component analysis® to write their
correlation/covariance matrix, X as

3 =TAI”

P13

¢Clewlow and Strickland (1998a), 128.
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where I' is the matrix of # eigenvectors v’s, i = 1, ..., n, and A is the matrix of
associated eigenvectors A’s, I':

vy Uy e Vg A, 0 0 O
poltar Y2 o va| g AL 0 A, 0 O
0 0

Vg Vyp e Uy 0 0 0 A,

This is the eigensystem representation of the covariance matrix of the correlated
variables. Since the eigenvectors are linear combinations of the correlated variables
that give independent variables, we can invert this relationship to obtain the linear
combinations of independent variables that reproduce the original covariance ma-
trix. Since the transpose of I' is equal to its inverse (the eigenvectors of T" are or-
thogonal to each other), the rows of I' represent the proportions of a set of #
independent Brownian motions dw, i = 1, ..., n, which when linearly combined
reproduce the original correlated Brownian motions. The eigenvalues represent the
variances of the independent Brownian motions. Thus, we can reproduce the corre-
lated Brownian motions dz;, from the linear combination of the independent
Brownian motions dw:

dzl :Ull\/}\,ildwl +U12\/Edu/2 +...+U1n\/zdwn
dzZ =U21\/Edw1 +U22\/Ede +...+U2n\/zdwn

dz,, =v,m/zdw1 +v,,2\/772dw2 +...+1/,m\/Zdw,,

This method is used extensively when pricing multivariate diffusion processes such
as a stochastic volatility spread option (see section 7.10 and Chapter 9) where cor-
related deviates must be generated.

The following is the code that will generate the preceding procedure for four
correlated deviates.

class MatrixUtil

{

public:
/******************************************************************************
genCorrelatedDeviates : computes 4 correlated deviates for Monte Carlo
simulation
[in] : const SymmetricMatrix& R : (symmetric) correlation matrix
double dt : time step size
double z[] : array to store correlated deviates
[out] : double z[] : array of correlated deviates

'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k***********************/
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double* genCorrelatedDeviates (const SymmetricMatrix& R, double dt, double z[])

{

int 1, j;

double sum[4] = {0.0};

double deviate = 0.0; // standard normal deviate

int m = R.Nrows () ; // number of rows in correlation
// matrix

std: :vector<double> dz; // vector of correlated deviates

std: :vector<double> eigenvValue; // vector of eigenvalues

std: :vector<double> eigenVector [4]; // array of vector of

// eigenvectors
std: :vector<doubles>::iterator eigenVeclter; // vector iterator

double lambda([4] = {0.0}; // stores eigenvalues of

// correlation matrix R
double dwl4] = {0.0}; // stores correlated deviates
DiagonalMatrix D(m) ; // diagonal matrix
Matrix V(m,m) ; // m x n matrix
D = genEigenValues (R) ; // get eigenvalues
V = genEigenVectors (R) ; // get eigenvectors

// store eigenvalues

for (i = 0; 1 < m; i++)

{
eigenValue.push back(D.element (i,i));
lambda[i] = D.element (i,1);

}

// stores rows of eigenvectors so that we can compute

// dz[i] = vI[i] [1]*sgrt (eigenvalue[1l])*dwl + v[i] [2] *sqgrt (eigenvalue [2]) *dw2
/] +
for (i = 0; 1 < m; i++)
{
for (j = 0; j < m; j++)

{
eigenVector[i] .push back(V.element (i,3));
}
}

srand (0) ; // initialize random number generator
long seed = (long) rand() % 100; // generate seed
long *idum = &seed;

// generate uncorrelated deviates

for (i = 0; 1 < m; i++)
deviate = util.NormalDeviate (idum) ;
dw[i] = deviate*sqgrt (dt) ;

}

// generate correlated deviates

for (i = 0; 1 < m; i++)

{
eigenvVecIter = eigenVector[i] .begin() ;
for (j = 0; J < m; J++)

{
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sum[i] += (*eigenVecIter)*sqgrt (lambdal[j])*dwlj];
eigenVecIter++;

}

z[i] = sum[i];

}

return z;

}

// other defined methods

i

The code for generating correlated deviates from a Cholesky decomposition is:

#include “newmatap.h”
#include <vectors
#include <math.h>
#include “Constants.h”
#include “StatUtility.h”
class MatrixUtil

{

public:
/************************************************************************
genCorrelatedDeviatesCholesky : computes correlated deviates from a
Cholesky decomposition

[in] : SymmetricMatrix& R : correlation matrix

double dt : step size

double zI[] : correlated deviates array to be returned
[out] : double zI[] : array of correlated deviates

/***********************************************************************/

double* genCorrelatedDeviatesCholesky (const SymmetricMatrix& R, double dt,

double z[])

{
int m = R.Nrows () ; // number of rows
int n = R.Ncols(); // number of columns
Matrix 1b(m,n) ; // lower-banded (lb) matrix
StatUtil util; // Statistical utility class
double deviate = 0.0; // standard normal deviate
double dwl[4] = {0.0}; // stores deviate*sgrt (dt)
double sum = 0.0;
long seed = 0; // seed for RNG
long* idum = 0; // stores address of seed
int i, 9;
1b = Cholesky (R) ; // calls Cholesky routine in NEWMAT library
srand (time (0)) ; // initialize RNG
seed = (long) rand() % 100; // generate seed
idum = &seed; // store address of seed

// generate uncorrelated deviates
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for (1 = 0; 1 < m; 1i++)
{

deviate = util.gasdev(idum); // generate normal (gaussian) deviate
dw([i] = deviate*sgrt (dt);

}

// generate correlated deviates

for (i = 0; 1 < m; 1i++)
{
sum = 0;
for (j = 0; j < m; J++)
{
sum += lb.element (i,j)*dwlj];
1
z[i] = sum;
1
return z;

The code makes use of a good matrix library, Newmat, written by R. B.
Davies.” The matrix library contains many matrix manipulation and computational
routines such as the computation of the eigenvectors and eigenvalues from a given
(symmetric) matrix like the covariance/correlation matrix %. However, such a co-
variance/correlation matrix that is passed into the method genCorrelatedDeviates
needs to be known a priori. One can make assumptions about what these will be or
try to estimate them from historical data. For example, if one wants to estimate the
correlation between the deviates of a stock and its volatility, one could use the esti-
mated historical correlation. However, because correlation estimates are time-vary-
ing and unstable, one must use caution when inputting a specified correlation
matrix at different times.

2.4 QUASI-RANDOM SEQUENCES

A quasi-random sequence, also called a low-discrepancy sequence, is a determinis-
tic sequence of representative samples from a probability distribution. Quasi-random
number generators (RNGs) differ from pseudo-RNGs in that pseudo-RNGs try to
generate realistic random numbers, while quasi-generators create numbers that are
evenly spaced in an interval—they have a more uniform discrepancy than pseudo-

It can be downloaded at www.robertnz.net/download.html.
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RNGs.? For M simulations, quasi-random sequences have a standard error propor-
tional to 1/M, which is much smaller for large M than the standard error of
pseudo-RNGs, which is proportional to

1M

Moreover, for a discrepancy of 7 points, D , low-discrepancy sequences have a dis-
crepancy in the order of O((logn)¥n) while a uniform random number sequence
has a discrepancy in the order of

0(1/@)

Thus, quasi-RNGs are more efficient than pseudorandom numbers. Figure 2.2
shows how 2,000 quasi-random values are uniformly distributed while the 2,000
pseudorandom values are not.

As can be seen, the problem with pseudorandom numbers is that clumpiness
occurs, which biases the results. A very large number of samples is needed to make
the bias negligible. On the other hand, quasi-random numbers or low-discrepancy
sequences are designed to appear random, but not clumpy. In fact, a quasi-random
sample is not independent from previous samples. It “remembers” the previous
samples and tries to position itself away from all previous samples so that points
are more uniformly distributed, and thus have a low discrepancy. This characteris-
tic of low-discrepancy sequences yields fast convergence in Monte Carlo simulation
and is why they are preferred to pseudorandom numbers.

Two well-known low-discrepancy sequences are Sobol (1967) and Faure
(1982).° The Sobol method generates numbers between 0 and 1 from a set of bi-
nary fractions of length w bits called direction numbers V,i=1, ..., w. The jth
number X; is generated by doing a bitwise exclusive-or (XOR) of all the direction

8The mathematical definition of discrepancy of # sample points is

n

D, =sup

J

n

where
d
] :H[o, u)=10, u), u, <1
j=1

d is the dimension, A( J; ) are the number of points landed in region J, and V() is the vol-
ume of J.

9There are other low-discrepancy sequences, including Halton (1960), Niederreiter (1992),
and Niederreiter and Shiue (1995).
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FIGURE 2.2 Pseudorandom and Quasi-Random Values

numbers so that the ith bit of the number is nonzero. The effect is such that the
bits toggle on and off at different rates. The kth bit switches once in 2% steps so
that the least significant bit switches the fastest, and the most significant bit
switches the slowest.

Each different “Sobol sequence (or component of an #-dimensional sequence)
is based on a different primitive polynomial over the integers modulo 2, that is, a
polynomial whose coefficients are either 0 or 1, and which generates a maximal
length shift register sequence.”!® Following Press et al. (1992), suppose P is such a
polynomial, of degree g,

P=x?+ax®™ +axi?+...+ a_x+1
Define a sequence of integers M, by the g-term recurrence relation,

M,=2a,M, ®22a,M,, @ A®2 M, a  ®2M_=M,)

i—g+17g-1

The bitwise XOR operator is denoted @. The starting values for this recurrence are
that M, . .., Mq can be arbitrary odd integers less than 2, . . ., 29, respectively.
Then, the direction numbers V, are given by!!

V.= M2 i=1,...,w

19Press et al. (1992), 311.
Tbid., 312.
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The following is code to compute a Sobol sequence.!? The methods are an in-
line part of the StatUtility class that contains methods for aiding in numerical and

statistical computations.

#include <time.h>

#define GRAY(n) (n * (n >> 1)) // for Sobol sequence
#define MAXDIM 5
#define VMAX 30

struct sobolp
{
double sequence [MAXDIM] ;
int x[MAXDIM] ;
int v [MAXDIM] [VMAX] ;
double RECIPD;
int _dim; // dimension of the sample space
int _skip;
unsigned long _nextn;
unsigned long cur_ seed;

}i
class StatUtility

{

public:
/'k'k'k'k'k'k*'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k'k************************
sobolp_generateSamples : generates a Sobol sequence
[in]: struct sobolp* config : pointer to Sobol structure
double* samples : pointer to sample values

[out] : void
************************************************************************/

inline void sobolp generateSamples (struct sobolp* config, double* samples)
{
int i;
nextSobol (config, config->cur seed) ;
config->cur_seed++;
for(i = 0; i < config-> dim; i++ )
samples[i] = config->sequence[il];

}

/******************************************************************************

nextSobolNoSeed : generates the next Sobol seed number to
generate the next Sobol value
[in] : struct sobolp* config : pointer to Sobol structure

[out] : void

******************************************************************************/

inline static void nextSobolNoSeed (struct sobolp* config)

2The code was adapted from Austen McDonald (www.austenmcdonald.com/montecarlo),
who massaged the original Sobol version into a parallel version. A version from Press et al.,
Numerical Recipes in C, is given in Appendix E.
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int ¢ = 1;
int i;
int save = config-> nextn;
while((save %2) == 1)
{
c += 1;
save = save /2;

}

for (i=0;i<config-> dim;i++)

{
config->x[i] = config->x[i]” (config->vI[i] [c-1]<< (VMAX-c));
config->sequence [i] = config->x[i] *config->RECIPD;

}

config-> nextn += 1;

/******************************************************************************

sobolp_init : initializes the Sobol algorithm
[in] : sobolp* config : pointer to Sobol
int dim : dimension of the sample spaces
unsigned long seed : seed for Sobol number generator
[out] : wvoid

******************************************************************************/

inline void sobolp_init (struct sobolp* config, int dim, unsigned long seed)
{

int d[MAXDIM], POLY[MAXDIM] ;

int save;

int m,1i,3j,k;

config->_dim = dim;

config-> nextn = 0;

config->RECIPD = 1.0 / pow( 2.0, VMAX );
config->cur_seed = seed;

POLY[0] = 3; d[0] = 1; // x + 1

POLY[1] = 7; d4l[1] = 2; /] x*2 + x 1
POLY[2] = 11; d[2] = 3; // x™3 + x + 1
POLY[3] = 19; dI[3] = 4; // x"4 + x + 1
POLY[4] = 37; d[4] = 5; /) x5 + x™2 + 1

for(i = 0; i < config-> dim; i++ )
for(j = 0; j < Al[il; j++ )
config->v[i] [j] = 1;
for( i = 0; i < config-> dim; i++ )
{
for( j = dlil; j < VMAX; j++ )
{
config->v[i] [j] = config->v[i] [j-d[i]1];
save = POLY[i];

1)
for( k = d[i]l; k > 0; k-- )
{

config->v[i] [j] = config->vI[i] [§j] * m* (save%2) *config->v[i] [j-k];
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save = save/2;
m=m/2;
1
1
1

for( i = 0; i < config->_dim; i++ )
config->x[i]1=0;

config-> skip = pow( 2, 6 );

for( i = 1; i <= config-> skip; i++ )
nextSobolNoSeed (config) ;

Another Sobol implementation is given in Appendix E from Numerical Recipes
in C by Press et al. (1992), which is actually faster since there are fewer method
calls. Here is a Monte Carlo implementation using the Sobol sequence:

/*********************************************************************************/

MonteCarloSobol : values a European call option using Faure sequence for
variance reduction

[in] : double price : asset price
double strike : strike price
double vol : volatility
double rate : risk-free rate
double div : dividend yield
double T : option maturity
char type : type of option
long N : number of time steps
long M : number of simulations
[out] : double : call price

**********************************************************************************/

double MonteCarloMethod: :MonteCarloSobol (double price, double strike, double vol,
double rate, double div, double T, char type, long N, long M)
{

int i, j;

double suml = 0.0; // sum of payoffs

double sum2 = 0.0; // sum of squared payoffs

double value = 0.0; // stores value of option for each simulation
double S1 = price; // stock price for +deviate

double S2 = price; // stock price for -deviate

double 1nS1 = log(price); // log of the initial stock price for +deviate
double 1nS2 = log(price) ; // log of the initial stock price for -deviate
double SD; // standard deviation

double SE; // standard error

long dim = N; // dimension of Sobol sequence
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double dt = T/N; //
double mu = rate - div - 0.5*vol*vol; //
double rands([5]; //
cout .precision(4) ; //
int cnt = 0; //
struct sobolp sp; //
srand (time (0)) ; //

long seed = (long) rand() % 100;

// initialize Sobol sequnce
util.sobolp init (&sp,dim, seed) ;

for

{

(i = 0; 1 < M; 1i++)

// initalize stock price for the next

1nSl = log(price) ;
InS2 = log(price);
for (j = 0; j < N; Jj++)

{

// generate Sobol samples

time step

drift

stores random variables

output decimal format precision
counter

Sobol sequence structure
initialize RNG

generate seed

simulation

util.sobolp generateSamples (&sp, rands) ;

// generate
InS1 = 1InS1 +
1InS2 = 1nS2 =

path and antithetic path
mu*dt + vol*sqgrt (dt) *rands[cnt];

// keep track

mu*dt + vol*sqgrt (dt)* (-rands[cnt]) ;

of Sobol number to use

if ((cnt + 1) % N == 0)
cnt = 0;
else
cnt++;
}
// convert back to lognormal random variables
S1 = exp(1lnSl);
S2 = exp(lnS2);
if (type == ‘C’)
value = 0.5* (max(0, S1 - strike) + max(0, S2 - strike));
else
value = 0.5* (max (0, strike - S1) + max(0,strike - S2));
suml = suml + value;
sum2 = sum2 + value*value;

}

// compute standard deviation

SD =

cout << “stddev ”

sqgrt ( (exp (-2*rate*T) / (M-1)) * (sum2 -

(suml*suml) /M) ) ;

w o

<< < SD < endl;

// compute standard error

SE = SD/sqrt (M) ;

cout << “stdderr ”

w o

<< << SE << endl;

return exp (-rate*T)*suml/M;
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The number of time steps to be used along each path should equal the dimen-
sion of the Sobol sequence.

In a Monte Carlo simulation, the number of time steps N is the dimension of a
low-discrepancy sequence, that is, the number of independent quasi-random num-
bers to be generated simultaneously. The quasi-random numbers are generated si-
multaneously so that the samples and increments along the path are independent
and identically distributed. Let x,, k = 1, ..., N, be N quasi-random numbers.
Then the Faure sequence of length M (the number of simulations) is defined by

m

Al
X, =
¢ ; P (2.13)

where m is the number of digits in the p representation of M, that is,

m= int[—log(M):|
log(p)

I+1

M%p (2.14)

m

g 0
Ay = ZW%-M Jop

and p is the smallest prime number greater than or equal to N.!* The “int” operator
denotes the integer part of the expression in brackets and % denotes the modulo
operator that is the remainder after division.

The following is code to implement a Faure sequence. The function generate-
Faure is an inline function in the StatUtility class. Other helper inline utility func-
tions are also provided.

class StatUtility

{

public:
/*****************************************************************************/
generateFaure M : generates a Faure sequence of length M
[in] long N : number of time steps
long M : number of simulations
[out] : vector<double> X : the Faure sequence

******************************************************************************/

inline vector<double> generateFaure(long N, long M)

13Clewlow and Strickland (1998a), 131.
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int p = generatePrime (N) ;

int 1, q, k;

long v1, v2, Vv3;

long value = 0;

long a[250] [250] = {0};

int m = (int) (log(M)/log(p)) ;

if (m == 0)
m= 1;
long x[]1 = {0};
unsigned long fact = 0;
for (k = 1; k <= N; k++) // number of time steps

{
for (1 = 0; 1 <= m; 1++)
{
value = pow(p,1l+1);
al[0][1] = (int) ((M % value)/p);

for (g = 1; g <= m; qg++)
{
vl = factorial(q);
v2 = factorial(g-1);
v3 = factorial(l);
fact = v1/ (v2*v3);

value = fact*alk-1][g]l % p;
alk] [1] = alk] [1] + value;

x[k] = x[k] + alk][1l]/pow(p,1+1);

}

X.push_back ( (double)x[k]) ;

}

return X;

/******************************************************************************

factorial : computes the factorial of a number
[in] : N : number to factorialize
[out] : N!

******************************************************************************/

inline long factorial (long N)
{
if ((N==1) || (N == 0))
return 1;
else
return N*factorial (N-1) ;

/*****************************************************************************/

generatePrime: This function computes the smallest prime greater than or equal
to N

[in]: long N : find prime >= N
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[out] : prime >= N
/*****************************************************************************/

inline long generatePrime (long N)
{

long i = N;

bool flag = false;

do

{

// check if number is prime

if ((L %2 !=0) && (i % 3 != 0)
&& (1 % 7 1= 0) && (1 % 8 !=0) &&
flag = true;

else
1++;

}

while (flag != true);

return i;
1

/*****************************************************************************/

polarRejection

This function computes two standard deviates using polar rejection
(transformation) method Returns the first deviate and stores the second
deviates in a vector Y so that is can be used for another call rather than
throwing it away.

[in] : double y : seed value
int 1 : ith standard deviate
[out]: YI[i] : ith standard normal deviate in Y

******************************************************************************/
inline double polarRejection (double y, int i)
{

double w = 0.0;

double x1, x2, zl, z2, c;

double temp = 0.0;

double *idum = &y;

do

{

x1 = gasdev((long*)idum) ;
x2 = gasdev ((long*)idum) ;
w = x1*x1 + X2*x2;

}

while (w >= 1);

c = sqgrt(-2*(log(w) /w));

z1l = c*x1;
Y.push back(zl) ;
Z2 = C*x2;

Y.push back (z2) ;

return Y[i];
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// other methods

The following is a Monte Carlo implementation using the Faure sequence to
value a European call option with maturity T.

/*********************************************************************************/

MonteCarloFaureQuasiRandom : values a European call option using Faure sequence for
variance reduction

[in] : double S : asset price

double X : strike price

double vol : volatility

double rate : risk-free rate

double div : dividend yield

double T : option maturity

long N : number of time steps

long M: : number of simulations
[out] : double : callvalue

**********************************************************************************/

double MonteCarloMethod: :MonteCarloFaureQuasiRandom (double S, double X, double
vol, double rate, double div, double T, long N, long M)
{

int 1, j, k;

double dt = T/N; // step step
double mudt = (rate - div - 0.5*vol*vol) *dt; // drift
double voldt = vol*sqgrt (dt); // diffusion term
double sum = 0.0;

double suml = 0.0;

double 1nSt, 1nStl, St, Stil;

double 1nS = log(S);

double deviate = 0.0;

double callValue = 0.0;1I

double SD = 0.0; // standard deviation
double SE = 0.0; // standard error
vector<double> x; // stores Faure sequence

cout .setf (ios: :showpoint) ;
cout .precision(3) ;

i
i =1; i <= M; 1i++)

~ Hh &
0
]

// generate Faure sequence
x = util.generateFaure (N, M) ;

// initialize log asset prices for next simulation path
InSt = 1nS;
1nStl = 1nS;
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for (j = 0; j < N; j++)

{
// get standard normal deviate using polar rejection method
deviate = util.polarRejection(x[j], k) ;
nSt = 1nSt + mudt + voldt*deviate;
// compute antithetic
1nStl = 1nStl + mudt + voldt* (-deviate) ;
// increment index to retrieve deviate stored in vector Y in polar rejection
method
k++;
}

St = exp(lnSt);
Stl = exp(1lnStl);

callvalue = 0.5* (max(0, St - X) + max(0,Stl-X));
sum = sum + callValue;
suml = suml + callValue*callValue;

callvalue = exp(-rate*T)* (sum/M)
SD = sqgrt(exp(-2*rate*T)* (suml/M) - callValue*callValue) ;
cout << “stdev = ” << SD << endl;

SE = SD/sgrt (M-1) ;
cout << “stderr = ” << SE << endl;

return callValue;

2.5 VARIANCE REDUCTION AND CONTROL VARIATE TECHNIQUES

Suppose we can simulate an independent and identically distributed (i.i.d.) se-
quence {f75i=1,..., M, where each f has expectation f and variance 6*. An esti-
mator of f based on M simulations is then the sample mean:

1 "
Ml (2.15)

By the central limit theorem, for large M this sample mean is approximately nor-
mally distributed with mean f and standard deviation

Glm
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The estimate of the option’s price converges to the true option’s price f/ with the
standard error

G/N

The 95 percent confidence interval is

f—1.96(c/\/ﬁ)<f*< f+1.96(c/\/ﬁ)

Convergence of the crude Monte Carlo is slow to the order of

1/\M

To increase the accuracy 10 times, we need to run 100 times more simulations of
sample paths. On the other hand, decreasing the variance ¢? by a factor of 10
does as much for error reduction as increasing the number of simulations by a
factor of 100.

The simplest variance reduction procedure is use of antithetic variates. For
each path simulated with €* (denoted as the ith deviate, i =1 ... N on the kth path,
k=1...M) an identical path is simulated with —e¥. The payoff F, for the path is
calculated with €¥, and also the payoff F for the path with —*, Then the average is
taken:

1 .
—(E, + F
2(k %)

Although €*’s are samples from a standard normal distribution with mean 0, in a
sample you will get some nonzero mean. The antithetic variates procedure corrects
this bias by averaging out the deviations and centers the mean at 0.

Another variance reduction technique is to use control variates. Control vari-
ates are random variables, whose expected value (mean) that we know is correlated
with the variable we are trying to estimate (i.e., the derivative security we want to
value).'* The principle underlying this technique is to “use what you know.” Sup-
pose you are trying to simulate an estimate for the price of a complex security. Sup-
pose also that you know a closed-form analytical formula for the price of a similar,
but simpler, security. The price of the complex security can be represented as:

(2.16)

fcomplex = fsimple + (fcomplex - fsimple)

1Ibid., 95.
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Since you know the price /. from the closed-form formula, you need only esti-
mate the difference £* = (f, omplex — f. imple) via simulation:

f;:.complex = fsimple +e” (217)

Since the securities are similar, the difference £* is small relative to the value f, imple?
we can find the bulk of the value of our complex security exactly without errors,
and our errors are in the relatively smaller estimate of the difference in €*.

As an example for practical use of control variates, we use arithmetic and geo-
metric Asian options. We know the analytical formula for the price of a geometric
Asian option (see Chapter 5), but in practice we are most interested in the price of
an arithmetic Asian option. There is no simple analytical formula for arithmetic
Asian options. We note that the price of otherwise identical arithmetic and geomet-
ric Asian options are rather close. Thus, we can represent the price of an arithmetic

Asian option as:

farithmetic = fgeometric +€

We evaluate this technique in section 2.8.

2.6 MONTE CARLO IMPLEMENTATION

The best way to simulate geometric Brownian motion (GBM) of the underlying as-
set (random variable) is to use the process for the natural logarithm of the variable,
which follows arithmetic Brownian motion (ABM) and is normally distributed. Let
x(#) = In(S(z)). Then we have

dx(t) = (r—q—%cz )dt + 6dz(t) (2.18)

Equation (2.18) can be discretized by changing the infinitesimal changes dx, dt, and
dz into small discrete changes Ax, At, and Az:

1
Ax:(r—q—EGZ)At+GAZ (2.19)

This representation involves no approximation since it is actually the solution of
the SDE in equation (2.8), which can be be written as

x(t+At)=x(t)+(r—q- %GZ)At +o(z(t + At) — z(t)) (2.20)


andrey
tr-soft-org
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We can write equation (2.20) in terms of the underlying asset price S:

S(t +At) = S(t)exp((r —q —%62 JA + o z(t + At) - z(t))) (2.21)

where z(#) is standard Brownian motion. The random increment z( + At) — z(¢) has
mean zero and variance At. It can be simulated by random samples of

eVAr

where € is a standard deviate drawn from a standard normal distribution. Dividing
up the time to maturity (the time period over which we want to simulate), T, into N
time steps, each time step is of size At = T/N. Consequently, we can generate values
of 5(t) at the end of these intervals, ¢, = iAt, i = 1, . . ., N using equation (2.20) by
computing:

x(ti)=x(ti71)+(r—q—%02)At+GSp/E i=1,..., N (2.22)

then computing:
S(t,) = exp(x(t,)) i=1,...,N (2.23)

for each time step of each of the M simulations, and then finally computing the
payoff max(0, S(T) - X) at maturity (i.e., the final time step on a given path). To
obtain an estimate C of the call price, C we take the discounted average of all the
simulated payoffs.

M

e |

C=e TM_Elmax(O, §;(T)-X) (2.24)
=

Note that to compute a European call estimate under GBM we can let N = 1.
Moreover, since we have a closed-form solution—equation (2.21)—to the underly-
ing SDE, samples of S(T) can be found directly without simulating the entire path.
In general, however, N > 1, since there are many types of derivatives (i.e., path-
dependent options), where only an approximate discretization of the SDE to the
continuous SDE can be used by taking small time steps.

The following code implements the Monte Carlo simulation under the risk-
neutral process in equation (2.23). It uses the antithetic variates to reduce the
variance.
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/*********************************************************************************/

MonteCarloAntithetic

[in] : double price
double strik
double vol
double rate
double div
double T
long N
long M

[out] double value

values a European call option using antithetic variates

asset price

e : strike price
volatility
risk-free rate
dividend yield
option maturity

number of time steps
number of simulations

call value

**********************************************************************************/

double MonteCarloMethod: :MonteCarloAntithetic

vol, double rate, double div, double T,
{

int i, Jj;

double deviate;

double suml = 0.0;

double sum2 = 0.0;

double value = 0.0;

double S1 = price;

double S2 = price;

double 1nS1l = log(price);

double 1nS2 = log(price);

double SD;

double SE;

double deltat = (double) T/N;

double mu = rate - div - 0.5*vol*vol;

srand (time (0)) ;

long seed = (long) rand() % 100;

long* idum = &seed;

cout.setf (ios::sho
cout .precision(4) ;

for

{

(1 = 0; 1 < M;

// initalize stock price for the next
log(price) ;
log(price) ;

1InS1l =
1InS2 =

for (j = 0;

{

deviate =

Jj <

wpoint) ;

1++)

N; j++)

util.gasdev (idum) ;

// simulate paths

(double price,

long M, long N, char type)
// standard normal deviate
// sum of payoffs

// sum of squared payoffs
// value of option

// stock price for +deviate
// stock price for -deviate
// log of the initial

// +deviate

// log of the initial

// -deviate

// standard deviation

// standard error

// time step

// drift

// initialize RNG

// generate seed

// store seed address

simulation

double strike,

double

stock price for

stock price for
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1nS1

1nS1l + mu*deltat + vol*sqgrt (deltat)*deviate;

1nS2 = 1nS2 + mu*deltat + vol*sgrt (deltat)* (-deviate);

1
// convert back to lognormal random variables
S1 = exp(lnSl);
S2 = exp(1lnS2);
if (type == ‘C’)
value = 0.5* (max (0, S1 - strike) + max(0,S2 - strike));
else // if put
value = 0.5* (max (0, strike - S1) + max(0, strike - S2));
suml = suml + value;
sum2 = sum2 + value*value;
1
value = exp(-rate*T) *suml/M
cout << “value = ” << value << endl;

// compute standard deviation

= sqgrt ((exp(-2*rate*T)/(M-1))* (sum2 - (suml*suml)/M));
cout << “ stdev = ” << SD << endl;

// compute standard error

= SD/sqgrt (M) ;

cout << “ stderr = " << SE << endl;

SD

SE

return value;

Suppose we want to calculate the price of European call option in a Black-
Scholes world with antithetic variance reduction where S = 50, X = 50, = 5.5 per-
cent, g = 2 percent, T = 0.75 (9 months), and ¢ = 0.20. We make the following
method call to MonteCarloAntithetic with M = 100, 1,000, 10,000, and 100,000
(changing M in the method call) simulations, and N = 10 time steps.

Table 2.1 summarizes the results. Notice that as the number of simulations in-
creases, both the standard deviation and standard error decrease. Moreover, as the
number of simulations increases by a factor of 10, the standard error decreases by
approximately a factor of 3. The Black-Scholes price is $4.03. Thus, increasing the
number of simulations narrows the confidence interval of the estimate since the
standard error decreases.

Monte Carlo is used extensively for simulating outcomes—that is, profit and
losses (P/L)—of dynamic trading strategies. A single sample diffusion path is simu-
lated, and the dynamic trading strategy is executed over this path. The P/L is then
calculated. Then, the process is repeated M times for M sample paths. The mean is
an estimate of the expected P/L from the trading strategy. A standard deviation of
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TABLE 2.1 Simulation Results

Number of Simulations  Monte Carlo Call Price  Standard Deviation  Standard Error

100 3.935 3.458 0.360
1,000 4.013 3.200 0.101
10,000 4.057 3.153 0.032
100,000 4.037 3.093 0.010

P/Ls around this mean tells you how stable the trading strategy is. Monte Carlo is
used extensively in risk and portfolio management to compute value at risk (VaR)
of a portfolio. A confidence level is chosen—for example, 95 percent or 99 percent;
the underlying factors of each security are simulated, and the P/L of each position
in each security is calculated based on the realization of the simulated factor values.
The process is repeated for each security M times and then, based on the simulated
P/L probability distribution generated by the aggregated P/L of all securities in the
portfolio, the VaR can be computed by looking at the P/L value that lies to the left
of confidence level of the P/L probability distribution. Figure 2.3 shows a simulated
stock return distribution generated from Monte Carlo.

As a practical application, suppose we want to implement a dynamic replica-
tion strategy {(A, N,), 0 <t < T} of going long a stock and going short a call option
on the stock. We know from equation (1.48) that the option price at time ¢ is f, = A,
S, — N,A,. The following code implements a dynamic replication strategy on a call
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option. We are always rebalancing between our long equity position and short po-
sition in the money market account (to finance our stock purchases) so that the

strategy is self-financing.

/**********************************************************************************

dynamicReplication

synthetically replicates option using stock and money

market account

double
double
double
double
double div
double T
char type
long M
long N
double

price
strike
vol

[in] :

rate

option
‘Crall
number
number
[out]

stock price
strike price
volatility
interest rate
dividend yield

maturity

or

‘P'ut

of simulations
of time steps

synthetic option price

**********************************************************************************/

double MonteCarloMethod: :dynamicReplication (double price,
double div, double T,

vol, double rate,

{
// initialize variables
int i, j;
double S = 0.
double 1nS;
double delta;
double totalStockShares
double totalMMAShares =
double numShares = 1.0;
double numMMA = 0.0;
double MMAValue = 0.0;
double totalMMAValue;
double dl1 = 0.0;
double portValue = 0.
double deviate = 0.0;
double temp = 0.0;
double totalStockValue = 0.
long seed = -1;
long* idum = 0;
double dt = T/M;
double mu = 0.0;

0;

o O

o |

0;

0;

StatUtility util;
// initial states

dl = (log(price/strike) + (rate - div +
delta = util.normalCalc(dl) ;

numShares = delta; //
totalStockValue = numShares*price;
MMAValue = numShares*price; //

double strike, double

char type, long M, long N)

stock price

log of S

delta of option

total shares of stock

total number of MMA shares

number of shares bought or sold at time t
number of MMA shares bought at time t
value of money market account at time t
= MMAValue*totalMMAShares

used to calculate delta

portfolio value

normal deviates used for Monte Carlo
temp variable to hold delta value

total stock value

initial seed value

used for gasdev function

step size

drift

(vol) * (vol) /2) *(T)) / (vol*sqrt (T)) ;
number of shares

initialize value of money market account
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numMMA = numShares;

totalMMAValue = numMMA*price;

totalMMAShares = numMMA;

totalStockShares = numShares;

temp = delta;

portValue = totalStockValue - totalMMAValue;

srand (unsigned(0)) ;
seed = (long) rand() % 100;
idum = &seed;

for (i = 0; 1 < M; i++)

{
// initialize starting price
1nS = log(price);

// do simulations on each path
for (j = 0; j < N; Jj++)
{
deviate = util.gasdev (idum) ;
1nS = 1nS + (rate - div - 0.5*vol*vol)*dt + vol*sqgrt (dt)*deviate;

S = exp(1lnS);
MMAValue = MMAValue*exp (ratex*dt) ;

// compute current delta

if (14 != M-1)
{
dl = (log(price/strike) + (rate - div + (vol)*(vol)/2)*(T-i*dt))/(vol*sqrt (T-
i*dt));
delta = util.normalCalc(dl) ;
1
else

delta = 1.0;

// adjust total delta
delta = delta - temp;

if (S >= price)
{
// buy shares
temp = delta;
numShares = delta;
totalStockShares = totalStockShares + numShares;
totalStockValue = totalStockShares*price;

// finance purchase of stock by selling shares (borrowing) from MMA
numMMA = numShares;

totalMMAShares = totalMMAShares + numMMA;

MMAValue = MMAValue + numMMA*price;
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}

}

}

else

{

}

totalMMAValue = MMAValue*totalMMAShares;
portValue = totalStockValue - totalMMAValue;

// sell shares

temp = delta;

numShares = delta;

totalStockShares = totalStockShares - numShares;
totalStockValue = totalStockShares*price;

// buy back the money market shares shorted
numMMA = -numShares;

totalMMAShares = totalMMAShares + numMMA;
MMAValue = MMAValue + numMMA*price;
totalMMAValue = MMAValue*totalMMAShares;
portValue = totalStockValue - totalMMAValue;

std::cout << “inal cost: ” << totalMMAValue - totalStockValue << endl;

return totalMMAValue - totalStockValue;

2.7 HEDGE CONTROL VARIATES

Clewlow and Carverhill (1994) developed the general approach of using hedges
(Greeks) as control variates. Because the payoff of a hedged portfolio has a lower
standard deviation than the payoff of an unhedged one, using delta and gamma
hedges can reduce the volatility of the value of the portfolio. Consider the case of
writing a European call option with maturity T. We can replicate the payoff by sell-
ing the option, investing the premium in a savings account, and rebalancing the
holding in the asset at discrete interval times ¢, =1, . . ., N, with resultant cash flows
placed into and out of the savings account (when selling and buying shares, respec-
tively) so as to maintain a self-financing portfolio.'S A delta hedge consists of hold-
ing A = dC/dS shares in the underlying asset, which is rebalanced at the discrete time
intervals. While the hedge is not perfect due to discrete rebalancing, it is quite good
with frequent rebalancing.

At time T, the hedge consists of the savings account and the asset, which
closely replicates the payoff of the option. This can be expressed as

. N(ac, oC HT-
G X s s e G (2.25)

i=

15Tbid., 92.
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where dC, /0S = dC, /oS = 0 (the hedge does not exist before 7, and the asset is as-
sumed to be llquldated from the previous rebalancing date 1nto cash at maturity).
Following Clewlow and Strickland (1998a), the first term is the premium received for
writing the option, inflated at the risk-free rate up to the maturity time T, the second
term represents the cash flows from rebalancing the hedge at each date z, and the
third term on the right-hand side is the payoff of the option C,. and the hedging error
M. The expression in square brackets is the delta hedge. Equation (2.25) can be
rewritten (expand the terms in the brackets and group like delta terms dC,/dS) as

N-1
G | 3 s, s T <G 26
0 pars aS i+l i

The delta hedge (term in brackets) is called a delta-based martingale control variate
cv, and can be expressed as

N- 1aCt

(S, LS, e 2.27)

i=0

Thus, because cv, is a martingale, its mean is zero. Rearranging equation (2.26),
we get

G, = 2 75 (S ELS, DT |em (2.28)

which, as Clewlow and Strickland suggest, can be interpreted as meaning that the
expectation of the payoff plus the hedge is equal to the initial premium inflated to
the maturity date at the risk-free rate of interest. As a result, if we simulate the pay-
off and the hedge and compute the mean of these, we can obtain an estimate of the
option value but with a much smaller variance.'® Since cv, is a random variable
whose mean we know as zero, then cv, is a suitable control variate.

We can also compute the gamma hedge control variate:

N-1 aZC
t
2=, 98>

i=0

: ((AS E[(AS, )*1e""™ t'*”) (2.29)
where E| (ASti) 1= SZ( (2r+0%)0t; _ Do 4 1) and AS = S -S

[

16Tbid., 93.
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Let ¢, = 0 and assume there are 7 control variates. Then, in the general case of a
European option with a payoff C, at time T, equation (2.28) can be written as

CoerT = CT — ;Bkcvk +n (2.30)

where the B coefficients are included to account for the sign of the hedge, for errors
in the hedge due to discrete rebalancing, and for having only approximate hedge
sensitivities (i.e., delta, gamma, etc.).!” We can rewrite equation (2.30) in the form

CT=BO+ZBkCU/e+n (231)
b=

where B, = Cje’" is the forward price of the option. Equation (2.31) can be inter-
preted as a linear regression equation where the payoff of the option is regressed
against the control variates. The B’s can be viewed as the regression coefficients that
measure the sensitivity of changes in the control variates to changes in the payoff.
The m represents the noise which comes from discrete rebalancing and imperfect
sensitivities. If we perform M simulations, then we can view the payoffs and control
variates (Cp, cv, preea )= 1, ..., M) as samples from this regression equation.
Consequently, we can an obtain an estimate of B by least-squares regression. The
least-squares estimate of B is:

B= (X'X)X'Y

where [§ BO, [3], Cee [_’) ), X is M X n matrix whose rows correspond to each simu-
lation and are (1, cv,, ..., cv,;) and Y is the M x 1 vector of simulated payoffs.
The matrices X’X and X’Y can be computed during the simulation via accumula-
tion

V)t
Tyks1

= (X’ X) kT Vi
(X’X) +c,,,,C

where i and j index the rows and columns of the matrix and k& is the time step.
Clewlow and Strickland note that since the payoffs and control variates are not
jointly normally distributed, then [3 the estimate of B, will be biased. This is espe-
cially important for the forward price of the option, 3, as we do not want the esti-
mate for option price to be biased. To overcome this problem, Clewlow and
Strickland suggest precomputing the B,’s, k = 1, .. ., N, by the least-squares regres-

Ibid., 95.
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sion or fixing them at some appropriate value for the type of hedge. Thus, by keep-
ing the B,’s fixed, all options can be valued by taking the mean of the hedged port-
folio under a different set of simulated paths.'®

The following is the code for Monte Carlo valuation of a European call option
using antithetic, delta, and gamma-based control variates:

/**********************************************************************************

MonteCarloADG

delta,
[in] : double
double
double
double
double
double
long N
long M

[out] double

values a European Call option using Monte Carlo with antithetic,

S
X
v
r
d

ol
ate
iv

asset price
strike price
volatility
risk-free rate
dividend yield
option maturity

and gamma control variates. Adapted from Clewlow and Strickland

(1998a)

number of time steps
number of simulations

callValue

**********************************************************************************/

double MonteCarloMethod: :MonteCarloADG (double S,
double T,

double div,
int i,
double
double
double
double
double

ji
dt
mudt

voldt
erddt
egamma

T/N;

(rate -

long N,

div -

vol*sqgrt (dt) ;
exp ((rate - div)*dt); //

exp ( (

2% (rate - div)

+ vol*vol) *dt) -2*erddt + 1;

double betal

double beta2
double
double
double
double
double
double

double
double
double
double
double
double

cvl;
cv2;
delta,
deltal

SD;

0.

_l;

gamma ;

i

gammal

deviate;

18Tbid., 96.

7

long M)

!/

double X, double vol,

0.5*vol*vol) *dt;

helps compute E[Si] efficiently
helps compute gamma control variate

fixed beta coefficent on delta control
variate

fixed gamma coefficient of gamma control
variate

call values

squared call values

summation of
summation of
current time
stock prices
stock prices

at current time

at next time step
call value at maturity at end of
simulation path

delta control variate

gamma control variate

delta and gamma of positive antithetic
delta and gamma of negative antithetic
standard deviate

standard deviation

double rate,
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double SE; // standard error

srand (time (0)) ; // initialize RNG

long seed = (long) rand() % 100; // seed for random number generator

long *idum = &seed; // used for generating standard normal
// deviate

double callvalue; // call value

cout.setf (ios: :showpoint) ; // output format

cout.precision(4) ; // set output decimal precision

for (i = 1; 1 <= M; i++)

{
// initialize variables for simulation
St = S;

Stl = S;

cvl = 0;

0

7

cv2 =

for (j = 1; j <= N; J++)

{
// compute hedge sensitivities
t = (j-1)=*dt;
delta = og.calcDelta(St,X,rate,div,vol,T,t);
deltal = og.calcDelta(Stl,X,rate,div,vol,T,t);
gamma = og.calcGamma (St,X,rate,div,vol,T,t);
gammal = og.calcGamma (Stl,X,rate,div,vol,T,t);

// generate gaussian deviate
deviate = util.gasdev (idum) ;

// evolve asset price
Stn = St*exp (mudt + voldt*deviate) ;
Stnl = Stl*exp (mudt + voldt* (-deviate));

// accumulate control deviates
cvl = cvl + delta*(Stn - St*erddt) + deltal* (Stnl - Stl*erddt);

cv2 = cv2 + gamma* ((Stn - St)*(Stn - St) - pow(St,2*egamma))
+ gammal* ( (Stnl - Stl)*(Stnl - Stl) - pow(Stl,2*egamma)) ;

St = Stn;

Stl = Stnl;

}

// compute value with antithetic and control variates

CT = 0.5*%(max(0,St - X) + max(0, Stl - X) + betal*cvl + beta2*cv2);
sum = sum + CT;

suml = suml + CT*CT;

}

callvValue = exp(-rate*T)* (sum/M) ;
cout << “value = ” << callValue << endl;

SD = sqgrt((suml - suml*suml/M)*exp (-2*rate*T)/(M-1));
cout << “stddev = ” << SD << endl;
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SE = SD/sgrt (M) ;
cout << “stderr = ” << SE << endl;

return callValue;

The functions to calculate delta and gamma control variates in the preceding code
are given in the Option::OptionGreeks class in Chapter 1.

Monte Carlo is also well suited for valuation of spread options and basket op-
tions (options on a portfolio of assets). Consider two stocks, S, and S,, that each
follow the risk-neutral price processes:

ds, = (r-q,)8S,dt +c,S dz,
and
ds, = (r—q,)S,dt + 6,5,dz,

where dz,dz, = pdt. Price paths follow a two-dimensional discretized geometric
Brownian motion that can be simulated according to:

2
o
Siiv1 =S expllr—q, — 71)& +0, ‘/Eeuﬂ )

and
2
c
Syie1 =5, exp(r—q, —TZ)N +0, @(pel,i+l +y1-p* €i11))
fori=0,1,..., N, where ¢, and ¢, are samples from the standard normal.

The same seed is used for all simulations. The following code is an implementation
to value a European spread call (or put) option with payoff

e—r(Tft)EQ[max(Sl(T) — SZ<T) - X,O | St]
for a call and
e—r(T—t)EQ[max(X - Sl(T) + SZ(T)’O) [ St]

for a put.
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/*********************************************************************************/

calcMCEuroSpreadOption

[in] double pricel
double price2
double strike
double rate
double voll
double vol2
double divl
double div2
double rho
double T
char type
long M
long N

[out] double

computes the value of a European spread option
price of asset 1

price of asset 2

strike price

risk-free rate

volatility of asset 1
volatility of asset 2
dividend yield of asset 1
dividend yield of asset 2
correlation of dzl and dz2
maturity of option

option type (C)all or (P)ut
number of simulations
number of time steps

price of spread option

**********************************************************************************/

double SpreadOption::calcMCEuroSpreadOption (double pricel, double price2, double

strike, double rate,

double voll, double vol2, double divl, double div2, double

rho, double T, char type, int M, int N)

int i, j;

double dt = T/N; // size of time step

double mul = (rate - divl - 0.5*voll*voll); // drift for stock price 1
double mu2 = (rate - div2 - 0.5*vol2*vol2); // drift for stock price 2
double srho = sgrt(l - rho*rho); // square root of 1 - rho*rho

double suml = 0.0;

double sum2 = 0.0;

double S1 = 0.0;
double S2 = 0.0;
double deviatel =
double deviate2
double zl1 = 0.0;

o o

double z2 = 0.0;

double CT =
double SD =
double SE = ;
double value = 0.0;

o O o
o O o

srand (time (0)) ;

o o

// sum of all the call values on
// stock 1 at time T

// sum of all the call values on
// stock 2 at time T

// stock price 1

// stock price 2

// deviate for stock price 1

// deviate for stock price 2

// correlated deviate for stock
// price 1

// correlated deviate for stock
// price 2

// option price at maturity

// standard deviate of price

// standard error of price

// spread option price

// initialize RNG

long seed = (long) rand() % 100; // generate seed

long* idum = &seed;
N =1;

for (i = 0; 1 < M; i++)

{

// no path dependency

// initialize prices for each simulation

S1 = pricel;
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S2 = price2;

for (j = 0; j < N; Jj++)

{
// generate deviates
deviatel = util.gasdev(idum) ;
deviate2 = util.gasdev (idum) ;

// calculate correlated deviates

z1l = deviatel;

z2 = rho*deviatel + srho*deviate2;

S1 = Sl*exp(mul*dt + voll*zl*sqgrt(dt));
S2 = S2*exp (mu2*dt + vol2*z2*sqgrt(dt));

}

if (typ == 'C’)

CT x(S1 - S2 - strike, 0);
else

CT = max(strike - S1 + S2,0);

suml = suml + CT;
sum2 = sum2 + CT*CT;

}
value = exp(-rate*T)* (suml/M) ;
SD = sqgrt((sum2 - suml*suml/M)*exp (-2*rate*T)/(M-1));

SE = SD/sqgrt (M) ;

return value;

Suppose §, = 50, S, =50, X =1,r=0.06, g, = 2 percent, g, = 3 percent, 6, = 30
percent, 6, = 20 percent, T = 0.5. Figure 2.4 shows a plot of call and put spread op-
tion prices as a function of correlation p = -1, -0.9, ..., 0.9, 1, for M = 100,000
simulations. Note that since the option is European, we can speed the computation
by using only N = 1 time step.

Notice that as correlation increases, the option price (monotonically) decreases
for both call and put spread options. When p = 1, the second random factor ¢, ; can-
cels out of the second geometric Brownian equation for S,. Consequently, both §,
and S, are being driven by only one (the same) source of randomness or uncertainty

Thus z,,and z, , move in the same direction so that random movements of both
assets occur in the same direction and make the spread S, — S, decrease since the
same direction movements are offset. However, when p = —1 the randomness of +¢,,
in the equation of the first asset is offset by —¢, ; in the equation of the second asset
and so movements in one direction of one asset are magnified by movements in the
opposite direction of the other asset. Thus, a widening of the spread S, — S, occurs,
making the option worth more. Other numerical techniques for valuing spread op-
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Spread Optionas a Function of Correlation
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FIGURE 2.4 Call and Put Spread Option Prices

tions include a two-variable binomial method (see section 3.10), fast Fourier trans-
form (FFT) methods (see Appendix C in the CD-ROM), and Gaussian quadrature

(see section 14.10).

2.8 PATH-DEPENDENT VALUATION

To price a path-dependent derivative by Monte Carlo, meaning the payoff is depen-
dent on the entire path taken by the underlying security, we need to estimate the
conditional expectation. Suppose we want to price a European-style claim of the

underlying process; that is, the payoff
fr=F({S,0<t<T)

depends on the entire path from 0 to T. The risk-neutral pricing formula gives the
price of the security at time 0 as a discounted expectation:

fo =e TESSIF(S,, 0<t<T})] (2.32)

The expectation is calculated over all possible paths of the risk-neutral process from
0 to T started at (S, 0). We can estimate this expectation in the following steps:

1. Divide the path into N time steps At, and simulate M sample paths of the risk-
neutral diffusion process.
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2. Calculate the terminal payoff for each path. The payoff on the kth path, {S% i =
0,1,...,N}, k=1,2,..., M (i—time counter on a give path; k—counts dif-
ferent paths): F(Sf, S5, ..., S%).

3. Discount with the risk-free rate r.

4. The crude Monte Carlo estimate f* of the security price is just an average of all

the discounted payoffs over M sample paths generated:

M
fi=e L3 ESk, sty k) (2.33)
k=1

fiis a Monte Carlo estimate of the N-dimensional integral:

f(; :e_rtj. e JF(So, Sl’ e ey SN)
0 0 (2.34)

P2(Sns tx 1 Snits Eny) - - - D2(Sy, £ 1S, 8)dS, . .. dSy

where

1 o
pQ(Si+19ti+1|Sis t;)=—————expi— > , W=7r———
Sin 216t

is the risk-neutral probability density (i.e., lognormal distribution density) of S,
given §,. Monte Carlo simulation is used to calculate these multidimensional inte-
grals involving integration over multiple points on the path.

Suppose we want to price an Asian option (Chapter 6), an option whose
value depends on the average price of the underlying security over the life of the
option, by simulation. We generate M sample paths {S%,i=0,1,...,N}, k=1,
2, ..., M, index i counts time points on a given path, index k counts paths,
t = it

At = £, and S, ., =S, exp(uAt +€; 4 G\/E)

Compute the average price A, for each path:

1
Ay ZEZSi
i=1
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Estimate the option price:

£(S, t) = eM ) max(4, - X, 0) (2.35)

To reduce variance, always use antithetic variates. Note that it is not necessary to
save all the prices on the path and then compute the average price. The average
price can be computed efficiently by the recurrent relation:

1 /.
A jn = m(lAk,/ + S;‘+1)

where A, is the average price between time #; and #. One updates the average at

each time step. This saves computing time and memory.

We can create an AsianOption class the inherits from the Option class because

an Asian option is an option; that is, it is a subclass (derived) from an Option.

class AsianOption : public Option

{

public:

AsianOption (double price, double strike, double vol, double rate, double div,
double T);

AsianOption() : value (0.0) {}

~AsianOption() {}

// modified Black Scholes pricing formula

double calcBSAsianPrice (double price, double strike, double vol, double rate,
double div, double T, char type);

// calculate arithemic ave. Asian option using Monte Carlo (MCA)

double calcMCAAsianPrice (double price, double strike, double vol, double rate,

double div, double T, char type, int M, int N);

// calculate geometric ave. Asian option using Monte Carlo (MCG)

double calcMCGAsianPrice (double price, double strike, double vol, double rate,

double div, double T, char type, int M, int N);
virtual void setupEngine() const { }
virtual double calculate() const { return value ; }

private:

}i

double vola; // Arithmetic ave. volatility for modified Black-Scholes formula

double gA; // Arithmetic ave. dividend yield for modified Black-Scholes
// formula
double value ; // Asian option price
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The following is a Monte Carlo implementation to price an Asian option using
geometric averaging on a stock with S = 45, X =42, 6 = 20 percent, r = 5.5 percent,
q = 1.5 percent, and T = 1 using M = 1,000 simulations with N = 10 time steps
(equally spaced fixing times) so that 2, — ¢, = T/N = At forall i =1, ..., N. We
make the following call:

void main ()

{
cout.setf (ios::showpoint) ;
cout .precision(4) ;

AsianOption ao;
double price = ao.calcMCGAsianPrice(45,42,0.20,0.055,0.015,1,'C");
cout << “Geometric Asian price = ” << price << endl;

The function implementation is:

/**********************************************************************************

calcMCGAsianPrice: computes the price of a geometric Asian option using Monte Carlo
simulation

[in] : double price : initial stock price
double strike : strike price
double vol : volatility
double rate : risk-free rate
double div : dividend yield
double T : time to maturity
char type : (C)all or (P)ut
int M : number of simulations
int N : number of time steps
[out] double : price of geometric Asian option

**********************************************************************************/

double AsianOption::calcMCGAsianPrice (double price, double strike, double vol,
double rate, double div, double T, char type, long M, long N)
{

// initialize variables

int i, §;

double G = 0.0; // price of geometric average Asian option
double mu = 0.0; // drift

double deviate; // normal deviate

double S = 0.0; // stock price

double sum = 0.0; // sum of payoffs

double sum2 = 0.0; // sum of squared payoffs

double product = 0.0; // product of stock prices

double payoff = 0.0; // option payoff

double deltat = 0.0; // step size
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do
do
de
mu
co

sr
lo
lo

//
fo

{

}

va
st
st

re

uble stddev = 0.0; // standard deviation
uble stderror = 0.0; // standard error
ltat = T/N; // compute change in step size
= rate - div - 0.5*vol*vol; // compute drift
ut.precision(4) ; // set output decimal format
and (time (0)) ; // initialize RNG
ng seed = (long) rand() % 100; // generate random number generator
ng *idum = &seed; // store address of seed
for each simulation
r (1 =0; 1 <= M; 1i++)

S = price;
product = 1;

for (j = 0; j < N; Jj++)
{
deviate = util.gasdev (idum) ;
S = S*exp(mu*deltat + vol*sgrt(deltat) *deviate) ;
product *= S;

}

// compute geometric average
G = pow(product, (double)1/N) ;
if (type == ‘C’)

payoff = max(G - strike,0);
else

payoff = max(strike - G,0);

sum += payoff;

sum2 += payoff*payoff;

lue = exp(-rate*T)* (sum/M);

ddev = sqgrt((sum2 - sum*sum/M) *exp (-2*rate*T)/(M-1));

derror = stddev/sqrt (M) ;

turn value_;

The price of the geometric average Asian call is $5.76 with a standard devia-
tion of 5.00 and a standard error of 0.50. We now price an arithmetic Asian price
option using the same values for the geometric average Asian call.

/***

******************************************************************************/

calcMCAsianPrice : computes the price of an arithmetic Asian option using Monte

Carlo simulation
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[in] : double price : initial stock price
double strike : strike price
double vol : stock volatility
double rate : risk-free rate
double div : dividend yield
double T : time to maturity
char type : (C)all or (P)ut
int M : number of simulations
int N : number of time steps
[out]: double : price of arithmetic Asian option

**********************************************************************************/
double AsianOption::calcMCAAsianPrice (double price, double strike, double vol,
double rate, double div, double T, char type, int M, int N)

{

// initialize variables

double A = 0.0; // arithmetic average
double mu = 0.0; // drift

int i, j;

double deviate; // normal deviate

double stddev = 0.0; // standard deviation
double stderror = 0.0; // standard error

double S = 0.0; // stock price

double sum = 0.0; // sum of payoffs

double suml = 0.0; // sum of stock prices
double sum2 = 0.0; // sum of squared payoffs
double payoff = 0.0; // payoff of option
deltat = T/N; // step size

mu = rate - div - 0.5*vol*vol; // compute drift
cout.precision(4) ; // set output decimal format
srand (time (0)) ; // initializer RNG

long seed = (long) rand() % 100; // generate seed

long *idum = &seed;

// for each simulation
for (i = 0; 1 <= M; i++)

// reinitialize for each simulation
S = price;
suml = 0;

for (j = 0; J <N; Jj++)

{
deviate = util.gasdev (idum) ;
S = S*exp(mu*deltat + vol*sqgrt(deltat) *deviate) ;
suml += S;

1
A = suml/N;

if (type == ‘C’)
payoff = max(A - strike, 0);
else
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payoff = max(strike - A,0);

sum += payoff;
sum2 += payoff*payoff;

}

value = exp(-rate*T)* (sum/M) ;
cout << value = “ << value_ <<endl;

stddev = sgrt((sum2 - sum*sum/M)*exp (-2*rate*T)/(M-1));
stderror = stddev/sqgrt (M) ;

cout << “ stddev = " << gstddev << “ " << “stderror ” << stderror << endl;

return value_;

The price of the arithmetic average is approximately $5.90 with a standard de-
viation of 5.134 and a standard error of 0.514. It is not surprising that the arith-
metic average is higher than the geometric average price since arithmetic average of
a series of values is always greater than or equal to the geometric average of a series
of values.

As discussed, the geometric average option makes a good control variate for
the arithmetic average option. It lowers the standard deviation, and thus standard
error, of the estimate. The following is an implementation for pricing an arithmetic
average option using a geometric average control variate:

/*********************************************************************************/

calcMCGAsianPrice : computes the price of an geometric Asian option with a
control variate using Monte Carlo simulation
[in] : double price : initial stock price
double strike : strike price
double vol : stock volatility
double rate : risk-free rate
double div : dividend yield
double T : time to maturity
char type : (C)all or (P)ut
int M : number of simulations
int N : number of time steps
[out] : double : price of geometic Asian option with a control variate

**********************************************************************************/

double AsianOption::calcMCAAsianGCV (double price, double strike, double vol, double
rate, double div, double T, char type, int M, int N)
{

// initialize variables
int i, j;
double geo = 0.0; // geometric average

double ave = 0.0; // arithmetic average
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double
double

mu = 0.0;
stddev = 0.0;
double stderror = 0.0;
double deviate;
double S = 0.0;
double 0.0;
double suml = 0.0
double product =
double payoff =
double dt = T/N;

sum =
0.0;
0.0;
cout.precision(4) ;
srand(time (0)) ;

long seed = (long)
long* idum = &seed;

rand() % 100;

mu = rate - div - 0.5*vol*vol;
// simulation
for (i = 0; 1 <= M;

{

1++)

// initialize for each simulation

drift

standard deviation
standard error
standard deviate

stock price

sum of payoffs

sum of squared payoffs
product of stock prices
option payoff

step size

set output decimal format
initialize RNG
generate seed

store address of seed

drift

S = price;

product = 1;

sum = 0;

suml = O;

for (j = 0; j < N; Jj++)

{
deviate = util.gasdev (idum) ;
S = S*exp(mu*deltat + vol*sqgrt(dt)*deviate) ;
sum = sum + S;

product *= S;

ave = sum/N;
geo = pow (product, (double)1/N) ;
if (type == ‘C’)
payoff = max(0, (ave - strike) -
else
payoff = max(0, (strike - ave) -

sum += payoff;
suml += payoff*payoff;

value = exp(-rate*T)* (sum/M) +

// calculate arithmetic average
// calculate geometric average

(geo - strike));

(strike - geo)) ;

calcMCGAsianPrice (price, strike,vol,rate,div, T, 'C’);

cout << value = “ << value_ <<endl;

stddev =

sgrt ( (suml - sum*sum/M) *exp (-2*rate*T)/ (M-1)) ;
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}

stderror = stddev/sqgrt (M) ;
cout << “ stddev = ” << stddev << “ ” << “stderror ” << stderror << endl;

return value_ ;

The arithmetic price is approximately $5.90 with a standard deviation of 0.185
and a standard error of 0.019. Table 2.2 summarizes the Monte Carlo results of the
Asian option using different methods using M = 1,000 simulations and N = 10 time
steps per path. Note how much smaller the standard error is using the control vari-
ate technique than using the arithmetic average Monte Carlo.

2.9 BROWNIAN BRIDGE TECHNIQUE

In order to capture path-dependencies, it may be necessary to simulate the values
that a stochastic factor (i.e., an interest rate) can take at many points over a time
horizon. While (unconditional) Monte Carlo can be used to estimate values over
short time horizons, a more robust method needs to be used to simulate values over
longer time horizons that may be conditional on a final state being reached. A
Brownian bridge is a stochastic process that evolves over time conditional on reach-
ing a given final state at a given final time. The Brownian bridge, suggested by
Caflisch and Moskowitz (1995), can be used to generate Brownian motion at a
specified number of time points between a given initial and a final state. Intuitively,
a Brownian bridge is a stochastic interpolation between the initial state and the fi-
nal state so that simulated paths are consistent with the initial and final states.
Brownian bridges are useful for stress testing because they can be used to generate
paths that lead to extreme and unlikely final states (stress scenarios).

Suppose the final condition of the stochastic factor, say a stock price, is S(¢) = S
at time T. Suppose that S(z) follows the SDE:

T

dS(#) = uS(t)dt + S(t)dZ (1) (2.36)

TABLE 2.2 Monte Carlo Results of the Asian Option

Monte Carlo Estimate Standard Deviation Standard Error
Arithmetic average $5.898 5.134 0.514
Geometric average $5.760 5.000 0.500

Geometric control variate $5.898 0.185 0.019
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where Z(¢) is Brownian motion (a Wiener process). The solution to equation (2.36)
is given by

2
S(t)= S(0>exp[<u—"7>t+czu>] (2.37)

so that S(¢) is lognormally distributed. The drift i and volatility ¢ can be estimated
from historical data. For generating price paths, one could use Monte Carlo simu-
lation using equation (2.1). In the case of long-term simulations, the model itself
poses a problem. Over a long period of time the drift dominates the volatility such
that small errors in the drift lead to large differences in the future price distribution,
whereas for short-term simulations the volatility dominates the drift so that the ef-
fects of the drift are negligible. Moreover, other assumptions of price behavior over
short-term horizons—like successive one-day returns that have the same volatility
and are independent of one another, which implies that the variance of returns is a
linear function of time or that stock price returns follow a random walk—do not
hold over long-term horizons. However, a Brownian bridge can be used to over-
come these problems.

The final condition at time T leads to a final condition for the Brownian mo-
tion at time T, which can be deduced from equation (2.37):

2
Z(T) = %{m(%) - [u - %)T}

z(T)

Mathematically, the paths of the Wiener process that end up at the same value z(T)
are defined by a (one-dimensional) Brownian bridge B(z) ,¢ € [0, T] defined by

B(T) = 2(0)+ (=(T) = (0)) 2=+ Z* (1) = Z*(T) (2.38)

where z(0) = 0 and Z*(¢) is a Wiener process that is independent of Z(z). We can
write (2.38) as

B(T) = (2(T)=Z* () =+ Z* 1) (2.39)

When simulating the Brownian bridge, we have to construct this independent
Wiener process along some appropriate time steps within the time interval of inter-
est, 0 =t,<t <...<t =T, by setting

i) Z*(0)= 0
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il‘)Z#(tl‘Jr]):Z:}(ti)‘i‘e'\ ti+1 _ti9 ZZO, c ey n_l

where € ~ N(0,1) are standard normally distributed deviates and where we assume
the intervals ¢, —¢,,i=0,..., n—1 are the same length.

The Brownian bridge now replaces the Wiener process Z(t) for 0 < ¢# < T in
(2.37),

(52
S(t) = S(0)exp| (n— 7)t + GB(t)]

2 2
= S(0)exp| (1 - %)t + [log(%) (- %)T}% + (5( Z5 (1) - % 7 (T))J

= §(0)exp log(%)% + c{ Z* (1) - % z* (T)D

As can be seen from equation (2.40), the drift term p drops out (the drift of the
Brownian bridge is determined by the given initial and final states), which solves
the problem of having to estimate the drift. Thus, only the volatility needs to be es-
timated. This advantage comes at the cost of having to estimate the final probabil-
ity distribution of the price at time T. The probability distribution implicitly
incorporates the drift of the price evolution. However, since the drift is unknown
(the drift could be any more or less complicated term) there is no need for the stan-
dard deviation of the estimated probability distribution to be consistent with the
volatility of the Brownian bridge.

The Brownian bridge construction first generates Z(T), and then using this
value and Z(0) = 0, generates Z(T/2). It generates Z(T/4) using Z(0) and Z(T/2),
and it generates Z(3T/4) using Z(T/2) and Z(T). The construction proceeds recur-
sively filling in the midpoints of the subintervals.'” Consequently, the sampled
Brownian path is generated by determining its values at T, T/2, T/4, 3T/4, . ...,
(n—1)T/n, using a vector of generated standard normal deviates e = {€ , €,,...,€}
according to:

Z(T)=+Te,

€

T
2

Z(T/2)=%Z(T)+

YPapageorgiou (2001), 4.
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Z(T/4) = %Z(T/2)+ ViT £

Z(3T/4) = %(Z(T/Z) +Z(T))+ \/i_T €4

Z((n-1T/n)= %(Z((n -29T/n)+Z(T))+ \/ggn

The Brownian bridge can be generalized to include time intervals of unequal
lengths. For t,=t+Aj=0,...,n-1, At = T/n, we can simulate a future
value Z(t,), k > j, given the value Z(t), according to

Zty)=Z(t;)+ e (k—j)At (2.41)

where € ~ N(0,1) are standard normally distributed deviates.?’ We can simulate
Z(t) at any intermediate point t <t <t,given the values Z(t) and Z(t,), according

to the Brownian bridge formula:
Z(t;)=(1=v)Z({t;)+¥Z(tp) +ey(L—7)(k—f)At (2.42)

where € ~ N(0,1) and y = (i — j)/(k — 7).
We give the following BrownianBridge implementation adapted from Jackel
(2002):

class BrownianBridge

{

public:
BrownianBridge (unsigned long numberOfSteps) ;
virtual ~BrownianBridge() {};
void buildPath (vector<double>& theWienerProcessPath, const vector<double>&
gaussianVariates) ;
void generateDeviates (unsigned long numberOfSteps) ;
private:

unsigned long numberOfSteps;
vector<unsigned long> leftIndex;
vector<unsigned longs> rightIndex;

2bid., 5.
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vector<unsigned long> bridgeIndex;
vector<double> leftWeight;
vector<double> rightWeight;
vector<double> stddev;
vector<double> normalVariates;
StatUtility util;

The class has the following method definitions:

/**********************************************************************************

BrownianBridge : Constructor , initializes Brownian bridge
[in] numberOfSteps: number of steps on path
[out] none
**********************************************************************************/
BrownianBridge: :BrownianBridge (unsigned long numberOfSteps) :

numberOfSteps (numberOfSteps), leftIndex (numberOfSteps),

rightIndex (numberOfSteps), bridgeIndex (numberOfSteps),

leftWeight (numberOfSteps), rightWeight (numberOfSteps), stddev (numberOfSteps)

vector<unsigned long> map (numberOfSteps) ;
unsigned long i, j, k, 1;

// map is used to indicated which points are already constructed. If map[i] is

// zero, path point i is yet unconstructed. map[i] - 1 is the index of the

// variate that constructs the path point 1i.

map [numberOfSteps-1] = 1; // the first point in the construction is
// the global step

bridgeIndex[0] = numberOfSteps - 1; // bridge index

stddev [0] = sqgrt (numberOfSteps) ; // the standard deviation of the global
// step

leftWeight [0] = rightWeight[0] = O; // global step to the last point in time

0; 1 < numberOfSteps; ++1i)

for (j = 0, 1

{

while (map([3j])

++3; // find the next unpopulated entry in the
// map
k = 3;
while ((!map(k])) // find the next unpopulated entry in the
++k; // map from there
1 =3+ ((k -1-73) >>1); // 1 is now the index of the point to

// be constructed next
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map[1] = 1i;
bridgeIndex[i] = 1; // the ith gaussian variate to be used to set point 1
leftIndex[i] = J; // point j-1 is the left strut of the bridge for

// point 1

// point k is the right strut of the bridge

rightIndex[i] = k;
leftWeight [i] = (k - 1)/(k + 1- J);
rightWeight [i] = (1 + 1 - J)/(k+ 1- J);
stddev[i]l = sqrt(((1 + 1 - F)*(k-1))/(k+1-3));
j =k + 1;

if (j >= numberOfSteps)
j = 0; // wrap around

/**********************************************************************************
buildPath: builds a path using a Brownian bridge

[in] path : simulated Brownian path

[in] normalVariates : vector of normal deviates

[out] none
**********************************************************************************/

void BrownianBridge::buildPath (vector<double>& path, const vector<double>&
normalVariates)

{

assert (normalvVariates.size() == numberOfSteps && path.size() == numberOfSteps) ;
unsigned long i, j, k, 1;

path [numberOfSteps - 1] = stddev[0] *normalVariates[0];
for (i = 1; 1 < numberOfSteps; i++)
{
j = leftIndex[i];
k = rightIndex[i];
1 = bridgeIndex[i];
if (9)
path[l] = leftWeight [i]*path[j-1] + rightWeight [i]*path[k] +
stddev [i] *normalVariates[i] ;
else
path[l] = rightWeight[i] *path([k] + stddev[i]*normalVariates[i];

/**********************************************************************************
generateDeviates: generates a sequences of normal random deviates
[in] numberOfSteps: number of steps per path (= number of deviates needed per path)

[out] none
**********************************************************************************/

void BrownianBridge::generateDeviates (unsigned long numberOfSteps)
{

double deviate = 0.0;

srand (time (0)) ; // initialize RNG

long seed = (long) rand() ; // generate random seed

long* idum = &seed;
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for (int i=0; i < numberOfSteps; i++)
{
deviate = util.gasdev (idum) ;
normalVariates.push back (deviate);
1
1

It has been thought by many researchers that the Brownian bridge speeds up
the convergence of quasi-Monte Carlo by reducing the deterministic error bound
more than the standard discretization approach, which uses a Cholesky decomposi-
tion of the covariance matrix C into AA’ to generate uncorrelated deviates. The
choice of the matrix A in the Cholesky decomposition affects quasi-Monte Carlo
convergence since the decomposition can be thought of as a change in the integrand
or as a change in sample points.?! Thus, the deterministic error bound of quasi—
Monte Carlo depends on the integrand and on the discrepancy of the sample points
and one should consider both factors when choosing A.?> The Brownian bridge re-
sults in a matrix B such that C = BB’, where B is different from that of A in the
Cholesky decomposition and is thought to reduce the deterministic error bound
more than A.

Some researchers believe that in high-dimension (i.e., greater than 50) finance
problems where it is necessary to evaluate integrals with Gaussian weights, the first
coordinates of low-discrepancy points will be more uniformly distributed than the
rest. It is believed that points sampled from the multidimensional Gaussian distrib-
ution used to evolve the Brownian bridge will result in an integrand that depends
more on the presumably more uniform coordinates of these samples, and thus lead
to faster convergence. Moreover, the Brownian bridge is thought to reduce the di-
mensionality of the problem. However, Papageorgiou (2001) shows that the
Brownian bridge, which uses points from the same low-discrepancy sequence (i.e.,
Faure or Sobol) as a standard discretization but uses a different matrix covariance
decomposition, can actually lead to worse convergence errors for both high- and
low-dimension quasi-Monte Carlo integrals. Consequently, it is not clear that the
Brownian bridge consistently outperforms the standard discretization method in
quasi-Monte Carlo.

2.10 JUMP-DIFFUSION PROCESS AND CONSTANT ELASTICITY OF
VARIANCE DIFFUSION MODEL

Certain types of stochastic processes are best modeled using random “jumps”
drawn from a Poisson process such as the default time of a bond issuer or even a

HIbid.
2]bid.
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stock price that jumps from unexpected market news. Such a jump-diffusion
process, proposed by Merton (1973),23 can be modeled as:

ds
<= (W —Ax)dt + odz +dq (2.43)

where W is the expected return from the asset, A is the rate (intensity) at which
jumps occur, ¥ is the average jump size measured as a proportional increase in the
asset price, and Ax is the average growth rate from the jumps. Thus, the expected
growth rate from the geometric Brownian motion of the asset is L — Ak. Also, A is
the volatility of the asset that follows geometric Brownian motion, dz is a Brownian
motion process, and dq is the Poisson process generating the jumps (dz and dq are
assumed to be independent processes).

Jump-diffusion processes yield fatter tails, and thus capture more realistic asset
return distribution dynamics than continuous lognormal diffusion processes, since
jumps can be either positive or negative. Merton made the important assumption
that the jump factor of the asset’s return represents nonsystematic risk that can be
hedged away. Consequently, a Black-Scholes type of portfolio must earn the risk-
free rate since the uncertainty arising from geometric Brownian motion can be
eliminated.?*

We can implement a jump-diffusion process using Monte Carlo to value a Eu-
ropean call option:

/*********************************************************************************/

JumpModel : values a European call option using a jump-diffusion
process
[in] : double price: : asset price
double strike : strike price
double vol : volatility
double rate : risk-free rate
double div : dividend yield
double T : option maturity
int N : number of time steps
int M : number of simulations
double lambda : rate (intensity) of jumps
double kappa : average jump sized measured as a proportional increase in
the stock price
[out] double callvalue

**********************************************************************************/

double MonteCarlo: :JumpDiffusion(double price, double strike, double vol, double

{

rate,

double div, double T, int M, int N, double lambda, double kappa)

ZMerton (1973), 125-144.
24Hull (1996), 499.
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int i, j;

double dt; // time increment, (yrs)

double deviate = 0.0; // standard normal deviate

double deviatel = 0.0; // Poisson deviate

double payoff = 0.0; // option payoff

double sum = 0.0; // sum payoffs

double S = price; // store stock price

double mu = rate - div - lambda*kappa; // expected return

long seed; // seed for random number generator
long* idum = 0; // identifies address of seed
StatUtility util; // statistic utility class

srand (time (0)) ; // initialize random number generator
seed = (long) rand() % 100; // generate seed

idum = &seed;

dt = T/N; // time step

for (i = 0; 1 < M; i++)

// initialize stock price for each simulation
S = price;

for(j = 0;

{

J < N; j++)

deviate = util.gasdev (idum) ;
deviatel = util.poisson (lambda) ;

// generate gaussian deviate
// generate Poisson deviate

S = S*exp (mu*dt+ vol*sqgrt (dt)*deviate + sqgrt(dt)*deviatel) ;
1
payoff = max(S - strike, 0);
sum += payoff;
1

return exp (-rate*T)* (sum/M) ;

}

To generate a Poisson random variable from a Poisson process with rate A, we
need to simulate the number of events or arrivals that have occurred over a given
time interval [0, #]. Let N(¢) be the number of arrivals over this time period. If the
interarrival times are independent random variables and exponentially distributed
with rate A, then N(¢) has a Poisson distribution with mean Az. To simulate a Pois-
son process, we perform the following steps:

1. Setn=0,T =0.

2. Generate the random deviate & from an exponential (A) distribution.
3.Setn=n+1,T =T  +&.

4. Return to step 2.
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Then, T, is the time at which the #th “jump” arrives. To generate a Poisson random
variable, we let

T, = —%glogU,-

Then

1 n
N(1)=max{n=0: T,=1}=maxsn>0 : —xglogUi

where U, is the ith uniform (0, 1) deviate. Thus, by generating successive i.i.d. uni-
form (0, 1) random variables until such times as their product is less than e™ we
can generate a Poisson (A) random variable. The Poisson random variable is one
less than the number of uniform factors required to make the product less than e™.
The code to generate the Poisson random variable is given as an in-line function of
a statistical Utility class:

class Utility

{

inline int poisson (double lambda)

assert (lambda > 0. );

double a = exp( -lambda ) ;
double b = 1;

// initialize random number generator
srand (0) ;

long seed = (long) rand() % 100;
long* idum = &seed;

for (int i = 0; b >= a; i++ )
b *= gasdev(idum) ;

return i1 - 1;

In the simplest case of Merton’s jump-diffusion model, the logarithm of the size
of the proportional jump has a normal distribution with a mean of —-0.56* and a
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2.11

standard deviation of 8. In this case, a closed-form solution for European call op-
tion C exists:

= e M ()" 2, 2
c:Z—cn(s, K, t, 7, o> +8% (n/t))

n!

where A = A(1 + x) and C, is the nth Black-Scholes option price with the instanta-
neous variance rate

o2 +8%(nlt)

and risk-free rate 7 = r — Ak + In(1 + )(n/¢).

Another popular alternative model used in simulation is the constant elasticity
of variance (CEV) diffusion model proposed by Cox and Ross.? In the CEV
model, the instantaneous volatility of the stock price (¢, S) has the form 65 for
some o where 0 < o < 1. If o = 1, the CEV model simplifies to the absolute diffu-
sion model where the volatility is inversely proportional to the stock price. The
CEV model captures the financial leverage effect that occurs as firms have fixed
costs to pay regardless of their firm’s operating performance.?® Volatility increases
as the stock price decreases since the firm’s fixed costs do not change but operating
performance may have declined, leading to more uncertainty about the firm’s abil-
ity to pay these obligations. The CEV process, which can be simulated by Monte
Carlo, is given by

dsS = uSdt + S dz (2.44)

This family of processes has the property that the elasticity of variance is constant,
that is, (00/9S)(S/6) = —o.. While the model is easy to apply, it has the weakness that
stock prices can become negative. A closed-form solution for an American call un-
der a CEV process is given by Cox and Rubinstein (1985), which utilizes the
gamma density function and the gamma distribution function into computation.?”

OBJECT-ORIENTED MONTE CARLO APPROACH

We conclude this chapter by providing a Monte Carlo object-oriented implementa-
tion?® that is more robust since the functionality of generating the price paths

25Cox and Ross (1976), 145-166.

26Hull (1996), 497.

27Cox and Rubinstein (1985), 363.

28See QuantLib Library on the CD-ROM.
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through a path generator class is separate from the path pricer that computes the
values, and thus prices, of the derivative along each path. Finally, we use an aggre-
gator (statistics) class that provides the statistics, discounted average (expected
value), and standard deviation from the sum of all prices of all the paths. We first

define a new Monte Carlo method class:

#include “handle.h”
typdef size_ t Size;
typdef double Time;

namespace QuantLib

{

namespace MonteCarlo

{

// General purpose Monte Carlo model for path samples

/* Any Monte Carlo which uses path samples has three main components,
namely,

- S, a sample accumulator,

- PG, a path generator,

- PP, a path pricer.

MonteCarloModel<S, PG, PP> puts together these three elements.
The constructor accepts two safe references, i.e. two smart
pointers, one to a path generator and the other to a path pricer.
In case of control variate technique the user should provide the
additional control option, namely the option path pricer and the
option value.

The minimal interfaces for the classes S, PG, and PP are:
class S

{ void add(VALUE_TYPE sample, double weight) const;

iiass PG

{ Sample<PATH TYPE> next () const;

i:;Lass PP :: unary function<PATH TYPE, VALUE TYPE>

{

VALUE_TYPE operator () (PATH_TYPE &) const;

}i
*/

template<class S, class PG, class PP>

class MonteCarloModel

{

public:

typedef typename PG::sample_ type sample_ type;
typedef typename PP::result_type result_type;
MonteCarloModel (const Handle<PG>& pathGenerator,
const Handle<PP>& pathPricer,
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const S& sampleAccumulator,

const Handle<PP>& cvPathPricer = Handle<PP>(),
result_type cvOptionValue = result_type());
void addSamples (Size samples) ;

const S& sampleAccumulator (void) const;

private:
Handle<PG> pathGenerator ; // path generator
Handle<PP> pathPricer ; // path pricer
S sampleAccumulator ; // sample accumulator
Handle<PP> cvPathPricer ; // control variate path price
result type cvOptionValue ; // control variate option value

bool isControlvVariate_;

}i

// inline definitions
template<class S, class PG, class PP>
inline MonteCarloModel<S, PG, PP>::MonteCarloModel (
const Handle<PG>& pathGenerator,
const Handle<PP>& pathPricer, const S& sampleAccumulator,
const Handle<PP>& cvPathPricer,
MonteCarloModel<S, PG, PP>::result_type cvOptionValue
pathGenerator (pathGenerator), pathPricer (pathPricer),
sampleAccumulator (sampleAccumulator), cvPathPricer (cvPathPricer),
cvOptionValue (cvOptionValue)

if (cvPathPricer .isNull())

isControlVariate = false; // no control variates
else
isControlVariate = true; // use control variates

template<class S, class PG, class PP>
inline void MonteCarloModel<S, PG, PP>::addSamples(Size samples)
{

for(Size j = 1; j <= samples; Jj++)

{

sample type path = pathGenerator -snext();

result_type price = (*pathPricer ) (path.value);
if (isControlvVariate )
price += cvOptionValue - (*cvPathPricer ) (path.value);

sampleAccumulator .add(price, path.weight);

template<class S, class PG, class PP>
inline const S& MonteCarloModel<S, PG, PP>::sampleAccumulator () const {
return sampleAccumulator_;

1
}
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We next define a PathGenerator class that generates all the paths:

#include “gl/MonteCarlo/path.h”
#include “gl/RandomNumbers/randomarraygenerator.h”
#include “gl/diffusionprocess.h”

namespace QuantLib {
namespace MonteCarlo {

/******************************************************************************

Generates random paths from a random number generator
******************************************************************************/
template <class RNG>
class PathGenerator {
public:
typedef Sample<Path> sample_type;
// constructors
PathGenerator (double drift,
double variance,
Time length,
Size timeSteps,
long seed = 0);
// warning the initial time is assumed to be zero
// and must not be included in the passed vector
PathGenerator (double drift,
double variance,
const std::vector<Time>& times,
long seed = 0);
PathGenerator (const std::vector<double>& drift,
const std::vector<double>& variance,
const std::vector<Time>& times,
long seed = 0)
private:
mutable Sample<Path> next ;
Handle<RandomNumbers: :RandomArrayGenerator<RNG> > generator ;

}i

template <class RNG>
PathGenerator<RNG>: : PathGenerator (double drift, double variance,
Time length, Size timeSteps, long seed): next_ (Path(timeSteps),1.0)

{

QL _REQUIRE (timeSteps > 0, “PathGenerator: Time steps(“ +
IntegerFormatter::toString(timeSteps) + “) must be greater than zero”);
QL_REQUIRE (length > 0, “PathGenerator: length must be > 07);

Time dt = length/timeSteps;

for (Size i=0; i<timeSteps; i++)
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{

next .value.times () [i] = (i+1)*dt;

}

next .value.drift () = Array(timeSteps, drift*dt);
QL_REQUIRE (variance >= 0.0, “PathGenerator: negative variance”);

generator_ = Handle<RandomNumbers::RandomArrayGenerator<RNG> > (
new RandomNumbers: :RandomArrayGenerator<RNG> (
Array (timeSteps, variance*dt), seed)) ;

template <class RNG>
PathGenerator<RNGs>: : PathGenerator (double drift, double variance,
const std::vector<Time>& times, long seed)
next (Path(times.size()),1.0)

QL_REQUIRE (variance >= 0.0, “PathGenerator: negative variance”);

QL REQUIRE (times.size() > 0, “PathGenerator: no times given”);

QL _REQUIRE (times[0] >= 0.0, “PathGenerator: first time (™ +
DoubleFormatter::toString(times[0]) + ”) must be non negative”);

Array variancePerTime (times.size());
Time dt = times[0];

next .value.drift () [0] = drift=*dt;
variancePerTime [0] = variance*dt;
for(Size 1 = 1; 1 < times.size(); i++)

{

// check current time is greater than previous time
QL REQUIRE (times[i] >= times[i-1],

“MultiPathGenerator: time(“ + IntegerFormatter::toString(i-1)+")=
” + DoubleFormatter::toString(times[il])
“ is later than time(“ + IntegerFormatter::toString(i) + ”)=" +

DoubleFormatter::toString(times([i])) ;

dt = times[i] - times[i-1];
next .value.drift () [i] = drift*dt;
variancePerTime [i] = variance*dt;

next .value.times() = times;

generator_ = Handle<RandomNumbers::RandomArrayGenerator<RNG> > (
new RandomNumbers: :RandomArrayGenerator<RNG> (variancePerTime,
seed)) ;

template <class RNG> PathGenerator<RNG>: :Path@Generator (
const std::vector<double>& drift,
const std::vector<double>& variance,
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const std::vector<Time>& times, long seed) : next (Path(times.size()),1.0)

// data validity check
QL REQUIRE (times.size() > 0, “PathGenerator: no times given”);
QL _REQUIRE (times[0] >= 0.0, “PathGenerator: first time (™ +

DoubleFormatter::toString(times[0]) + ”) must be non negative”) ;
QL REQUIRE (variance.size()==times.size(),

“PathGenerator: mismatch between variance and time arrays”) ;
QL_REQUIRE (drift.size()==times.size(),

“PathGenerator: mismatch between drift and time arrays”);

Array variancePerTime (times.size());
double dt = times|[O0];
next .value.drift () [0] = drift[0]*dt;

QL _REQUIRE (variance[0] >= 0.0, “PathGenerator: negative variance”);

variancePerTime [0] = variance[0] *dt;

for(Size i = 1; 1 < times.size(); i++)

{

QL REQUIRE (times[i] >= times[i-1], “MultiPathGenerator: time ("

IntegerFormatter::toString(i-1)+")=" +
DoubleFormatter::toString(times[i-1]) + “ is later than time ("
IntegerFormatter::toString (i) + ”)=" +

DoubleFormatter: :toString (times[i])) ;

dt = times[i] - times[i-1];
next .value.drift () [i] = drift[i]*dt;

QL _REQUIRE (variance[i] >= 0.0, “PathGenerator: negative variance”);
variancePerTime [i] = variance[i] *dt;

next_ .value.times() = times;

generator_ = Handle<RandomNumbers::RandomArrayGenerator<RNG> > (

new RandomNumbers: :RandomArrayGenerator<RNG> (variancePerTime,
seed)) ;

}

template <class RNG> inline const typename PathGenerator<RNG>::sample type&

PathGenerator<RNG>: :next () const
{
const Sample<Array>& sample = generator ->next();
next_ .weight = sample.weight;
next .value.diffusion() = sample.value;
return next_;
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We next define a Path class that contains methods for handling computations
of the drift and diffusion terms along each path:

namespace QuantLib

{

namespace MonteCarlo

{

/******************************************************************************

Path class for handling computations of drift and diffusion terms along a path
single factor random walk.
******************************************************************************/

class Path
{
public:

Path(Size size) ;

Path(const std::vector<Time>& times, const Arrayé& drift, const Array&
diffusion) ;

// inspectors

double operator[] (int i) const;

Size size () const;

// read/write access to components

const std::vector<Time>& times () const;

std: :vector<Time>& times () ;

const Arrayé& drift() const;

Arrayé& drift () ;

const Array& diffusion() const;

Arrayé& diffusion() ;

private:

std::vector<Time> times_; // vector of time instances

Array drift_;

Array diffusion_;

}i
// inline definitions

inline Path::Path(Size size)
times (size), drift (size), diffusion (size) {}

inline Path::Path(const std::vector<Time>& times, const Arrayé& drift, const
Array& diffusion)

times_(times), drift_ (drift), diffusion_(diffusion)
{
QL_REQUIRE (drift .size() == diffusion_ .size(),
“Path: drift and diffusion have different size”);
QL _REQUIRE (times_.size() == drift .size(),

“Path: times and drift have different size”);
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// overloaded [] operator
inline double Path::operator([] (int i) const

{

return drift_ [i] + diffusion [i];
1
inline Size Path::size() const {
return drift .size();

}

inline const std::vector<Time>& Path::times () const

{

return times_;

}

inline std::vector<Time>& Path::times ()

{

return times_;

}

inline const Array& Path::drift () const

{
return drift ;
1
inline Array& Path::drift()
{
return drift_;

}

inline const Arrayé& Path::diffusion() const

{

return diffusion_;

}

inline Array& Path::diffusion/()
{
return diffusion ;
1
}
}

Next we define the Monte Carlo pricer class McPricer for pricing derivatives
along each path:

namespace QuantLib

{

namespace Pricers

{

/*****************************************************************************/
Base class for Monte Carlo pricers

Deriving a class from McPricer gives an easy way to write

a Monte Carlo Pricer.
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See McEuropean as example of one factor pricer,
Basket as example of multi factor pricer.
******************************************************************************/
template<class S, class PG, class PP>
class McPricer
{
public:
virtual ~McPricer() {}
// add samples until the required tolerance is reached
double value(double tolerance, Size maxSample = QL MAX INT) const;
// simulate a fixed number of samples
double valueWithSamples (Size samples) const;
// error Estimated of the samples simulated so far
double errorEstimate() const;
// access to the sample accumulator for more statistics
const S& sampleAccumulator (void) const;
protected:
McPricer () {}
mutable Handle<MonteCarlo::MonteCarloModel<S, PG, PP>> mcModel ;
static const Size minSample ;

}i

template<class S, class PG, class PP>
const Size McPricer<S, PG, PP>::minSample_ = 100;

// inline definitions
/******************************************************************************
value : add samples until the required tolerance is reached
[in] : none
[out]: double mean : mean of sample
******************************************************************************/
template<class S, class PG, class PP>
inline double McPricer<S, PG, PP>::value(double tolerance, Size maxSamples)

const

Size sampleNumber = mcModel ->sampleAccumulator () .samples();
if (sampleNumber<minSample )
{
mcModel ->addSamples (minSample -sampleNumber) ;
sampleNumber = mcModel ->sampleAccumulator () .samples() ;

Size nextBatch;
double order;
double result = mcModel ->sampleAccumulator () .mean();
double accuracy = mcModel ->sampleAccumulator().errorEstimate()/result;
while (accuracy > tolerance)
{
// conservative estimate of how many samples are needed
order = accuracy*accuracy/tolerance/tolerance;
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nextBatch = Size (max(sampleNumber*order*0.8-sampleNumber,
double (minSample ))) ;

// do not exceed maxSamples
nextBatch = min(nextBatch, maxSamples-sampleNumber) ;

QL REQUIRE (nextBatch>0, “max number of samples exceeded”) ;

sampleNumber += nextBatch;

mcModel ->addSamples (nextBatch) ;

result = mcModel ->sampleAccumulator () .mean();

accuracy = mcModel ->sampleAccumulator().errorEstimate()/result;

}

return result;

/******************************************************************************
valueWithSamples : simulate a fixed number of samples
[in] : Size samples : number of data points
[out] : double mean
******************************************************************************/
template<class S, class PG, class PP>
inline double McPricer<S, PG, PP>::valueWithSamples (Size samples) const
{
QL REQUIRE (samples>=minSample_,
“number of requested samples (“ + IntegerFormatter::toString(samples) + ”)
lower than minSample (“+ IntegerFormatter::toString(minSample ) + ”)”);

Size sampleNumber = mcModel ->sampleAccumulator () .samples() ;

QL_REQUIRE (samples>=sampleNumber,

“number of already simulated samples (™ +
IntegerFormatter: :toString (sampleNumber) + ")
greater than requested samples (“ + IntegerFormatter::toString(samples) +

Il)ll);
mcModel ->addSamples (samples-sampleNumber) ;

return mcModel ->sampleAccumulator () .mean() ;

/******************************************************************************
errorEstimate : error Estimated of the samples simulated so far

[in] : none

[out] : double error
******************************************************************************/
template<class S, class PG, class PP>

inline double McPricer<S, PG, PP>::errorEstimate() const

{

Size sampleNumber = mcModel ->sampleAccumulator () .samples();

QL_REQUIRE (sampleNumber>=minSample , “number of simulated samples lower than
minSample ") ;
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return mcModel ->sampleAccumulator ().errorEstimate();

}

/******************************************************************************

sampleAccumulator: simulate a fixed number of samples
[in] : none
[out] : Math::Statistics object

******************************************************************************/

template<class S, class PG, class PP>
inline const S& McPricer<S, PG, PP>::sampleAccumulator () const

{

1
}

return mcModel ->sampleAccumulator();

The sample size is taken from a Sample structure:

namespace QuantLib

{

namespace MonteCarlo
{
// weighted sample
template <class T>
struct Sample
{
public:
Sample (const T& value, double weight) : value(value), weight (weight)
T value;
double weight;

}i

{

We define the following Monte Carlo typedefs:

namespace QuantLib

{

namespace MonteCarlo

{

// default choice for Gaussian path generator.
typedef PathGenerator<RandomNumbers: :GaussianRandomGenerators>
GaussianPathGenerator;

// default choice for Gaussian multi-path generator.
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Typedef MultiPathGenerator<RandomNumbers::RandomArrayGenerator<
RandomNumbers: :GaussianRandomGenerator> > GaussianMultiPathGenerator;

// default choice for one-factor Monte Carlo model.

typedef MonteCarloModel<Math::Statistics, GaussianPathGenerator,
PathPricer<Path> >
OneFactorMonteCarloOption;

// default choice for multi-factor Monte Carlo model.

typedef MonteCarloModel<Math::Statistics, GaussianMultiPathGenerator,
PathPricer<MultiPath> >
MultiFactorMonteCarloOption;

As an example for pricing options using Monte Carlo, we define the European-
PathPricer class, which prices European options along each path:

#include “PathPricer.h”
#include “Path.h”

namespace QuantLib

{

namespace MonteCarlo
{
// path pricer for European options
class EuropeanPathPricer : public PathPricer<Paths>
{
public:
EuropeanPathPricer (Option: :Type type, double underlying, double strike,
DiscountFactor discount, bool useAntitheticVariance) ;
double operator () (const Path& path) const;
private:
Option::Type type_ ;
double underlying , strike_;
}i
1
1

The class has the following method definitions:

#include “EuropeanPathPricer.h”
#include “SingleAssetOption.h”
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using QuantLib::Pricers: :ExercisePayoff;

namespace QuantLib

{

namespace MonteCarlo

{

/********************************************************************************

EuropeanPathPricer constructor

[in] : Option:Type : option type
double underlying : underlying asset
double strike : strike price
DiscountFactor discount : discount factor
bool useAntitheticVariance : flag for using

********************************************************************************/
EuropeanPathPricer: :EuropeanPathPricer (Option: :Type type,
double underlying, double strike, DiscountFactor discount,
bool useAntitheticVariance)
PathPricer<Path> (discount, useAntitheticVariance), type (type),
underlying (underlying), strike (strike)
{
QL REQUIRE (underlying>0.0, “EuropeanPathPricer:” “underlying less/equal zero
not allowed”) ;
QL_REQUIRE (strike>0.0,
“EuropeanPathPricer: “
“strike less/equal zero not allowed”) ;

/********************************************************************************
operator () : operator for pricing option on a path

[in] : Path& path: path instance

[out] : double : discounted value (price of option)

********************************************************************************/

double EuropeanPathPricer::operator () (const Path& path) const
{
Size n = path.size();
QL_REQUIRE (n>0, “EuropeanPathPricer: the path cannot be empty”);

double log drift = 0.0, log random = 0.0;
for (Size i = 0; 1 < n; i++)
{
log drift += path.drift() [i];
log_random += path.diffusion() [i];

}

if (useAntitheticVariance )
return (
ExercisePayoff (type , underlying *exp(log_drift+log_random), strike ) +
ExercisePayoff (type , underlying *exp(log drift-log random), strike ))
*discount /2.0;
else
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return ExercisePayoff (type , underlying *exp(log drift+log random), strike )
*discount_;

Each Pricer has an abstract PathPricer base class that prices using the path
given:

#include “gl/option.h”
#include “gl/types.h”
#include <functionals>

namespace QuantLib

{

namespace MonteCarlo
{
// base class for path pricers
// Given a path the value of an option is returned on that path.
template<class PathType, class ValueType=double>
class PathPricer : public std::unary function<PathType, ValueType>
{
public:
PathPricer (DiscountFactor discount, bool useAntitheticVariance) ;
virtual ~PathPricer() {}
virtual ValueType operator () (const PathType& path) const=0;
protected:
DiscountFactor discount_;
bool useAntitheticVariance_ ;

}i

template<class P,class V>
PathPricer<P,V>: :PathPricer (DiscountFactor discount, bool
useAntitheticVariance)
discount (discount), useAntitheticVariance (useAntitheticVariance)

QL _REQUIRE (discount_ <= 1.0 && discount_ > 0.0, “PathPricer: discount must be
positive”) ;
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The EuropeanPathPricer is used in the McEuropean class that does the actual
pricing:

#include
#include
#include
#include

“gl/option.h”

“gl/types.h”
“gl/Pricers/mcpricer.h”
“gl/MonteCarlo/mctypedefs.h”

namespace QuantLib

{

namespace Pricers

{

// European Monte Carlo pricer
class McEuropean : public McPricer<Math::Statistics,
MonteCarlo: :GaussianPathGenerator, MonteCarlo::PathPricer<MonteCarlo::Path> >

{

public:

McEuropean (Option: : Type type,
double underlying,
double strike,
Spread dividendYield,
Rate riskFreeRate,
double residualTime,
double volatility,
bool antitheticVariance,
long seed=0) ;

The class has the following method definitions:

#include
#include

“gl/Pricers/mceuropean.h”
“gl/MonteCarlo/europeanpathpricer.h”

namespace QuantLib

{

namespace Pricers

{

using Math::Statistics;

using MonteCarlo: :Path;

using MonteCarlo: :GaussianPathGenerator;
using MonteCarlo: :PathPricer;
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using MonteCarlo: :MonteCarloModel;
using MonteCarlo: :EuropeanPathPricer;

McEuropean: : McEuropean (Option: : Type type,

double underlying, double strike, Spread dividendYield,
Rate riskFreeRate, double residualTime, double volatility,
bool antitheticVariance, long seed)

// Initialize the path generator
double mu = riskFreeRate - dividendYield - 0.5 * volatility * volatility;

Handle<GaussianPathGenerator> pathGenerator (
new GaussianPathGenerator (mu, volatility*volatility, residualTime, 1,
seed)) ;

// Initialize the pricer on the single Path
Handle<PathPricer<Path> > euroPathPricer(
new EuropeanPathPricer (type, underlying, strike, exp(-
riskFreeRate*residualTime), antitheticVariance)) ;

// Initialize the one-factor Monte Carlo
mcModel = Handle<MonteCarloModel<Statistics, GaussianPathGenerator,
PathPricer<Path> > > (
new MonteCarloModel<Statistics, GaussianPathGenerator, PathPricer<Path>
(pathGenerator, euroPathPricer, Statistics()));

Finally, we can use the Statistics class that aggregates the results of the Monte

Carlo and provides the statistics:

namespace QuantLib

{

namespace Math

{

/*****************************************************************************/
Statistic tool
It can accumulate a set of data and return statistic quantities

as mean, variance, std. deviation, skewness, and kurtosis.
******************************************************************************/

class Statistics

{

public:
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Statistics();
// inspectors

// number of samples collected
Size samples() const;

// sum of data weights
double weightSum() const;

// returns the mean, defined as
// x mean = {sum w i x i}/{sum w_i}.
double mean() const;

// returns the variance, defined as
// N/N-1*x- x mean”2.
double variance() const;

// returns the standard deviation sigma, defined as the
// square root of the variance.
double standardDeviation() const;

// returns the downside variance, defined as

// N/N-1 *sum {i=1}"{N}

// theta*x i*{2}}{sum {i=1}"{N} w i},

// where theta = 0 if x > 0 and theta =1 if x <0
double downsideVariance () const;

// returns the downside deviation, defined as the
// square root of the downside variance.
double downsideDeviation() const;

// returns the error estimate epsilon, defined as the

// square root of the ratio of the variance to the number of
// samples.

double errorEstimate() const;

// returns the skewness, defined as

// [ \frac{N"2}{(N-1) (N-2)} \frac{\left\langle \left (

// x-\langle x \rangle \right)”3 \right\rangle}{\sigma®3}. 1
// The above evaluates to 0 for a Gaussian distribution.
double skewness () const;

// returns the excess kurtosis, defined as

// N(N+1)/(N-1) (N-2) (N-3)

// \frac{\left\langle \left( x-\langle x \rangle \right) 4
// \right\rangle}{\sigma*4} - \frac{3(N-1)"2}{(N-2) (N-3)}.
// The above evaluates to 0 for a Gaussian distribution.
double kurtosis () const;

/* returns the minimum sample value */
double min() const;

/* returns the maximum sample value */
double max () const;
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// name Modifiers
// adds a datum to the set, possibly with a weight
void add(double value, double weight = 1.0);

// adds a sequence of data to the set
template <class Datalterator>
void addSequence (Datalterator begin, Datalterator end)
{
for (; begin!=end;++begin)
add (*begin) ;

// adds a sequence of data to the set, each with its weight

template <class Datalterator, class WeightIterators>

void addSequence (Datalterator begin, Datalterator end, WeightIterator

wbegin)

{
for (;begin!=end;++begin, ++wbegin)
add (*begin, *wbegin) ;

1

// resets the data to a null set

void reset () ;

private:
Size sampleNumber_;
double sampleWeight ;

double sum_, quadraticSum_, downsideQuadraticSum_ , cubicSum |,

fourthPowerSum_;
double min , max_;

}i

// inline definitions
/* pre weights must be positive or null */
inline void Statistics::add(double value, double weight)
{
QL REQUIRE (weight>=0.0,
“Statistics::add : negative weight (“ +
DoubleFormatter: :toString(weight) + ”) not allowed”) ;

Size oldSamples = sampleNumber_;

sampleNumber ++;

QL ENSURE (sampleNumber > oldSamples, “Statistics::add
samples reached”) ;

sampleWeight += weight;

double temp = weight*value;

sum_ += temp;

temp *= value;

quadraticSum_ += temp;

downsideQuadraticSum_+= value < 0.0 ? temp : 0.0;
temp *= value;

cubicSum_ += temp;

maximum number of
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temp *= value;

fourthPowerSum_ += temp;
min_= min(value, min_);
max_ = max(value, max );

inline Size Statistics::samples() const

{

return sampleNumber ;

}

inline double Statistics::weightSum() const

{

return sampleWeight ;

}

inline double Statistics::mean() const

{

QL REQUIRE (sampleWeight >0.0, “Stat::mean() : sampleWeight =0, insufficient”);
return sum_/sampleWeight ;

}

inline double Statistics::variance() const

{

QL REQUIRE (sampleWeight >0.0, “Stat::variance() : sampleWeight =0,
insufficient”) ;

QL_REQUIRE (sampleNumber >1, “Stat::variance() : sample number <=1,
insufficient”) ;

double v = (sampleNumber /(sampleNumber -1.0)) *(quadraticSum_ -

sum_*sum_/sampleWeight )/sampleWeight ;

if (fabs(v) <= 1.0e-6)

QL_ENSURE(v >= 0.0, “Statistics: negative variance (" +
DoubleFormatter: :toString(v,20) + “)");

return v;

inline double Statistics::standardDeviation() const

{

return QL SQRT (variance()) ;

}

inline double Statistics::downsideVariance () const

{

QL _REQUIRE (sampleWeight >0.0, “Stat::variance() : sampleWeight =0,
insufficient”) ;
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QL REQUIRE (sampleNumber >1, “Stat::variance() : sample number <=1,
insufficient”) ;

return sampleNumber /(sampleNumber -1.0)*
downsideQuadraticSum_ /sampleWeight ;

inline double Statistics::downsideDeviation() const

{

return sqgrt (downsideVariance()) ;

}

inline double Statistics::errorEstimate() const

{
double var = variance() ;
QL_REQUIRE (samples () > 0, “Statistics: zero samples are not sufficient”);
return QL SQRT (var/samples()) ;

}

inline double Statistics::skewness() const
{
QL REQUIRE (sampleNumber >2, “Stat::skewness() : sample number <=2,
insufficient”) ;
double s = standardDeviation() ;
if (s==0.0)
return 0.0;

double m = mean() ;

return sampleNumber *sampleNumber / ((sampleNumber -1.0)* (sampleNumber -
2.0) *s*s*s) * (cubicSum_-3.0*m*quadraticSum +2.0*m*m*sum_) /sampleWeight_;

inline double Statistics::kurtosis() const
QL REQUIRE (sampleNumber >3, “Stat::kurtosis() : sample number <=3,
insufficient”) ;

double m = mean() ;
double v = variance();

if (v==0)
return - 3.0* (sampleNumber -1.0)* (sampleNumber -1.0) / ((sampleNumber -
2.0) * (sampleNumber -3.0));

double kurt = sampleNumber *sampleNumber * (sampleNumber +1.0) /
((sampleNumber -1.0)* (sampleNumber -2.0) * (sampleNumber -3.0)*v*v) *
(fourthPowerSum_ - 4.0*m*cubicSum_ + 6.0*m*m*quadraticSum
-3.0*m*m*m*sum_) /sampleWeight -3.0* (sampleNumber -1.0)*

(sampleNumber -1.0) / ((sampleNumber -2.0)* (sampleNumber -3.0));
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return kurt;

1

inline double Statistics::min() const

{
QL_REQUIRE (sampleNumber_ >0, “Stat::min_ () : empty sample”);
return min_;

1

inline double Statistics::max() const

{
QL_REQUIRE (sampleNumber_ >0, “Stat::max () : empty sample”);
return max_;

1

}
}

To actually price a European option, we can use the following code segment:

method =“MC (crude)”;
bool antitheticVariance = false;
McEuropean mcEur (Option::Call, underlying, strike, dividendYield, riskFreeRate,
maturity, volatility, antitheticVariance);
// use an error tolerance of 0.002%
value = mcEur.value(0.02);
estimatedError = mcEur.errorEstimate () ;
discrepancy = QL FABS(value-rightValue) ;
relativeDiscrepancy = discrepancy/rightvalue;
// print out results
std::cout << method << “\t”
<< DoubleFormatter::toString(value, 4) << “\t”
<< DoubleFormatter::toString(estimatedError, 4) << “\t\t”
<< DoubleFormatter::toString(discrepancy, 6) << “\t”
<< DoubleFormatter::toString(relativeDiscrepancy, 6)
<< std::endl;

where we pass the option type, underlying price, strike price, dividend yield, risk-
free rate, option maturity, volatility, and “antitheticVariance” Boolean flag into the
McEuropean class constructor.



Binomial Trees

n this chapter, we discuss approximating diffusion processes by two-state lattices

known as binomial trees. Binomial trees are useful for pricing a variety of Euro-
pean-style and American-style derivatives. In section 3.1, we discuss the general bi-
nomial tree framework. In section 3.2, we discuss the Cox-Ross-Rubinstein (CRR)
binomial tree. In section 3.3, we discuss the Jarrow-Rudd (JR) binomial tree while
in section 3.4 we discuss general binomial trees. In section 3.5, we discuss binomial
diffusion processes that incorporate dividend payments. In section 3.6, we discuss
using binomial trees to price derivatives with American exercise features. In section
3.7, CRR and JR binomial tree implementations are provided. In section 3.8, we
discuss computing hedge sensitivities from binomial trees. In section 3.9, we discuss
binomial models with time-varying volatility. In section 3.10, we discuss two-state
binomial processes that are constructed using quadrinomial trees (binomial trees
with four branches at each node). Finally, in section 3.11, we show how convertible
bonds can be priced using a binomial tree.

3.1 USE OF BINOMIAL TREES

We can model diffusion processes using binomial trees. Suppose we have a stock
price at time ¢ = 0 with initial value S;. The stock price can move up with probabil-
ity p and down with probability 1 — p. Over one time period, At, if the stock price
moves up, the value is Su where u = ¢°*; and if it moves down, the value is Sd where
d = 1/u = e°*. We know that in a risk-neutral world, investors expect to earn the
risk-free rate on riskless portfolios. Thus,

pSu + (1 - p)Sd = Ser (3.1)
Solving for p, we find
rAt -d u erAt
L
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We can extend this analysis to a multiperiod binomial model. Let T = T — ¢ = NA¢
where N is the number of time periods (there are N + 1 nodes at time step N and N
+ 1 different terminal prices and payoffs). Thus, there are 2N possible price paths
from (t, S) to (T, S,). Node (i, j) denotes the jth node at the ith time step. The price
S, at the node (3, /) is given by:

S, =Spds  i=0,...,N, j=0,...,i (3.2)

where i is the number of time steps to the node (i, j) and j is the number of up
moves to the node (i, j). The payoff after N periods, denoted f, , is

fu, = F(Su'd) (3.3)

We can use backward induction to price European options. The price of an option
at node (i, j) over one period, At, is given by:

fif _rAt(pft+1 j+1 +(1 P)fl+1 7) (34)

The value of the option at node (4, j) is found by taking the expected value of the
option at time 7 + 1. The option will be worth either f, | ., with probability p or f, , ;
with probability 1 — p. We discount this value back by the risk-free rate since we
want the present value of this future expected payoff. The multiperiod binomial
valuation formula for European options is:

N
_eirtZPN,/fN,,' (3.5)
j=1
where f, . = F(S ) = F(Sd™) is the payoff in state j at expiration N and p, ; is the

risk- neutral bmomlal probablhty to end up in state (N, j):
N) . i
PN, :(i )p’(l—p)N ’ (3.6)

We now need to link the binomial price process with the Black-Scholes geometric
Brownian motion process so that the binomial model is consistent with it. We have
two models to describe the asset price dynamics, a discrete-time multiplicative bi-
nomial model with parameters (u, d, p, r) and the continuous-time Black-Scholes-
Merton model with parameters (o, 7). In the limit of infinitesimally small time
steps, N — o and At — 0, the binomial option pricing formula must converge to
the Black-Scholes option pricing formula:

f=e" [FSpp2(Sr, TIS, t)dS; (3.7)
0
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for the two formulations to be consistent. This requires that the distribution of the
terminal stock price in the binomial model converge to the lognormal distribution
as At — 0.

PROPOSITION. The distribution of the terminal stock price in the binomial
model with parameters (#, d, p, 7) converges to the Black-Scholes lognormal distri-
bution with parameters (o, 7) as Az — 0 if and only if:

pln(g]+lnd:uAt+o(At) (3.8)

and
2
p— p)[ln(%]] = 6% At +o(At) (3.9)

PROOF. The proof is based on the central limit theorem. In the Black-Scholes
model (BSM), the terminal stock price is a random variable

_ out+ovte
Sy =8

where ¢ is a standard normal random variable. The continuously compounded re-
turn over the time period T is a normal random variable:

n:ln(%)zmﬁmﬁe (3.10)

On the other hand, consider a binomial model where T = T — ¢ is divided into a
large number N of time steps. The return over the entire time period T is a sum of
individual returns over each time step At,

where the n’s are i.i.d. random variables that can take two values: either In u
with probability p or In d with probability 1 — p. The mean m and variance s? of
n, are:

m=plnu+(1-p)nd
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and

= p(lnu)f® +(1-p)(Ind)* = (plnu+(1- p)Ind)*
p(lnu)* +(1-p)(Ind)* — p* (Inu)* — (1- p)*(Ind)* =2p(1 - p)Inulnd
p(1—p)(Inu—Ind)* (3.11)

o)

Now, the central limit theorem states that for a large N, the distribution of the sum
N of N i.i.d. random variables 1, is approximately normal with mean 7N and vari-
ance s?N. Further, the binomial model converges to the Black-Scholes model if and
only if:

N
Zni%m+oxﬁs (3.12)
i=1

and we have

mN—22 5t and 2N —222 5621

Noting that Az = /N we can rewrite the above two limits as: m = p In (#/d) + In d =
UAEL + o(At) and s? = p(1 - p)(In(u/d))? = G?At + o(At).

We can prove this more formally. By starting at the expiration date and work-
ing backward, we can find the valuation of a call option at any period 7. Since we
assume the stock price follows a multiplicative binomial probability distribution,
we have

7 1 . i —_
Cbinomml=r‘”{zo[ﬂ(n”_j)!]pf(1—p> ' max|0, Su'd ’—X]} (3.13)
/:

Let a denote the minimum number of upward moves that the stock must make over
the next n periods for the call to finish in-the-money. Thus, a is the smallest non-
negative integer such that Su?d*® > K. Taking the natural logarithms of both sides
of the inequality, we get:

log( X ]
Sd" (3.14)

i

a=
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Thus, a is the smallest nonnegative integer greater than (X/Sd")/log(u/d). For all j < a,
max|0, Su#/d"7 — X] = 0 and for all j = a, max[0, Sw/d"7 — X] = S/d"7 — X. Therefore,

1 | & n . N
Comomial =—1 |~ o/ (1= p)" I [Su/d" X 3.15
binomial 7’”{ (/'(f’l—])']p ( P) [ u ]} ( )

j=a
Note that if a > 7, the call will finish out-of-the-money even if the stock moves up-

ward every period, so its current value must be zero.
We can rewrite equation (3.15) as:

i ! . i igri
Cbinomial = S[Z[/'(nn_ ]),]Pm - P) Z[Mr—nJ]
j=a

il n! i nei
-Xr [Z(ﬂ(n_j),)pwl—p) ’J

j=a

The second parenthesized term is the complementary binomial distribution func-
tion ®[a; n, p]. The first parenthesized term is also a complementary binomial dis-
tribution function ®[a; n, p’ |, where

p = (ulr)pand 1 -p" = (d/r)(1-p) (3.17)

The term p” is a probability since 0 < p” < 1. Note that p < (r/u) and

u'd"’

p'(1- p)"‘{ ] =[winp][dma-p]” =pt-py  (3.18)

Consequently, from equation (3.16), we can define the binomial option pricing for-
mula for a call option:

C = S®[a; n, p’] — Xr'®[a; n, p] (3.19)
where p = (r — d)/(u — d), p’ = (ulr)p, and a is the smallest nonnegative integer
greater than log(X/Sd")/log(u/d). If a > n, C = 0.

Following Cox and Rubinstein (1985), we can now show that the binomial
formula in equation (3.19) converges to the Black-Scholes formula, equation
(1.57), and that the multiplicative binomial probability distribution of the stock
price converges to the lognormal distribution. To show convergence of the distribu-
tions, we need to show that as

1 — oo, ®[a; 1, p’] — N(d) and ®[a; 1, p] — N(d — /1)
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The complementary binomial distribution function ®[a; n, p] is the proba-
bility that the sum of # random variables, each of which can take on the value
1 with probability p and 0 with probability 1 — p, will be greater than or equal
to a. We know that the random value of this sum, j, has mean #p and standard
deviation

np(l=p)

Thus,

1= ®[a; 5, p] = Probfj < a—1] = Prob| L= (@=D=nb | 350
Jap(l=p)  mp(1-p)

If we consider our binomial model of the stock price that in each period moves up
with probability p to Su and down with probability 1 - p to Sd, then over » peri-
ods, we have § = Su/d" so that

log(8/S) = j log(u/d) + nlog d (3.21)

The mean and variance of the continuously compounded rate of return of this
stock are:

i=p log(u/d) + log d and 6, =p(l- p)(log(u/d))? (3.22)

Using the equalities in equations (3.21) and (3.22) we can derive the following
relationship:

j—np _ log(S/8)~fi,n

(3.23)
np(l—p) &2\n

It is known from the binomial formula that
a—1 =log(K/Sd"/log(uld) — € = (log(X/S) — n log d)/log(u/d) — €

where € € (0, 1). Using this and the equations in (3.22), with some algebra, we can
show:

a-1-np _log(X/S)—p,n—elog(u/d)
np(1-p) &,n

(3.24)
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Consequently, we get the following result:

log(S/8) —u,n _ log(X/$) ~fi,nelog(u/d)

&,\n &,\n

(3.25)

1-®[a; n, p] = Prob|

We can use the central limit theorem. However, we must first check that the third
moment, an initial condition of the central limit theorem,' tends to 0 as 7 — . We
must show

p|10gu_l1p|3 +(1_p)|10gd_ﬁp|3 _ (1_p)2 +p2
&,n np(1-p)

-0

is satisfied as # — . Recall that p = (7 — d) / (v — d), and that

7 :rt/n, "= ecn/t/n
and
d= e—m/t/n

Making the appropriate substitutions, it can be shown that

1 5
p%1+1“"g"_z‘”ﬁ
2 2 o n

so that the third moment goes to 0 as 7 — . Thus, we are justified in using the cen-
tral limit theorem. In equation (3.25), we need to evaluate i,n, (512771, and log(u/d) as
n — oo, In the limiting case where 7 — o, we have

f,n— (logr— %Gz)t and 61,\/; - G\/;
Moreover,

log(u/d)=206Nt/n —0asn— oo

The initial condition of the central limit theorem states roughly that higher-order moments
of the distributions, such as how it is skewed, become less and less important relative to the
standard deviation as 77 — o,
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Using the central limit theorem, we can write:

1
log(X/S) — fi,n—elog(u/d) _log(X/S)—(log’—gﬁz)t

—z=
&yn ot
We have:
-t
1-®[a; n, p] - N(z) = N[Mﬁcﬁ} (3.26)
oVt 2

From the symmetry of the standard normal distribution, 1 — N(z) = N(-z). There-
fore, as 7 — o,

Ola: . 1] Nioz) = N{Mwl Nid—ov8)

oVt 2

A similar argument holds for ®[a; n, p], which completes the proof of convergence
of the binomial option pricing formula to the Black-Scholes as the number of time
steps tends to infinity, that is, as we divide the time to maturity into more and more
subintervals.

We call a given binomial model (u, d, p, r) consistent with the Black-Scholes
model (o, 7) if the two relations just given are satisfied. Clearly, an infinite number
of binomial models are consistent with any given continuous-time Black-Scholes
model. First, we have two relations for three unknowns (u, d, p) relating them to
(o, 7). Second, the two relations are required to hold only in the first order in Az
higher-order terms o(At) become irrelevant in the limit Az — 0.

The convergence of the binomial model to the Black-Scholes model requires
mean and variance of the return distributions for a single period Az to match up to
the higher-order terms. To speed up the convergence, we can strengthen this, and
require that the mean and variance of the stock price distribution at the end of the
period At match exactly the mean and variance of the lognormal distribution.

Consider a time period At in the Black-Scholes model. The price at the end of
the period is a lognormal random variable (in the risk-neutral world)

S,.x =S, exp(UAr + oV Ar)
where [t = 7 — 6%/2 with mean

EQ(S,,,] = ™S (3.27)

t+At]

and variance

VO [S,,] = e¥(eosr — 1)S2 (3.28)

t+At
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where the expectation and variance of the future price is taken at time ¢ over the
stock price process with risk-neutral probability measure Q. At the same time, in
the binomial model the price at the end of a single period At is a random variable
with two possible states Su and Sd with probability p and 1 - p.

ElpemiallS, ) = (pu + (1 -p)d)S (3.29)

I+At]
Ezf'gnomial [SZ ] - pu2 + (1 _p)dz)sz (330)

t+AL

For the underlying price at the end of the period to have the same mean and vari-

ance in both the multiplicative binomial and the Black-Scholes models, the follow-
ing two identities must hold where the moments are matched.

pu+ (1-p)d=e™ (3.31)

puZ + (1 _p)dZ — e(27+GZ)At (332)

Equation (3.31) can be solved for

the same probability we derived from equation (3.1). Equation (3.32) provides the
link between # and d in the binomial model and the volatility ¢ in the Black-Scholes
model. Substitution of p into equation (3.32) yields:

ey + d) — du = e’ (3.33)
To solve for # and d in terms of » and ¢ we need an additional equation since
we have one equation in two unknowns. There are several choices for a second

equation: (1) Cox-Ross-Rubinstein (CRR) approach, (2) Jarrow-Rudd approach,
and (3) a general approach.

3.2 COX-ROSS-RUBINSTEIN BINOMIAL TREE

Cox, Ross, and Rubinstein, in their original model, assume the identity ud = 1 so
that # = 1/d. Substituting this identity for # and d into equation (3.33), we get d? —
2Ad + 1 = 0 where

A — %(e—rAt + e(1’+62)At)
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The solutions for # and d are
u=A+VA> -1 (3.34)

and
d=A-VA* -1 (3.35)

Thus, we have specified all of the parameters u, d, and p in terms of the risk-free
rate 7 and volatility . If we linearize the preceding solution for # and d and keep
only the terms of the first order in Az we have:

u=1+(5«/§+%(52At, d=1—c«/§+%02At

p=1+1(ﬁ]@, andl_pzl_l(ﬁ]@
2 2 2\lo

2 c

One easily sees that ud = 1. Terms of higher orders in At can be added without vio-
lating the relations since they become infinitesimally small as At — 0. Thus, we can
use the more common form of

u= em/z
and
d= e—cw“E

The CRR has traditionally been the most widely used version of the binomial
model. This is an approximation to the exact solution with # in equation (3.34) and
d in equation (3.35). In the limit Az — 0, both the binomial and Black-Scholes con-
verge to the same limit. But the exact version of the binomial tree converges faster
since the mean and variance are matched exactly as in equations (3.31) and (3.32).

JARROW-RUDD BINOMIAL TREE

Jarrow and Rudd choose equal probabilities for up and down price movements;
that is, p = 1 — p = 1/2. Substituting this into the two moment-matching equations
in (3.31) and (3.32) we get

u+d=2e™ (3.36)
u? + d* = 2el2reoi)e (3.37)
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The exact solution to these equations yields:
u=e™(1+ve M 1) (3.38)

d=e™(1-1e"™ _1) (3.39)
An approximate solution keeping only the lower-order terms is:

u=1+rAt+ G\/Xt
and

d=1+rAt —oVAt

The higher-order terms can be added since they tend to zero as At — 0 and main-
tain the convergence to the BSM. The most popular choice for the Jarrow-Rudd
(JR) binomial tree is:

N (3.40)
and
d = Hor-ola (3.41)
where
15
=r—=0
u=r 3

The difference between the CRR and ]JR trees is that the CRR tree is symmetric
since #d = 1 (a down movement following an up movement brings us back to the
original price S), but the up and down probabilities are not equal. In the JR tree,
the probabilities are equal, but the tree is skewed since ud = e,

3.4 GENERAL TREE

Assume ud =e** where v is some scalar. Then the following is a possible solution:

1 = gUhroat (3.42)
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and

4 = prhi-ovar (3.43)

where the probabilities of an up and down movement are

p:l+l(u;UJ\/A7t and 1—p=1—l(u;y}/§

2 2 2 2

respectively. The CRR and JR choices are v = 0 and v = W, respectively. It is im-
portant to note that the CRR and JR formulations are good only over small time
intervals: Arbitrarily large time steps cannot be used. We can solve this problem
by reformulating the problem in terms of the natural logarithm of the asset price.?
We know that the continuous-time risk-neutral process of geometric Brownian
motion is:

dx = udt + odz
where x = InS and
15
=r—=o0
w=r-3

The variable x can go up to Ax, = x + Ax with probability p,  or down to Ax, =
x — Ax with probability p, = 1 — p, . This is described as the additive binomial
process as opposed to the multiplicative binomial process.’> We must equate the
mean and variance of the additive binomial process for x to the mean and vari-
ance of the continuous-time process over the time interval Az. Thus, we get the
following equations:*

E[Ax] = p Ax, + p,Ax, = uAt

(3.44)
E[AX?] = p Ax? + p ,Ax; = G*At + WAL
Equations (3.44) with equal probabilities yield
%Axu + %Axd = LAt
) ; (3.45)
EAxﬁ + Eij =0’ At + AL

2Clewlow and Strickland (1998a), 19.
3Tbid.
“bid.
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Solving (3.45) gives

Ax, = luAt+lql4cszAt—3u2At2
2 2

Axs = S unr— L Jac? Ar — 302 AL

xd—zuAt > 40° At —3u” At

Assuming equal jump sizes in (3.44) gives

(3.46)

p(AX) + b (Ax) = pA?
(3.47)

p,Ax* + p Ax? = GPAt + WAL
Solving (3.47) we get

Ax =+/6* At + > Ar?

1 1A (3.48)

p”zi 2 Ax

This last solution was proposed by Trigeorgis (1991). It has on average slightly bet-
ter accuracy than the CRR and JR models.

3.5 DIVIDEND PAYMENTS

The CRR, JR, and general binomial trees can be extended to the case where the
underlying security pays continuous dividends with a constant dividend yield q.
The growth rate of the asset price becomes r — g, and it is necessary to substitute
r — r — q into the formulas. Thus, in the CRR model, the probability of an up
movement becomes

u_e(r—q)At

dli-p=—"——
an p —d
In the JR model, the up and down movements are as in equations (3.40) and (3.41)

except WL = r — q — 6%/2. If the time 7At is after the stock goes ex-dividend, the nodes
correspond to the stock prices

So(1—q)uid™ j=0,1,...,1 (3.49)
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If there are several known dividend yields during the life of the option, then the
nodes at time iAf correspond to

Sy(1—q,)uid"

where g, is the total dividend yield associated with all ex-dividend dates between
time zero and time 7At.

If the stock pays a known dollar dividend, a more realistic assumption, then
the tree does not recombine, assuming the volatility, o, is constant. This means
that the number of nodes that have to be evaluated can become quite large, espe-
cially if there are several dividend dates. Hull (1997) describes an approach
that will allow the tree to recombine so that there are 7 + 1 nodes at time 7 rather
than 2i.

Hull supposes that a stock price has two components: an uncertain part and
a part that is the present value of all future dividends during the life of the op-
tion. Assume there is only one ex-dividend date, T, during the life of the option
where iAt <1< (i + 1)At. Let S be the uncertain component at time Az such that
S = S when iAt > 1t and § = S — De7™4 when iAt < 1, where D is the dividend
payment in dollars. Define & as the volatility of S and assume & is constant. The
parameters p, u, and d can be calculated as before using CRR, JR, or the general
approach. With ¢ replaced by &, we can build the tree and have it recombine for
S. We can use a linear transformation and convert the tree into another tree that
models S by adding the present value of future dividends (if any) to the stock
price at each node. Thus, at time iAt, the nodes on the tree correspond to the
stock prices

S*uld'7 + Deit) j=0,1,...1 (3.50)
when iAt < ¢ and

S*uid j=0,1,...1 (3.51)
when iAt 2> 1.

If we have dividends, then we must ensure that the risk-neutral probabilities
must be positive:

(r—q)At
p:u>0 or el ™A 5 (3.52)
u—d
and
_ (r=q)At
1-p=2=C SO0oru>e ™M™ (3.53)

u—d
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It is necessary to check that the choices for # and d are consistent with these restric-
tions. To prevent negative or zero probabilities, the CRR tree must satisfy

(r—q)At > -6V At and (r — g)At < G\/E

or equivalently,

l(r— g At <o (3.54)

The JR model has the advantage that the probabilities are always 0.5 > 0 and thus
positive for all values of the parameters.

3.6 AMERIGAN EXERCISE

Binomial trees can be extended to the case of American-style options with early ex-
ercise in the presence of dividends. Suppose F(S.) is the terminal payoff. If the op-
tion is exercised at time ¢ before the final maturity date T, the option holder
receives the payoff F(S.). To value an American option, we need to evaluate
whether early exercise is optimal at each node. Thus, we need to run the dynamic
programming algorithm on the tree starting at the final (maturity) nodes:

f,; = max(F(Swd7),e™[pf,, .., + (L=p)f,,, ] (3.55)
In the case of a call option, at each node we evaluate
f = max(Su/d7 - X, e™[pf, gt (1= p)f., B (3.56)
where X is the strike price. In the case of a put, we evaluate
f = max(X - Su/d™, e™[pf, , gt (1= p)f., A (3.57)

We can extend the model to price American-style options on foreign currencies (FX
options), stock indexes, and options on futures by letting r — 7 — r, where 7, is the
foreign risk-free rate, r — r — g where q is the dividend yield on the index, and r —
q (r = q), respectively. Thus, for an FX option, the up probability is

e(rfrf)At —d
u—d
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3.7 BINOMIAL TREE IMPLEMENTATION

The following is an implementation of the CRR model on an American option.

/**********************************************************************************

buildBinomialTreeCRRAmerican : computes the value of an American option using
backwards induction in a CRR binomial tree

[in] : double price : asset price
double strike : strike price
double rate : risk-free interest rate
double div : dividend yield
double vol : volatility
double T : time to maturity
int N : number of time steps
char exercise : ‘E’‘uropean or ‘A’merican
char type : ‘C’all or ‘P’'ut

[out] : double : value of American option

**********************************************************************************/

double CRRBinomialTree::buildBinomialTreeCRRAmerican (double price, double strike,
double rate, double div, double vol, double T, int N, char type)

{

int i,3;

double prob; // probability of up movement
double S[200] [200] = {0.0}; // stock price at node 1i,j
double c[200] [200] = {0.0}; // call price at node i, j
double a;

double num = 0.0;

double up = 0.0;

double down = 0.0;

double dt = 0.0;

dt = T/N; // time step size

up = exp(vol*sgrt (dt)); // up movement

down = 1/up; // down movement

a = exp((rate-div)*dt) ; // growth rate in prob
prob = (a - down)/(up - down) ;

// compute stock price at each node
// initialize call prices

for (i = 0; 1 <= N; i++)
{
for (j = 0; J <= 1; j++)
{
S[i] [J] = price* (pow(up,j))* (pow(down,i-j)) ;
c[i]l [§1 = 0O;

}
}
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// compute terminal payoffs

for (j = N; j >= 0; j--)
{
if (type == ‘C’)
c[N] [j] = max(S[N] [j]-strike,0);
else

c[N] [j] = max(strike-SI[N] [j],0);

}

// work backwards

for (i = N-1; 1 >= 0; i--)
{
for (j = 1i; j >= 0; j--)
{
c[i] [J] = exp(-rate*dt) * (prob* (c[i+1] [J+1]) + (1- prob)*(cl[i+1][j]));
if (type == ‘C’)
c[il [§]1 = max(S[i]l [j] - strike,c[i]l[]1);
else
c[i] [j] = max(strike - S[il] [j],c[i][]]);
1
1
return c[0] [0];

Suppose we let the initial stock price S, = 33.75, X = 35, 6 = 15 percent, 7= 5.5
percent, g = 0 percent, and T = 9 months (0.75 years). The code will generate the
prices and option prices of the tree shown in Figure 3.1 (we assume N = 4 time
steps so that At = T/N = 0.75/4 = 0.188 years. The stock price is the top value in
each node, and the option price is the bottom value.

The price of the call option is $1.87. This is close to the BSM price of $1.83,
which shows that the two models price consistently (as N — o and A#— 0, the bi-
nomial price will converge to the BSM price). This shows that an American call op-
tion on a non-dividend-paying stock is worth the same as the corresponding
European call option. It is never optimal to exercise an American call option early
due to the insurance it provides: Once the option has been exercised and the exer-
cise price has been exchanged for the stock price, the insurance vanishes.

The tree for a put with the same parameters is shown in Figure 3.2.

The price of the American put is $1.71. As the number of time steps increases
and thus At — 0, the American put price approaches the (European) BSM price, as
Table 3.1 shows.’

SThe Black-Scholes formula cannot be used to value American-style options. However, the
Roll, Geske, and Whaley closed-form analytical solution for American-style options can be
used. See Hull (1996), page 259.
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36.01
2.90

33.75
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FIGURE 3.1 Tree for a Call Option
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Figure 3.3 shows the put price as a function of only up to 25 time steps. As can
be seen, while the price converges slowly, Figure 3.4 shows that at about 75 time
steps (large N), the binomial price converges to the European Black-Scholes price of

$1.633.

3.8 COMPUTING HEDGE STATISTICS

It is often necessary to compute hedge statistics of an option: delta, gamma, vega,
theta, and rho. Their computations can be approximated by finite difference ratios
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33.75
1.71

FIGURE 3.2 Tree for a Put Option

TABLE 8.1 American/European Put Prices

36.01
0.82

31.63
2.90

38.43
0.23

33.75
1.60

29.64
4.65

43.76
0.00

41.01
0.00

38.43
0.00

36.01
0.54

33.75
1.25

31.63
3.01

29.64
5.36

21.77
6.87

N (Number of American Put (European)
Time Steps) Price Black-Scholes Model
4 $1.712 $1.663
10 $1.697 $1.663
20 $1.678 $1.663
80 $1.664 $1.663
100 $1.663 $1.663

26.03
8.97
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FIGURE 3.3 American Put Option Prices Computed with Binomial Tree
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FIGURE 3.4 American Put Option Prices Computed with Binomial Tree (Larger Number

of Steps)

in a binomial tree. Delta, the change in the option price as the price of the underly-

ing asset changes, can be estimated as

_dC _AC _Cy-Cyy

S AS S-S
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Using the American put example in the preceding section, we can compute delta:

0.82-2.90

=————=-0475
36.01-31.63

Gamma can be computed as

y= 0*C UG =G ) (S50 =S N=[Co 1 =Ca0) /(521 = Sa0)]
0S? 0.5:(S35 = 8,0)
[(0.23-1.60) /(38.43-33.75)]-[(1.60—-4.65) /(33.75-29.64) ]

0.5-(38.43-29.64)

(3.59)

=0.1022

Vega, rho, and theta can be computed by recomputation of the option price for
small changes in the volatility, risk-free rate, and time to maturity, respectively:

U:a_C: C(o+ Ac)—-C(c + Ao)

fele] 2Ac (3.60)
_9C _C(r+Ar)-C(r - Ar)
Cor 2Ar (3-61)
dC C(T+AT)-C(T-AT)
e = —_—
oT 2AT (3.62)

where, for example, C(6 + Ac) is the value computed with Ac, a small fraction of ¢
(i.e., Ac = 0.0010). Thus, we can compute vega, rho, and theta as:

_1.664-1.661 _

2-(0.00015)
_1.662-1.663 _ ~9.09
2-(0.000055)
_1.663-1.662 _ 0.667
2-(0.00075)

Thus, a 1 percent or 0.01 increase in volatility (from 15 percent to 16 percent) in-
creases the value of the option by approximately 0.10. A 1 percent or 0.01 increase
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in the risk-free rate (from 5.5 percent to 6.5 percent) decreases the value of the op-
tion by approximately 0.091. A 1 percent increase in the time to maturity increases
the option price by 0.667.

3.9 BINOMIAL MODEL WITH TIME-VARYING VOLATILITY

In practice, models with time-varying volatility are used since the assumption of
constant volatility is not realistic. Option pricing models must be consistent with
observed implied volatilities from market prices of options. The binomial model
can be adapted to time-varying volatility by fixing the space step Ax and varying
the probabilities p,, time steps Az, interest rate r,, and volatilities 6, where subscript
i is the time step. We can rewrite equation (3.30) as

pAx—(1-p)Ax=pAt,

p,AX* + (1 = p)Ax* = GIAL, + WAL (3.63)
which yields
At = 6?4/ o +402Ax7)
2u}
(3.64)
1 WA
pi=+ot
2 2Ax
Set Ax to
Ax =G> At + 12 At
where
1< 1<
G:ﬁgci anduzﬁgci (3.65)

Then At will be approximately the average time step that is obtained when the tree
is built.* When implementing this approach with just constant volatility, but vari-
able time steps, the time steps can be stored in an array or vector ¢ so that the time
step between two times, Az, can be calculated as #[i + 1] — #[7].

¢Clewlow and Strickland (1998a), 38.
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3.10 TWO-VARIABLE BINOMIAL PROCESS

The binomial model can be extended to price options whose payoffs depend on
more than one asset such as a spread option. A multidimensional binomial tree can
be built to model the joint evolution of more than one asset. Derivatives that de-
pend on more than one asset have to factor in correlation between the assets. In a
simple two-variable model such as a spread option between two stocks S, and S,
we assume that both stocks follow correlated GBMs:

ds, = (r-q,)S,dt + o8 dz,
ds, = (r-q,)S,dt + 6,S,dz,

where S, and S, have correlated Brownian motions p; that is, dz,dz, = pdt. Instead
of two branches at each node, we now have four based on the four different possi-
ble price movements. If we assume a multiplicative two-variable binomial process,
we get the branches at each node shown in Figure 3.5.

If we work in terms of the logarithms of the asset prices, the model is simplified
as with the single-asset binomial tree, and we get the additive two-variable bino-
mial process shown in Figure 3.6, where the x, = InS, and x, = InS, follow the fol-
lowing processes:

dx, = n,dt + 6 dz,
dx, = Wdt + 0,dz,

with drifts p, =7 — g, - 0.562 and p, = 7 — g, — 0.56%. If we allow equal up and
down jump sizes, we can compute their expectations and the probabilities so that

Silly, Syl

Silly, Syd,

Sdy, S0,
81 ’ SZ

S, S,d,

FIGURE 3.5 Multiplicative Two-Variable Binomial Process
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FIGURE 3.6 Additive Two-Variable Binomial Process

the means and variances of the risk-neutral process are matched. Following
Clewlow and Strickland, we get’

E[Ax] = (p,, + D, )A% = (P, + Dy)Ax, = WAL

[AXT 1= (D + Pua)AXT = (D + Pag)AXT = OT AL
E[Ax) | = (D + Pan) A%y = (Prg + Paa)Axs = WAL (3.66)
E[AX3 1= (P + D) AX3 = (Pua + Pag)Ax3 = G341

E[Ax1%3 ] = (P = Pud — Pau — Paa)AX1Ax, = pG10, AL

and the sum of the probabilities is 1:

puu+pud+pdu+pdd=1

The solution to the system of equations is

Ax1 201@
sz :GZ@

7Ibid., 47.
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b = 1 (AxAx, + (Ax,yly + Axyl, +pG0,)Al)
w =g Ax,Ax,
Py = 1 (Ax,Ax) + (Ax, 1y + Axyly —pG0,)AL)
“o4 AxiAx, (3.67)
Do = 1 (Ax,Ax) — (Ax, 1y — Axyl, +pG40, )AL)
Ty Ax Ax,
Dy = 1 (Ax;Ax, —(Ax, 1y + Ax i) — P00, )At)
=g Ax,Ax,

Nodes in the binomial tree are referenced by (i, j, k), which references the node at
time step 7, level j of asset 1, and level k& of asset 2 so that

Si.x=5S exp(jAx,) and S, ., =S, exp(kAx,)
Since the tree has two asset prices at each time step, nodes are separated by two

space steps and the space indexes step by two. The following is an implementation
of a spread option using the additive binomial tree.

/**********************************************************************************

buildTwoVarBinomialTree : computes the value of an American spread option using a 2

variable binomial tree

[in] : double S1 : asset price 1
double S2 : asset price 2
double strike : strike price of spread option
double rate : risk-free interest rate
double divl : dividend yield of asset 1
double div2 : dividend yield of asset 2
double rho : correlation of asset 1 and asset 2
double voll : volatility of asset 1
double vol2 : volatility of asset 2
double T : time to maturity
int N : number of time steps
char exercise : ‘E’uropean or ‘A’'merican
char type : ‘C’all or ‘P’ut

[out] : double : value of spread option

**********************************************************************************/

double TwoDimBinomialTree: :buildTwoVarBinomialTree (double S1, double S2, double

strike
vol2,

double
double
double
double
double

1

double T, int N, char exercise, char type)

double rate, double divl, double div2, double rho, double voll, double

dt = T/N; // time step

mul = rate - divl - 0.5*voll*voll; // drift for stock 1

mu2 = rate - div2 - 0.5*vol2*vol2; // drift for stock 2

dxl = voll*sqgrt (dt) ; // state step for stock 1
dx2 = vol2*sqgrt(dt); // state step for stock 2
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double puu, pud, pdu, pdd, dx; // probabilities

double S1t[100] = { 0.0 }; // array of stock price 1

double S2t[100] = { 0.0 }; // array of stock price 2

double c[100] [100] = { 0.0 }; // call price at time step i and node j
int i,3,k;

// compute probabilities

puu = ((dxl*dx2 + (dx2*mul + dxl*mu2 + rho*voll*vol2)*dt)/(4*dxl*dx2)) ;
pud = ((dx1*dx2 + (dx2*mul - dxl*mu2 - rho*voll*vol2)*dt)/ (4*dx1*dx2)) ;
pdu = ((dx1*dx2 + (-dx2*mul + dxl*mu2 - rho*voll*vol2)*dt)/(4*dx1*dx2)) ;
pdd = ((dx1*dx2 + (-dx2*mul - dxl*mu2 + rho*voll*vol2)*dt)/(4*dx1*dx2)) ;

// initialize asset prices at maturity
S1t[-N] = Sl*exp (-N*dx1);
S2t [-N] = S2*exp (-N*dx2) ;

// compute stock prices at each node

for (j = -N+1; j <= N; j++)

{
S1t[j] = S1t[j-1]*exp(dxl);
S2t [j] = S2t[j-1] *exp (dx2) ;

}

// compute early exercise payoff at each node
for (j = -N; j <= N; j += 2)
{

for (k = -N; k <= N; k += 2)

{
if (type == ‘C’)
C[j]1[k] = max(0.0, S1it[j]l - S2t[k] - strike);
else
C[j]l [k] = max(0.0, strike - St1[j] + St2[k]);
1

// step back through the tree applying early exercise
for (i = N-1; 1 >= 0; i--)
{
for (j = -i; j <= 1; j +=2 )
{
for (k = -1; k <= i; k += 2)
{
// compute risk-neutral price
C[j] [k] = exp(-rate*T)* (pdd*C[j-1] [k-1] + pud*C[j+1] [k-1] + pdu*C[]j-
1] [k+1] + puu*C[j+1] [k+1]1);

if (exercise == ‘A’)
{
if (type == ‘C’)
C[j] [k] = max(C[j][k], Sit[j] - s2t[k] - strike);
else

Cl[jl[k] = max(C[j][k], strike - Stl[j] + St2[k]);

BINOMIAL TREES
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}
}
}
}

return C[0] [0];

}

An example, the value of an American spread call option with §, = 50, S, = 50,
X=1,T=1,r=0.055,4,=0.015,4,= 0.0, p = 0.60, 5, = 0.25, 5, = 0.35, with N
= 3 time steps is $4.54. Figure 3.7 shows a plot of the two-variable binomial
method as the number of time steps increases. You can see that the two-variable bi-
nomial method is much less efficient than in the one-variable case and does not
converge to the true theoretical price that can be computed using numerical meth-
ods. In practice, to achieve efficient pricing for more than one variable, implicit dif-
ference methods must be used,® though other numerical methods exist. In Chapter
7, a two-factor stochastic volatility model for valuing a spread option is shown. A
spread option can be valued using the fast Fourier transform method discussed in
Appendix C on the CD-ROM. Gaussian quadrature, a numerical integration
method discussed in section 14.10, can also be an efficient method for valuing
spread options and other derivatives.

5
o 48T q
=4
& 467
= —— Series
S 42+
-
g 4
» 38+
3.6 } } } } } } } } } } } }

Number of Time Steps

FIGURE 8.7 Two-Variable Binomial Spread Option

$Tbid., 51.
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3.11 VALUATION OF GONVERTIBLE BONDS

A convertible bond is a corporate debt security that can be converted into—that is,
exchanged for—a predetermined number of shares of the issuer’s common stock at
any time prior to the maturity of the bond. It is a hybrid derivative security, part
debt and part equity, whose value is derived from the debt and equity underlying it.
Most convertible bonds are subordinated debt of the issuer that may have callable
and putable provisions that complicate their valuation.

From an investor’s viewpoint, one can think of a convertible bond as a straight
corporate bond (with periodic coupon payments made by the issuer) plus an equity
call option that allows the convertible bondholder to exchange the bond for equity.
From an issuer’s viewpoint, a convertible bond can be seen as equity and a put op-
tion to exchange the equity for a straight bond with a swap to maturity that pays
bond coupons to the investor in exchange for the equity’s dividends. Convertible
bonds can be European or American style. Various features of convertibles make
them attractive to both issuers and investors. Issuers can lower their cost of debt
funding by issuing convertibles compared to issuing straight debt, and an issuer
may not even be able to issue straight debt due to its low credit rating. Convertible
bonds often provide a higher yield than the dividend yield of common stock as well
as offer greater stability of income than common stock.’

Various debt and equity factors as well as specific terms detailed in the bond in-
denture affect the theoretical value of the convertible bond. In addition to factors
that affect all bond prices such as principal amount, coupon amount, and coupon
frequency, convertible bonds are also affected by the conversion ratio, conversion
price, parity, first conversion date, call provisions, put provisions, and stock perfor-
mance call provisions.

The conversion ratio is the number of shares of the underlying stock for which
the convertible bond can be exchanged. This ratio is usually established at issue,
and changed only to account for stock dividends or splits of the underlying shares,
so as to preserve the total equity value that can be exchanged.!® The conversion
price is the principal amount divided by the conversion ratio, which effectively is
the price paid for each underlying share on conversion, assuming the bond princi-
pal is used to pay for the shares received. Parity is the market value of the underly-
ing shares, namely, the conversion ratio multiplied by the current stock price. The
first conversion date is the first date after issue at which the bond can be converted
into equity. Sometimes there is a lockout period after issue during which conversion
is not allowed.

A call provision gives the issuer the right to purchase back the bond at the call
price and is specified in a call schedule, which gives the call price at each future call
date. Usually, convertible bonds are call-protected for a certain amount of time and

’Derman, Ergener, and Kani (1994), 2.
1Tbid., 8.
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become callable only after a certain date. A call provision can be viewed as a call
option sold by the investor to the issuer that reduces the value of the bond com-
pared to an otherwise similar noncallable convertible bond. Stock performance call
provisions are call provisions subject to the constraint that the issuer can exercise
the call only if the underlying stock rises above a certain level, the provisional call
level. These provisions reduce the value of the bond by forcing the investor to con-
vert to equity and give up the remaining value of the option.

Put provisions allow the bondholder to put the bond to the issuer for a specific
cash price on specific dates of the put schedule. A put provision provides extra
downside protection for the convertible bondholder and thus adds value to the
bond. It can be regarded as a put option that has been sold to the investor by the is-
suer, and so increases the value when compared with similar nonputable convert-
ible bonds.

In addition to security-specific features, the value of the convertible bond
also depends on market variables including the common stock price, stock price
volatility, dividend yield, risk-free rate, stock loan rate, and the issuer’s credit
spread. The stock loan rate is the interest rate earned on funds received from
shorting the stock, a rate typically less than the cost of funds since a rebate fee
may have to be paid to the lender.!' The issuer’s credit spread provides informa-
tion about the likelihood of default of payments of a convertible bond’s coupons
and principal, and how this possibility of default affects the value of the convert-
ible.'? Such credit spread is accounted for in the credit-adjusted discount rate
that is used for discounting cash flows when conversion will not occur and the
bond is held.

Convertible bonds can be valued using an #-period binomial tree similar to eq-
uity options. Assume the underlying stock price satisfies the following SDE:

dsS = (r(t) — q(¢))Sdt + o(t)Sdz (3.68)

where 7(¢) is the instantaneous risk-free rate at time #, g(¢) is the instantaneous divi-
dend vyield, o(#) is the instantaneous volatility, and dz is a standard Brownian mo-
tion that represents the uncertainty in stock returns over an infinitesimal time dt.
We can approximate this diffusion process with a discrete-time binomial tree with
time steps At.

The formulas for up and down movements from a given stock price S are:

S, = sexp((r(t)—q(t)—%cz(mm+c(t)@ ] (3.69)

"Ibid., 9.
Lbid., 10.
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and
S;= Sexp((r(t)—q(t)—%cz(t))At—G(t)\/E] (3.70)

The value of the convertible bond at any node on the convertible tree is given by
V = max(NS, P + I, (min(H, C + I)) (3.71)

where V is the convertible bond value, N is the conversion ratio, S is the stock price
at the node, P is the put value, C is the call value, I is the accrued interest, and H is
the holding value at the node. The holding value is computed from the convertible
bond values V, and V, one period later as

H=05 V,+1 + V,+1
1+y,At  1+y, At

where v is the credit-adjusted discount rate. Thus, the holding value of the convert-
ible at a node in the tree is the sum of the present value of the coupons paid over
the next period, plus the expected present value of the convertible at the two nodes
at the end of the period. The probability of conversion p at the node is determined
as follows. If the convertible is put or redeemed, p = 0. If conversion occurs, p = 1.
If the convertible bond is neither put nor converted, p = 0.5(p, + p,), where p and
p, are the risk-neutral up and down probabilities, respectively. The credit-adjusted
discount rate at the node is defined by:

y=pr+(1-p)d

where r is the risk-free rate d is the risky rate that includes the credit spread. It is
noted that a convertible with parity much greater than its face value is certain to
convert at some time in the future and so has a credit-adjusted rate equal to the
riskless rate so that coupons are discounted as though they have no default risk.!?
The model can be varied, however, to always discount coupons at the risky rate.

The following steps summarize how to construct a binomial tree for valuing
convertible bonds:'*

1. Build a Cox-Ross-Rubinstein stock price tree that extends from the valuation
date to the maturity date of the convertible.

2. At maturity, compute the payoff of the convertible bond as the greater of its
fixed-income redemption value and its conversion value. Set the probability of
conversion to one at nodes where it pays to convert, and zero otherwise.

BIbid., 22.
“Ibid., 31.
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3. Using backward induction, move backward in time down the tree, one level
at a time. At each node within each level, define the conversion probability
as the average of the probabilities at the two connected future nodes. Calcu-
late the credit-adjusted discount rate at each node using this conversion
probability. Then compute the holding value at each node as the sum of the
cash flows occurring over the next period as the expected bond values of the
two nodes one period in the future, discounted at the credit-adjusted dis-
count rate.

4. Compute the actual convertible value by comparing the holding value at the
node to the values of the call, put, and conversion provisions (if applicable).

5. If the value of the convertible at any node results from the bond being put, set
the conversion probability at that node to zero, because its value is completely
subject to default. If the value at the node results from conversion, set the
node’s conversion probability to one.

On November 11, 2003, suppose we want to value a callable convertible bond
of Charter Communications that matures on June 6, 2006. We can use Bloomberg
to see all listed Charter bond quotes as shown in Figure 3.8.

P164 Corp TK
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FIGURE 3.8 Bond Quotes for Charter Communications
Source: Used with permission from Bloomberg L.P.
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The initial Charter Communications stock price on November 11, 2003, is
$4.06, the dividend vyield is 0.0, the stock volatility (computed from historical
volatility'3) is 0.746, and the time to maturity is 2.57 years. For simplicity, we will
use 2.5 years. The convertible bond has a semiannual coupon of 4.75 percent. It is
also callable. Figure 3.9 shows the call schedule.

As we see, the next call date is June 4, 2004, when it is callable at $101.9 until
June 4, 2005, when it is callable at $100.85. The convertible bond price was issued
on June 30, 2001, at par value of $100. We find the conversion ratio, parity values,
and assume the (interpolated) stock loan rate is equal is to 2.347 percent, which is
also the interpolated 2.5-year risk-free rate obtained from the yield and spread
analysis screen shown in Figure 3.10.

{ELP> for explanation. P164 Corp OVCV

SCHEDULE: CHTR 4 34 06/01/06 Include Y/N [
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b o |

ermany 439 65 S20410

FIGURE 3.9 Call Schedule

Source: Used with permission from Bloomberg L.P.

BTypically, one uses the 90-day historical volatility as an estimate. However, we could also
try to estimate the (implied) volatility from option prices. We would want to use an option
that has the same maturity as the convertible bond, but if one cannot be found, we should
use the closest available maturity. In this case, Jan 05 calls were listed though for this exam-
ple the 90-day historical volatility on Bloomberg was used.
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FIGURE 3.10 Yield and Spread Analysis

Source: Used with permission from Bloomberg L.P.

The 4%, 6/06 Charter Communications convertible bond, which is CC1 rated,
has a credit spread of 908.30 basis points. The convertible bond valuation screen,
shown in Figure 3.11, can be used to obtain the conversion ratio, conversion price,
parity, yield to maturity, yield to call, and other information pertaining to the con-
vertible bond.

We find the conversion ratio is 38.095 and the conversion price is $26.235, as
shown in Figure 3.12.1¢

Since there are no put provisions, the payoff at each node becomes:

V = max (NS, min(H, C + I))

We will construct a binomial tree with five time steps so that our time steps are At =
2.5/5 =0.5.

16The investor will not convert unless the stock price exceeds the conversion price.
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FIGURE 3.11 Convertible Bond Valuation I
Source: Used with permission from Bloomberg L.P.

To compute the theoretical value we define a ConvertibleBond class:

class ConvertibleBond
{
public:
ConvertibleBond() ;
virtual ~ConvertibleBond() ;
double calcConvertibleBond (double price, double vol, double rate, double
dividend, double T, double principal, double coupon, double frequency, int N,
double conversionRatio, double conversionPrice, double creditSpread) ;
private:

double S[20] [20]; // value of stock price at node 1i,j
double V[20] [20]; // value of convertible bond at node 1i,j
double cpl20] [20]; // conversion probability at node 1i,j
double creditAdjustedRate; // credit spread at each node 1i,j

double call[20] [20]; // callable value
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FIGURE 3.12 Convertible Bond Valuation II

Source: Used with permission from Bloomberg L.P.

We define the calcConvertibleBond method:

/*********************************************************************************/
calcConvertibleBond
computes the value of convertible bond with callable provisions

[in] : double price : stock price
double vol : stock volatility
vector<double> rates : contains zero-curve rates
double dividend : stock dividend yield
double T : time to maturity of convertible bond
double principal : par value of bond
double couponRate : coupon rate of bond
double frequency : frequency of coupon payments
int N : number of time steps
double conversionRatio : conversion ratio
double conversionPrice : conversion price
double creditSpread : credit spread of issuer
map<int,double> callSchedule : call schedule map of times to call prices

[out] double



158 BINOMIAL TREES

/*********************************************************************************/

double ConvertibleBond::calcConvertibleBond (double price, double vol,
vector<double> rates, double dividend, double T, double principal, double
couponRate, double frequency, int N, double conversionRatio, double
conversionPrice, double creditSpread, map<int,double> callSchedule)

int i,5;

double up = 0.0; // up movement

double down = 0.0; // down movement
double interest = 0.0; // interest

double H = 0.0; // holding value
double rate = rates|[rates.size()-1]; // initial short rate
double dt = T/N; // compute time step
up = exp(vol*sgrt (dt)); // up movement

down = 1/up; // down movement

// build CRR stock tree

for (i = 0; 1 <= N; i++)
{
for (] = 0; j <= 1i; j++)
{
S[i] [j] = price* (pow(up,j))* (pow(down,i-j)) ;

}
}

interest = principal*coupon*dt; // interest payment

for (j = N; j »>= 0; j--)
{
double payment = principal + principal*coupon*dt;
if (S[N] [j] >= conversionPrice)
VI[N] [j] = max(conversionRatio*S([N] [j],payment) ;
else
VIN] [§] = payment;

if (V[N] [j] == conversionRatio*S[N] [j])
cp[N] [j] = 1.0;

else
cp[N] [§] = 0.0;

// work backwards
for (i = N-1; 1 >= 0; 1i--)

for (j = i; j >= 0; j--)

// compute call schedule price at current node

// in practice, we would want to check that the call date coincides exactly
// with the time step on the tree. However, we are not using enough time

// steps for them to coincide (N would have to be substantially increased)
// and just assume that the bond is callable at each time step
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call[i] [j] = callSchedulel[i];

// compute conversion probability
cplil [j] = 0.5* (cp[i+1] [j+1] + cpli+1][3j]);

// compute credit adjusted discount rate
creditAdjustedRate = cpl[i] [j]*rates[i] + (1- cpli] [j])*creditSpread;

// compute holding value
H = 0.5*((V[i+1] [j+1] + interest)/(1 + creditAdjustedRate*dt) + (V[i+1] []]
+ interest)/ (1 + creditAdjustedRate*dt)) ;

// check that stock price exceeds conversion price
if (S[i][j] >= conversionPrice)

VI[i] [J] = max(conversionRatio*S[i] [j],min(H,call[i] [j] + interest));
else
VI[il [j] = min(H,call[i]l [j] + interest);

}
}

return V[0] [0];

We can compute the theoretical value of the 4% 6/06 Charter Communications
convertible bond now:

void main ()

{

double price = 4.06; // initial price

double coupon = 0.0475; // coupon

double frequency = 2; // frequency of payment
double rate = 0.02347; // 2.5 yr risk-free rate
double conversionRatio = 38.095; // conversion ratio

double conversionPrice = 26.25; // conversion price

double vol = 0.746; // stock price volatility
double bondPrice = 100; // maturity redemption value
double divYield = 0.0; // dividend yield

double T = 2.5; // maturity of convertible bond
double creditSpread = 0.9083 // credit spread of Charter
map<int,double> callSchedule; // call schedule
vector<double> rates; // term structure

double value = 0.0; // convertible bond value
int N = 5; // number of time steps

ConvertibleBond cb;

// we could also use a date class to map the call date to call price, i.e.
map<date,double> callSchedule

callSchedule[0] = 103.00; // today November 11, 2003 call value

callSchedule[1] = 101.90; // June 11, 2004
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callSchedule[2] = 101.90; // November 11, 2004

callSchedule[3] = 100.85; // June 11, 2005

callSchedule[4] = 100.85; // November 11, 2005

callSchedule[5] = 100.00; // bond is assumed to be redeemed at maturity for

// par on June 11, 2006

// instead June 6, 2006 for simplicity

// vyield curve

rates.
rates.
rates.
rates.
rates.

value

push_back (0.0107) ; // 6 month

push back(0.0136) ; // 1 year

push_back (0.0145) ; // 1.5 year

push_back (0.0202) ; // 2 year

push back(0.02347) ; // 2.5 year

= calcConvertibleBond (price,vol, rates,divYield, T,bondPrice, coupon,

frequency, N, conversionRatio, conversionPrice, creditSpread,callSchedule)) ;

cout << “Convertible bond price: ” << wvalue << endl;

We find that the theoretical value of $103.678 is in close agreement with the
Bloomberg computed value of $103.641 (see Figure 3.11)."” Note that $103.678 is
the holding value while $105.589 is the call value, which is closer to the invest-
ment value of $105.589 seen in the Bloomberg convertible price behavior screen
(Figure 3.13).

Figure 3.14 shows the convertible tree built to compute the theoretical price.
Currently, the Charter Communications convertible bond is trading at $86.20,
16.9 percent below its theoretical value. As time continues to approach maturity,
the bond should trade closer to its theoretical value, as Figure 3.13 shows. Note
that unless the stock price exceeds the conversion price, the convertible bond
value will be the smaller of either the holding value or the callable price at each
node.

As the tree in Figure 3.14 shows, most likely the bond will be held until ma-
turity where it will be redeemed for its face value (plus accrued interest) by the is-
suer. The convertible bond computations could also be modified to handle
putable provisions.

A formal mathematical valuation of convertible bonds has been described by
Tsiveriotis and Fernandes (1998) that treats the total convertible value as a decom-
position of an equity component and a bond component, E and B, respectively.'®

Differences could be due to number of time steps used, compounding frequency of interest,
and perhaps a different pricing model used by Bloomberg such as use of a trinomial tree.
18Tsiveriotis and Fernandes (1998), 95-102.
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FIGURE 3.13 Convertible Price Behavior
Source: Used with permission from Bloomberg L.P.

Coupon Rate = 4.75%
Conversion Price = 26.75
Conversion Ratio = 38.095
Maturity = 2.5 years
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They derive the convertible value V(S, ¢) as a solution of a partial differential equa-
tion where the equity component is discounted at the constant risk-free rate » while
the bond component is discounted at a risky rate—the risk-free rate plus a credit
spread, 7 + s, due to credit and interest rate risk:

2
aa—YJr%GzSZ%+(r—q)5%—¥—r(V—B)—(r+s)ESO (3.72)

which can be reduced to

oV 1 5,9V oV
Eﬂ'zc S E"'(T—Q)SB—S—VV—SBSO (373)

subject to the constraints

V2 max(BP, NS)
(3.74)
V <max(B,, NS)

and boundary conditions

VIS, T) = Z
(3.75)
V(0, t) = Ze ™

where Z is the face value of the bond, B is the bond price, B, is the putable bond
price, and B_ is the callable bond price. To incorporate default risk into the
model, one can set the spread s = p(1 — R) where R is the recovery rate on the
bond upon default and p is the hazard rate (probability of default). If coupon
payments, C(S, ), on the bond are included as well as discrete dividend pay-
ments, D(S, ), we can modify (3.73) by

V. 1 5.,V oV
= 3° S aS—2+(rS—D(S, t))g—rV—sB+C(S, £)<0 (3.76)

The problem can be solved numerically as an American option problem using finite
difference methods (see Chapter 5). It can be shown that an increase in the dividend
amount D makes early exercise more likely, while an increase in the coupon pay-
ment makes early exercise less likely."”

PWilmott, Howison, and Dewynne (1995), 288.
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If the decomposition of the total convertible bond price is specified as V = B +
E, the decomposition can be written as a coupled set of equations:?°

LE=0; LB+p(1-R)B=0 ifV;th and V # B,
B=B,; E=0 if V=B, if B, > NS (3.77)
B=0; E=B, if V=B,

LE=0; £B+p(l-RB=0 if V#max(NS, B,) 8, <Ns  (.78)
E =max(NS, B,); B=0 if V.=max(NS, B,)

where £ is the linear operator such that

2
v=-2V_ 1(52828—V+( (t)— )Sa—V—r(t)V
2 982 oS
If interest rates are stochastic so that there are two factors (two sources of risk)
where the stock price follows the standard diffusion process in equation (3.68) and
interest rates follow the process

dr = u(r, )dt + w(r, t)dx

where u(r, ) is the drift term, w is the volatility of the short rate, and the Wiener
processes of the stock and interest rates are correlated by E[dzdx] = pdt, then using
no-arbitrage arguments and Ito’s lemma, it can be shown that the convertible bond
pricing equation becomes a two-dimensional PDE:

oV 1| »02 9V *V  , 9V

S 2068 -

ot 2[ JS2 Yo pc”’asar”” or?
oV 0

+(rS—D)£+(u—w7»)a—V—rV—sB+CSO
r

(3.79)

with the same constraints and boundary conditions as in (3.74) and (3.75), where A
= Mr, S, t) is the market price of interest rate risk.?! Equation (3.79) can be solved
using numerical methods such as the alternating direction implicit (ADI) difference
method (see section 5.9). The Black-Scholes PDE is a special case when (# = w = s = 0).

20Ayache, Forsyth, and Vetzal (2003), 17.
2'Wilmott, Howison, and Dewynne (1995), 291-292.
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It should finally be noted that Ayache, Forsyth, and Vetzal (2003) have pointed out
inconsistencies in the Tsiveriotis-Fernandes (TF) model that they address and cor-
rect using a linear complementary approach.?? In particular, they show that in the
TF model, if the bond is called the instant before maturity, say T the bond price is
required to be 0 as part of the boundary condition in equation (3.78), which means
that the solution for B is B = 0 for all # < T so that the equation for the convertible
bond price reduces to

LV=0
V(S, T-) = max(S, Z —¢)
for very small € > 0. Consequently, the hazard rate has no effect on the price, mak-

ing the convertible bond value independent of the credit risk of the issuer, which is
clearly inappropriate.?

22Ayache, Forsyth, and Vetzal (2003), 9-30.
2Ibid., 18.
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Trinomial Trees

In this chapter, we examine diffusion processes that are approximated by three-
state lattices known as trinomial trees. In section 4.1, we discuss the general move-
ment of assets in a Cox-Ross-Rubinstein (CRR) framework, as well as in a
Jarrow-Rudd (JR) framework. In section 4.2, we examine the JR trinomial tree in
more detail. In section 4.3, we examine the CRR trinomial tree in more detail. In
section 4.4, we discuss the optimal parameter A for changing branching probabili-
ties. In section 4.5, we provide trinomial tree implementations for the CRR and JR
trees. In section 4.6, we give an implementation for building generic trinomial trees
that approximate various diffusion processes. In section 4.7, we discuss implied
trees that are based on constructing trinomial trees based on Arrow-Debreu state
prices.

4.1 USE OF TRINOMIAL TREES

Trinomial trees are used in practice more than binomial trees since they allow for
three states: up, down, and middle moves. We can approximate diffusions using tri-
nomial random walks with both the CRR and JR trees. We can price both European
and American options with trinomial trees. Let f . = F(S ) be the payoff at time z.
Then the stock price at node (4, j) in the CRR tree 1s

S, =Sul j=—dy—i+1,...,0,...,i+1 (4.1)
and in the JR tree:

Si’szu"e"“A’ j=—=t,—i+1,...,0,...,i+1 (4.2)

where
e)»oxfz

and S = SO’0
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4.2

JARROW-RUDD TRINOMIAL TREE

Consider the Monte Carlo simulation:
_ uAt+c\5§£ 1
Siv1 =Se "

where €, is a standard normal variable. We can approximate this standard normal
variable by a discrete random variable §_, with three possible outcomes, +A, 0, and
-\, with some probabilities p , p, , and p, for up, middle, and down price move-
ments, respectively, where A is some scalar. It approximates the standard normal
distribution by a three-state random variable. In this approximation, we can write
the stock price distribution as

o pAt+aoVAr
SU=Se

Si+1 — SieuAch‘“Ats,ﬂ — SiMZ SieuAt (43)

—
_ UAt—ACV At
S;D=Se

where the up move is

U= euAH}»cw“E

with probability p , the middle move is M = e** with probability p , and the down
move is

D= euAt—kG\/Xt

The elementary tree structure is shown in Figure 4.1.
We need to determine the probabilities. Clearly, p, =1 -p - p, We need to

SU
Pu
Pm SM
S Pd
SD

FIGURE 4.1 Elementary Tree Structure
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determine the remaining two probabilities. The necessary and sufficient condi-
tion for the tree to recombine is: UD = M?2. That is, an up move followed by a
down move gets us to the same node as two consecutive middle moves. This tree
is not symmetric. The model has a built-in deterministic drift M = ¢4 and is a
counterpart of the JR binomial tree. We need to find p, and p, so that the three-
state distribution correctly approximates the normal distribution. We will match
mean and variance of the two distributions and solve these two equations for the
probabilities. Let U = ue**!, D = de**!, and k = ¢°?272, The moment-matching
conditions are:

Ett,rsmomial[szmt] = EgS[SHAt] = Semt
and
pu+1-p,-p)+p,d=k (4.4)

for the mean and
Ejroma[(S,,,)7] = ESIS,, )] = S?e?7+%) At
and
pu+(1-p,—p,)+pd =k* (4.5)

for the variance. We can now solve for the probabilities:

k' —(d+1)k+d

PR T (4.6)
and
kK~ Dk+u
Pa= Tz d)i-d) (4.7)
where

2
= PN = o hONAE = ol A2

b

u

Thus, we express all the probabilities in terms of # and d. The stretch parameter A
is still ambiguous in the definition of # and d. However, any choice of A will pro-
duce a trinomial tree that converges to the Black-Scholes lognormal process (as
long as the probabilities are positive for this particular choice).
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4.3 COX-ROSS-RUBINSTEIN TRINOMIAL TREE

The CRR trinomial tree is obtained by setting M = 1. Thus, as shown in Figure 4.2,
we have a symmetric elementary tree structure where

e
u:ekm/A—t and d:e—kG\eAt
andp =1-p, - Py We now have t'll}‘c?e parameters to determine: A, p , and
p, We can determine the two probabilities by matching the first two moments
of the trinomial and lognormal distributions. The first-order approximation re-
sults are:

Pu =L+l[i)@ (4.8)

22 2\ Ao
poo1 L
" 2 (4.10)

Note that A should be chosen so that the probabilities are positive. We can compute
the option value in a trinomial tree as the discounted expectation in a risk-neutral
world by computing:

f;,j = eirAt(puf;Jrl,/#l + pmf;,+l,j + pdf;+l,/—l) (4'11)
Su
Pu
p
S LN
Pd
Sd

FIGURE 4.2 Symmetric Elementary Tree Structure
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4.4 OPTIMAL CHOIGE OF A

Kamrad and Ritchken (1991) have shown that the value of A that produces the best
convergence rate is

A=~3/2

With this choice of A we get the CRR trinomial tree with probabilities:

1 () At
=—+4| — _—
b 3 (G) 6

p oL ()2
d o N6 (4.12)

3
pt
"3

where the up and down movements are
u= oOVMI2 g g o3

respectively. In the limit Az — 0, the probabilities of up, down, and unchanged are
equal to 1/3. If we choose A = 1, we get the probabilities:

P 1+1[“J@

27 2le

1 1{un

——_——|E WA 413
ba=7 2(0)5 (413)
P =0

where the up and down movements are

=
u=e""* and d = e_m/z

respectively. Notice that this is just the CRR binomial model. If A < 1, then the mid-
dle probability is negative since 1 — 1/A? < 0, and the numerical procedure is unsta-
ble. Thus, the stretch parameter A should always be greater than 1 to ensure
positive probabilities and numerical stability. The binomial model is right on the
edge of numerical stability with A = 1.
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4.5 TRINOMIAL TREE IMPLEMENTATIONS

The following code implements an American CRR trinomial tree with A=+v3/2.
Suppose we use the trinomial tree to price an at-the-money (ATM) European put
option on a stock priced at $50, strike price of 50, volatility of 20 percent, risk-free
rate of 6 percent, dividend yield of 2.5 percent, and time to maturity of 1 year.
Thus, § = 50, X = 50,6 =0.20, » = 0.06, g = 0.03, and T = 1. Assume there are N =
4 time steps. The type parameter is either ‘C’ (call) or ‘P’ (put).

/**********************************************************************************

buildTrinomialTreeCRRAmerican : builds a CRR trinomial tree to price American
options

[in] double price: : initial price of asset
double strike : strike price
double vol : volatility
double div : dividend yield
double rate : risk-free rate
double T : time to maturity
int N : number of time steps
char type : type of option
[out] double : price of option

**********************************************************************************/

double CRRTrinomialTree::buildTrinomialTreeCRRAmerican (double price, double strike,
double vol, double rate, double div, double T, long N, char type)

int i, j;

double pd; // down probability

double pm; // middle probability
double pu; // up probability

double S[250] [250] ; // stock price at node i, j
double c[250] [250] ; // call price at node 1i,j
double up = 0.0; // up movement

double down =0.0; // down movement

double dt = T/N; // time step

double drift = rate - div - 0.5*vol*vol; // drift

pu = 0.33333 + (drift/vol) *sqrt(dt/6)
pd = 0.33333 - (drift/vol) *sgrt (dt/6)
pm = 0.33333;

up = exp(vol*sgrt (3*dt/2))

down = 1/up;

// compute stock prices at each node
for (i = N; 1 >= 0; i--)
{

for (j = -i; J <= 1i; Jj++)

{
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}

S[i] [j] = price*pow(up,]);

}

// compute payoffs at the final time step

{

}

for (j = N; j >= -N; j--)
if (type == ‘C’)

c[N] [j] = max(SIN] [j] - strike,0);
else

c[N] [j] = max(strike - SI[N][j],0);

// backwards induction
for (i

{

for

=N-1; i >= 0; 1i--)

(3=i7 3 >= -1; 3--)

(type == ‘C’)

c[i] [j] = max(exp(-ratexdt) * (pu*c[i+1] [j+1] + pm*c[i+1] [j] + pd*c[i+1] [j-
1]1), SI[il[j] - strike);

se

c[i] [j] = max(exp(-ratexdt)* (pu*c[i+1] [j+1] + pm*c[i+1] [j] + pd*c[i+1] [j-
11), strike - S[il[j1);

return c[0] [0];

The trinomial tree that is generated is shown in Figure 4.3. The value of the call
option is $4.51. The price of the call using Black-Scholes is $4.57. The value of the
call will converge closer to the Black-Scholes price as Az — 0.

The trinomial trees for each value of A approach the Black-Scholes price closely
at around N = 100 steps, as shown in Table 4.1. As we will see, the trinomial tree
proves to be equivalent to the explicit finite-difference scheme (see Chapter 5) and
has the same convergence properties.

The scheme becomes unstable if certain stability conditions are not met. For an
explicit finite-difference scheme, it is important to ensure positive probabilities and
that the following stability and convergence condition be satisfied:

Ax > 0V 3At (4.14)

Clewlow and Strickland (1998a) suggest that a reasonable range of asset price val-
ues at the maturity of the option is three standard deviations either side of the
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s=100 k=100  vol=0.20 r=0.06 div=0.03 T=1 N=4 deltat=0.25 |

. i 0 1 2 3 4

/ t 0 0.25 0.50 0.75 1
81.61
4 3160
72.20 72.20
3 22.40 29,90
2 63.88 63.88 63.88
4.38 1414 13.88
1 56.51 56.51 56,51 56.51
8.38 773 6.84 0
0 50 50.00 50.00 50.00 50.00
451 385 3.04 2.20 0.00
-1 4423 44.24 44.24 44.24
1.27 0.746 0.00 0.00
-2 30.14 39,14 39.14
0.00 0.00 0.00
-3 34.64 34.63
0.00 0.00
- 30,64
0.00

FIGURE 4.3 Trinomial Tree

TABLE 4.1 Comparison of Trinomial Trees with Different Lambdas

N A= V3/2 A= 43 A=1 Black-Scholes
4 4.506 4.309 4.334 4.568

10 4.542 4.471 4.472 4.568

30 4.558 4.537 4.535 4.568

50 4.560 4.550 4.548 4.568

70 4.561 4.556 4.556 4.568

100 4.560 4.563 4.558 4.568

200 4.563 4.569 4.563 4.568

mean, and a reasonable number of asset price values is 100 (2N, +1=100).! Under
these assumptions, the space step required is then

Ax=66\/?/100 (415)

!Clewlow and Strickland (1998a), 65.
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Substituting Ax in equation (4.14) into (4.15), we get the upper bound on the size
of the time step

2
1( Ax
At Sg(;) (4.16)

Finally, using 7, (for the number of standard deviations) instead of 6 in equation
(4.15) and rearranging, we find that the number of steps required for suitable con-
vergence is:

2
N=123(2N,.+1J i
At ngp )

If we require the ratio of the number of asset values to the number of standard
deviations
2N; +1
"sp

to be at least 15 in order to have a good approximation to the asset price distribu-
tion, then we require that N > 675.
Figure 4.4 shows the convergence rate of trinomial trees for N=1, ..., 50 time

7
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@
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1 10 18 26 34 42 50
Number of Time Steps
Trinomial (lambda=sqrt(3)) Trinomial (lambda=sqrt(3/2))

Trinomial (pu = pd =1/2)

Binomial European

FIGURE 4.4 Convergence Comparison of Trinomial and Binomial Trees
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steps for an ATM European call option with § = 50, X = 50, r = 0.055, 9 =0.0,0 =

0.25, T = 0.75. Note the convergence rate and stability are very good at about 50
time steps.

4.6 APPROXIMATING DIFFUSION PROCESSES WITH
TRINOMIAL TREES

In practice, we would want to provide a trinomial tree framework that can approx-
imate different diffusion processes. This can be accomplished by using the drifts
and variances of the diffusion process (see Chapter 1 for DiffusionProcess classes)
in the construction of the tree while containing methods to compute the branching
via a TrinomialBranching helper class that is member of the TrinomialTree class.

#include “gldiffusionprocess.h”
#include “gl/Lattices/tree.h”

namespace QuantLib

{

namespace Lattices
/*****************************************************************************
class TrinomialBranching : Recombining trinomial tree class

This class defines a recombining trinomial tree approximating a diffusion. The

diffusion term of the SDE must be independent of the underlying process.
*****************************************************************************/

class TrinomialBranching

{
public:
TrinomialBranching() : probs_ (3) {}
virtual ~TrinomialBranching() {}
inline Size descendant (Size index, Size branch) const {
return (k_[index] - jMin()) - 1 + branch;
}
inline double probability(Size index, Size branch) const {
return probs_[branch] [index] ;
}
inline int jMin() const {
return *std::min_element (k_.begin(), k_.end()) - 1;
}
private:
friend class TrinomialTree;
std::vector<int> k_; // branch k
std::vector<std: :vector<double> > probs_; // branching probabilities
Vi

class TrinomialTree : public Tree

{
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public:
TrinomialTree() { }
TrinomialTree (const Handle<DiffusionProcess>& process,
const TimeGrid& timeGrid,
bool isPositive = false);

double dx(Size i) const { return dx [i]; }
double underlying(Size i, Size index) const;
const TimeGrid& timeGrid() const { return timeGrid ; }

inline int descendant (int i, int index, int branch) const {
return branchings_[i]->descendant (index, branch) ;

}

inline double probability(int i, int j, int b) comnst ({
return branchings [i]->probability(j, b);
1
inline int size(int i) const {
if (i==0)
return 1;

const std::vector<int>& k = branchings [i-1]->k ;

int jMin = *std::min_element (k.begin(), k.end()) - 1;
int jMax = *std::max element (k.begin(), k.end()) + 1;
return jMax - jMin + 1;

}

double underlying(int i, int index) const {
if (i==0) return x0_;
const std::vector<int>& k = branchings_[i-1]->k_;
int jMin = *std::min element (k.begin(), k.end()) - 1;

return x0_ + (jMin*1.0 + index*1.0)*dx(i);
1
protected:
std: :vector<Handle<TrinomialBranching> > branchings_;
double x0_;
std::vector<double> dx ; // vector of step sizes
TimeGrid timeGrid_;

The class has the following definition of the TrinomialTree constructor:

TrinomialTree: :TrinomialTree (const Handle<DiffusionProcess>& process, const
TimeGrid& timeGrid, bool isPositive) : Tree(timeGrid.size()), dx (1, 0.0),
timeGrid_ (timeGrid)

{
x0_ = process->x0() ;
int nTimeSteps = timeGrid.size()
int jMin = 0;

1;
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int jMax = 0;
for (int 1 = 0; i < nTimeSteps; i++)
Time t = timeGridl[il];

Time dt = timeGrid.dt (i) ;

// variance must be independent of x
double v2 = process->variance(t, 0.0, dt);
double v = sqrt(v2);

dx .push back(v*sqgrt (3.0));

Handle<TrinomialBranching> branching(new TrinomialBranching()) ;
for (int j = jMin; j <= jMax; j++)
{

double x = x0_ + j*dx [i];

double m = process->expectation(t, x, dt);

int temp = (int)floor ((m-x0_)/dx_ [i+1] + 0.5);

if (isPositive)
{
while (x0_+(temp-1)*dx [i+1] <= 0)
temp++;
1

branching->k .push back (temp) ;

double e = m - (x0_ + temp*dx_ [i+1]);
double e2 = e*e;

double e3 = e*sgrt (3.0);

branching->probs [0] .push back((1.0 + e2/v2 - e3/v)/6.0);
branching->probs_[1] .push back((2.0 - e2/v2)/3.0);
branching->probs_[2] .push back((1.0 + e2/v2 + e3/v)/6.0);

}

branchings .push _back (branching) ;

const std::vector<int>& k = branching->k_;
jMin = *std::min_element (k.begin(), k.end()) - 1;
jMax = *std::max_element (k.begin(), k.end()) + 1;

Notice that inside the constructor, the branching probabilities and state
values are determined by the expected mean (drift) and variance (diffusion term)
of the diffusion process. Thus, this generic constructor builds a trinomial tree
that approximates various diffusion processes such as an Ornstein-Uhlenbeck
process, Black-Scholes geometric Brownian motion process, and square-root
process.
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We can build a trinomial tree by using the following code:

#include “quantlib.h”

using namespace QuantLib;

using namespace QuantLib::Instruments;
using DayCounters::Actual360;

using TermStructures::PiecewiseFlatForward;
using TermStructures::RateHelper;

void main ()
{
try
{
Date todaysDate (20, October, 2003);
Calendar calendar = Calendars::TARGET() ;
Date settlementDate (19, July, 2004);

// Deposit rates
DayCounter depositDayCounter = Thirty360() ;

// Instruments used to bootstrap the yield curve:
std: :vector<Handle<RateHelper> > instruments;

// Black Scholes diffusion parameters
double rate = 0.06;
double vol = 0.20;
double price = 50;

// List of times that have to be included in the timegrid
std::1list<Time> times;

// bootstrapping the yield curve - class definition in Quantlib
Handle<PiecewiseFlatForward> myTermStructure (new
PiecewiseFlatForward (todaysDate, settlementDate, instruments,
depositDayCounter)) ;

const std::vector<Time> termTimes = myTermStructure->times() ;
for (int i = 0; i < termTimes.size(); i++)
times.push_back (termTimes[i]) ;

times.sort () ;
times.unique () ;

// Building time-grid
TimeGrid grid(times, 30);

// define Black Scholes diffusion process
Handle<DiffusionProcess> bsd (new BlackScholesProcess (rate, vol,price));

// build trinomial tree to approximate Black Scholes diffusion process
Handle<TrinomialTree> trinomialTree (new TrinomialTree (bsd,grid, true)) ;
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}

catch

{

(const char* s)

std::cout << s << std::endl;

}
}

4.7 IMPLIED TREES

The implied trees approach is a way that practitioners have tried to build trees
that price options consistent with actual market prices of European options. Im-
plied trees can be considered a generalization of binomial and trinomial trees. Im-
plied trees are based on the work of Derman and Kani (1994); Derman, Kani,
and Ergener (1995); and Dupire (1994). Such trees try to incorporate the volatil-
ity smiles and maturity effects of options that can be implied from such market
prices. Exchange-traded European option market prices contain important infor-
mation about market expectations of the future. Practitioners incorporate market
information into the tree by making constant parameters such as probabilities
time-dependent and to “imply these time-dependent parameters such that the tree
returns the market prices of the standard options.”?

Implied trees are constructed using forward induction. Each node in the tree
has the calculated price today of an instrument that pays off a dollar in the future if
node (i, j) is reached at time step 7 and zero otherwise. Such prices are called state
prices or Arrow-Debreu securities, denoted at node (7, j) by Qi’f. As before, we de-
note i as the time step and j as the level of the asset price relative to the initial asset
price so that at node (i, j) we have ¢ = iAt and S, ; = exp(jAx). The price of a Euro-
pean call with strike price X and maturity date NA? in the tree is:

N

C(S, X, At)= Z max(Sy; — X, 0)Qy; (4.18)
j=—N

We would like to compute the state prices for the nodes at time step N in the tree so

that they are consistent with the prices of standard European call and put options.

Following Clewlow and Strickland, if we start at the highest node in the tree (N, N)

at time step N, then the price of a European call with a strike equal to the level of

the asset price at the next node below, S and with a maturity date at time step
N, is:

N,N-1°

CSy > NAZ) = (S v = Synet) Onn (4.19)

2Ibid., 134.
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because for all the nodes below (N, N) the payoff of the call option is zero. We can
solve for Oy at node (N, N) in terms of the known call price, asset price, and
strike price. For a European option with a strike price equal to the asset price S,
at node (N, N-2), its price is given by:

2

S -S

C(Synpr NAY) = (S + (Syn

N,N-2° N,N-1 N,N-z)QN,N-1 N,N—Z)QN,N

The o.nly unknown quantity is; Oy since Oy has already beep computed using
equation (4.19). We can continue to work down the nodes at time step N to the
middle of the tree computing the state prices. In general, for node (N, j), the option

price is given by

N
C(Sn,j-1> NA?)=(SN,; = Sn,j-1)ON,j + Z (Sne = SN,j-1)ONk
k=j+1

where all quantities are known except Q, .. When the central node is reached,
namely O, , the same process can be used for the bottom nodes in the tree; that is
-N < < 0, using put option prices due to numerical errors that accumulate from
the iterative process with call options. In general, for node (i, j), the state price is
given by:

CN j1»iA) = D (S, =S:j-1)Q;

k=j+1
Q=
! (Sij=Si)

(4.20)

We want to compute the transitional probabilities given the state prices at every
node in the tree. We can use no-arbitrage relationships that must hold at each node.
Following Clewlow and Strickland, the first no-arbitrage relationship is that the
discounted expected value of a one-period pure discount bond must be equal to the
discount factor over the next time step:

A — pTA
e t<pd,i,/' + pm,i,/’ + pu,i,/) = e (421)
which is equivalent to the requirement that the transitional probabilities sum to 1:
pd,i,/ + pm,z‘,/‘ + pu,i,j = 1 (422)

The second condition is that the asset price at node (7, j) must be equal to its local
discounted expected value over the next time step:

— p At
Si,j =e” <pd,i,/'Si+1,/‘—1 + pm,i,/'Si+1,/' + pu,i,jSi+l,j+1) (423)
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Third, we get the forward evolution equation for the Arrow-Debreu state prices at
node (i + 1,7+ 1):

Qi+1,f+l = e_rAt(pd,i,}#ZQi,/}Z + pm,i,j+1Qi,f+l + pu,i,fQi,/') (4'24)

We can rearrange equation (4.24) to find p, . directly:

rAt
e Qi+l,/+1 - pd,i,j+2Qi,/+2 - pm,i,j+1Qi,j+1

Dujij = (4.25)
! Qi
Equations (4.22) and (4.23) can be solved simultaneously for p, , and p,, :
= erAtSi,,' = Sis1,j1 = Puyi j(Siv jr1 = Sivn j-1)
e (Sis1,j = Siv,j-1) (4.26)
byi; = 1- Dij =P (4.27)
At the highest node (i, 7) at time step i, equation (4.25) reduces to
D= ethm,m
i O (4.28)

and we can determine p .. and D At node (4, i — 1) equation (4.26) reduces to

myi,j

WQH] i~ PO
Ql’l_l (4.29)

puz/ 1=

Equations (4.26) and (4.27) can be used to obtain p,,; ., and p, . We can solve for
the transitional probabilities by starting at the top of the tree and iteratively work-
ing downward until the lowest node of the tree. However, due to numerical errors
that build up from the iterative calculations (the transitional probabilities we ob-
tain depend on previously computed transitional probabilities), we stop at the cen-
tral node and determine the probabilities for the lower nodes in the tree by working
up from the bottom node to the central node. Thus, for the lower half of the tree,
one obtains p, ;. directly from the evolution of the state prices in equation (4.24).
Then p,,,; and p ; are determined by solving the remaining two equations simulta-
neously. Thus equatlons (4.25) to (4.29) become
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At
_ e’ Oiit,jo1 = Puij-29i j-2 = P <194 j-1
Paij= 0, (4.30)

b= erAtSi,j = Siv1,j41 — Payi,j (Siva, o1 — Sivn,j+1)
e (Sis1,j = Sivt,je1) (4.31)

pu,i,/‘ 1- pm,i,f - pd,i,/’ (4.32)

_ ethiH,—i—l
Paj-i=—~ (4.33)

i,—i

i =ethiH,—i_pm,i,—iQi,—i
it Oi—in (4.34)

Since the implied tree method is an explicit difference scheme, it is necessary to
ensure that the transitional probabilities remain in position and that the stability
condition

Ax > 6+ 3At

State

Time Step

FIGURE 4.5 Schematic Representation of an Implied Binomial Tree
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be satisfied at every node. A robust way to ensure that the transitional probabilities
remain positive and that the stability condition is satisfied is to set the space step as

Ax =0, V3AL

where 6 is the maximum implied volatility obtained from the standard options
to which the tree is being calibrated. Clewlow and Strickland (1998a) show how
implied trees can be used to price American puts as well as exotic path-dependent
options like barrier and lookback options.

Figure 4.5 shows a schematic representation of an implied binomial tree. No-
tice that in the implied binomial tree the node spacing varies with market level and
time, as specified by the local volatility function o(S, #) implied from implied
volatilities of quoted option prices.



Finite-Difference NMethods

We discuss numerical methods known as finite-difference methods for pricing de-
rivatives by approximating the diffusion process that the derivative must fol-
low. Finite-difference methods are a means for generating numerical solutions to
partial differential equations and linear complementary (free boundary) problems
such as those used to price American options. Finite-difference schemes are useful
for valuation of derivatives when closed-form analytical solutions do not exist or
for solutions to complicated multifactor (multidimensional) models. By discretizing
the continuous-time partial differential equation that the derivative security must
follow, it is possible to approximate the evolution of the derivative and therefore the
present value of the security.

In section 5.1, we discuss explicit finite-difference methods where the value at
any time instant can be explicitly determined from its previous values in different
states (up, down, middle) at the previous time instant. In section 5.2, an explicit dif-
ference method implementation is given. In section 5.3, the implicit difference
method is discussed where the derivative value at any time instant is determined im-
plicitly from its values in different states (up, down, middle) at the next time instant.
In section 5.4, the LU decomposition is discussed for use in solving linear systems of
implicit difference equations. In section 5.5, an implicit difference method imple-
mentation is given. In section 5.6, more robust object-oriented implementations of
finite-difference methods are provided. In section 5.7, iterative methods, another
technique for solving implicit difference schemes, is discussed. In section 5.8, the
Crank-Nicolson scheme, a scheme that combines both explicit and implicit scheme
features, is discussed. In section 5.9, we discuss the alternating direction implicit
(ADI) method, an extended finite-difference method used for handling multifactor
models.

9.1 EXPLICIT DIFFERENCE METHODS

Binomial and trinomial trees work well for pricing European and American op-
tions. However, there are alternative numerical methods that can be used to value
these standard options as well as more complex derivatives with nonlinear payoffs

183
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such as exotic options. Finite-difference methods are used to price derivatives by
solving the differential equation in conjunction with the initial asset price condition
and boundary value condition(s) (i.e., payoffs) that the derivative must also satisfy.
The differential equation is converted into a system of difference equations that are
solved iteratively. Consider the Black-Scholes PDE:

/d

I 1o 2 0°f
o S =rf

tr-a)s BS 2 982

(5.1)

subject to the payoff condition f(S,, T) = (S, — X)*. We can extend the trinomial
tree approach by creating a rectangular grid or lattice by adding extra nodes
above and below the tree so that we have 2N, + 1, N; 2 N, nodes at every time
step i rather than 2i + 1. In a similar manner to trlnomlal trees, when implement-
ing finite-difference methods, we divide space and time into discrete intervals, At
and Ax, which generates the lattice. We add boundary conditions to the grid,
which determines option prices as a function of the asset price for high and low
values so that df/dS = 1 for § large and 9f/dS = 0 for S small. We can simplify the
Black-Scholes PDE by replacing the PDE with finite differences. Thus, we can dis-
cretize the PDE to develop a numerical finite-difference scheme. First, we simplify
the PDE; let x = In(S) so that

of [ O 1 29f _
ot Mo 29 2T

where W = 7 — g. To get rid of the 7f term on the left-hand side, let #(x, ¢) be a new
function: u(x, t) = e"™f(e*, t). The term u is a forward price of the option f and sat-
isfies the PDE:

0°u ou ou
o' —Hp—=——— 5.2
o’ (5.2)

1
2 ox ot

We will discretize this PDE by taking the central difference of the state variable, x,
and the forward difference of the time variable ¢. Denote u, = u(x,t),t =il and
x; = jAx. Substituting the finite differences into the PDE:

162 Ui1,j+1 — 2“z+;; Ujr1,j-1 u Ui1,j+1 — Hiv1j-1 __ U1, — U (5.3)
2 Ax 2Ax At
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Rearranging terms, we have the recurrent relation for the forward option price:

u; ;= i}uui+1,j+1 + ﬁmqu,/ + ﬁd“iﬂ,;’—l (5.4)
where
2
- _O At + LA
2Ax? 2Ax
2
~ o At
Pm =1~ o (5.5)
~ o’ At UAE
pd = 2 Y
2Ax%  2Ax

Note that p, + p, + p, = 1. Denote o = At/(Ax)* and B = uAt/Ax. We can rewrite
equations (5.5)

pu=5(0%a+B)
p,, =1-c%a

pa =5 (0%

The relationship of trinomial trees to finite-difference discretizations of the
Black-Scholes PDE can be seen as follows. Substitute the present value of the
option f; ; = ey, ; into equation (5.4). We arrive at the backward induction
relationship:

_ 1At

fij=e (ﬁufi+l,/'+1 + Dolivrj + ﬁdfi+1,,‘—1) (5.6)

This is similar to the backward induction to the trinomial tree in equation
(4.11). This is equivalent to the discounted expectation of the forward option
price (under a risk-neutral measure). Thus, we have shown that the explicit finite-
difference scheme is equivalent to approximating the diffusion process by a dis-
crete trinomial process.

Figure 5.1 shows a schematic view of the explicit finite-difference discretization.
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x(j)

u(i, j+1)

u(i, ) O u(i+1,))

u(i, j=1)

1(i)
FIGURE 8.1 Explicit Finite-Difference Scheme

9.2 EXPLICIT FINITE-DIFFERENGE IMPLEMENTATION

Consider the following explicit difference class:

class ExplicitDiffMethod : public FiniteDifferenceMethod

{
public:

ExplicitDiffMethod () {}

ExplicitDiffMethod(long N, long M) ;

~ExplicitDiffMethod () {}

virtual void solve() {}

double explicitDiffEuropean(double price, double strike, double rate, double

div, double volatility, double T, int N, int M, char type, char bc);

double explicitDiffAmerican(double price, double strike, double rate, double

div, double volatility, double T, int N, int M, char type, char bc);
private:

long N_; // number of time steps
long M_; // number of space steps
}i
where:

// Generic finite difference model
class FiniteDifferenceMethod
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{
public:
enum MethodType { ExplicitDifference, ImplicitDifference,
AlternatingDirectImplicit, SOR, ProjectedSOR, CrankNicolson };
enum BoundaryConditions { Dirichlet, Neumann };
virtual void solve() const { }
// constructor
FiniteDifferenceMethod () { }
virtual ~FiniteDifferenceMethod() { }

The following is an implementation of an explicit finite-difference scheme. N is
the total number of time steps where each time step is Az = T/N and IMl is the total
number of state movements (in either direction from the initial state at time 0)
where the state variable is S,j=-M...-1,0,1,... M.

/**********************************************************************************

explicitDiffAmerican : values an American option using the explicit difference

method

[in] : double price : asset price

double strike : strike price

double vol : volatility

double rate : risk-free rate

double div : dividend yield

double T : time to maturity

int N : number of time steps

int M : number of space steps

char type : (C)all or (P)ut

char bc : boundary conditions (D)irichlet or (N)eumann
[out] double : option price

**********************************************************************************/

double ExplicitDiffMethod::explicitDiffAmerican (double price, double strike, double
vol, double rate, double div, double T, int N, int M, char type, char bc)
{

int i, j;

double dt = T/N;

double drift = rate - div - 0.5% (vol*vol) ;

double dx = vol*sgrt (3*dt/2);

double pu, pm, pd;

double C[150][150] = {0.0}; // stores option prices
double S[150] [150] // stores asset prices

1]
—_
o
o
—
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pm = 1.0 -

o)
Q.
I

}

if

{

el

{

initialize asset prices at maturity
-M; j <= M; j++)

r (j =

S[N] [j] = price*exp (j*dx);

(type ==

(vol*vol*dt) / (2*dx*dx)
(vol*vol*dt) / (dx*dx) ;
(vol*vol*dt) / (2*dx*dx)

Cr)

+ (drift=*dt)/(2+*dx) ;

- (drift*dt)/(2*dx) ;

// compute payoff at maturity

for (3 =
CI[N] [F]

// boundary
for (i = 0;

-M; J <= M; Jj++)
= max (S [N] [j]

i++)

= 0.0;
(

= C[i] [-M+1]

max (S [N] [M]

cril (M-1]1 +

- strike,0);

conditions for high and low asset prices
i < N;

- strike,0);

(S[i] [M]

for (j = M-1; j >= -(M-1); j--)

se //if

// boundary
for (i = 0;
{
c[il [0] =
c[i] [M] =

(type

7

S[i] [M-11);

pu*C[i+1] [§j+1] + pm*C[i+1] [j] + pd*C[i+1][j-11;

= max (S[N] [J]

i < N; i++)
strike;
0;

J <= M; Jj++)

- strike,

max (strike - SI[N] [j],0);

Clil [31);

conditions for high and low asset prices
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}
for (j = -M; J <= M; j++)
{
C[N] [j] = max(strike - SI[N] [j],0);
1
// boundary conditions for high and low asset prices
for (i = 0; 1 < N; i++)
{
if (bc == '‘D’)
{
C[i] [-M] = strike;
C[i] [M] = max(0,strike - S[N][j]);

}

else // Neumann bc

{

cl

il [M] = C[i][M-11;
Ccli = CI[

]
1[-M] = i] [-M+1] + (S[i][-M] - sS[i] [-M+1]);

for (j = M-1; j >= -M; j--)

@]
o
fany

1

pu*C[i+1] [§j+1] + pm*C[i+1] [j] + pd*C[i+1] [j-11;
max (strike - SI[N][j], CI[i][3]);

@)
o
by

I}

return C[0] [0];

Suppose we want to price the same ATM American-style call option we priced
earlier in the trinomial tree: S = 50, X = 50, 6 = 0.20, r = 0.06, g =0.03, N=4, M =
5,and T = 1. Figure 5.2 shows the lattice that is generated. The value of the call op-
tion marching backward from the maturity date T =1 is $4.76.

Figure 5.3 shows a convergence comparison of the explicit difference method
with the trinomial method using the parameters as before.

As shown, the explicit difference method provides a rough approximation to
the trinomial prices though differences exist due to errors from convergence condi-
tions that need to be satisfied in order to have a good approximation to the trino-
mial diffusion process (see section 4.5). Note that all trinomial tree methods
(different lambdas) quickly converge to one another while the explicit difference
schemes (different lambdas) converge to each another. As N — «, however, the ex-
plicit difference schemes will converge to the trinomial diffusion process.



190 FINITE-DIFFERENCE METHODS

t 1.0 0.75 0.50 0.25 0.0
s j i 0 1 2 3 4
7220 3 22.20 22.20 22.20 22.20 22.20
63.88 2 15.47 15.00 14.65 14.36 13.88
56.51 1 9.39 8.70 7.97 6.94 6.51
5000 0 4.76 4.03 3.13 2.24 0.00
424 -1 1.91 1.33 0.77 0.00 0.00
3014 -2 0.55 0.26 0.00 0.00 0.00
3463 -3 0.00 0.00 0.00 0.00 0.00

FIGURE 5.2 Lattice for ATM American-Style Call Option

Comparison of Trinomial and Explicit Difference Methods

6
5 1l
g’ -
a3+
s Trinomial (lambda = sqrt(3/2))
s2+ | Trinomial (lambda = sqrt(3))
= Trinomial (lambda = 1)
1+ Explicit Difference (lambda = sqrt(3))
Explicit Difference (lambda = sqrt(3/2))
0 -HHHHH

f f
19 28 37 46 55 64 73 82 91

Number of Time Steps

FIGURE 5.3 Convergence Comparison
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IMPLICIT DIFFERENGE METHOD

If the backward difference,

Wij — Ui,

At

is used instead of the forward difference for the time derivative, df/d¢, in equation
(5.3), we will get an implicit difference scheme in which #,, . is implicitly dependent

onu, ,u,andu, .

Uin1,j = Dulijo1 T Pt j T Datti j 1 (5.7)

where the probabilities p, ﬁm, and p, are defined in equation (5.5). If we substitute
the present value of the option f,; = e”"u, , into equation (5.7), we get the risk-
neutral expected value:

fH—l; rAt pufz /+1+pmf,/+pdf,/ 1 (58)
If £, is a put option, then when the stock price is zero, we get the boundary condition:
=X i=0,1,...,N (5.9)

The value of the option tends to zero as the stock price tends to infinity. We may
use the boundary condition:

fu=0 i=0,1,...,N (5.10)
The value of the put at maturity (time T) is
f, = max(X =S, 0) j=-M,...,-1,0,1,..., M (5.11)
Figure 5.4 is a schematic view of an implicit finite-difference discretization.
Equations (5.9), (5.10), and (5.11) define the value of the put option along the
boundaries of the grid. To solve for the value of f at all other points we use equa-

tion (5.8). First, the points corresponding to T — Az are solved. Equation (5.8) with
i=N-1yields 2M - 1 linear simultaneous equations:

fn = rAt(puN i+t F Dmlnerj + Pafn-r, - 1) j=-M+1,..., M+1 (5.12)

Unlike the explicit finite-difference method, each equation cannot be solved indi-
vidually for the option values at time step i. These equations must be considered
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x(j)
u(i+1,j+1)

u(i, j) O uli+1,))

u(i+1,j-1)

i)
FIGURE 5.4 Implicit Finite-Difference Scheme

with the boundary conditions. The system of equations can be rewritten as a tridi-
agonal matrix form. We can rewrite equation (5.7) as:

(5, s O ... .. ... 0 ”ul«’_M 1 —uM’_M |
Pu Pm D4 O L | 7 vest Ui1,- M+1
0 Dy DPw Pa O .. 0 || - ms2 Uj1,- M+2
R | (5.13)
0 pu Pw Pa O |[#Mo2 Uj1, M2
0 Dy Dw Dall#ima Ui, M-1
i 0 by Pa|tim | |am |

where the (probability) elements of the matrix in (5.13) are given in equation (5.5).

Let B, be the upper boundary (for a put B, = 0 if S is much larger than X) and
B, be a lower boundary (for a put B, = X if S = 0) when the asset price reaches the
high and low points, respectively. Then u,,, ,, =B, and u,,, ,, = B, However, we will
be using the partial derivatives (Neumann boundary conditions) of the option price
at the boundaries when we use finite-difference schemes. Note that uy ; = f(S) =
max(S — X, 0) for a call and max(X - S, 0) for a put optionj =-M, ..., M. We can
rewrite equations (5.13) as:

Muf = b+! i=0,1,...,N-1 (5.14)
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—_

which can be solved for u’ since M is nonsingular; that is, it can be inverted:
u’ = Mp+! (5.15)

where M is the inverse of M. Making use of the boundary conditions, we can
solve (5.15) iteratively starting at time i = N — 1 and solving for u™! (we know bV
since they are given by the boundary conditions in (5.9), (5.10), and (5.11). Once
we solve for u™M! at time ; = N — 1, we can use it to solve for uN-? at time 1 = N - 2
since bN"' = uN!, Thus, we can solve for each v/, i = N -1, ..., 0, sequentially
working backward starting from time i = N — 1 until we solve for u®, which gives us
a vector solution of option prices.

Since M is tridiagonal (i.e., only the diagonal, superdiagonal, and subdiagonal
entries are nonzero), we do not have to store all the zeros, but just the nonzero ele-
ments. The inverse of M, M is not tridiagonal and requires a lot more storage
than M.

We can rewrite the system of equations in (5.13) as:

pr’d O cee cee “ee O Mi,*M u:‘:—l,*M
1 Pivag O Ui M+l Y
0 1 Pivizag O .. 0 Ui _M+2 Ui M2
= - (5.16)
0 0 1 Priaa O Ui M2 Ui, M2
0 1 Pr-d || #ima UM
0 0 1 Mmoo | | ® M |
where
% ﬁd o ijd .
PMd == > bimd= =3 J="M+1 ..., M-2 (517
Pm ! P — pupy,d ( )
and
u; Uiy i —DUE
wig =My TR iy M- (508)

DPm z;m_[)upj;jd

Solving (5.17) and (5.18) from bottom to top, we get:

u . =ut * u i=0...N-1,j=-M+1,...,M-1 (5.19)

B 4, o
iM i By = Wi p;‘,d i jal
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We could also use an LU decomposition to solve for v’ in (5.14) without having to
invert M.

9.4 LU DECOMPOSITION METHOD

In an LU decomposition, we decompose the matrix M into a product of a lower
triangular matrix L and an upper triangular matrix U, namely M = LU, of the

form:
[0 », 0 o] [1 o o olly, =z, o 0
p P p, O 0 vy, 1 0 0 Yot B 0
o p, p, v, O 0 0 v, 1 0 0 0 Yu-2 Zwmoa :
=|: v, 1 1o 0 (5.20)
0 p, b, P, o],

A R 2 ar
0 .. .. .. 0 p,  p, 0 B v B R Y .. .. 0 o0 You

In order to determine the quantities Vs Vs andz,j=-M+1,...,M-1, we

multiply the two matrices on the right-hand side of équation (5.20) and set the re-
sult to the left-hand side. After some simple calculations:

yM=pm
3’/=Pm—M j=—-M+1, ..., M-1 (5.21)
Y+
zj=Pd’U/=% j=-M+1,..., M
j

The only quantities we need to calculate and store are the y. j=-M + 2, .. .,
We can rewrite the original problem in Mu’ = b*! as L(Uuv’) = b™*',i =0, . ..

which may be broken down into two simpler subproblems:

Lq = b, Uu' = ¢ (5.22)
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Where q' is an intermediate vector. We eliminate the v, from L and the z; from U us-
ing (5.21), the solution procedure is to solve two subproblems:

1 0 . ... 0 0l|g:im b; m
_ Pu 0 _ qi,M-1 bi,M—l
YMm 1
0 .
P 0 = (5.23)
Y M-1
9i,- M+1 bi,—M+1
P
0 -t 1
L Y-M+1 114i-m | _bi,—M
and
FJ’M Pa 0] Ui M dim
0 Ym-1 Pa 0 || #i,ma diM-1
= : (5.24)
Pa | |#i+1,-M+1 di-M+1
0 Y-m || Mir-m | | diem |

The intermediate quantities g, ; are found by forward substitution. We can read off
the value of g, directly, while any other equation in the system relates only g, ; and
q;,1- If we solve the system in decreasing i-incidental order, we have g; ; available at
the time available we have to solve for g, ,,,. Consequently, we can find g, :

Tim = binm qi,/:bi,/‘i'% j=-M+1, ..., M-1  (5.25)

y;’+1

Solving (5.24) for the u, ; (once we find the intermediate g, ;) is achieved through back-
ward substitution. We can read u,, ,, directly (it is the value of the boundary), and if
we solve in increasing i- incidental order we can find all of the #, ; in the same manner:

. .4 u. .
Ujpy v = qi-M Uiy = ql,/ Pa i+1,7+1 ].= —M+1, . M-1 (526)
Y-Mm Y
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At the boundary, we get conditions

oy =y s = By (5.27)

Ui v ~%im = B, (5.28)

B, and B, are the derivatives at the boundary so that

BU = Si M~ Si,M—l’ BL =0

5

for a call and
BU =0, BL =-1- (Si,—M+1 - Si,—M)

for a put.

9.9 IMPLICIT DIFFERENCE METHOD IMPLEMENTATION

Consider an implicit difference class that inherits from a finite-difference class:

class ImplicitDiffMethod : public FiniteDifferenceMethod
{
public:
ImplicitDiffMethod () ;
ImplicitDiffMethod(long N, long M) ;
~ImplicitDiffMethod () {}
double implicitDiffEuropean(double price, double strike, double vol,
double rate, double div, double T, long N, long M, char type, char bc);
double implicitDiffAmerican(double price, double strike, double vol,
double rate, double div, double T, long N, long M, char type, char bc);
void solveTridiagonalAmer (double strike, long N, long M, double pu, double pm,
double pd, double *d, double *cl, double *dl, char type);
void solveTridiagonalEuro (double strike, long N, long M, double pu, double pm,
double pd, double *d, double *cl, double *dl, char type);

private:
long N_; // number of time steps
long M_; // number of state steps
double C[200] [200]; // stores option prices

double S[200] [200]; // stores asset prices
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The following is an implementation of the implicit finite-difference method of
the same put option we valued with the explicit finite-difference method.

/**********************************************************************************

implicitDiffAmerican: values an American option using the implicit difference

method
[in] : double price : asset price
double strike : strike price
double vol : volatility
double rate : risk-free rate
double div : dividend yield
double T : maturity
int N : number of time steps
int M : number of space steps

char type: (C)all or (P)ut
char bc: boundary conditions (D)irichlet or (N)eumann
[out]: option price
**********************************************************************************/
double ImplicitDiffMethod::implicitDiffAmerican (double price, double strike, double
vol, double rate, double div, double T, long N, long M, char type, char bc)
{
double c1[350] = {0.0}; // array to store values in
// tridiagonal system
double d[350] = {0.0};
double d1([350] = {0.0};
double x[350] = {0.0}

double dx = 0.0; // space size

double drift = rate - div - vol*vol/2; // drift

double pu, pm, pd; // risk neutral probabilities
int i, §;

double dt = T/N;
dx = vol*sqgrt (3*dt/2);

pu = -0.5*dt* ((vol*vol) /(dx*dx) + drift/dx);
pm = 1 + dt*((vol*vol)/(dx*dx)) + rate*dt;

pd = -0.5*dt* ((vol*vol) /(dx*dx) - drift/dx);
for (J = -M; J <= M; J++)
{

SI[N] [j] = price*exp (j*dx);

S[0] [j] = price;
1
for (i = 1; 1 < N; i++)
{

for (3 = -M; J <= M; j++)

{

S[i][§] = S[i-1]1[j]*exp(j*dx);

}
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}

// calculate payoffs

if (type == ‘P’)
{
for (j = -M; j <= M; j++)
{
C[N] [j] = max(strike - SI[N] [j],0);
1
// calculate boundary conditions
for (i = 0; i < N; i++)
{
if (bc == ‘D’) // Dirichlet boundary conditions

C[i] [-M] = strike;
C[i] [M] = max(strike - S[i] [M],O0);

else // Neumann boundary conditions
{
C[i] [-M] = C[i][-M+1] + (S[i]1[-M] - SI[il[-M+11);
c[i] (M] = C[i] [M-11;
1
1
1
else // if type == ‘C’

{

// calculate boundary condition at maturity

for (j = -M; J <= M; j++)
{
C[N] [§] = max(S[N] [j] - strike,0);
1
// calculate boundary conditions on grid
for (i = 0; 1 < N; i++)
{
if (bc == ‘D’) // Dirichlet boundary conditions
{
C -M] = 0;

C[i] [M] = max(S[i] [M] - strike,O);

else // Neumann boundary condition
{

C[i] [-M] = C[4i] [-M+1];

c[i] [M] = C[4i] [M-1] + (sS[il[M] - s[i] [M-11);

solveTridiagonalAmer (strike,N,M, pu,pm,pd,d,cl,dl, type) ;

return C[0] [1];

}
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The following is the implementation of the method to solve the system of equa-
tions in the tridiagonal matrix in (5.16) using a LU decomposition.

/*********************************************************************************/

solveTridiagonalAmer:
[in]: double strike
long N

long M
double
double
double
double

char type
[out] : option price

solves a tridiagonal system with American exercise conditions

strike price

number of time steps

number of space steps

up probability

middle probability

down probability

stores elements of tridiagonal matrix
(C)all or (P)ut

**********************************************************************************/

void ImplicitDiffMethod::solveTridiagonalAmer (double strike, long N, long M, double
pu, double pm, double pd, double *d, double *cl, double *dl, char type)

{

int i,9;

for (j = -M;
dlj] = CINI [§1;

di[-M] = d[-M]/pm;
cl[-M] = pd/pm;

cl[-M+1] =
di[-M+1] =

for (j = -M+1;
cl[j+1] =

for (j = -M+1;
di[j+1] =

for (i = N-1;

{
for (j =

{
if (4
aljl
if (3

{
}

d1l[j+1]

dl[-M+1]

Cli] [-3]

d[-M+1] /pm;

!= N-1)
Cli+1] [-31;

J++)
- pu*cl[3jl);

J++)
- pu*dl[j]l)/(pm - pu*cll[jl);

J++)

d[-M+1] /pm;

- pu*dl[jl)/(pm - pu*cl[jl);
- cl[-j1*C[i] [-3+11;



200

FINITE-DIFFERENCE METHODS

// check early exercise condition
if (type =='P’)
{
if (C[i][-J] < strike - SI[N] [-3])
C[il [-j] = strike - SI[N][-]1;

if (C[i]1[-j] < SIN][-j] - strike)
C[i1[-j] = SIN][-j] - strike;

Suppose we price an ATM American-style put with § = 50, X = 50, 6 = 0.20,
r=0.06,9=0.03, N=4, M =35, and T = 1. Then, we generate the lattice shown in
Figure 5.5. The option price is $3.77. If we increase N and M, the price estimate
gets better since At — 0. Suppose N = 5 and M = 5. Then, we generate the lattice

shown in Figure 5.6.

Figure 5.7 shows a plot of the implicit difference scheme as a function of time

§=50 x=50 vol=0.20 r=0.06 q=0.03 T=1 N=4 M=4 deltat=0.25 dx=0.12 |
r 10 0.75 0.50 0.25 0.0
s ii0 1 2 3 4
068 4 | o000 || o000 || o000 || o000 || o000 |
463 3 | os8 || 02 || o000 || 025 || o000 |
4 2 | 111 || o4 || o4 || o4 || o000 |
maa 1 | 22t || 1 || 12 || 224 || om0 |
s0.00 0 | 37 || 3s || 220 || 221 || o000 |
s651 -1 | 640 | | 636 | | 5% | | 59 | | 576 |
6388 2 | 108 | | 1086 | | 10.86 | | 1086 | | 10.86 |
220 3 | a7 | | 1537 | | 137 | | a3 | | 1587 |
g1.61 4 | 1031 | | 1987 | | 1037 | | 1037 | | 1987 |

FIGURE 9.5 Lattice for ATM American-Style Put Option (N = 4)
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| §=50 x=50 vol=0.20 r=0.06 II=U.U3 T=1 N=5 M=5 deltat=0.20 dx=0.11 |

t 1.0 0.80 0.60 0.45 0.20 0.00

s i 1 2 3 4 5
2891 5 | 000 || o000 || oo || ooo || oo || o000 |
3226 -4 | 025 || o025 || o008 || o008 || o008 || 000 |
%00 -3 | o067 || o067 || o2z || o0z || o2z || o000 |
w016 -2 | 105 || 105 || o048 || o043 || o043 || o000 |
mer 1 | 23 || 232 || 120 || 120 || 120 || o000 |
s000 o | 430 || 35 || 330 || 204 || 204 || o000 |
5579 1 | 753 || 68 || 68 || 605 || 605 || 519 |
6225 2 | 988 || 984 || 984 || 984 || o984 || 984 |
6945 3 | 1400 || 1400 || 1400 || 1400 || 1400 || 1400 |
7740 4 | v || wm || v || v || v || e |
8647 5 | 2100 || 2100 || 2100 || 2100 || 2100 || 2100 |

FIGURE 5.6 Lattice for Put Option (n = 5)

6
5 _W
a7 European
Put
37 )
American
Put
2 —
-1 -
0 T T T T
n o Yol o [Ye) o Yol o [Ye] o [Yp] o Yol o w o 0
[aV) o o] © oo (s3] — (V] < Kol M~ O O — e
FFFFFF N N N N

Time Step
FIGURE 9.7 Implicit Difference Method Valuation of European and American Puts
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t 1.0 0.75 0.50 0.25 0.0
s i i 1 2 3 4
g161 4 | 3161 | | 3161 | | 361 | | 316t | | 3161 |
220 3 | 220 | | 2220 | | 2220 | | 2220 | | 2220 |
6388 2 | 1388 | | 1388 | | 13.88 | | 13.88 | | 1388 |
m2 1| 705 || es2 || es2 || 68 || 651 |
s0.00 0 | 227 || 222 || 13 || 13 || oo |
s24 -1 | 06 || o062 || 02 || oz || oo |
3914 2 | o1 || o0t || o006 || o005 || 000 |
463 3 | o005 || oo4 || o000 || o000 || o000 |
068 4 | o000 || ooo || oo0 || 000 || o000 |

FIGURE 5.8 Lattice for American Call Option

steps (equal to the number of space steps, i.e., N = M) for the European and Amer-
ican put with the same parameters as used earlier.

Figure 5.8 is the lattice for an American call option with the same parameters
as the put.

9.6 OBJECT-ORIENTED FINITE-DIFFERENCE IMPLEMENTATION

In order to provide more robustness and flexibility to the implementation, we
need to make several important changes. First, the previous implementation can
only handle small grid sizes. Memory needs to be allocated for both the option
price and the asset price at each node. It is limited by the use of predefined array
dimensions, which in turn are limited by system memory. In fact, the previous
implementation cannot handle the memory requirements for larger-dimension
grids (i.e., a 200 x 800 grid) often used in practice. Moreover, it is not efficient
to statically allocate arrays of large dimensions as it uses too much memory from
the heap, as opposed to dynamically allocating memory from the stack. Even if
we could statically allocate memory for very large (double) array sizes, we
would have to change the dimension sizes in the array declarations each time we
wanted to change them, which is not practical. While dynamically allocated
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double arrays could be used to create an N x M grid (array) to hold option and
asset values, for example,

double** C = (double **) new double [N*sizeof (double*)]; // for option price
double** S = (double **) new double[ (N*sizeof (doublex*)] // for asset price
for(i= 0; i < N;i++)
{

C[i]l= (double *) new double[(M * sizeof (double)];

S[i] = (double *) new double[(M * sizeof (double)];

or even a struct could be used to hold the values, that is,

struct
{
double price;
double optionPrice;
} nodevalues;

and then memory could be dynamically allocated,

nodeValues** nodePtr = (nodeValues**) malloc (N*sizeof (nodevalues*)) ;
for(i= 0; i < N;i++)

{
}

nodePtr[i]= (nodeValues) malloc (M*sizeof (nodeValues)) ;

there are still serious memory management issues with such an approach, especially
for more than two dimensions. A more efficient and practical solution is to use an
Array class that contains methods and operations to manipulate arrays (see source
code for implementation details) and which can manage the memory. For example,

typedef size t Size;

class Array

{
public:
// creates the array with the given dimension
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explicit Array(Size size = 0);

// creates the array and fills it with values
Array(Size size, double value) ;

// brief creates the array and fills it according to
// a_{0} = value, a_{i}=a {i-1}+increment

Array(Size size, double value, double increment) ;
Array (const Array& from) ;
template <class Iter> Array(const VectorialExpression<Iter>& e)

pointer (0), n_(0), bufferSize (0) { allocate (e.size()); copy (e); }
~Array () ;
Array& operator=(const Array& from) ;
template <class Iter> Array& operator=(

const VectorialExpression<Iter>& e)
resize (e.size()); copy_ (e); return *this;

Array& operator+=(const Array&) ;

Array& operator+=(double) ;

Array& operator-=(const Arrayé&) ;

Array& operator-=(double) ;

Array& operator*=(const Arrayé&) ;

Array& operator*=(double) ;

Array& operator/=(const Arrayé&) ;

Array& operator/=(double) ;

template <class Iter> Array& operator+=(
const VectorialExpression<Iter>& e)

QL _REQUIRE (size() == e.size(), “adding arrays with different sizes”);
iterator i = begin(), j = end();
while (i != j) { *i += *e; ++i; ++e; }

return *this;

}

template <class Iter> Array& operator-=( const VectorialExpression<Iter>& e) ({
QL REQUIRE (size() == e.size(), “subtracting arrays with different sizes”);
iterator i = begin(), j = end();
while (i != j) { *i -= *e; ++i; ++e; }

return *this;

}

template <class Iter> Array& operator*=( const VectorialExpression<Iter>& e) ({

QL REQUIRE (size() == e.size(), “multiplying arrays with different sizes”);
iterator i = begin(), j = end();
while (i != j) { *i *= *e; ++i; ++e; }

return *this;

}

template <class Iter> Array& operator/=( const VectorialExpression<Iter>& e) ({

QL _REQUIRE (size() == e.size(), “dividing arrays with different sizes”);
iterator i = begin(), j = end();
while (i != j) { *i /= *e; ++i; ++e; }

return *this;
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// name Element access

double operator[] (Size) const;
// read-write

double& operator[] (Size) ;

// dimension of the array
Size size() const

typedef double* iterator;

typedef const double* const iterator;

typedef QL REVERSE_ITERATOR (double*,double) reverse_ iterator;
typedef QL REVERSE_ ITERATOR (double*,double) const_ reverse_ iterator;
// name Iterator access

const_iterator begin() const;

iterator begin() ;

const_iterator end() const;

iterator end() ;

const_reverse iterator rbegin() const;

reverse iterator rbegin();

const_reverse_ iterator rend() const;

reverse iterator rend() ;

private:

void allocate_(Size size);
void resize (Size size);
void copy (const Array& from) {
std: :copy (from.begin() ,from.end () ,begin()) ;
}

template <class Iter> void copy ( const VectorialExpression<Iter>& e)
iterator i = begin(), j = end();
while (i != j) {
*1 = *e;
++1i; ++e;
}
1

double* pointer ;
Size n_, bufferSize ;

{

The class has the following method definitions:

// inline definitions
/**********************************************************************************

Array: Constructor

[in]

Size size: size of array

**********************************************************************************/
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inline Array::Array(Size size) : pointer (0), n_ (0), bufferSize (0)

{
if (size > 0)
allocate_ (size);

/******************************************************************************

Array: Constructor

[in] Size size: size of array

******************************************************************************/

inline Array::Array(Size size, double value) : pointer (0), n_(0),
bufferSize_ (0)

if (size > 0)
allocate_(size);
std: :fill (begin() ,end () ,value) ;

/******************************************************************************

Array: Constructor

[in] Size size : size of array
double value : value to initialize array
double increment : increments value

******************************************************************************/
inline Array::Array(Size size, double value, double increment)
: pointer (0), n_(0), bufferSize (0)

if (size > 0)
allocate (size);

for (iterator i=begin(); i!=end(); i++,value+=increment)
*1 = value;

/******************************************************************************

Array: Constructor

[in] Size size : size of array
double value : value to initialize array
double increment : increments value

******************************************************************************/
inline Array::Array (const Array& from)
: pointer (0), n_(0), bufferSize (0)

allocate (from.size());
copy_(from) ;

/******************************************************************************

Array: Destructor

Delete allocated memory and clean up
******************************************************************************/
inline Array::~Array ()

{

if (pointer != 0 && bufferSize != 0)
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delete[] pointer_;
pointer = 0;
n_ = bufferSize = 0;

/******************************************************************************
operator= : overloaded assignment operator

Copies the elements of one array to another

[in] Array from : array to copy from

[out] Array&: copy of array

******************************************************************************/

inline Array& Array::operator=(const Array& from)
{
if (this != &from)
{
resize (from.size());
copy_(from) ;

}

return *this;

/******************************************************************************
operator+ : overloaded assignment operator

Copies the elements of one array to another

[in] Array from : array to add to

[out] Array&: sum of arrays

******************************************************************************/

inline Array& Array::operator+=(const Array& V)

{
QL_REQUIRE(n_ == v.n_, “arrays with different sizes cannot be added”);
std: :transform(begin(),end(),v.begin() ,begin(),std: :plus<double>()) ;
return *this;

inline Array& Array::operator+=(double x)

{
std::transform(begin(),end () ,begin(), std::bind2nd(std::plus<double>(),x));
return *this;

inline Array& Array::operator-=(const Array& v) {
QL _REQUIRE(n_ == v.n_,”arrays with different sizes cannot be subtracted”);
std: :transform(begin(),end(),v.begin() ,begin(), std::minus<doublex>()) ;
return *this;

inline Array& Array::operator-=(double x)
{
std: :transform(begin(),end () ,begin(),std::bind2nd(std: :minus<double> (),
x));
return *this;
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inline Array& Array::operator*=(const Array& V)

{

QL _REQUIRE(n == v.n_, “arrays with different sizes cannot be multiplied”) ;
std: :transform(begin(),end(),v.begin() ,begin(), std::multiplies<double>()) ;
return *this;

inline Arrayé& Array::operator*=(double x)

{

std: :transform(begin() ,end () ,begin(),
std: :bind2nd(std: :multiplies<doubles>(),x)) ;
return *this;

inline Array& Array::operator/=(const Array& V)

{
QL REQUIRE (n_
std::transform

v.n_, “arrays with different sizes cannot be divided”) ;
() ,end() ,v.begin() ,begin(), std::divides<double>()) ;

=
ol
D

Q
-
=}

return *this;

inline Array& Array::operator/=(double x)
{
std::transform(begin(),end (), begin(),
std: :bind2nd (std: :divides<double> () ,x)) ;
return *this;

inline double Array::operator[] (Size i) const ({
QL_REQUIRE (i<n_, “array cannot be accessed out of range”);
return pointer [i];

}

inline double& Array::operator[] (Size i) ({
QL_REQUIRE (i<n_, “array cannot be accessed out of range”);
return pointer [i];

}

inline Size Array::size() const {
return n_;

inline void Array::resize (Size size) ({
if (size != n )
{
if (size <= bufferSize_ )
{
n_ = size;
} else {
Array temp(size);
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std: :copy (begin(),end (), temp.begin()) ;
allocate (size);
copy_ (temp) ;
}
}
}
inline Array::const iterator Array::begin() const ({
return pointer ;
}
inline Array::iterator Array::begin() {
return pointer ;
}
inline Array::const iterator Array::end() const ({
return pointer +n_;
}
inline Array::iterator Array::end()
return pointer +n_;
}
inline Array::reverse iterator Array::rbegin() ({
return reverse iterator(end());
}
inline Array::reverse iterator Array::remnd() {
return reverse iterator(begin()) ;
}
inline void Array::allocate_(Size size)
{
if (pointer_!= 0 && bufferSize_ != 0)
delete[] pointer_;
if (size <= 0)

{

pointer = 0;
}
else
{
n_ = size;
bufferSize = size+size/10+10;
try
{
pointer = new double[bufferSize ];
}
catch ( . . . ) {
pointer = 0;
}
if (pointer == 0)
{
n_ = bufferSize = size;
try

{

pointer = new double [bufferSize ];
}

catch ( . . . )

{
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pointer = 0;
}
if (pointer_ == 0)
{
n_ = bufferSize = 0;
throw “Out Of Memory Error Array”;
}

}
}
1

We can then create a Grid class for handling the spacial steps and a TimeGrid
class for handling the time steps. The TimeGrid will give us a finer granularity over
the spacing and number of time steps.

// spatial grid class
class Grid : public Array
{
public:
Grid(double center, double dx, int steps);

}i

// time grid class

class TimeGrid : public std::vector<doublex>

{

public:

TimeGrid () {}
// Regularly spaced time-grid
TimeGrid (double end, int steps) ;
// double grid with mandatory time-points (regularly spaced between them)
TimeGrid (const std::list<double>& times, int steps);
int findIndex (double t) const;
double dt (int i) const;

}i

// inline definitions

inline Grid::Grid(double center, double dx, int steps) : Array(steps)
{
for (int 1=0; i<steps; i++)
(*this) [i] = center + (i - steps/2.0)*dx;

}

inline TimeGrid::TimeGrid (double end, int steps)
{
double dt = end/steps;
for (int 1=0; i<=steps; 1++)
push _back (dt*i) ;
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inline TimeGrid: :TimeGrid (const std::list<double>& times, int steps)
std: :vector<double> (0)

double last = times.back() ;
double dtMax;
// The resulting timegrid have points at times listed in the input
// list. Between these points, there are inner-points which are
// regularly spaced.
if (steps == 0)
{
std: :vector<double> diff;
std::back insert_ iterator<std::vector<double> > ii(diff);

std::adjacent difference(times.begin(), times.end(), ii);
if (diff.front()==0.0)
diff.erase(diff.begin());
dtMax = *(std::min element (diff.begin(), diff.end()));
1
else

{
}

dtMax = last/steps;

double periodBegin = 0.0;
std::list<double>::const_ iterator t;
for (t = times.begin(); t != times.end(); t++)
{

double periodEnd *t;

if (periodBegin >= periodEnd)

continue;
int nSteps = (int) ((periodEnd - periodBegin)/dtMax + 1.0);
double dt = (periodEnd - periodBegin) /nSteps;

for (int n=0; n<nSteps; n++)
push back (periodBegin + n*dt) ;
periodBegin = periodEnd;
1

push back (periodBegin); // Note periodBegin = periodEnd

inline int TimeGrid: :findIndex (double t) const

{
const_iterator result = std::find(begin(), end(), t);
QL REQUIRE (result!=end(), “Using inadequate tree”);
return result - begin();

}

inline double TimeGrid::dt(int i) const

{

return (*this) [i+1] - (*this) [i];

}
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Second, it would be useful to create a generic Tridiagonal Operator class for
manipulating and solving tridiagonal linear systems for many types of finite differ-
ence schemes—explicit methods, implicit methods, Crank-Nicolson scheme, and so

on. Consider the following TridiagonalOperator class:

class TridiagonalOperator

{

// unary operators

friend TridiagonalOperator operator+ (const TridiagonalOperatoré&) ;

friend TridiagonalOperator operator- (const TridiagonalOperatoré&) ;

// binary operators

friend TridiagonalOperator operator+ (const TridiagonalOperator&, const
TridiagonalOperatoré&) ;

friend TridiagonalOperator operator- (const TridiagonalOperator&, const
TridiagonalOperatoré&) ;

friend TridiagonalOperator operator* (double, const TridiagonalOperatoré) ;

friend TridiagonalOperator operator* (const TridiagonalOperator&, double) ;

friend TridiagonalOperator operator/ (const TridiagonalOperator&, double) ;

public:

typedef Array arrayType;

// constructors

TridiagonalOperator (Size size = 0);
TridiagonalOperator (const Array& low, const Array& mid, const Array& high) ;
TridiagonalOperator (const TridiagonalOperatoré& L) ;
TridiagonalOperator& operator=(const TridiagonalOperatoré& L) ;
// apply operator to a given array

Array applyTo(const Array& v) const;

// solve linear system for a given right-hand side
Array solveFor (const Array& rhs) const;

// solve linear system with SOR approach.,m

Array SOR(const Array& rhs, double tol) const;

// identity instance

static TridiagonalOperator identity(Size size);
Size size () const;

bool isdoubleDependent () ;

void setFirstRow (double, double) ;

void setMidRow (Size, double, double, double) ;

void setMidRows (double, double, double) ;

void setLastRow (double, double) ;

void setdouble (double t) ;

void setTime (double t) { time = t; }

bool isTimeDependent () { return isTimeDependent_; }
// encapsulation of double-setting logic

class doubleSetter {

public:
virtual ~doubleSetter() {}
virtual void setdouble (double t, TridiagonalOperator& L) const = 0;
}i
protected:

Array diagonal_, belowDiagonal_ , aboveDiagonal_;
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Handle<doubleSetter> doubleSetter ;
double time_;
bool isTimeDependent_;

}i

inline TridiagonalOperator::TridiagonalOperator (const TridiagonalOperator& L)

{

belowDiagonal = L.belowDiagonal ;
diagonal = L.diagonal_;
aboveDiagonal = L.aboveDiagonal_;
doubleSetter = L.doubleSetter ;

}

/**********************************************************************************

operator= : overloaded assignment operator

Copies the elements of one Tridiagonal operator to another

[in] Array from : array to copy from

[out] TridiagonalOperatoré&: copy of tridiagonal operator

**********************************************************************************/

inline TridiagonalOperator& TridiagonalOperator::operator=( const
TridiagonalOperatoré& L)

{

belowDiagonal = L.belowDiagonal ;
diagonal = L.diagonal_;
aboveDiagonal = L.aboveDiagonal_;
doubleSetter = L.doubleSetter_;

return *this;

}

inline Size TridiagonalOperator::size() const

{
}

inline bool TridiagonalOperator::isdoubleDependent ()

{
}

// set values of first row of matrix
inline void TridiagonalOperator::setFirstRow(double valB, double valC)

{

return diagonal_.size();

return !doubleSetter .isNull();

diagonal [0] = valB;
aboveDiagonal [0] = valC;

}

// set values of middle row of matrix

inline void TridiagonalOperator::setMidRow(Size i, double valA, double valB, double
valc) {
QL REQUIRE (i>=1 && i<=size()-2, “out of range in TridiagonalSystem::setMidRow”) ;
belowDiagonal [i-1] = valA;
diagonal [i] = valB;
aboveDiagonal [i] = wvalC;

}

// set values of middle rows of matrix
inline void TridiagonalOperator::setMidRows (double valA, double valB, double valC)
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for (int i=1; i<=size()-2; i++)

{

belowDiagonal [i-1] = vala;
diagonal [i] = valB;
aboveDiagonal_ [i] = valC;

}
}

inline void TridiagonalOperator::setLastRow (double valA, double valB)
{

belowDiagonal_[size()-2] = valA;

diagonal [size()-1] = valB;

}

inline void TridiagonalOperator::setdouble (double t)
{
if (!doubleSetter .isNull())
doubleSetter ->setdouble(t, *this);

inline TridiagonalOperator operator+ (const TridiagonalOperatoré& D)

{

return D;

}

inline TridiagonalOperator operator- (const TridiagonalOperatoré& D)
{

Array low = -D.belowDiagonal , mid = -D.diagonal_ ,

high = -D.aboveDiagonal_;

TridiagonalOperator result (low,mid,high) ;

return result;

inline TridiagonalOperator operator+ (const TridiagonalOperatoré& D1,
const TridiagonalOperator& D2)
{
Array low = Dl.belowDiagonal +D2.belowDiagonal ,
mid = Dl.diagonal +D2.diagonal_,
high = Dl.aboveDiagonal +D2.aboveDiagonal_;
TridiagonalOperator result (low,mid,high) ;
return result;

inline TridiagonalOperator operator- (const TridiagonalOperatoré& D1,
const TridiagonalOperator& D2)
{
Array low = Dl.belowDiagonal -D2.belowDiagonal_,
mid = Dl.diagonal_-D2.diagonal_,
high = Dl.aboveDiagonal -D2.aboveDiagonal ;
TridiagonalOperator result (low,mid,high) ;
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return result;

inline TridiagonalOperator operator* (double a,
const TridiagonalOperator& D)
{
Array low = D.belowDiagonal *a, mid = D.diagonal *a,
high = D.aboveDiagonal *a;
TridiagonalOperator result (low,mid,high) ;
return result;

inline TridiagonalOperator operator* (const TridiagonalOperator& D, double a)

{
Array low = D.belowDiagonal *a, mid = D.diagonal_ *a,
high = D.aboveDiagonal_ *a;
TridiagonalOperator result (low,mid,high) ;
return result;

inline TridiagonalOperator operator/(const TridiagonalOperator& D, double a)

{
Array low = D.belowDiagonal /a, mid = D.diagonal /a,
high = D.aboveDiagonal /a;
TridiagonalOperator result (low,mid,high) ;
return result;

The other method definitions are:

TridiagonalOperator::TridiagonalOperator (Size size)

{

if (size>=3) {

diagonal = Array(size);
lowerDiagonal = Array(size-1);
upperDiagonal = Array(size-1);
} else if (size==0) {
diagonal = Array(0);
lowerDiagonal = Array(0);
upperDiagonal = Array(0);
} else {

throw Error (“invalid size for tridiagonal operator”

“(must be null or >=

3)7);

/**********************************************************************************

TridiagonalOperator: constructor
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**********************************************************************************/
TridiagonalOperator: :TridiagonalOperator (
const Array& low, const Array& mid, const Array& high)
diagonal (mid), lowerDiagonal (low), upperDiagonal (high) ({
QL ENSURE (low.size() == mid.size()-1, “wrong size for lower diagonal vector”) ;
QL_ENSURE (high.size() == mid.size()-1, “wrong size for upper diagonal vector”);

}

/**********************************************************************************

applyTo : applies tridiagonal operator to grid points
[in] : Array& v: : grid points
[out] : Array : results of operation

**********************************************************************************/
Array TridiagonalOperator::applyTo (const Array& v) const {
QL _REQUIRE(v.size()==size(),
“TridiagonalOperator: :applyTo: vector of the wrong size (™ +
IntegerFormatter::toString(v.size()) + “instead of “ +
IntegerFormatter::toString(size()) + “)” );
Array result (size());

// matricial product
result [0] = diagonal [0]*v[0] + upperDiagonal [0]*v[1];
for (Size j=1;j<=size()-2;j++)
result[j] = lowerDiagonal [j-1]*vI[j-1]+ diagonal_ [jl*vI[]j] +
upperDiagonal [j]*vI[j+1];
result [size()-1] = lowerDiagonal [size()-2]*v[size()-2] + diagonal [size()-1]%*
visize()-1];

return result;

}

/**********************************************************************************

solve for : solves the tridiagonal system
[in] : Array& rhs: : rhs of system
[out] : Array : solution of rhs of tridiagonal system

**********************************************************************************/
Array TridiagonalOperator::solveFor (const Array& rhs) const {
QL REQUIRE (rhs.size()==size(),
“TridiagonalOperator: :solveFor: rhs has the wrong size”);

Array result (size()), tmp(size());

double bet=diagonal_ [0];
QL REQUIRE (bet != 0.0, “TridiagonalOperator::solveFor: division by zero”);

result [0] = rhs[0] /bet;
Size j;
for (j=1;j<=size()-1;j++)
{
tmp [j] =upperDiagonal [j-1]/bet;
bet=diagonal_[j]-lowerDiagonal [j-1]*tmp[j];
QL _ENSURE (bet != 0.0, “TridiagonalOperator::solveFor: division by zero”);
result[j] = (rhs[j]-lowerDiagonal [j-1]*result[j-1]) /bet;
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}

// cannot be j>=0 with Size j
for (j=size()-2;3>0;3j--)
result [j] -= tmp[j+1]*result[j+1];

result [0]

-= tmp[1l] *result[1];

return result;

The class contains overloaded operators to manipulate elements along the diag-

onals of any tridiagonal matrix.

We can also improve the finite-difference scheme by creating a generic abstract

template class for boundary conditions that can in turn be used for subclassing

into, say, Dirichlet or Neumann boundary classes.

// BAbstract boundary condition class for finite difference problems
template <class Operators>
class BoundaryCondition

{

}i

public:

// types and enumerations

typedef Operator operatorType;

typedef typename Operator::arrayType arrayType;

enum Side { None, Upper, Lower };

// destructor

virtual ~BoundaryCondition() {}

// interface

// This method modifies an operator L before it is

// applied to an array u so that v = Lu will

// satisfy the given condition.

virtual void applyBeforeApplying (operatorType&) const = 0;
// This method modifies an array u so that it satisfies
// the given condition.

virtual void applyAfterApplying(arrayType&) const = 0;
// This method modifies an operator L before the linear
// system Lu’ = u is solved so that u’ will

// satisfy the given condition.

virtual void applyBeforeSolving (operatorType&, arrayType& rhs) const = 0;

// This method modifies an array so that it satisfies the given condition.
virtual void applyAfterSolving (arrayType&) const = 0;

// This method sets the current time for time-dependent boundary conditions.

virtual void setTime (Time t) = 0;

// Neumann boundary condition (i.e., constant derivative)
class NeumannBC : public BoundaryCondition<TridiagonalOperators>
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{

public:
NeumannBC (double value, Side side) ;
// interface
void applyBeforeApplying (TridiagonalOperator&) const;
void applyAfterApplying (Array&) const;
void applyBeforeSolving (TridiagonalOperator&, Array& rhs) const;
void applyAfterSolving(Array&) const;
void setTime (Time t) {}

private:
double value_;
Side side_;

i

// DirichletBC boundary condition (i.e., constant value)
class DirichletBC : public BoundaryCondition<TridiagonalOperators>
{
public:
DirichletBC (double value, Side side);
// interface
void applyBeforeApplying (TridiagonalOperator&) const;
void applyAfterApplying (Arrayé&) const;
void applyBeforeSolving(TridiagonalOperator&, Array& rhs) const;
void applyAfterSolving(Array&) const;
void setTime (Time t) {}
private:
double value_;
Side side ;

}i

The class has the following method definitions:

NeumannBC: :NeumannBC (double value, NeumannBC::Side side)
value (value), side (side) {}

/******************************************************************************

applyBeforeApplying : apply Neumann boundary conditions before applying
Tridiag Operator
[in] : TridiagonalOperator& L : tridiag operator
[out] : none
******************************************************************************/
void NeumannBC: :applyBeforeApplying (TridiagonalOperator& L) const {
switch (side ) {
case Lower:
L.setFirstRow(-1.0,1.0) ;
break;
case Upper:
L.setLastRow(-1.0,1.0) ;
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break;
default:
throw Error (“Unknown side for Neumann boundary condition”) ;

/**********************************************************************************

applyAfterApplying : apply Neumann boundary conditions after applying Triadiagonal
Operator
[in] : Array& L : array of values
[out] : none
**********************************************************************************/
void NeumannBC::applyAfterApplying (Array& u) const {
switch (side ) {
case Lower:
ul0] = ul[l] - value_;
break;
case Upper:
ulu.size()-1] = ulu.size()-2] + value ;
break;

default:
throw Error (“Unknown side for Neumann boundary condition”) ;

/**********************************************************************************

applyAfterApplying : apply Neumann boundary conditions before solving system

[in] : TridiagonalOperator& L : tridiagonal operator
Array& L : array of values
[out] : none

**********************************************************************************/

void NeumannBC::applyBeforeSolving (TridiagonalOperator& L, Array& rhs) const
{
switch (side )
{
case Lower:
L.setFirstRow(-1.0,1.0);
rhs[0] = value ;
break;
case Upper:
L.setLastRow(-1.0,1.0) ;
rhs[rhs.size()-1] = value_;
break;
default:
throw Error (“Unknown side for Neumann boundary condition”) ;

void NeumannBC::applyAfterSolving (Array&) const {}
// Dirichlet conditions

DirichletBC: :DirichletBC (double value, DirichletBC::Side side)
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value (value), side (side) {}

/**********************************************************************************

applyBeforeApplying : apply Dirichlet boundary conditions before solving system
[in] : TridiagonalOperator& L : tridiagonal operator

[out] : none
**********************************************************************************/

void DirichletBC: :applyBeforeApplying (TridiagonalOperator& L) const
{
switch (side )
{
case Lower:
L.setFirstRow(1.0,0.0);
break;
case Upper:
L.setLastRow(0.0,1.0);
break;

default:
throw Error (“Unknown side for Neumann boundary condition”) ;

/**********************************************************************************

applyAfterApplying : apply Dirichlet boundary conditions after applying
Triadiagonal Operator

[in] : Array& L : array of values

[out] : none
**********************************************************************************/

void DirichletBC: :applyAfterApplying (Array& u) const

{

switch (side )

{

case Lower:

ul[0] = value ;
break;
case Upper:
ulu.size()-1] = value ;
break;
default:

throw Error (“Unknown side for Neumann boundary condition”) ;

/**********************************************************************************
applyAfterApplying : apply Dirichlet boundary conditions before solving system
[in] : TridiagonalOperator& L : tridiagonal operator

Array& L : array of values

[out] : none
**********************************************************************************/

void DirichletBC: :applyBeforeSolving (TridiagonalOperator& L,
Array& rhs) const

{

switch (side_ )
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case Lower:
L.setFirstRow(1.0,0.0) ;
rhs[0] = value ;
break;

case Upper:
L.setLastRow(0.0,1.0);
rhs[rhs.size()-1] = value_;
break;

default:
throw Error (“Unknown side for Neumann boundary condition”) ;

1
}

void DirichletBC::applyAfterSolving (Array&) const {}

Moreover, we can create a generic finite-difference model template that can
be used for all types of finite-difference schemes. Consider the FiniteDifference
Model class.

// Generic finite difference model
template<class Evolvers>
class FiniteDifferenceModel
{
public:
typedef typename Evolver::arrayType arrayType;
typedef typename Evolver::operatorType operatorType;
typedef BoundaryCondition<operatorType> bcType;
// constructor
FiniteDifferenceModel (const operatorType& L, const std::vector<Handle<bcType>
>& bcs, const std::vector<Time>& stoppingTimes=std::vector<Times())
evolver (L,bcs), stoppingTimes (stoppingTimes) {}

// solves the problem between the given times, possibly
// applying a condition at every step.
// being a rollback, from time must be a later time than to time.
void rollback (arrayType& a, Time from, Time to, Size steps,
Handle<StepCondition<arrayType> > condition = Handle<StepCondition<arrayType>
>());
private:
Evolver evolver_ ;
std::vector<Time> stoppingTimes_;

i

// template definitions

template<class Evolvers>

void FiniteDifferenceModel<Evolvers::rollback (
FiniteDifferenceModel: :arrayType& a,
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Time from, Time to, Size steps,
Handle<StepCondition<arrayType> > condition)

Time dt = (from-to)/steps, t = from;
evolver .setStep(dt);

for (in i=0; i<steps; i++, t -= dt)
{
int j;
for(j=0; j < stoppingTimes .size(); Jj++)
if (t-dt <= stoppingTimes [j] && stoppingTimes_ [j] < t)
break;
if (j == stoppingTimes .size())
{

// No stopping time was hit
evolver .step(a,t);
if (!condition.isNull())
condition->applyTo(a,t-dt) ;
}

else
{
// A stopping time was hit
// First baby step from t to stoppingTimes_[j]
evolver_ .setStep(t-stoppingTimes_[j]);
evolver .step(a,t);
if (!condition.isNull())
condition->applyTo (a,stoppingTimes_[]]);

// Second baby step from stoppingTimes [j] to t-dt

evolver_ .setStep(stoppingTimes [j] - (t-dt));
evolver .step(a,stoppingTimes [j]);
if (!condition.isNull())

condition->applyTo(a,t-dt) ;

evolver .setStep(dt);

This class makes use of an abstract StepCondition class that aids in the valua-
tion process by applying step conditions along the grid at every step:

// condition to be applied at every time step
template <class arrayType>
class StepCondition
{
public:
virtual ~StepCondition() {}
virtual void applyTo (arrayType& a, Time t) const = 0;

}i
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We can then create a FiniteDifferenceOption class that contains the properties
and methods to value a plain-vanilla Black-Scholes-type option numerically:

class FiniteDifferenceOption : public SingleAssetOption
{
public:
FiniteDifferenceOption (Option: :Type type, double underlying,
double strike, Spread dividendYield, Rate riskFreeRate,
Time residualTime, double volatility, Size gridPoints);
// accessors
virtual void calculate() const = 0;
double value() const;
double delta() const;
double gamma () const;
Array getGrid() const{return grid ;}

protected:
// methods
virtual void setGridLimits (double center, double timeDelay) const;
virtual void initializeGrid() const;
virtual void initializeInitialCondition() const;
virtual void initializeOperator() const;
// input data
Size gridPoints_;
// results
mutable double value , delta , gamma_;

mutable Array grid_;

mutable FiniteDifferences::BlackScholesOperator finiteDifferenceOperator_;

mutable Array initialPrices_;

typedef FiniteDifferences::BoundaryCondition<
FiniteDifferences: :TridiagonalOperators>
BoundaryCondition;

mutable std::vector<Handle<BoundaryCondition> > BCs_;

// temporaries

mutable double sMin_, center , sMax ;

private:

// temporaries

mutable double gridLogSpacing ;

Size safeGridPoints (Size gridPoints, Time residualTime) ;

}i

// This is a safety check to be sure we have enough grid points.

#define QL_NUM_OPT MIN_GRID_ POINTS 10
// This is a safety check to be sure we have enough grid points.
#define QL _NUM OPT GRID POINTS PER YEAR 2

// The following is a safety check to be sure we have enough grid
// points.
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inline Size FiniteDifferenceOption::safeGridPoints( Size gridPoints, Time
residualTime) {
return QL MAX(gridPoints, residualTime>1.0 ?
static_cast<Size>(
(QL_NUM_OPT MIN_GRID POINTS + (residualTime-1.0) *
QL_NUM_OPT_GRID_POINTS_PER_YEAR)): QL_NUM_OPT MIN_GRID_POINTS) ;

This class has the following method definitions:

FiniteDifferenceOption: :FiniteDifferenceOption (Option: :Type type,

double underlying, double strike, Spread dividendYield,

Rate riskFreeRate, Time residualTime, double volatility, Size gridPoints)
SingleAssetOption (type, underlying, strike, dividendYield, riskFreeRate,
residualTime, volatility),

gridPoints (safeGridPoints (gridPoints, residualTime)),

grid (gridPoints_ ), initialPrices_(gridPoints ),
BCs_(2)
{
hasBeenCalculated = false;

}

/**********************************************************************************

value : returns price of option using finite differences
[in] : none
[out] : double : value

**********************************************************************************/

double FiniteDifferenceOption::value() const
{
if (!hasBeenCalculated )
calculate() ;
return value_;

}

/**********************************************************************************
delta : returns delta of option using finite differences

[in] : none

[out] : double : delta

**********************************************************************************/

double FiniteDifferenceOption::delta() const
{
if (!hasBeenCalculated )
calculate() ;
return delta_;

}
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/**********************************************************************************

gamma : returns gamma of option using finite differences
[in] : none
[out] : double : gamma

**********************************************************************************/

double FiniteDifferenceOption::gamma () const
{
if (!hasBeenCalculated )
calculate() ;
return gamma_;

}

/**********************************************************************************

setGridLimits : sets grid limits of minimum and maximum sizes
[in] : double center : value of center
[out] : void

**********************************************************************************/

void FiniteDifferenceOption: :setGridLimits (double center, double timeDelay) const
{
center_ = center;
double volSgrtTime = volatility *sqgrt (timeDelay) ;
// the prefactor fine tunes performance at small volatilities
double prefactor = 1.0 + 0.02/volSqgrtTime;
double minMaxFactor = exp(4.0 * prefactor * volSgrtTime) ;
sMin = center /minMaxFactor; // underlying grid min value
sMax_ = center *minMaxFactor; // underlying grid max value
// insure strike is included in the grid
double safetyZoneFactor = 1.1;
if (sMin_ > strike_ /safetyZoneFactor)

{

sMin = strike /safetyZoneFactor;
// enforce central placement of the underlying
sMax_ = center_ /(sMin_/center ) ;

}

if (sMax_ < strike *safetyZoneFactor)

sMax_ = strike_ *safetyZoneFactor;
// enforce central placement of the underlying
sMin = center /(sMax /center );

}
}

/**********************************************************************************
initializeGrid : initializes grid and grid spacing

[in] : none

[out] : void
**********************************************************************************/

void FiniteDifferenceOption::initializeGrid() const

{

gridLogSpacing = (log(sMax_)-log(sMin ))/(gridPoints -1);
double edx = exp(gridLogSpacing ) ;

grid_[0] = sMin_;

Size j;

for (j=1; j<gridPoints_; j++)
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grid [j] = grid [j-1]*edx;

/**********************************************************************************

initializeGridCondition : sets grid initial conditions
[in] : none
[out] : void

**********************************************************************************/

void FiniteDifferenceOption::initializeInitialCondition() const
{
Size j ;
switch (type_ )
{
case Option::Call:
for(j = 0; j < gridPoints_; j++)
initialPrices_[j] = max(grid_[j]l-strike ,0.0);
break;
case Option: :Put:
for(j = 0; j < gridPoints_; j++)
initialPrices [j] = max(strike -grid [j],0.0);
break;
default:
throw Error (“FiniteDifferenceOption: invalid option type”);

/**********************************************************************************
initializeOperator : initializes boundary condition operator

[in] : none

[out] : void
**********************************************************************************/

void FiniteDifferenceOption::initializeOperator () const
{
finiteDifferenceOperator = BlackScholesOperator (gridPoints_,
gridLogSpacing , riskFreeRate , dividendYield , volatility );

BCs_[0] = Handle<BoundaryConditions (
new NeumannBC (initialPrices_[1]-initialPrices_[0], BoundaryCondition::Lower)) ;
BCs_[1] = Handle<BoundaryConditions (
new NeumannBC (initialPrices_ [gridPoints -1] - initialPrices_[gridPoints -2],
BoundaryCondition: :Upper)) ;

Additionally, we can create a more specific FiniteDifferenceEuropean class to
value European options:

// Example of European option calculated using finite differences
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class FiniteDifferenceEuropean : public FiniteDifferenceOption
{
public:
FiniteDifferenceEuropean (Option: :Type type,
double underlying,
double strike,
double dividendYield,
double riskFreeRate,
double residualTime,
double volatility,
long timeSteps = 200,
long gridPoints = 800) ;
Array getPrices() const;
Handle<SingleAssetOptions> clone() const({
return Handle<SingleAssetOption>( new FiniteDifferenceEuropean (*this)) ;
}

inline Array getPrices() const{
value () ;
return euroPrices ;
1
protected:
void calculate() const;
private:
Size timeSteps_;
mutable Array euroPrices ;

}i

The class has the following method definitions: WWW. TRADING-SOFTWARE, ORG

using FiniteDifferences::valueAtCenter;
using FiniteDifferences: :firstDerivativeAtCenter;
using FiniteDifferences::secondDerivativeAtCenter;

FiniteDifferenceEuropean: :FiniteDifferenceEuropean (Option: :Type type,
double underlying, double strike, double dividendYield,
double riskFreeRate, double residualTime, double volatility,
Size timeSteps, Size gridPoints)
FiniteDifferenceOption(type, underlying, strike, dividendyield,
riskFreeRate, residualTime, volatility, gridPoints),
timeSteps (timeSteps), euroPrices (gridPoints ) {}

/**********************************************************************************

calculate : compute European prices using finite difference
[in] : none
[out] : void

**********************************************************************************/

void FiniteDifferenceEuropean: :calculate() const

{

setGridLimits (underlying , residualTime ) ;


andrey
tr-soft-org
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initializeGrid() ;
initializeInitialCondition() ;
initializeOperator() ;

FiniteDifferences::StandardFiniteDifferenceModel
model (finiteDifferenceOperator ,BCs_) ;

euroPrices_ = initialPrices_;

// solve
model.rollback (euroPrices , residualTime , 0, timeSteps );

value = valueAtCenter (euroPrices ) ;
delta = firstDerivativeAtCenter (euroPrices , grid );

gamma_ = secondDerivativeAtCenter (euroPrices_, grid_ );

hasBeenCalculated = true;

where the computation methods are:

namespace FiniteDifferences

{

/******************************************************************************

valueAtCenter: : returns the middle or average option value
[in] Array& a : array of option grid prices
[out] double : value of center price

******************************************************************************/

double valueAtCenter (const Array& a)

{

Size jmid = a.si

if (a.size() % 2 ==
return al[jmid];

else

return (al[jmid]+a[jmid-1])/2.0;

/******************************************************************************

firstDerivativeAtCenter : returns the first derivative (delta)

] Arrayé& a : array of option prices
Arrary& g : array of stock prices
[out] double : first derivative at center value

******************************************************************************/

double firstDerivativeAtCenter (const Array& a, const Array& g)

{

QL_REQUIRE (a.size()==g.size(), “firstDerivativeAtCenter:” “a and g must be of
the same size”);
QL REQUIRE (a.size()>=3, “firstDerivativeAtCenter:” “the size of the two vectors

must be at least 3”);
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Size jmid = a.size()/2;
if (a.size() 2 == 1)

return (a[jmid+1l]-al[jmid-1])/(g[jmid+1]-g[jmid-1]) ;
else

return (a[jmid]-a[jmid-1])/(g[jmid]-gl[jmid-1]);

o
<

/******************************************************************************

secondDerivativeAtCenter : returns the second derivative (gamma)
[in] Array& a : array of option prices

Array& g : array of stock prices
[out] double : second derivative at center value

******************************************************************************/

double secondDerivativeAtCenter (const Arrayé& a, const Array& g)

{

QL_REQUIRE (a.size()==g.size(), “secondDerivativeAtCenter:” “a and g must be of
the same size”);
QL _REQUIRE (a.size()>=4, “secondDerivativeAtCenter:” “the size of the two

vectors must be at least 4”);
Size jmid = a.size()/2;

if(a.size() % 2 == 1)

{
double deltaPlus = (al[jmid+1]-al[jmid])/(g[jmid+1]-g[jmid]) ;
double deltaMinus = (a[jmid]-a[jmid-1])/(gl[jmid]-g[jmid-1]);

double dS = (g[jmid+1]-g[jmid-1])/2.0;
return (deltaPlus-deltaMinus) /dS;

}

else{
double deltaPlus = (al[jmid+1]-al[jmid-11)/(gljmid+1]-g[jmid-1]);
double deltaMinus = (al[jmid]-al[jmid-2])/(g[jmid]-g[jmid-2]);

return (deltaPlus-deltaMinus)/(g[jmid]-g[jmid-11);

// default choice for finite-difference model
typedef FiniteDifferenceModel<CrankNicolson<TridiagonalOperators
StandardFiniteDifferenceModel;

// default choice for step condition
typedef StepCondition<Array> StandardStepCondition;

Finally, we can create a FiniteDifferenceStep Condition class that evaluates the
option price at each time step it rolls back through the lattice:

// option executing additional code at each time step
class FiniteDifferenceStepCondition : public FiniteDifferenceOption

{

protected:
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// constructor
FiniteDifferenceStepConditionOption (Option: :Type type, double underlying,

void calculate ()

double strike,

double dividendYield, Rate riskFreeRate,

Time residualTime,

double volatility,

int timeSteps, int gridPoints) ;

const;

virtual void initializeStepCondition() const = 0;
mutable Handle<FiniteDifferences::StandardStepCondition > stepCondition_;
int timeSteps ;

The class has the following method definitions:

using
using
using
using
using

FiniteDifferences:
FiniteDifferences:
FiniteDifferences:
FiniteDifferences:
FiniteDifferences:

:StandardStepCondition;
:StandardFiniteDifferenceModel;
:valueAtCenter;
:firstDerivativeAtCenter;
:secondDerivativeAtCenter;

FiniteDifferenceStepConditionOption: :FiniteDifferenceStepConditionOption (Option: :

Type type,
riskFreeRate,

gridPoints)
FiniteDifferenceOption(type, underlying, strike, dividendYield, riskFreeRate,
residualTime, volatility, gridPoints),

timeSteps_ (timeSteps) {}

double underlying, double strike, double dividendYield, Rate
Time residualTime, double volatility, int timeSteps, int

/**********************************************************************************

calculate
[in] none
[out] : void

computes the option value using control variates and greeks

*********************************************************************************/

void FiniteDifferenceStepConditionOption::calculate() const

{

setGridLimits (underlying , residualTime ) ;
initializeGrid() ;
initializeInitialCondition() ;
initializeOperator() ;
initializeStepCondition() ;

// StandardFiniteDifferenceModel is Crank-Nicolson.

// Alternatively,

ImplicitEuler or ExplicitEuler

// could have been used instead
StandardFiniteDifferenceModel model (finiteDifferenceOperator , BCs_);

// Control-variate variance reduction:
(1) calculate value/greeks of the European option analytically
EuropeanOption analyticEuro(type , underlying , strike_,

/7
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dividendYield , riskFreeRate , residualTime , volatility );

// (2) Initialize prices on the grid
Array europeanPrices = initialPrices_;
Array americanPrices = initialPrices_;

// (3) Rollback
model.rollback (europeanPrices, residualTime , 0.0, timeSteps );
model.rollback (americanPrices, residualTime , 0.0, timeSteps_ , stepCondition_);

// (4) Numerically calculate option value and greeks using
// the european option as control variate

value = valueAtCenter (americanPrices) - valueAtCenter (europeanPrices) +
analyticEuro.value () ;

delta = firstDerivativeAtCenter (americanPrices, grid ) -
firstDerivativeAtCenter (europeanPrices, grid )
+ analyticEuro.delta() ;

gamma_ = secondDerivativeAtCenter (americanPrices, grid_)
- secondDerivativeAtCenter (europeanPrices, grid )

+ analyticEuro.gamma () ;

hasBeenCalculated = true;

We can price a European option with this implicit difference implementation
using the following code segment:

// define parameters
double price = 50;
double strike = 50;
double vol = 0.20;
double rate = 0.06;
double div = 0.03;
double T = 0.05;
int M = 200;

int N = 800;

Instruments::VanillaOption option(
price, strike,vol,rate,div,T,Option::Call,Option: :Exercise: :European,
Handle<QuantLib: :PricingEngines> (new PricingEngines::EuropeanBinomialEngine())) ;

// run implicit difference method
option.setPricingEngine (Handle<PricingEngines> (
new PricingEngines::FiniteDifferenceEngine (price, strike,vol,rate,
div,T, Option::Call, Option::Exercise::European,
PricingEngines: :FiniteDifferenceEngine: :MethodType: :ImplicitDifference, M, N,
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FiniteDifferenceMethod: :BoundaryConditions: :Dirichlet))) ;

std::cout << “value” << “ ” << option.engine ->calculate() << endl;

// run explicit difference method
option.setPricingEngine (Handle<PricingEngine> (
new PricingEngines::FiniteDifferenceEngine (price, strike,vol,rate,
div,T, Option::Call, Option::Exercise::American,
PricingEngines: :FiniteDifferenceEngine: :MethodType: :ExplicitDifference, N, M,
FiniteDifferenceMethod: :BoundaryConditions: :Dirichlet))) ;

std::cout << “value” << “ ” << option.engine ->calculate() << endl;

9.7

Running this code, we find the implicit difference price is $4.5677 and the explicit
difference price is $4.5676, which shows that both methods convergence to the tri-
nomial diffusion process discussed in section 5.2 since the convergence properties
in section 4.5 are satisfied.

ITERATIVE METHODS

The LU method is a direct method for solving a linear system as in equation (5.16)
if the objective is to find the unknowns exactly and in one pass. An alternative ap-
proach is to employ an iterative method. Iterative methods differ from direct meth-
ods in that one starts with an initial guess for the solution and successively
improves it until it converges to the exact solution (or close enough to the exact so-
lution). A direct method obtains a solution without any iterations. While iterative
methods are slower than direct methods, they do have the advantage that they are
easier to program and that they generalize in a straightforward way to American
option problems and nonlinear models.!

The successive overrelaxation (SOR) method is a type of iterative method. The
SOR is a refinement of the Gauss-Seidel method, another iterative method, which
in turn is a development of the Jacobi method. All three iterative methods rely
on the fact that equation (5.14) (for a simple diffusion process) can be written in
the form

Uirg,j = m(bz‘,/ 0y j g+ ) (5.29)

The idea behind the Jacobi method is to take some initial guess for #,,, . for N" + 1
<j< N’ -1 (a good initial guess is the values of # from the previous step, i.e., u,).

"Wilmott, Howison, and Dewynne (1995), 150.
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Then one substitutes this value into equation (5.29) to generate a new guess for
u,, ; (on the left-hand side). The process is repeated until the approximations
cease to change (the error is less than a specified value). Once this happens, a solu-
tion is found.

More formally, the Jacobi method works as follows. Let ¢, . denote the kth it-
erate for u, , .. This initial guess given by ), -and as k — e, we expect ut ou

i+1,7°

i+1,7°
Thus, given uk , we calculate 27! ;using a modified version of equation (5 29)

k 1 k k -
uilel,j:—1+20L<bi,;‘+(X(Mi+1,/'—1+ui+1,j+1)) N™ <j<N* (5.30)

The entire process is repeated until the error measured by the norm

N*-1
2 2
k+1 k _ k+1 k
‘”m Uiq| = E , (”m,,‘ _”m,/)
j=N"+1
becomes sufficiently small so that we then take the u’“l as the value for u, , ;. The

method converges for any o > 0.

The Gauss-Seidel method improves on the Jacobi method by using the fact that
when we compute uk*}/ in equation (5.30) we already know u’“l - Thus, we use
14’“17._1 instead of u*, 1,1 S0 that we use an updated guess 1mmedlately when it be-
comes available (the Jacobi method uses updated guesses only when they are all
available).? The Gauss-Seidel method given by

k 1 k .
"‘i++11,/ = 1+ 2a (bi,f' +0‘( z++11; 1 +”‘1+1 ;+1)) N~ <j<N" (5.31)

where o = At/(Ax)>.

Since the Gauss-Seidel method uses the most recent information when it be-
comes available, it converges more rapidly than the Jacobi method and is therefore
more computationally efficient.

The SOR method is a refinement of the Gauss-Seidel algorithm and converges
to the correct solution if o > 0. First, notice the (seemingly trivial) observation that

M/e+1 — uk + (Mk+1 uk )

i+, ] i1, ] ivl,j il

As the sequence converges as £ — o one can think of (u’”lll - ut ;) as a correction
term to be added to u} ; to bring it closer to the exact value of u, , . The possibility

exists that the sequence "will converge more rapidly if we overcorrect which holds

’Ibid., 151.
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true if the sequence of iterates u!, . — u,, ;, monotonically as k increases, rather
than oscillating.? Thus, if set

k 1 k k
Zi++1],,' = m(bi,,‘ + (X(“i++11,/—1 Ui in )) 5.32)

uk+l _ Mk + (D(zk+l _ uk )

i+1,7 i+1,] i+1, i+1,]

where @ > is the overcorrection or overrelaxation parameter. (Note that 23 . is the
value that the Gauss-Seidel method would give for u**! | whereas in the SOR we

. . i+1,j . .
view the term 2, — u}, ; as a correction to be made to %! . in order to obtain

i+l j .
u ) It can be shown thlalt the SOR method converges to ?llle] correct solution in
equation (5.14) if oo > 0 and provided 0 < ® < 2. When 0 < ® < 1, the method is re-
ferred to as underrelaxation in contrast to overrelaxation, which is used for 1 < ® <
2. It can be shown that there is an optimal value of ® in the interval 1 < <2,
which leads to a much more rapid convergence than other values of ®.* The opti-
mal value of ® depends on the dimension of the matrix involved and, more gener-
ally, on the details of the matrix (i.e., rank, sparseness, etc.). It is often much
quicker to change ® each time step until a value is found (that minimizes the num-
ber of iterations of the SOR loop) than to estimate the optimal value of .
The following is an implementation of the SOR technique:

/**********************************************************************************

SOR : solve tridiagonal system with SOR technique

[in] Array& rhs : initial guess for solution
double tol : error tolerance

[out] Array : solution of tridiagonal system

**********************************************************************************/

Array TridiagonalOperator::SOR(const Array& rhs, double tol) const

{

QL REQUIRE (rhs.size()==size(), “TridiagonalOperator::solveFor: rhs has the wrong
size”);

// initial guess
Array result = rhs;

// solve tridiagonal system with SOR technique
Size sorlIteration, 1i;

double omega = 1.5; // omega
double err=2.0%*tol; // error
double temp; // temporarily stores SOR values
for (sorIteration=0; err>tol ; sorlteration++)
3Tbid., 152.
“Tbid., 153.

’Ibid., 153.
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{

QL_REQUIRE (sorIteration<100000,
“TridiagonalOperator::SOR: tolerance [“ + DoubleFormatter::toString(tol) +
"] not
reached in “ + IntegerFormatter::toString(sorIteration) + ” iterations.
The error still is ™
+ DoubleFormatter::toString(err)) ;

err=0.0;
for (i = 1; i < size()-2 ; i++)
{
temp = omega * (rhs[i] - upperDiagonal_ [i] * result[i+1]-
diagonal [i] * result[i] - lowerDiagonal [i-1] * result[i-1]) /
diagonal [i];
err += temp * temp;
result[i] += temp;
}
}

return result;

9.8 CRANK-NICOLSON SCHEME

The Crank-Nicolson is a type of finite-difference scheme that is used to overcome
the stability limitations imposed by the stability and convergence restrictions of the
explicit finite-difference scheme. The Crank-Nicolson converges faster than the im-
plicit and explicit finite-difference schemes. The rate of convergence of the Crank-
Nicolson scheme is O((At)?) whereas it is O((At)) for the implicit and explicit
finite-difference methods.

Essentially, the Crank-Nicolson method is an average of the implicit and
explicit methods. Consider a simple diffusion equation. If we use a forward-
difference approximation for the time partial derivative, we obtain the explicit
scheme:

= 2wt

U1 —Uu: u. -
i+1,j l’/+O(At)= i,j+1

” e +O((At)?)
X

and if we take the backward difference we get the implicit scheme:

U, g —U; Uipq : — 2004+ U
i+1, i, i+1, i+1, i+1,7-1
—hTh 4 O(Ar) = M it

= e +O((At)?)
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Taking the average of these two equations, we get:®

U, 1 :—U; 1 ;.0 — 20, . +u. . Uiiq i — 2 g+ U
i+1, 1, i,7+1 A i,j—1 i+1,j+1 i+1, i+1,j-1
#+O(At)=—( / / 1y j j j

O((Ax)?
At 2 (Ax)? (Ax)? J+ ((Ax)")  (5.33)

Ignoring the error terms, we get the Crank-Nicolson scheme:
1
Ui, — E(x(”z‘+1,/+1 —2u;;+ ”i+1,/—1) =u;;+ 50‘(“1',;41 —2u;; + "‘i,;‘—1) (5.34)

where o = At/(Ax)?. Notice that u. u and u,,, ,,, are now determined im-

o i i+1, =12 TTivd, ". R
plicitly in terms of u, ;, u, ;,;, and u, .. Equation (5.34) can be solved in the same

manner as the implicit scheme in equation (5.7) since everything on the right-hand
side can be evaluated explicitly if the #; /s are known. Denote the left-hand side of
(5.34) by Z, .. The problem of solving (5.28) reduces to first computing

1
Zij=(1-0ou; +5‘X(’4i,,>1 +“i,,‘+1) (5.35)
which is an explicit formula for Z, , and then solving
1
1+t ; — EOL(%'H,H + “z‘+1,/+1) =7 (5.36)

We can write (5.36) as a linear system:

Au*! = bi (5.37)
where the matrix A is given by
1+a —loc 0 0
2
1 1 (5.38)
-—oa l+o -—o
2
A=| 0 —l(x 0
1
-—a
2
0 0 —loc 1+
i 2 |

¢It can be shown that the error terms in equation (5.33) are accurate to O((At)?) rather than
O(At).
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and the vectors u*! and b' are given by

Ui, N +1 2N Uii,N-
0
i1 _ bi = 1 (5.39)
u = Mi+1,0 5 = Zi,O +Ea
. 0
u.
| “iv1, N1 | | Zin+1 | | i Nt

The vector on the far right-hand side of (5.39), in bi, comes from the boundary con-
ditions applied at the end points of a finite mesh where x = N"Ax and x = N*Ax. N~
and N* are integers, chosen to be sufficiently large that no significant errors are in-
troduced.

To implement the Crank-Nicolson scheme, we first generate the vector b’ using
known quantities. Then we use either an LU decomposition solver or an SOR
solver to solve the system (5.37). The scheme is both stable and convergent for all
values of o > 0.

We can apply the Crank-Nicolson scheme to the Black-Scholes diffusion equa-
tion by replacing time and space derivatives with finite differences centered at the
time step 7 + 1/2.

162 (#0151 =205 Ui jg )+ (0 — 20+ 15 5_q) N
2 2Ax?

u (#i1,ja1 = Ui jor )+ (0 g — 5 4) + Uiy1,j — U ; _, Ui, HU; | 0
4Ax At

which can be written as:

puui,/+] + pmui,/' + pdui,j—l = _puum,m _(pm —2)14”],/. - pdui+1,/—1 (5.40)

where

(5.41)
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We can write (5.40) in the form in (5.35). First, set
Zij =DM+ DM+ D
and then solve
P M =, _Z)um,/ Pyt = Zi,/'

using an LU decomposition.
The following is an implementation for the Crank-Nicolson scheme:

/**********************************************************************************

solveCrankNicolson: values an option using the Crank Nicolson scheme in (5.39)

[in] : double price : asset price
double strike : strike price
double vol : volatility
double rate : risk-free rate
double div : dividend yield
double T : maturity
int N : number of time steps
int M : number of space steps
char type : (C)all or (P)ut

[out] : double option price

**********************************************************************************/

double CrankNicolson::solveCrankNicolson (double price, double strike, double T,
double vol, double rate, double div, long M, long N, char type)

double b[50] = {0.0}; // vector of Z(i,j)’s

double c1[50] = {0.0};

double d[50] = {0.0};

double x[100] = {0.0};

double dx = 0.0; // state step size

double drift = rate - div - vol*vol/2; // drift rate

double pu, pm, pd; // risk neutral probabilities
int i, j;

double a = 0.0;

double deltat = T/N; // time step size

cout.setf (ios::showpoint) ;
cout.precision(2) ;

dx = vol*sqgrt (3*deltat/2);
// we multiply by 0.5 because we are using Crank-Nicolson
a = 0.5*(deltat/ (dx*dx)) ;

// compute probabilities
pu = -0.5*deltat* ((vol*vol)/(dx*dx) + drift/dx);
pm = 1 + deltat*(vol*vol/ (dx*dx)) + rate*deltat;
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pd = -0.5*deltat* ((vol*vol) / (dx*dx)

// calculate coefficients
for (j = -M; Jj <= M; J++)

[0}

Z

Ol
i

price*exp (j*dx) ;
price;

%)

=

s
1

// compute stock prices
for (i = 1; i < N; i++)

{

}

for (j = -M; J <= M; j++)
S[i][§] = S[i-1]1[j]*exp(j*dx);

// calculate payoffs
if (type == ‘P’)

{

}

for (j = -M; J <= M; j++)

{
}

// calculate boundary conditions
for (i = 0; 1 < N; i++)

{

P[N] [j] = max(strike - S[N] [j],0

- drift/dx);

)i

P[i] [-M] = P[4i] [-M+1] + 1*(S[i] [-M+1]-S[i][-M]); // derivative boundary

P[i]l M] = O;

}

else // if type == ‘C’

{

// calculate boundary conditions
for (j = -M; J <= M; j++)

{

PIN] [§] = max(SI[N][j] - strike,0);

}

// calculate boundary conditions
for (i = 0; i < N; i++)
{
P[i] [-M] = O
P[i] [M]

for (j = -M+1; j < M; Jj++)

o
s
i

b[-M+1]= b[-M+1] + a*P[N] [-M];
b[M-1] = b[M-1] + a*P[N] [M];

(1-a)*P[N] [J] + a*(P[N] [J+1]

= P[i] [M-1] + (S[i][M] - S[i][M-11); //

+ PIN][J-11);

// condition

derivative boundary condition
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solveCNTridiagonal (N, M, pu,pm,pd,d,cl,b, type, strike) ;

// print out mesh

for (i = 0; 1 <= N; 1i++)
cout << “ “ << T - deltat*i ;

cout << “\n\n” << endl

for (J = M; J >= -M; J

{

7

--)

cout << “ ™ << SI[N][j];
for (i = 0; 1 <= N; i++)
{

cout << “ " << endl;

if (3 !'= -M)

cout << “ “ <<P[i][j];
else
cout << “ “ << P[N] [-M];

cout << “\n”;

1
}

cout << “\n” << endl;

return P[0] [0];

/**********************************************************************************

solveCNTridiagonal

[in] : int N
int M
double pu
double pm
double pd
double* d:
double* cl:
double* di:
char type
double strike

[out] : double

solves the Crank Nicolson tridiagonal system of equations
number of time steps

number of state steps

up probability

middle probability

down probability

array used in solving tridiagonal system
array used in solving tridiagonal system
array of Z(i,j)'s

(C)all or (P)ut

strike price

option price

**********************************************************************************/

void CrankNicolson::solveCNTridiagonal (int N, int M, double pu, double pm, double
pd, double *d, double *cl, double *dl, char type, double strike)

{

int i,9;

for (j = -M; j <= M; Jj++)

dljl = PIN] [§];

// set values at boundary points

d1l[-M] = d[-M]/pm;
d1[-M+1] = d[-M+1]/pm;
cl[-M] = pd/pm;
cl[-M+1] = pd/pm;
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for (j = -M+1; J <= M-2; J++)
cl[j+1] = pd/(pm - pu*cll[j]l);

for (j = -M+1; j <= M-1; Jj++)
dil[j+1] = (d[j+1] - pu*dl[j-1])/(pm - pu*cl[j]);

// solve tridiagonal system
for (i = N-1; 1 >= 0; i--)

{
for (j = -M+1; j <= M-1; Jj++)
{
if (i != N-1)
aljl = Pli+1][j1;
if (j == -M+1)
d1l[-M+1] = d[-M+1]/pm;
dill[j+1] = (d[j+1] - pu*dl[j-11)/(pm - pu*cl[jl);
P[i] [-j] = d1[-3j] - c1[-j1*P[i] [-j+1];
// check early exercise
if (type == ‘P’)
{
if (P[1i] [-j] < strike - SI[N] [-3j])
P[i]l [-j] = strike - SI[N] [-j];
1
else
{
if (P[1i][-j] < SIN][-j] - strike)
P[i] [-j] = SIN] [-J] - strike;
1
1
1

9.9 ALTERNATING DIRECTION IMPLICIT METHOD

Finite difference methods, in general, can be extended to handle multiple state vari-
ables. However, if we have 100 grid points in one space dimension, then with two
space dimensions we will have 100 x 100 grid points and thus 100 times as much
computation. Consequently, in order to obtain reasonable computation times,
much smaller grid sizes must be used.
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Consider the case of an option that has a payoff that depends on the values of
two assets, S, and S,, which both follow geometric Brownian motions:

ds, = (r-q,)S,dt + 0,5 dz,
ds, = (r-q,)S,dt + 6,5,dz,

where the assets have a correlation of p (i.e., dz; - dz, = pdt).
The PDE that the option on the two assets follows is:

of of of
= -q)8; — -q)S, —/—
rf o +(r—q)8; s, +(r—q)S, s,
5.42)
1 50 azf 1 5,0 0f i (
+=07S —GS—+pGGSS
5 011 8812 59222 BSZ 10291 2851852

If we try to apply the Crank-Nicolson scheme to equation (5.42), we obtain a system
of (2N; - 1)(2N, — 1) linear equations where N; and N, are the number of nodes on ei-
ther side of the current level of S, and §,, respectively. Together with the 2(2N; - 1) +
2(2N, + 1) boundary conditions we have a system of (2N; - 1)(2N, — 1) linear equa-
tions for the (2N; — 1)(2N, — 1) unknown option values.” The result matrix no longer
has a simple tridiagonal structure and must be solved using sparse matrix methods; see
Press et al. (1992). The alternating direction implicit (ADI) method allows one to over-
come this problem. It is an adaptation of the Crank-Nicolson scheme that allows one
to obtain simple tridiagonal matrices.

We follow Clewlow and Strickland (1998a) in the following discussion. To use
the ADI, we first transform equation (5.42) into a standard diffusion equation with
constant coefficients. We transform by setting x, = In(S,) and x, = In(S,), which
gives the following PDE:

1

o of L of 1,0 1,0 2f
= 543
rf = 3 M1a x Hza 2 (51 ax12+2628x2 +po,0 2 3x0%, ( )

where

1, 1 5
=r—q——ojandu, =r—g;——0
W =7r—q P 1and Uy =7—4q 502

’Clewlow and Strickland (1998a), 78.
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Second, since the ADI cannot handle mixed second-order derivatives, we must
transform to uncorrelated space variables. We can achieve this by doing an eigen-
vector-eigenvalue decomposition on the covariance matrix of x, and x,:

2
(Un Ul2] (7”1 0 ] (7/11 U J _| %1 PG16,
vy v )0 A J\vin vy pc0, 6%
The eigenvectors give the linear combination of x, and x,, which are uncorrelated.
Under this transformation, we get the PDE

0 1. 9*
af 1ayf1+ Zayfz +—7»1—f 57»2—'[ (5.44)

if =
i a3

where
Y1 =U11X T UX,
Yo =Up1Xq T U%)
Oy =Vl UM,
Oy =Vyly +UpMU,
dy, = adt + A, dw,
dy, = oydt + [\, dw,

(5.45)

and dw, and dw, are uncorrelated Brownian motions.

To simplify the problem, we will get rid of the left-hand zero term, 7f, in equa-
tion (5.44) and first-order terms

g
9y, 9y,
through the transformation
f(y> 5 1) = expla,y, + ayy, + a;))U(y,, y,, 1) (5.46)

to equation (5.39). Setting the coefficients of the zeroth and first-order terms to
zero, we get

oUu 1 32U+1 U
Ty M oty 5.47
a2 2 2 T2 (5.47)
and
2 2
% =%, % L,



244 FINITE-DIFFERENCE METHODS

Finally, we transform so that the coefficients on the second-order terms in
equation (5.42) are equal by setting:

¥, = 1, (5.48)
2 )\‘2 2
which yields:
2 2
_U 1y [V, 9T (5.49)
a2 \oyi 95

The ADI can be applied to equation (5.44), which is a two-dimensional diffu-
sion equation. The ADI replaces the partial derivatives by their Crank-Nicolson-
style finite-difference approximations in two stages. In the first stage, the
derivatives with respect to y, are replaced by finite-difference approximations at
time step 7 + 1/2, while the derivatives with respect to y’, are approximated by fi-
nite differences at time step 7 + 1. Thus, the ADI reduces to the following finite-
difference equation:

Ui+1, ik _Uz'+1/2, ik

1
— At
2 (5.50)
3 l?» (U w172, ik — 20 i, i YU . j—l,k) N (U i ket —2U g e U i, /,k—l)
2 Ay? Ay’
which can be rewritten as
2
PuUic1js1p ¥ PuUivijn + PaUisasnjo1p = T A Dithik
(5.51)
B lk (Ui+1,/',le+1 “2U; 0 Ui+1,7',k—1)
2 NG
where
M
pu = 2
2Ay7
2 M
bw=—""""5
At Ayj
M
ba=—""7>
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and 7 denotes the time step, j denotes the state of asset 1, and k& denotes the state of

asset 2.

In the second stage, the derivatives with respect to y/, are replaced by finite-
difference approximations at time step 7, while the derivatives with respect to y, are
approximated by finite differences at time step i + 1/2. This gives to the following

finite-difference equation:

Uik =Uije
1
—At
2
1 (Ui+1/2,j+1,k —2U; 1172,k +Ui+1/2,/—1,k) (Ui,j,k+1 —2U; e +Ui ik )
=M 2 + 2
’
2 Ayi Ay’

which can be rewritten as

DU g1 + Ui jge + PaUij o1 =

where p, = Mz
2Ay%
2 M
m At Ayrl
A
Py =——

At

1
SEVY
2 1

i+1/2,j.k

(Ui+1/2,;'+1,k =2Uj 12,k +Ui+1/2,j—1,k)

A3

(5.52)

(5.53)



Exotic Options

ertain derivatives, such as Asian options, barrier options, and lookback options,

have payoffs that are dependent on the entire price path of the underlying secu-
rity. These derivatives are known as path-dependent since they cannot be valued an-
alytically, and hence are dependent on the entire path of the security from (S, ¢) to
(S;, T). If S, is the value of the underlying security at time ¢, then the payoff of a
path-dependent derivative at time T is F({S,, t, <t < T}).

In general, simple analytical formulas do exist for certain classes of exotic op-
tions, these options being classified by the property that the path-dependent condi-
tion applies to the continuous path. Those exotic options, such as lookback and
Asian options where usually the path-dependent condition is observed at discrete
fixing or stopping times, either have complicated formulas or cannot be valued ana-
lytically. However, we can value these securities using Monte Carlo simulations and
trees when such closed-formula solutions are nonexistent. There are European path-
dependent options that are contingent on the entire path from (S, ) to (S, T) but
are paid only at maturity T, American path-dependent options where the option
holder can exercise prior to maturity, as well as Bermudan path-dependent options
that are exercisable only on specified discrete exercise dates.

In section 6.1, we discuss barrier options and provide analytical solutions. In sec-
tion 6.2, we provide an implementation for an up-and-out American barrier put op-
tion. In section 6.3, we discuss Asian options. In section 6.4, we discuss pricing Asian
options with geometric averaging, while in section 6.5, we discuss pricing Asian op-
tions with arithmetic averaging. In section 6.6, we discuss pricing seasoned Asian op-
tions. We devote section 6.7 to discussing lookback options. In section 6.8, an
implementation for pricing a floating-strike lookback put option is given, while section
6.9 gives an implementation for pricing a fixed-strike lookback put option.

6.1 BARRIER OPTIONS

Barrier options are standard call or put options except that they disappear
(knock-out) or appear (knock-in) if the asset price crosses a predetermined bar-
rier B at a predetermined set of fixing dates ¢, = 1, ..., 7. Sometimes a barrier

246
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option contains a provision that in the event the barrier is hit a rebate R is paid
to the option holder to mitigate the loss of the option. There are actually eight
types of barrier options classified by type of option payoff (call or put), whether
the barrier is below or above the current asset price (“down” or “up”), and
whether the option disappears or appears when the barrier is crossed (“out” or
“in”). Table 6.1 summarizes the barrier types, where 1, is the indicator function
for condition A.

Because of the probability of the option disappearing at one of the fixed
dates for a knock-out barrier or the probability of an option not appearing on
one of the fixed dates for a knock-in barrier, barrier options are cheaper than
standard options. The cheaper premium makes barriers attractive to risk man-
agers who want to reduce their hedging costs. However, barrier options have a
hedging problem: At the barrier, delta is discontinuous and gamma tends to in-
finity. Thus, barrier options become almost unhedgeable when the price nears
the barrier.

It turns out that we can actually price a down-and-out call analytically. We
need to solve the Black-Scholes PDE:

2
/A K/ P Y X

o PSas 20 S o

subject to the payoff condition:
f(S,, T) = max(S,. - X, 0)
and an extra boundary condition:

(B, t*) = 0 for t* € [t, T]

TABLE 6.1 Barrier Types

Type Payoff
Down-and-out call max(0, S, - K)lmm(st ,,,,,, 5, 5B
Up-and-out call max(0, §; =K1 o' 5"\
Down-and-in call max(0, S, - K)lmin(s,,l, S, )<B
Up-and-in call max(0, S; = K)o s o
Down-and-out put max(0, K - ST)lmin(st_l ,,,,, S, )>B
Up-and-out put max(0, K — ST)lmax(Stl ,,,,,, S, )<B
Down-and-in put max(0, K - ST)lmm(st_’ ,,,,, 5, )<B
Up-and-in put max(0, K-8)1_ !

~

3

s
7
Z

5
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This boundary condition sets the option price to 0 at the down-and-out barrier
S = B. Denote a down-and-out call price with the barrier B by C,(S, t). The solution
to the preceding boundary value problem can be written in the form:

CB(S, t) — e*TTEgSI:l{ }maX(ST - X, O)]

m, v>B

:e_” J. max(exT _XJ 0)pB(xT’ Tlx’ t)de (6'1)

= [ (€ = X)pylor, Tlx, t1dr
InX

where 1, . is an indicator function that is equal to 1 if the minimum underlying
price achieved between the option inception at time ¢ and expiration at date T,

m, r =min  S(¢*)
7t e[t,T]

is greater than the barrier B (i.e., the barrier was never hit during the lifetime of
the option), zero otherwise; p,(x,, T | x, t) is the conditional probability density
function of the terminal state x, at time T of the Brownian motion path with
drift, dx = udt + odz where | = r — 6%/2, conditional on (1) the initial state x at
time ¢ and (2) the barrier B not hit during the time interval [z, T]; x = InS; and x..
=InS§,.

This conditional probability density is also a fundamental solution, Green’s
function, of the heat equation with drift:

o’ aZPB opp _ Opp
> = 6.2
2 o2 Mox T (6.2)

where T = T — ¢, subject to the boundary condition
pylx, T1b,t)=0,b=InB
The boundary value problem for the heat equation with drift can be reduced

to the boundary value problem for the standard heat equation without drift. If
we let

2
u uT
=expy— (x7 —x)——— (6.3)
Pp P{Gz T o2 }pO,B
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where p, , is the Green’s function, and plug it into (6.2), we get the standard heat
equation:

2 732
6> 9Py _ dPo,p t=T-t (6.4)
2 9x? a1t

subject to the boundary condition
pB(xT’ Tl b, t) = O, b =InB

This boundary value problem for the heat equation can be solved by either of three
methods: (1) separation of variables, (2) reflection principle (method of images),
and (3) Laplace method.

The result is:

1 (oo — x)* (oeq +x — 2b)*
popxr, Tlx, t)= eXpy— T (TeXP{T 5 — (6.5)
| \2no’t [ { 26° } { 26’1 H

The solution with the drift is:

1 - X — 172 2[9— + —Zb— 12
puler, Tlx, 1= exp| - B =X =19 _exp{<_2x>u}exp e +x=2hoy
Vot 20" o 20%1

The first term is the standard probability density and the second is the probability
density conditional on the barrier being hit. The difference is the density condi-
tional on the barrier not being hit.

Substituting this into the integral for the down-and-out call price we have:

hos 2
CgAO(S, t)=e " J- (€T = X) 1 exp{_w}de

InX \2no?t 261
- (6.6)
2
- f (e —X)exp{z(b_zx)u}exp _(xT+x—§b—u’c) dx
In X Y 261

The first term is just the Black-Scholes integral and is equal to the Black-Scholes
price:

C(S, £) = SN(d,) - e"*XN(d,)

where

ln(X)+m 5
dy=—"2 d,=d +oVt, andp=r->

oVt 2
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The second integral is calculated similarly to the Black-Scholes integral calculation:

- 2 !
exp{Z(b —ZX)M} J‘ (*T —X)exp{— (er +2-2b—py) }dxr = [?] C(O, 1)

2
o Iy 2071

where we recall that b = In B and x = In S and let y = 2u/6? and Q = exp(2b — x) =
B?/S. Putting it all together we arrive at the analytical pricing formula for down-
and-out calls:

BY (B

ChA9(s, 1) =C(s, t)—[-) c(—, t) (6.7)
S N

where C is the Black-Scholes call formula as a function of the initial price and time.

The first term is a standard vanilla call option and the second term is the discount

for including a knockout provision in the option contract. It is equal to the price of

a down-and-in call, that is,
v 2
cPAlS, 1) = Ble B—, t
S S

Closed-form formulas for other barriers are given by Douady (1998) and Hull
(1997). Boyle and Lau (1994) discuss how to price barriers with binomial trees.

Barrier options can be valued using binomial trees, but in general the barrier
will lie between two horizontal layers of nodes. In fact, there are two types of inac-
curacies caused by modeling options on a (binomial) lattice. The first type of inac-
curacy, known as quantization error, is caused by the unavoidable existence of the
lattice itself, which quantizes the asset price so that the asset price is allowed to take
only the values of those points on the lattice.! Essentially, when one uses a lattice,
one values an option on a stock that moves discretely, which leads to theoretically
correct prices for a stock that actually displays such quantized behavior. Conse-
quently, one must use a lattice with infinitesimal increments to approximate contin-
uous diffusions and thus display real-world stock price movements. However,
Ritchken (1996) notes, “refining the partition size may not necessarily produce
more precise results” and suggests use of a trinomial tree as a better solution.?

The second type of inaccuracy, known as specification error, occurs because of
the inability of the lattice to accurately represent the terms of the option. Once a
lattice is selected, available stock prices are fixed; so if the exercise price or barrier

'Derman, Kani, Ergener, and Bardhan (1995), 4.
2Ritchken (1995), 19-28.
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level of the option does not coincide with one of the available stock prices, one has
to effectively move the exercise price or barrier level to the closest stock price avail-
able. Then the option valued on the lattice has contractual terms different from the
actual option—the option is thus misspecified.

Convergence is slow on lattices since a large number of time steps is required
to obtain an accurate value. This can be attributed to the fact that the barrier as-
sumed by the tree is different from the true barrier. The reason for this is because a
tree with a certain number of time steps cannot differentiate between barrier levels
that lie between two rows of nodes. Consequently, the tree will assign option
prices to the nodes nearest to, but not beyond, the barrier that is too high. Typi-
cally, the analytical convergence on a binomial lattice displays a sawtooth pattern
like Figure 6.1.

There are two ways to overcome these problems: (1) position nodes on the bar-
rier or (2) adjust for nodes not lying on barriers.

In the first case, we suppose there are two barriers, an outer barrier B, and
an inner barrier B,, B, > B,. In a trinomial tree, there are three possible price
movements at each node: up by a proportional amount #, stay the same, and
down by an amount d = 1/u. We can always choose u# so that nodes lie on both
barriers. Following Hull (1997), the condition that must be satisfied by u is B, =
B uN for some integer N so that InB, = InB, + Nlnu. Typically, trinomial trees are
used where

°u= em/3At
so that

Inu=0+3At
S8
E&

Time Step
FIGURE 6.1 Sawtooth Pattern
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Thus, we set

_InB, —InB,
N

Inu

where

. |InB,-InB
N =int| —2—"1+0.5
oV 3At
The trinomial tree is constructed so that the central node is the initial stock price.
Afterward, the central node of tree becomes B ,uM, where M is the integer that
makes this value as close as possible to the initial stock price, which is

InS—InB,;

M= int[
nu

+0.5}

The probabilities on all branches are chosen to match the first two moments of the
distribution followed by the underlying asset.

Furthermore, following Linetsky (1999), suppose one builds a CRR-type trino-
mial tree to approximate the diffusion price process. We know from section 4.3
that

M:exo@’ d:e—mwt

pu :L"'%(%)@a Pd :___[i]\/ga andpm :l_i
o}

1 1
202 2% 2(Ao %

The stretch parameter A is chosen so that the probabilities are positive. For vanilla
options, the optimal choice is

h=43/2

For barrier options, we choose A so that one of the layers of nodes lies exactly on the
barrier so that problems are avoided from errors registered from the barrier-crossing
event. The condition is d"S = B for some positive integer 1, 7 = 1,2, 3, . ... That is,
n down jumps from the initial price S put us right on the barrier, and we can register
the barrier-hitting event exactly. Substituting in the formula for d, we have

e—n}uGVAtS =B
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Effective Barrier E
Specified Barrier B

NG

Modified Barrier

0 1 2 3 4 5
Time Step

FIGURE 6.2 Modified Barrier

and the stretch parameter is selected as follows:

A= 1 ln(i)
nov At B

Since there are multiple choices of 7 that put one of the layers of nodes on the bar-

rier, one selects 7 such that the resulting A is as close as possible to the choice

A=+3/2 =1.2247

The second approach, similar to that of Derman, Kani, Ergener, and Bardhan,® ad-
justs for nodes not lying on a horizontal (specified) barrier by (1) calculating the
price of the derivative on the assumption that the lower barrier, known as the mod-
ified barrier, is the true barrier; (2) calculating the value of the derivative on the as-
sumption that the upper barrier E, known as the effective barrier, is the true
barrier; and (3) interpolating between the two prices. The modified barrier is com-
puted as the set of nodes naively computed from a knock-out at the effective bar-
rier, rather than at the specified barrier B. As a result, values on these modified
barrier nodes are larger than they should be since the effective barrier is higher than
the specified barrier. Figure 6.2 shows the modified barrier used for pricing a

knock-out barrier option (the call payoffs on the effective barrier are zero).

SDerman, Kani, Ergener, and Bardhan (1995).
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One can work backward through the tree, calculating two values of the deriva-
tive on the nodes that form the modified lower barrier assuming both the lower and
upper barriers are correct and then computing a final estimate for the derivative on
the inner barrier by interpolating between the two values. The method can also be
computed from the fact the derivative of the option price with respect to the stock
price occurring at the specified barrier B, that is, dC/dS (S, B, ) (the sensitivity at
which a barrier option value grows away from the barrier) can be expanded as a
first-order Taylor series since the barrier is independent of the location of the bar-
rier to first order. As Derman, Kani, Ergener, and Bardhan summarize, “the modi-
fied barrier method is a sort of bootstrap method. You first value the (slightly)
wrong option by backward induction from the wrong (effective) barrier to get (al-
most) right numerical values for the derivative of the #rue option at all times on its
barrier. You then use these derivatives at each level of the tree in a first-order Taylor
series on the barrier to obtain modified barrier values for the true option. Finally,
you value the correct option by backward induction from the modified barrier.”*
The following is the algorithm from an interpolation point of view:’

1. Value a target option T(S) (i.e., the security the barrier option knocks into—a
security with zero value and that pays no rebate) and the barrier option V(S) at
each node on the tree with the barrier at the effective (upper) barrier. The com-
puted value of V(S) on this modified barrier is then V(D), the value from an un-
enhanced computation.

2. Value T(S) and V(S) with the specified barrier moved down to the modified
(lower) barrier. The value of V(S) on the modified barrier is then exactly T(D),
the value of the target option it knocks into.

3. Replace V(D) on the lower barrier by the value V(D) obtained by interpolating
between V(D) and T(D) according the specified (true) barrier B’s distance from
the effective barrier and the modified barrier:

V(D) = (llj:—g)V(D) + (%)T(D)

4. Use backward induction from the modified barrier with V(D) as the boundary
values to find the value of V(S) at all other nodes inside the barrier.

Figure 6.3 shows the modified barrier algorithm interpreted as an interpolation
between the upper and lower barriers.

There are many variations of barrier options that are traded in the market-
place, including double-barrier, double-barrier step, and delayed-barrier options.

“Ibid., 11.
’Ibid., 14.
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Effective (Upper) Barrier u
T(U)
Specified (True) Barrier P
V(D), T(D)
Modified (Lower) Barrier DN 5D U-B
V(D)= =—=|V(D)+ |——=]|T(D)
u-oD Uu-nD

FIGURE 6.3 Interpolation between Upper and Lower Barriers

For a detailed analysis of the pricing (using numerical methods), structuring, and
hedging of these barrier types, the interested reader should see Linetsky (1999),
Linetsky and Davydov (2002), Schroder (2000), Rubinstein and Reiner (1991),
Geman and Yor (1996), Rogers and Zane (1997), Taleb (1997), Hui (1997), and
Sidenious (1998).

6.2 BARRIER OPTION IMPLEMENTATION

The following is an implementation for valuing an up-and-out American barrier
put option where S = 50, X = 51, barrier = 56, rebate = 0, » = 0.06, g = 0.01, 6 =

0.20, T=1,and N = 4.

/**********************************************************************************

valueUpAndOutPut

[in]:

double price
double strike
double barrier
double rate
double dividend
double vol
double rebate
double T

int N

char exercise

: computes the value of an up and out barrier put option

with a Derman-Kani adjustment

: asset price

: strike price

: barrier price

: risk-free interest rate
: dividend yield

: volatility

: rebate if barrier is hit
: time to maturity

: number of time steps

‘A’'merican or ‘E’uropean
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[out

]: double

value of up and out put

**********************************************************************************/

double BarrierOption::valueUpAndOutPut (double price,
double rate,

double dividend, double vol,

double rebate,

double strike,
double T,

double barrier,
int N, char

for counters

down probability
middle probability
up probability
stores stock prices
put prices

up movement

down movement

time step

drift rate

state step

exercise)

{
int i, 3; //
double pd; //
double pm; //
double pu; //
double S[120] [100]; //
double p[120] [100]; //
double up = 0.0; //
double down = 0.0; //
double dt = T/N; //
double drift = rate - dividend - vol*vol/2; //
double dx = vol*sgrt (3*dt) ; //
// compute risk neutral probabilities
pu = sqgrt(dt/12)* (drift/vol) + 0.16667;
pd = -sqgrt(dt/12)* (drift/vol) + 0.16667;
pm = 0.666667;
up = exp (dx) ;
down = 1/up;

// compute the stock price at each node

for (i = N; i >= 0; i--)
{
for (§j = -i; J <= i; j++)
{
S[i] [j] = price*pow (up,]);

}
}
}

// compute payoff at maturity

for (j = N; j >= -N; j--)
{
if (S[N] [j] < barrier)
p[N] [j] = strike - SI[N] [j];
else
p[N] [j] = rebate;

}

// compute payoffs at all other time steps
for (i=N-1; i--)

{

i >= 0;

for >= -1; j--)

(3=1i; 3

< barrier)

(s[i] (3]

plil [J] = exp(-ratex*dt)* (pu*p[i+1] [j+1] + pm*p[i+1] [J] + pd*pl[i+1][]-

if (exercise == ‘A’)
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plil [j]1= max(p[i] [j],strike-S[i] [J]);
else
plil [§j] = rebate;

// Derman Kani adjustment

if ((S[i] [j] < barrier) && (S[i] [j+1l] >= barrier))

{

plil [3] = (rebate-p[i]l [j1)/(S[i] [3+1] - sSI[i][j])*(barrier - sS[i][3]);
1
1
1
1

return pl[0] [0];

The price of the barrier option is approximately $2.91. Figure 6.4 shows the
trinomial tree for the up-and-out barrier put.

§=50 X=51 B=56 r=0.06 ¢=001 wvol=020 T7=1 N=4

p,= 0.188
Pm= 0.667
pg= 0.145 99.97
/ 0.00
84.07 84.07
0.00 0.00
70.70 70.70 70.70
0.00 0.00 0.00
5046 50.46 50.46 5916
Barrier = 56 0.00 0.00 0.00 :
[
50.00 50.00 50.00 5000 51083
2.1 2.75 246 1.94 :
42,05 42,05
42,05 42.05 805
172 795 8.30
35.36
35.36 35.36
1431 14.97 15.64
29.74
29.74 21.26
20,58
25.01
25.99

FIGURE 6.4 Trinomial Tree for Up-and-Out Barrier Put
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6.3 ASIAN OPTIONS

An Asian option, also called an average price option, is an option that depends on
the average price of the underlying security during the life of the option. Suppose
the payoff at time T is a function F(St, A, 1) of both the terminal stock price S, and
the average price between # and T: A, ;. Then the risk-neutral price at time # of this
path-dependent option can be written as an expectation:

f(S, t)ze_”Et,QS [F(ST’ AT)]
= [ [ F(Sz, Ar)p®(Sr, Aurs TIS, dSrdA, 7
00

where p9(S;, A, ;,T 1S, t) is a joint (risk-neutral) probability density of the terminal
stock price and the average price over [¢, T] conditional on the initial stock price at
time z. If the payoff depends only on the average price and not on S, (as in the aver-
age price options), then

oo

(S, t)=e_”JF(At,T)pQ(At’T, TIS, t)dA, 1 (6.8)
0
where p(A, 1, TS, t) is a density of the average price conditional on § at #. Thus,

our job is to find p9(S;, A, ;, TS, #) and p© (AT | S, t). This can be found by
employing the theory of Brownian motion. We will be interested only in pricing av-
erage price calls and puts, so we need only the density p9(A .., T'| S, ) to derive the

t,T>
pricing formulas.

6.4 GEOMETRIC AVERAGING

Suppose the averaging is continuous and geometric. Define the geometric aver-
age as:

N /N
G, = [Hsr,-] (6.9)
=1

The geometric average of the product of lognormal random variables is also log-
normal. Thus, p2(A, 1, TS, ) is a lognormal density. It is quite easy to find the pa-
rameters of the lognormal density based on stochastic processes theory.
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PROPOSITION. p(A, 1, T'| S) is a lognormal density of the Black-Scholes form:

2
S
In| 2L |- .7
([S) ”AJ dA,

> (6.10)
2047 A r

pC(Ar, TS, t)dA, 1 = expy—

1
VZTCGZAT

where p, = 7 — g, — 6%/2. The volatility of the continuous geometric average is

(SA=0'/\/§

and the risk-neutral drift of the continuous geometric average is

1 o’
7—qA=5[7—q—?]

where g is the dividend yield on the underlying security. We can use the Black-Scholes
formulas to price geometric average price calls and puts where we need to substitute

G4 =(5/\/§

for the volatility of the average and

—l(r+ +G—2)
CIA—Z q 6

for the effective dividend yield on the geometric average price. This analytic for-

mula is used if the averaging is continuous. If the averaging is taken at certain fix-
ing dates, then the formula becomes:

7|2 N, - XN, ) (610

GG207 Ave =€

where

a=InG)+ S In(S) e g —0)+ TU(T ~1,0)

N - j)? o’ (T—t;,) . .
b= Nz” Oty ~1) LN = 2N =)=
u=r—q—%02

_a+b-In(X)

d, = 7

where G, is the current geometric average and j is the last known fixed date.®

¢Clewlow and Strickland (1998a), 118-119.
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6.5 ARITHMETIC AVERAGING

In practice, most average price options are priced using arithmetic averaging, not geo-
metric averaging. This creates a problem: An arithmetic average of a set of lognormal
random variables is not itself lognormal. This distribution is quite complicated as it is
expressed through Bessel functions (Geman-Yor formulas). However, there exists a
rather accurate approximation. We can approximate this complicated distribution by
a lognormal distribution, and match the first two moments of the complicated exact
distribution and an approximating lognormal distribution. The resulting approxima-
tion, known as the Turnbull-Wakeman approximation, is quite accurate.
The first moment of the continuous arithmetic average price distribution be-
tween ¢ and T is M, S where’
(r=q)t
M, = e -1
(r—q)t

The second moment of the continuous arithmetic average is M,S* where

2o 2r-a)+0? )t 2 1 o)
M, = 2 >t 2 2 P
(r—-q+0°)2(r—q)+o° )t r—q°\2(r-q)+o (r—q+0°)

Equating the first two moments of the lognormal distribution yields:
eS8 = M,S
and
eRr-arai S = M, S?

Solving for the effective volatility 6, and the dividend yield g, of the arithmetic
average yields:

_InM,

qa=r (6.12)

and

—2(r—qa) (6.13)

"Hull, J. (1997), 466.
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We can use the Black-Scholes formula to price Asian average price calls and
puts, where you use the effective average rate volatility 6, and dividend yield g, of
the average. We have assumed that the average is taken continuously. In prac-
tice, the average is taken discretely based on daily, weekly, or monthly closing
prices. For daily averaging, continuous averaging provides a good approximation.
For weekly and monthly averaging, one needs to develop formulas for discrete
averaging.

6.6 SEASONED ASIAN OPTIONS

We need to price an Asian option at time ¢* inside the averaging interval [z, T] (in
season). The averaging period is composed of two periods: T, = t* — ¢ (the time pe-
riod where prices have already been observed) and 1, = T — t* (the time period in
the future). The average A, ;. can be represented as the sum of two averages:

Ao A+ Ap 1T
o
T+,

Then the payoff for an Asian option can be represented as follows:

A, T+ A
max(A, 1 - X, 0):max(M—X, o)zamax(At,ﬁ _X*, 0) (6.14)

T +7T)

where the multiplier and adjusted strike are

T . T+7T T
o=—2—and X*=-1-—2X--1A4, .
T +7Ty Ty Ty ’

Thus, we can price a seasoned Asian option in the same manner as newly written
Asian options using the modified Black-Scholes formula where

15
At,tx.:ﬁgsi,kzl,...,M

for the underlying asset price and X* for the strike, and then we multiply the value
by o

As shown in section 2.8, we can also value Asian options using Monte Carlo
simulation. For a comparison of analytical and Monte Carlo methods for pricing
Asian options see Fu, Madan, and Wang (1999). See also Geman and Yor (1992),
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Kemma and Vorst (1990), Levy (1990), and Boyle (1991) for a more detailed dis-
cussion for pricing Asian options.

6.7 LOOKBACK OPTIONS

Lookback options are standard calls or puts, except that either the final asset price
or the strike price is set equal to the minimum or maximum asset price observed on
one of a set of predetermined fixing datesz,i =1, ..., N. Denote

: minimum price achieved over [¢, T]

m, r =min SE*)= S8, :

t* e, T]
and

M, ; =max S(t*)=S,,,« : maximum price achieved over [¢, T]
’ t*elt, T

A fixed-strike lookback call option written at time ¢ gives its holder the right,
but not the obligation, to buy the underlying asset at time T, T > ¢, at the minimum
price reached on one of the fixing dates, z, i = 1, ..., N, between the contract in-
ception ¢ and the option expiration T. The payoff is:

max(mt’T—X, 0) (6.15)

A floating-strike lookback call allows the holder to purchase the stock at the
minimum price achieved on any of the fixing dates during the lifetime of the option.
Thus the payoff is:

max(S, —m, , 0) =S, —m, >0 (6.16)

t,T? t,T —

A fixed-strike lookback put option gives the holder the right, but not the oblig-
ation, to sell the underlying asset at time T, T > ¢, at the minimum price reached on
one of the fixing dates, ¢, i =1, ..., N, between the contract inception ¢ and the
option expiration T. The payoff is:

max(X —m

0) (6.17)

t, T

A floating-strike lookback put option gives the holder the right, but not the
obligation, to sell the underlying asset for the maximum price achieved at any of
the fixing dates from the contract inception ¢ to contract expiration T. The payoff
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to the holder is the difference between the maximum price between ¢ and T and the
price at expiration:

max(M_ ..— S

pr=Sps0) =M, ~ 8,20 (6.18)

T~ °T

Suppose a lookback expiring at T was written at inception time #,, We can
price (mark to market) at some time ¢, ¢, < t < T. The risk-neutral expectations for
seasoned floating-strike lookback calls and puts are:

(S, S

'min?

— _ RO
CLookback t) =§-¢” El,Smin[mto,T]

and

=e¢"ES [MtO’T] -S

»Omax

PLookback(S’ Smax’ t)

We need to calculate the mean of the maximum and minimum prices, both random
variables, of the risk-neutral process between ¢, and T. Once the probability densi-
ties for these random variables are calculated, the expectations can be taken and
analytical formulas for floating-strike lookback calls and puts can be derived. It

turns out that the closed-form solution for the call is:

2 Y
CLookback (53 Smin’ t)= C(Si tl Smin > T) + Z(f——q) e_”Smin(SYgin ) N(d) - e_qTSN(_dl )}(619)
where C(S, 1S ., T) = e"SN(d,) —e™S_. N(d,),
S S .
In N +ut In % + Ut 5 5
dy=—""L 4 =dy 4ot d=——"2— u=r-g-Z, andy =4
oVT oVT 2 o

Note that if pricing a newly written lookback call at contract inception, the initial
stock price, S, is used in place of S_; .
We can price a floating-strike lookback put similarly:

2

PLookback(Sa Smax, t) = P(S, tlS T)+

" 2r-q)

v
eqTSN(dﬂ—e-”smax(Sm%J N(d)} (6.20)
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where P(S, 1S, T) = ¢S N(~d,) - e"SN(~d,),

ln(SS Jﬂw ln(SmSaxJ+m
dzz%, d1:d2 +G\/;, d:—f’
oV7T oV7T
2 2u

—r—qg-2, andy="2

If pricing a newly written lookback put at contract inception, the initial stock price,
S,» is substituted in place of S __ .

Lookbacks can also be priced numerically by two-state variable binomial or
trinomial trees. We will illustrate by example of a floating-strike lookback put
option. Pricing a lookback in a trinomial tree is similar to pricing a vanilla
(plain) option. We use backward induction. However, when we step back
through the tree, we have to deal with the possibility of more than one maxi-
mum asset price at each node. We store the maximum asset prices achievable on
paths leading to the node. At each interior node, we only store two maximum
values. For each node (i, j) in the upper half of the tree, the maxima are the cur-
rent stock price as well as the maximum reached at node (i — 1, j + 1). We don’t
need to store (i — 1, j) since it is the same as (i, j). For each node in the center or
lower half of the tree, we store the value of the initial asset price (since it is
greater than or equal to all of the lower asset prices at each of nodes as well as
the maximum reached at (i — 1, j + 1)). Once we compute the maximum values
at each node, we can work backward to compute the option values for each
maximum value by taking the discounted expected value of the option (risk-neu-
tral pricing):

fz’,/‘ = e_mt(pufin,m + pmfi+1,,' + pdfi+1,/‘—1)

If the lookback is American, early exercise is considered by comparing the dis-
counted expected value to the intrinsic value, then taking the higher of both val-
ues. We note that assuming we store the maximum values in ascending order at
each node, the first maximum value will be computed by taking the discounted
value of the first maximum value stored at nodes (i + 1, j + 1) and (i + 1, j), but we
use the second maximum value at (4, j — 1) since it is smaller than this value. The
second maximum value is computed by taking the discounted value of the first
maximum value at node (i, j + 1) and the second (higher) maximum values stored
at nodes (i, j) and (i, j + 1). Working backward in this manner will give us the
value at the first node.
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6.8 IMPLEMENTATION OF FLOATING LOOKBACK OPTION

The following is an implementation of a floating lookback put option with § = 50,
6 =0.40,7=0.10, 9 =0, and T = 0.25 (3 months), N = 3 (time steps), so that A¢ =
0.08333.

/**********************************************************************************

calcLookBackPutFloatStrike : computes the value of a floating lookback put

[in] double price : asset price
double rate : risk-free interest rate
double div : dividend yield
double vol : volatility
double T : time to maturity
int N : number of time steps
char exercise : ‘A’'merican or ‘E’uropean
[out] double : value of up and out put

**********************************************************************************/

double LookBackOption: :calcLookBackPutFloatStrike (double price, double vol, double
rate, double div, double T, int N, char exercise)
{

int i, j;

double pd; // down probability

double pm; // middle probability

double pu; // up probability

double S[100] [100]; // stock price at node i, j

struct Node // structure at node i, j

{

double maxima[2]; // stores current and previous maximum prices

double optionPrice([2]; // stores current and previous option prices for
// max prices

double intrinsicValue; // intrinsic option value at node

double stockPrice; // stock price at node

} node[20] [20];

double up = 0.0; // up movement
double down = 0.0; // down movement
double drift = 0.0; // drift

double dx = 0.0; // state space
double dt = T/N; // time step
drift = rate - div - vol*vol/2;

pu = 0.33333 + (drift/vol) *sqgrt (dt/6);
pd = 0.33333 - (drift/vol)*sqgrt(dt/6);
pm = 0.33333;

up = exp(vol*sgrt (3*dt/2));

down = 1/up;

// compute stock price at each node
for (i = N; 1 >= 0; i--)
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{
for (§ = -i; j <= 1i; J++)
{
S[i] [j] = price*pow(up,]);
1
1

// initialize first node

node [0] [0] .stockPrice = price;
node [0] [0] .maxima [0] = price;
node [0] [0] .maxima [1] = price;

// use forward induction to calculate maxima at each node

for (i = 1; 1 <= N; i++)
{
for (j = -1; j <= 1i; j++)
{
node[i] [J] .stockPrice = S[il [j];
if (j == 1)
{
node [1] [j] .maxima [0] = nodel[i] [j].stockPrice;
}
else if (j == -1i)
{
node [i] [j] .maxima [0] = node[0] [0] .stockPrice;
1
else if ((j == i-1) || (3 == -i+1))
{
node [1] [j] .maxima [0] = node[i-1][j] .maxima[0];
node [1] [j] .maxima[1] = node[i-1] [j] .maxima[0];
}
else if (j == 1i-2)
{
node [i] [j] .maxima[0] = node[i-1] [j] .maxima[0] ;
node [1] [j] .maxima[1l] = node[i-1] [j+1] .maxima[0];
1
else if (j == -i+2)
{
node [1] [j] .maxima [0] = node[i-1] [j] .maxima[0];
node [i] [j] .maxima[l] = node[i-1] [j+1] .maxima[1];
1
else
{
node [1] [j] .maxima [0] = node[i-1][j] .maxima[0];
node [1] [j] .maxima[1l] = node[i-1] [j+1] .maxima[1l];
}
1
1

for (j = N; j »>= -N; j--)
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{

node [N] [j] .optionPrice[0] = max(node[N] [j] .maxima[0] - S[N]
node [N] [j] .optionPrice[1l] = max(node[N] [j] .maxima[l] - S[N]

}

[31,0)
[31,0)

7
7

// use backwards induction to price lookback option
for (i=N-1; i >= 0; i--)

{
for (§ = i; j >= -i; j--)
{
if (1 == 3)
{
node [1] [j] .optionPrice [0] =exp (rate*dt) * (pu* (node [1+1] [j+1] .optionPrice [0
1)
+ pm* (node [i+1] [j] .optionPrice[0]) + pd* (nodel[i+1] [Jj-
1] .optionPrice[1])) ;
node [1] [j] .optionPrice[1l] = exp(-rate*dt) * (pu* (node[i+1] [j+1] .option
Price[0]) + pm* (node[i+1] [j] .optionPrice[1l]) + pd* (node[i+1]
[-1] .optionPrice[1])) ;
}
else if (i == -3j)
{
node [1] [j] .optionPrice[0] = exp(-rate*dt)*
(pu* (node [i+1] [j+1] .optionPrice[1])
+ pm* (node [i+1] [j] .optionPrice[0]) + pd* (node[i+1] [Jj-
1] .optionPrice[0])) ;
node [i] [j] .optionPrice[l] = exp(-rate*dt) * (pu* (node[i+1] [j+1] .option
Price[1]) + pm* (node[i+1] [j] .optionPrice[0]) + pd* (node[i+1]
[j-1] .optionPrice[0])) ;
}
else if (j == 0)
{
node [i] [j] .optionPrice[0] = exp(-rate*dt) * (pu* (node[i+1] [j+1] .option
Price[1]) + pm* (node[i+1] [j] .optionPrice[0]) + pd* (node[i+1]
[j-1] .optionPrice[0])) ;
node [1] [j] .optionPrice[1l] = exp(-rate*dt)* (pu* (node[i+1] [j+1] .option
Price[1l]) + pm* (node[i+1] [j] .optionPrice[1l]) + pd* (node[i+1]
[-1] .optionPrice[1])) ;
}
else
{

node [1] [j] .optionPrice[0] = exp(-rate*dt) * (pu* (node[i+1] [j+1] .option
Price[1l]) + pm* (node[i+1] [j] .optionPrice[0]) + pd* (node[i+1]
[-1] .optionPrice[0])) ;
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node [i] [j] .optionPrice[1l] = exp(-rate*dt) * (pu* (node[i+1] [j+1] .option
Price([1]) + pm* (node[i+1] []j] .optionPrice[0]) + pd* (nodel[i+1]
[j-1] .optionPrice[1])) ;

// if stock price is the same for first and second stock prices, use higher
// option price
if (node([i] [j] .maxima[0] == node[i] [j] .maxima[1])
node [i] [j] .optionPrice[0] =
max (node [i] [j] .optionPrice [0] ,node[i] [j] .optionPrice[1]) ;

// check for early exercise
if (exercise == ‘A’)
{
node [i] [j] .intrinsicValue = node[i] [j] .maxima[0] - S[i] [j];
node [i] [j] .optionPrice[0] =
max (node [i] [j] .optionPrice [0] ,node[i] [j] .intrinsicValue) ;

node [i] [j] .intrinsicValue = node[i] [j] .maxima[1] - S[i] [j];
node [i] [j] .optionPrice[1] =
max (node [i] [j] .optionPrice[1] ,node[i] [j] .intrinsicValue) ;
}
}
}

return node [0] [0] .optionPrice[0];

The value of the floating lookback put option is $7.57 using
r=+3

Figure 6.5 shows the trinomial tree generated.

6.9 IMPLEMENTATION OF FIXED LOOKBACK OPTION

The following is an implementation of an ATM European fixed-strike lookback put
with the same parameters as the floating-strike lookback put discussed in the pre-
ceding section.
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§=50 r=0.10 g=0.0 vol=0.40 7=0.25 N=3 dt=0.0833

D= 0339
D= 0.327
py=0333
i 0 1 2 3
76.42
76.42
0.00
66.35 66.35
66.35 66.35, 66.35
2.84 0.00, 0.00
57.60 57.60 57.60
57.60 57.60, 57.60 57.60, 66.35
5.04 2.47,2.47 0.00, 8.75
50.00 50.00 50.00 50.00
g 50.00 50.00, 57.60 50.00, 57.60
5 5.35 5.08, 10.06 0.00,7.60
43.41 43.41 4341
50.00 A 50.00, 50.00 | 50.00,57.60
10.97 8.74, 8.74 6.59,14.19
37.68 37.68
50.00 50.00, 50.00
14.46 12.32,12.32
3271
50.00
17.29

FIGURE 6.5 Trinomial Tree for Floating-Strike Lookback Put Option

/**********************************************************************************

calcLookBackPutFixedStrike : This function computes the value of a floating lookback

put

[in] double price : asset price
double strike

double barrier

double rate
double div
double vol

double T
int N

char exercise

[out] double

strike price
: barrier price
risk-free interest rate
dividend yield
: volatility
time to maturity
: number of time steps
‘A’'merican or ‘E’uropean
: value of up and out put

**********************************************************************************/
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double LookbackOption::calcLookBackPutFixedStrike (double price, double strike,
double vol, double rate,double div, double T, int N, char exercise)

{

int i, j;
double pd; // down probability
double pm; // middle probability
double pu; // up probability
double S[100] [100]; // stock price at node 1i,j
struct Node // structure of node 1i,j
{
double minimal[2] ; // stores current and previous minimum
// prices
double optionPrice[2]; // stores current and previous option
// prices for minimum prices
double intrinsicValue; // intrinsic value of option
double stockPrice; // stock price at node

} node[20] [20] ;

double up = 0.0; // up movement
double down = 0.0; // down movement
double dx = 0.0; // state space step
double dt = T/N; // time step

double drift = rate - div - vol*vol/2; // drift

// use for lambda = sqrt(3/2)

pu = 0.33333 + (drift/vol)*sqgrt(dt/6);
pd = 0.33333 - (drift/vol) *sgrt(dt/6) ;
pm = 0.33333;

up = exp(vol*sgrt (3*dt/2));

down = 1/up;

// compute stock prices at each node
for (i = N; i >= 0; i--)
{

for (j = -1; j <= 1; J++)

{

}
}

S[i] [j] = price*pow (up,]);

// initialize first node
node [0] [0] .stockPrice = price;
node [0] [0] .minima [0] = price;

// use forward induction to calculate maxima at each node
for (i = 1; i <= N; i++)
{

for (j = -1; j <= 1i; j++)

{

node[i] [j] .stockPrice = S[i] [§];
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if ((L == 1) && (j != -1)) // nodes at time step 1 only
// have one minimum
{
node [i] [j] .minima[0] = node[0] [0] .stockPrice;
node[i] [j] .minima[1l] = O; // dummy place holder
1
else if (j == i) // edge nodes only have one minimum
{
node [1] [j] .minima [0] = node[0] [0] .stockPrice;
node [i] [j] .minima[1l] = 0; // dummy place holder
1
else if ((j == -i) && (i != N)) // edge nodes only have one
// minimum
{
node [1] [j] .minima [0] = nodel[i] [j].stockPrice;
node [i] [j] .minima[1] = O;
1
else if ((j == -1i) && (i == N))
{
node [1] [j] .minima [0] = node[i-1] [j+1].stockPrice;
node [i] [j] .minima[1l] = 0; // dummy place holder
}
else if (j == -i+1)
{
node [i] [j] .minima[0] = node[i-1] [j] .minima[0];
node [1] [j] .minima[1] = nodel[i] [j].stockPrice;
1
else
{
node [1] [j] .minima [0] = node[i-1][j-1] .minima[0];
node [i] [j] .minima[1l] = node[i-1] [j] .minima[0];
1

}
1

// compute payoffs at final node

for (j = N; j >= -N; j--)

{
node [N] [j] .optionPrice[0] = max(strike - node[N] [j] .minima[0],0);
node [N] [j] .optionPrice[1l] = max(strike - node[N] [j] .minima[1],0);

}

//use backwards induction to price lookback option
for (i=N-1; 1 >= 0; i--)
{
for (j = i; j >= -i; j--)
{
node [1] [j] .optionPrice[0] = exp(-rate*dt) * (pu* (node[i+1] [j+1] .option
Price[0] )+ pm* (node[i+1] [j] .optionPrice[0]) + pd* (node[i+1]
[j-1] .optionPrice[0])) ;
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node [1] [j] .optionPrice[1l] = exp(-rate*dt)* (pu* (node[i+1] [j+1] .option
Price[0])+ pm* (node[i+1] [j] .optionPrice[0]) + pd* (node[i+1]
[j-1] .optionPrice[1])) ;

if (exercise == ‘A’)
{
node [i] [j] .intrinsicValue = strike - node[i] [j] .minima [0] ;
node [i] [j] .optionPrice[0] =
max (node [i] [j] .optionPrice [0] ,node[i] [j] .intrinsicValue) ;

node [1] [j] .intrinsicValue = strike - nodel[i] [j] .minima[1];
node [i] [j] .optionPrice[1l] =
max (node [1] [j] .optionPrice[1] ,node[1i] [j].intrinsicValue) ;
}

}
1

return node[0] [0] .optionPrice[0] ;

The value of the fixed-strike lookback put option is $7.45 using

A=~3/2

Figure 6.6 shows the trinomial tree generated using

A=+3/2

For a more detailed discussion of lookback options, see Goldman, Sosin, and
Gatto (1979) (who first introduced lookback options), Conze and Viswanathan
(1991), and Dewynne and Wilmott (1993). For variations of lookbacks such as
double lookbacks, see He, Keirstead, and Rebholz (1998). For a discussion of pric-
ing lookbacks (and barrier options) using a constant elasticity of variance process,
see Boyle and Tian (1999).
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§=50 r=0.10 4=0.0 vol=0.40 T=0.25 N=3
p,=0.339
pm=0.327
pg=0.333
i 0 2 3
d 76.42
50.00
0.00
3
66.35 66.35
50.00 50.00, 50.00
2.14 0.00, 0.00
2 y
57.60 57.60 57.60
50.00 50.00, 50.00 43.41,50.00
1 4.88 . 4.32,4.32 6.59, 0.00
5000 |/ 50.00 \ 50.00 50.00
0 7 '45 /\ 50.00 -{ 43.41,50.00 | 43.41,43.41
: 7.57 // 8.40,6.54 6.59, 6.59
43.41 / \ 43.41 43.41
-1 43.31 43.41, 43.41 37.68, 43.41
10.19 10.29,10.29 12.32,6.59
37.68 37.68
-2 37.68 37.68, 37.68
12.22 12.32,12.32
32.71
32.68
12.32

FIGURE 6.6 Trinomial Tree for Fixed-Strike Lookback Put Option
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Stochastic Volatility

v olatility is the one unobservable factor affecting option prices. Modeling volatility
structures is important for practitioners and traders since it can capture observ-
able skews and smirks where low-strike options are seen to exhibit higher implied
volatilities than higher-strike options. Volatility structures in the market seen to ex-
hibit such skews and smirks give traders an indication of the relative liquidity and
degree of riskiness placed by the marketplace on various strikes and maturities.
There may be “vol” arbitrage opportunities if implied volatilities from observable
market prices differ from volatilities implied from calibrated models. The focus of
this chapter is to discuss various techniques for measuring and extracting implied
volatilities from market option prices. We initially examine deterministic (constant)
volatility and then discuss how to model stochastic volatility—nondeterministic
parametric forms that can be used in diffusion processes to capture observable mar-
ket volatility structures.

In section 7.1, we discuss implied volatility and how to compute it using an it-
erative numerical method like Newton-Raphson. In section 7.2, volatility skews and
smiles are discussed. In section 7.3, empirical explanations are given for why such
skews are observed. In section 7.4, we discuss constructing and fitting implied
volatility surfaces from market data using numerical procedures like nonparametric
methods. In section 7.5, one-factor parametric volatility structures are discussed. In
section 7.6, constant elasticity variance (CEV) models are discussed for modeling
volatility structures. In section 7.7, we discuss recovering implied “vol” surfaces. In
section 7.8, we discuss an approach by Brigo and Mercurio for constructing local
volatility surfaces. In section 7.9, we discuss jump-diffusion models for modeling
volatility. In section 7.10, two-factor parametric volatility structures are examined.
In two-factor models, correlation is incorporated to capture co-movements in fac-
tors not captured by one-factor models. Finally, in section 7.11, we discuss the im-
portant topic of hedging with stochastic volatility.

7.1 IMPLIED VOLATILITY

The Black-Scholes model assumes that volatility, often referred to as “vol” by practi-
tioners, is constant. We have assumed up to this point that asset prices follow a lognor-

274
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mal diffusion process under the risk-neutral measure O with constant volatility. This is
not a realistic assumption as it incorrectly implies (1) historical volatility estimated
from time series data is constant over time; (2) all options with different strikes and
maturities must trade at the same implied volatilities; and (3) the risk-neutral probabil-
ity distributions of future asset prices are lognormal. To correct for this serious prob-
lem, practitioners model volatility as a stochastic factor of asset prices and often model
volatility as following its own diffusion process with drift and diffusion parameters.
Consider a call expiring at time T with strike price X. Suppose C_, is a mar-
ket quote for the call. The Black-Scholes model provides a fair value for this call
C,,(0), which depends on the historical volatility estimate. We can estimate the his-
torical volatility as follows. Suppose we have a time series of daily price data for N
days: S,i=1,2,..., N. We first calculate the time series of N logarithmic returns:

ui:ln(i) i=1,2,...,N (7.1)
Siaa

where #, is the continuously compounded (not annualized) return in the ith inter-
val. The usual unbiased estimate of volatility Gis give by

1 N
~D

At=—t

N N—lg;(

u; — ) (7.2)
where # the mean of the #’s and At is the interval between observations. Implied
volatility 6™l is such a value of the volatility parameter ¢ that the Black-Scholes
price matches the observed price:

CBS(Gimplied) =C (7.3)

market
Since the Black-Scholes price is a known function of (constant) volatility, this equation
can be inverted to find 6", The closed-form solution to this problem does not exist,
but it can be solved using the Newton-Raphson numerical procedure: Initially, make
an initial guess o, (say, 10 percent) of the volatility. Second, estimate o, by using the
Newton-Raphson equation, which is a first-order Taylor approximation of C,(c):
_Cps(01)-C

market

6, =0
e Kpg(07)

where

dCps(07)

Kps(01)= %
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is the Greek hedge statistic vega (kappa). We then use o, in the next iteration to
find 6,. We continue the following iteration at step i:

_ CBS (Gi ) - Cmarket

G;,1 =0; 7.4
i+1 i K pg (G,') ( )

iteratively, until the desired accuracy is reached:
IC, 1= Clo, )< € (7.5)

where epsilon, €, is a very small value such as 0.0001.

The Newton-Raphson method can easily be used for European options where
the analytical formula for the option price is available. For American or exotic op-
tions, one can use the bisection method that does not require knowing vega. The
procedure works as follows:

Step 1: Pick two values for the volatility, 6,; and 6, so that 6, is clearly above
the true implied vol and o, is clearly below (i.e., 1 percent and 100 percent), and
calculate two option prices C,, and C, corresponding to these vols. The market
price should be somewhere in between.

Step 2: Suppose 6,; and o, and prices C,, and C, are from the previous step.
Then calculate:

Gy —0C
Gis1 =01 +(Cpppper —Cp) H—F 7.6
i+ arket CH _ CL ( )
Replace 6, with o, if C(5,,,) <C, . . orelsereplace 6, witho,  if C(c, )>C . .

This is continued until the desired accuracy is achieved: IC, - C(c, ) <e.

In practice, traders often use implied vols inferred from quoted option prices in
favor of historical volatility estimated from historical time series data. In fact, in the
over-the-counter (OTC) options market, option prices are quoted by their implied
volatility rather than the option price itself.

7.2 VOLATILITY SKEWS AND SMILES

It is an empirical fact that implied volatility is not constant across different strikes
and maturities. Suppose we have a listing of all market option quotes. We can ob-
serve traded strikes, X/., traded maturities, T}, and the current quoted market price
for a call with maturity T, and strike Xj, Cif.(S, t) = C(S, t; X;, T;). Suppose we calcu-
late an implied volatility for each of these calls Gi;”‘l’“ed. If the Black-Scholes model
were correct, then implied volatilities for all options with different strikes and ma-
turities would be equal. However, an empirical fact is that implied vols are different
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TABLE 7.1 IBM Call Chain on September 20, 2002

Jan 03 35.00 40.50 Jan 03 95.00 0.30
Jan 03 40.00 25.30 Jan 03 100.00 0.20
Jan 03 45.00 29.50 Jan 03 105.00 0.05
Jan 03 50.00 16.80 Jan 03 110.00 0.10
Jan 03 55.00 12.60 Jan 03 115.00 0.15
Jan 03 60.00 9.30 Jan 03 120.00 0.15
Jan 03 65.00 6.40 Jan 03 125.00 0.10
Jan 03 70.00 4.10 Jan 03 130.00 0.10
Jan 03 75.00 2.60 Jan 03 140.00 0.10
Jan 03 §0.00 1.50 Jan 03 150.00 0.05
Jan 03 85.00 0.90 Jan 03 155.00 0.00
Jan 03 90.00 0.50 Jan 03 160.00 0.05

for all i and j. Volatility changes with both strike and maturity, known as the
volatility smile or smirk and the term structure of volatility, respectively. Consider
the option chain in Table 7.1 of IBM stock taken on September 20, 2002.

We can compute the volatility smile for January 2003 contracts on Friday, Sep-
tember 20, 2002, using the stock price of IBM, S = 63.92, T = 4/12 = 0.333, the
three-month Treasury bill rate » = 1.64 percent, the dividend yield g = 0.6 percent,
and the market option prices C for different strikes X, which are given in the chain.

Figure 7.1 shows the implied volatility curve generated from the option chain
whose values are shown in Table 7.1. Notice that the curve is a shaped like a smile.
The minimum implied volatility falls roughly around the ATM strike. The curve
falls then rises as the strike prices increases beyond the ATM strike.
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The following is an implementation that reads the option chain information
from a file, optionData.txt, and computes the implied vols. The volatility smile
curve is generated in Excel using the strikes and their corresponding implied vols
using the Newton-Raphson method.

void main ()

{

OptionCalc option; // option object

vector<doubles> prices; // vector of option prices
vector<ints> strikes; // vector of strikes

char buffer[100]; // buffer for line read

char dataBuffer[100]; // stores current data string read
char *str = NULL; // pointer to data string

const char *file = “optionData.txt”; // file with option chain info
ifstream fin; // input file stream

fin.clear () ;

fin.open (file) ;

if (fin.good())
{
while (!fin.eof())
{
// read in one line at a time
fin.getline (buffer, sizeof (buffer) /sizeof (buffer[0])) ;
istrstream strl (buffer) ;

// Get data
strl >> dataBuffer; // read data from file
while (!strl.eof())

{

// read in contract maturity, strike, and price

strl >> dataBuffer; // read option maturity month
strl >> dataBuffer; // read option maturity year
strl >> dataBuffer; // read option maturity strike

// convert strike char* data to integers
// and add to strike vector
strikes.push back (atoi (dataBuffer)) ;

strl >> dataBuffer; // read option market price
// convert option price char* data to floats

// and add to strike vector
prices.push_back (atof (dataBuffer)) ;

}

buffer([strlen(buffer) + 1] = ‘\0’;

else
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cout << “File not good!” << “\n”;
1
// close file
fin.close () ;
// calculate implied vols
option.calcImpliedVols (63.92,prices,strikes,0.0164,0.006,0.3333,'C’);

The following is the implementation of the calcImpliedVols method:

/**********************************************************************************

calcImpliedvols: : calculates implied volatilities
[in] : double price : price of the stock
vector<double> opPrices : vector of option prices
vector<double> strikes : vector of strike prices
double rate : risk-free rate
double dividend : dividend yield
double T : time to maturity (in years)
char type : option type (call or put)

[out] : map of implied volatilities (key is strike price)

**********************************************************************************/

map<int,double> OptionCalc::calcImpliedVols (double price, vector<double> opPrices,
vector<int> strikes,double rate, double dividend, double T, char type)

int j = 0;

int cnt = 0;

const double epsilon = 0.00001; // error tolerance

map<int,double> opMap; // map of strikes to prices

vector<doubles>: :iterator pricelter; // vector iterator

double voll = 0.0; // implied volatility

double error = 0.0; // error between market and model
// price

double vol2 = 0.0; // stores updated volatility in

// calibration
double vega = 0.0; // option vega
double BSPrice = 0.0; // black scholes price

double marketPrice = 0.0; // market price
int* strike = new int[strikes.size()]; // array of strike prices
double* call = new double[opPrices.size()]; // array of call prices

// copy strike prices stored in vectors
// into array used in Newton-Raphson
copy (strikes.begin(),strikes.end (), strike) ;

// compute implied vols for each option contract
for (pricelIter = opPrices.begin(); pricelter != opPrices.end(); pricelter++)
{

marketPrice = *pricelter;

voll = 0.55; // initial guess of implied volatility for Newton-Raphson
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BSPrice = calcBSCallPrice(voll,rate,dividend, strike[cnt],price,T);
vega = calcVega (price,strike([cnt],rate,dividend,voll,T);

vol2 = voll - (BSPrice - marketPrice)/(vega) ;
error = vol2 - voll;
voll = vol2;

1

while (abs(error) > epsilon);

opMap [cnt] = voll;

cnt++;

}

// print implied vols
for (j = 0; j < opMap.size(); j++)
cout << opMapl[j] << endll;

// return a map of strikes and their implied vols
return opMap;

Each iteration of the Newton-Raphson procedure makes a call to the calcBSCall-
Price method and the calcVega method, which computes vega as follows:

/**********************************************************************************
double OptionCalc::calcVega (double price,double strike, double rate, double div,
double vol, double T)
{
double dl = (log(price/strike) + (rate - dividend +(vol)*(vol)/2)*T)/
(vol*sgrt (T)) ;
return price*sgrt (T) *normalCalcPrime (dl) ;

}

**********************************************************************************/

Table 7.2 is the option chain for IBM January 2003 puts on Friday, September
20, 2002, and Figure 7.2 shows the implied volatility curve generated from these
market prices. Notice that the curve initially has the skew effect—lower strikes
have higher implied volatility than higher strikes—but then it oscillates starting at
around a strike price of 90! due to the very low liquidity and thinly traded con-

"Typically, implied volatility smiles and volatility surfaces filter moneyness values outside the
interval [0.5, 1.5] (i.e., X/S < 0.5 or X/S > 1.5) since the numerical uncertainty on implied
volatility may be too high and the liquidity very low. The irregularity at moneyness at 1.5
and above can be seen in Figure 7.2.
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TABLE 7.2 IBM Put Chain on September 20, 2002

Jan 03 35.00 0.50 Jan 03 95.00 31.00
Jan 03 40.00 0.85 Jan 03 100.00 35.90
Jan 03 45.00 1.40 Jan 03 105.00 40.50
Jan 03 50.00 2.10 Jan 03 110.00 45.90
Jan 03 55.00 3.30 Jan 03 115.00 49.90
Jan 03 60.00 5.00 Jan 03 120.00 55.00
Jan 03 65.00 7.15 Jan 03 125.00 47.00
Jan 03 70.00 10.00 Jan 03 130.00 60.70
Jan03  75.00  13.00 Jan 03 140.00  62.00
Jan 03 80.00 16.90 Jan 03 150.00 85.30
Jan 03 85.00 21.60 Jan 03 155.00 85.00
Jan 03 90.00 24.60 Jan 03 160.00 90.90

tracts of these options. If we focus on just the moneyness around ATM contracts,
we get a smoother skew as shown in Figure 7.3.

The smile is skewed: Low-strike implied volatilities are greater than higher-
strike implied vols. Since there is finite liquidity by market makers who take the
other sides of these trades selling out-of-the-money (OTM) puts and buying OTM
calls, market makers demand a liquidity premium, which is reflected in the skew.
Consequently, these OTM puts are priced at higher implied vols compared with
OTM calls, which are priced at lower implied vols.

Prior to the 1987 market crash, there appeared to be symmetry around the zero
moneyness—the degree to which an option is in-the-money (ITM) or out-of-the-
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money—where OTM and ITM options traded at higher implied volatilities than
the implied volatilities of ATM options. However, since the 1987 crash, the “smile”
has changed to a “sneer” shape in many markets, particularly for stock indexes.
Dumas, Fleming, and Whaley (1998) have shown the volatility structure change
from a smile to a sneer for S&P 500 options. Option implied volatilities are ob-
served to decrease monotonically as the option goes deeper out-of-the-money (call)
or in-the-money (put).

In general, the smirk in equity markets is very highly skewed with OTM puts
priced at significantly higher vols than OTM calls. Rubinstein (1997) provides sev-
eral fundamental economic reasons for this phenomenon: (1) leverage effect: As
stock prices fall, debt-equity ratio rises, which leads to a rise in volatility; (2) corre-
lation effect: Stocks become more highly correlated in down markets, which leads
the volatility of the S&P 500 market index to rise since the benefits of diversifica-
tion are reduced due to increasing correlation; (3) investor wealth effect: As the
market falls, investors feel poorer and become more risk averse so that any news
leads to greater market reactions and trading, which causes volatility to rise; and
(4) risk effect: As volatility rises, risk premiums increase, leading to declines in the
market. There is also a technical supply-demand view: There is strong demand for
OTM puts created by portfolio hedgers and there is a strong supply of OTM calls
by portfolio overwriters.

In the currency markets, this situation is different. There is a strong demand for
OTM calls and puts on both sides of the market by hedgers in the two countries,
and market makers demand some premium for their services by providing liquidity
to the hedgers on both sides of the market. Thus in the currency markets, there is a
symmetric smile where the minimum is around the ATM options and the implied
volatility increases for both OTM calls and puts.
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7.3 EMPIRICAL EXPLANATIONS

If the Black-Scholes model were the correct model in its assumption of constant
volatility, then the implied volatilities of all options of the same type should be con-
stant across strike prices. In fact, this is not the case as market prices reflect proper-
ties of the price process not assumed in the Black-Scholes model, which is captured
in skews of implied volatilites. One empirical explanation for the smile is that re-
turn distributions may be “fat-tailed,” rather than normally distributed under geo-
metric Brownian motion (GBM). Price movements may not be properly modeled by
assuming GBM as large price movements may be observed with a frequency that is
greater than that assumed in the Black-Scholes model. As Carol Alexander notes,
“if returns distributions are normal but volatility is stochastic, or if volatility is con-
stant but returns are fat-tailed—or indeed, both—then large price changes will be
more likely, and consequently an OTM option will have a higher chance of becom-
ing ITM than is assumed in the Black-Scholes model. Therefore, the Black-Scholes
model price will be less than the market price for an OTM option.”? Given that
volatility is the only unknown parameter in the model, the only way for Black-
Scholes model prices to equal market prices is to increase the implied volatilities of
OTM options. Consequently, implied volatilities of OTM options will be greater
than ATM implied volatilities.

In many equity markets, there is a clear negative correlation between ATM
volatility and the underlying asset, but the strength of the correlation depends on
the time period and current market regime. Derman (1999) has formulated a hy-
pothesis that attempts to explain the skew in volatility by changes in market
regimes. In a range-bounded regime, volatility is constrained within certain ranges
so that volatility is independent of changes in price movements. In a stable or trend-
ing market, there is little change in realized volatility over the long run as markets
change in a stable manner. In a jumpy market, realized volatility increases as the
probability of price jumps increases. Consequently, fixed-strike volatilities decrease
when the asset price increases and increases when the asset price falls.

In Derman’s models, the skew is approximated as a linear function of the strike
price whose form depends on the market regime.? In the range-bounded regime, the
market skew is

6,(T) =6,-B(T)(X =S,

where 6,(T) is the implied volatility of an option with maturity T and strike X, S,
is the initial asset price, and o is the initial implied volatility. Thus, a fixed-strike
volatility is independent of the asset level; if the asset changes, the fixed-strike
volatilities will not change.

2Alexander (2001a), 30.
3Derman (1999), 7.
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7.4 IMPLIED VOLATILITY SURFACES

Volatility smiles are generated for a specific maturity. They do not tell us how
volatility evolves (changes) over time with different maturities. However, if we
plot volatility across time and strikes, an implied volatility surface can be gener-
ated. The following is an implementation to generate the implied vol for a given
maturity and given strike. It stores the implied vol in a map where the key to the
map is a pair structure containing the maturity and strike:

/**********************************************************************************
calcImpliedSurface computes the volatility surface of an option

chain

[in]: double price price of the stock
vector<double> strikes vector of strike prices
vector<double> maturities: vector of maturities
map<double, double> rates vector of risk-free interest rates
double dividend dividend yield of stock

[out] : map of implied volatilities (key is a pair<strike,maturitys>

**********************************************************************************/

map<pair<double, int>,double> OptionCalc::calcImpliedSurface (double price,
vector<double> opPrices, vector<int> strikes, vector<double> maturities,
map<double, double> rates, double dividend)

map<pair<double, int>, double> surfaceMap;

map strike and maturity

// to implied vol
pair<double, int> TXPair; // time (maturity) - strike

// pair
vector<pair<double, int> > vecPair; // vector of TXPairs

vector<pair<double, int> >::iterator vecPairlIter;
vector<doubles>::iterator pricelter;

int j = 0;

int cnt = 0;

vector map iterator
vector price iterator

const double epsilon = 0.000001; // error tolerance

double error = 0.0; // error of between market
// and model prices

double voll = ; // implied vol

double vol2 =
double vega = ;

double BSPrice = 0.0;
double marketPrice = 0.0;

7

o o O
o o O

int* strike = new int[strikes.size()];

double* maturity = new double[maturities.size()];
double* call = new double[opPrices.size()];

cout .setf (ios::showpoint) ;

temp stores vols
option vega

black scholes price
market price

array of strikes
array of maturities
array of call prices
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cout.precision(3) .

copy (strikes.begin(),strikes.end (), strike) ;
copy (opPrices.begin() ,opPrices.end(),call) ;
copy (maturities.begin() ,maturities.end () ,maturity) ;

if (type == ‘C’)
{
for (pricelIter = opPrices.begin(); priceIter != opPrices.end(); pricelter++)
{
marketPrice = *pricelter;
voll = 0.65; // initial volatility guess for Newton-Raphson
do
{
BSPrice =

calcBSCallPrice(voll, rates [maturityl[cent]],dividend, strike [cnt] ,price,T);
vega = calcVega (price,strikelcnt],rates[maturity[cnt]],dividend,voll,T);
vol2 = voll - (BSPrice - marketPrice)/ (vega) ;
error = vol2 - voll;
voll = vol2;
1
while (abs(error) > epsilon);
TXPair.first = maturityl[cnt];
TXPair.second = strike[cnt];
vecPair.push back (TXPair) ;

surfaceMap [TXPair] = voll;
cnt++;
1
1
else
{
for (pricelIter = opPrices.begin(); pricelter != opPrices.end(); pricelter++)
{
marketPrice = *pricelter;
voll = 0.55; // initial volatility guess for Newton-Raphson
do
{
BSPrice =

calcBSPutPrice(voll, rates[maturity[cnt]],dividend, strike[cnt],price,T);
vega = calcVega (price,strikelcnt],rates[maturity[cnt]],dividend,voll,T);
vol2 voll - (BSPrice - marketPrice)/(vega) ;
error = vol2 - voll;
voll = vol2;

}

while (abs(error) > epsilon);
TXPair.first = maturityl[cnt];
TXPair.second = strikel[cnt];
surfaceMap [TXPair] = voll;
cnt++;
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// print out implied vol
for (vecPairIter = vecPair.begin(); vecPairIter != vecPair.end(); vecPairIter++)
cout <<surfaceMap [*vecPairIter]) << endl;

}

return surfaceMap;

The volatility surface generated from IBM market-traded call options on Sep-
tember 20, 2002, is shown in Figure 7.4 for maturities up to six months. There are
only a few market quotes for contracts available beyond six months, which are not
included; including them would cause discontinuities. However, implied volatilities
for options that are not market traded could be calculated and included using lin-
ear interpolation.

The same volatility surface viewed from a different angle is shown in Figure
7.5. Notice the smile curvature of the surface along the strike axis. Also notice that
the surface is steeper (i.e., the gradient is higher), as the time to maturity increases,
especially for at-the-money contracts.

Consider the volatility surface of the S&P 500 on October 7, 2002, shown in
Figure 7.6, for maturities ranging from one month to nine months. The S&P 500
closed at 800.58. The dividend yield was approximately 1.48 percent.

If we include maturities more than nine months, 1 year to 1.75 years, as shown
in Figure 7.7, we get much more spiked volatility surface at the longer maturities—
to smooth the surface, linear interpolation would be required for all options that
are not traded across strike and maturity. The surface, like the surface for IBM, has
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a steep gradient along the maturity axis (the term structure) especially for at-the-
money options. With this local volatility surface of the S&P 500 index, one can
measure options’ market sentiment, to compute the evolution of standard options’
implied volatilities, to calculate the index exposure of standard index options, and

to value and hedge exotic options.*

“Derman, Kani, and Zou (1995).
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Practitioners generate volatility surfaces to study their evolution, but in pricing
theory, they want to find a function dependent on both time and price, 6 = o(S, #),
called a local volatility surface, that can be generated such that the risk-neutral dif-
fusion process dS = (r — q)Sdt = o(S, #)Sdz is consistent with the correct set of ob-
servable implied volatilities 6", This inverse problem is ill-posed, however, since
we have only a finite set of traded strikes and maturities from which to infer a con-
tinuous function ¢ = 6(S, #) that should be consistent with the set of observable im-
plied volatilities. Consequently, small changes in the data inputs into the surface
can generate large changes in the parameter estimates. Furthermore, given a local
volatility surface, this model will always generate the same implied volatility sur-
face. However, it is known empirically from market data that the actual implied
volatility surface is nonstationary.’

Cont and da Fonseca (2002) outline a procedure for constructing a smooth
volatility surface for arbitrary strikes and maturities. The procedure to interpolate
or smooth the discrete data set can be done in a parametric or nonparametric form.
The parametric form involves using cubic splines or (piecewise) polynomical func-
tions to fit the implied volatility smile.® Cont and da Fonseca focus on a nonpara-
metric approach using a Nadaraya-Watson estimator that filters the data set and
constructs for each day a smooth estimator of the implied volatility surface on a
fixed grid. The surface estimator is defined as:

n

o(m;, t;)glm—m;, t—1t,)
1

G(m, t)=1= -
Zg(m—m,», t—t;)
i=1

SCont and da Fonseca (2002).
¢Dumas, Whaley, and Fleming (1998), 95-106.
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where g(x, y) = (2n)exp(—x*2h,)exp(=y*/2h,) is a Gaussian kernel, # is the number
of options actively traded on the given day, typically around 100, 7 is the money-
ness x/s, and the time to maturity # ranges between a month and a year. The impor-
tant parameters are the bandwidth parameters in the Gaussian kernel, », and b,
which determine the degree of smoothing. Values that are too small will lead to a
bumpy surface, and values that are too large will smooth away important details.
The bandwidth can be determined using a cross-validation criterion or an adaptive
bandwidth estimator in order to obtain an optimal bandwidth A.”

Large sample properties of these estimators have been studied and are known.?
After obtaining a daily time series {o(m, t), = 0 . . . N} of smooth implied volatility
surfaces o : [m  ,m |x[t .t ]— [0, ), one can apply principal component
analysis (PCA), which is used to decompose (random) volatility surfaces into their
principal empirically identifiable factors.” Alexander (2001a) provides an excellent
discussion of how to use PCA to model volatility smiles and skews,!® and shows
how the first three principal components in PCA can explain much of the variation
in volatility skews. Alexander (2000), for example, shows that during most of
1998, 80 to 90 percent of the total variation in the fixed-maturity volatility skews
of the Financial Times Stock Exchange (FTSE) 100 index can be explained by just
three risk factors: parallel shifts, tilts, and curvature changes that are captured by
the first three principal components.

The time series of smooth surfaces are then modeled as stationary random sur-
faces to which one applies a numerical procedure like Karhunen-Loeve decomposi-
tion in which each random surface, viewed as a random field, can be expressed as a
superposition of uncorrelated random variables, each of which is the product of a
scalar random variable (an eigenvector) with a deterministic surface so that the sur-
face has the representation:

N
G, (m, 1) =0, (m, Texp| D x4 1)y (7.8)
k=1

where

x (1) = (X, - Xo, fk>:IAXt(m, Vf; m, T)dmdr

7Cont and da Fonseca (2002), 49.

$Ibid.

A general discussion of PCA is given in Chapter 9.

°One model given by Alexander (2001a) is the PCA of fixed-strike deviations based on the
model

A(G, =G ) = lePI + “’szz + Wy P,

where the volatility maturity and the strike of the volatility are both fixed. Time series on the
change between the fixed-strike volatility from the at-the-money (ATM) volatility are used to
estimate the time series of the principal components P, P,, and P, and the constant weight
factors wy , Wy, and wy .
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are (a time series of) principal component processes {x,(¢), £ = 1, ..., N}, i.e.,
Ornstein-Uhlenback processes driven by independent noise sources Z Wiener or
jump processes,

dx,(t) = =A(x, (1) = X)dt + v dZ, (1), k=1,...,d

where A, represents the speed of mean reversion along the kth eigenfunction and vy,
is the volatility of implied volatilities along this direction;

d

X,(m, )= Y X (t)fym, ) =In o,(m, 1), 54(m, 1)
k=1

is the initial volatility surface, f,(m, t) are expanded eigenvectors (eigen-
functions) on the basis of a family of smooth functions (surfaces) (b/.), that is,
spline functions commonly used for interpolating volatility surfaces and yield
curves,

N
fitm, 1= agh(m, 1) +ey (7.9)

j=1

and & is the kth principal component. The g, are the elements of the matrix A
found by solving the orthogonality condition

CA = DBA (7.10)

where C and B are symmetric positive matrices, computed from the data such
that

C; =JAJA(hi(m’ ©)K(m, m’, =, ‘l:')b/-(m’, ‘C'))dmd‘c

D = diag(v?, i = 1, ..., N) where the v? are the associated eigenvalues (vari-
ances) such that v?>2v2>...2>0, and B, = (h, b/.). Numerically solving the gen-
eralized eigenvalue problem in (7.10) for D and A and substituting the
coefficients of A into (7.9) yields the eigenfunctions f,. Each eigenfunction is ac-
tually a surface: f, : A ¢ 2 — N, which is the solution of a Fredholm integral
equation defined by the kernel K(x, y), x, y € A, namely,

[ K, vt )y =03, (%) (7.11)
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The kernel is analogous to the covariance matrix of a random vector.!' Moreover,
the kernel K can be decomposed as

N
K(x, y)= > vt (X, () (7.12)

n=1

which by assuming that the errors in equation (7.9) are orthogonal to the approxi-
mating functions (b, 7 =1, ..., N) is known as the Galerkin condition. Plugging
equation (7.9) into (7.12), we get an error term

N
ey = Zal-]-(.[A K(m, m’, 1, V)b (m’, T’)dm'dr’—ul-zhl- (m, ‘t))
j=1

Thus, by the Galerkin condition, < €,, h/. > =0, we have

i“"”UA iekd | K, by (s’ v} [ by(xh, (x)dx] -0

j=1

which is just the orthogonality condition in matrix element form of equation
(7.10).

Empirical results of the procedure applied to S&P 500 index and FTSE 100 in-
dex options are given by Cont and da Fonseca (2002). Cont and da Fonseca also
propose a factor model for the implied volatility surface where the (log-) implied
volatility surface 6 (1, 7) is represented by the sum of the initial surface and its fluc-
tuations along the principal (component) directions.

Bodurtha and Jermakyan (1999) use a different nonparameteric approach to
invert option prices into a state- and time-dependent volatility function. Their ap-
proach is a finite-difference-based procedure based on a small-parameter expansion
of the option value functions. They consider a family of volatility functions,

i (T, Z)=c5+ Y eta v, Z) (7.13)
k=1

where €, 0 < & < 1, is a perturbation parameter used for volatility decomposition
purposes. The inverse solution does not depend on € in any way. Note that € = 0
corresponds to the Black-Scholes-Merton constant volatility case, while € = 1 is the
solution to their volatility surface estimation problem.

"Cont and da Fonseca (2002), 50.
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Following Bodurtha and Jermakyan, define F, = e"97§/K, the scaled forward
price of the spot price (relative to the option exercise price) that follows the
forward price diffusion process dF, = a(t, S)F dt + o(t, S)F,dz(t). A riskless
no-arbitrage portfolio for an exercise price-standardized call option is created:

M= AF, + C(t, F,)

where

C(t, S)
Cil(t, Fg)=e"—2—
k(t, Fg)=e X

Note that underlying F, and call value C, are unitless and the strike price is arbi-
trary. The no-arbitrage condition requires that dIT = 0 at any time ¢ By Ito’s
lemma, we have

aC, 1 9°C oC
dil =| =K + —%(t, S)FZ ——K |dr +| A+ =K |dz(z
[at +20(3)KaFI%] +(+aFKJz()

Thus, the riskless portfolio contains a forward position of A = —(dC,/dF,) and leads
to PDE that C,(t, F,) satisfies:

2
9k L2, s Sk
Jat 2 apé

C (0, F¢)=max(0, F¢ ~1), C(t, 0)=0

A change in the current time variable ¢ is then made to a scaled time-to-maturity
variable so that for an option with maturity T,

0Cy 1=, , 0*Cy
9K 4 ~To? (v, S)F =0,
v T2 10 W Sk oF (7.14)

CK(Oa FK):maX(Oa FK _1)3 CK(U’ O>:O

where the new scaled time variable is v = T/T, v € [0, 1] where T is the maximum
option maturity and ¢ is set to 0. An analogous case holds for a put value P,

_ 2
%+1T02(u, S)F? O Pk _ 0,
v 2 OF2 (7.15)

Py (0, Fy)=max(0, 1-F), Px(v, 0)=1

WWW.TRADING-SOFTWARE.ORG
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The valuation problem requires solving two parabolic PDEs, one for the call
PDE (7.14) and one for the put PDE (7.15). Since the strike index K is arbitrary, a
new variable Z is introduced such that Z = In(F,) and U(v, Z) = C,(v, F,). Thus, F,
defined over the range (0, o) is mapped to the variable Z with a range (—oo, ).
Plugging in Z and U into equation (7.14) yields

M+%T02 w, S){82U(v, Z) dU(, Z)]’ (7.16)

Jdv 972 0z
U(0, Z)=max(0, eZ —1)

An analogous equation is given for the put by using W(0, Z) = P (v, F,) in (7.15)."2

Given a volatility function that is time and spot price dependent, we can nu-
merically solve equation (7.16) for the associated European call option. Recovery
of the associated exercise-price-dependent option quotes requires two steps: first,
map U(v, Z) into respective forward price and exercise price option prices C,(t, F,).
Second, compute the actual quotes C(z, S) in the spot price—time space. The map-
ping is one-to-one with §(0) mapping to F,(T) and Z(T), S(T) mapping to F,(0) and
Z(0), and the corresponding elements of the spot price and exercise price adjusted
forward price sets mapping accordingly.'®

An g-analog of equation (7.16) under the volatility specification of (7.13) is
formed:

U, Z) 1=, U, Z) oU%(v, Z)
9 W2 T, § 2 &) _ 2|
w2 % T % (7.17)
U®(0, Z) = max(0, eZ —1)
Ut(v, Z) is then expanded into a formal power series with respect to €:
U, Z)= Y U, (v, 2" (7.18)

Define

ay =%T(56 and a, =%Tak v, Z)

2For simplicity, we discuss the volatility estimation problem only in terms of the call option
equation, but the process is analogous for the put equation.
13Bodurtha and Jermakyan (1999), 33.
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Substituting equations (7.13) and (7.18) into equation (7.17) yields

Wolv. 2) , $ U0, 2) s _ ZZO{aZUo v, 2) U, Z)J
14

v ~ 9 072 0Z
.~ (0*U,w, 2) 9U, (v, Z)
n'™ 2) Tl " 7.19
+ao;( o 5 (7.19)
+zzak a Un kzy Z) aUnflz (Ua Z) 8n+k—l
n=1 k=1 aZ

Equating equivalent powers of e-terms and applying associated initial or
boundary conditions yields the following system of equations:

Uy (v, Z) _ ZZO[aZUO v, Z) Uy, Z)]

v 97> 0Z (7.20)
U, (0, Z)=max(0, e —1)

Uy, Z) _ - °U, (v, Z) U (v, Z) s ?’Uy v, Z) U, (v, 2)

v 0N oz2 oZ N 92 oz  Jt (7.21)
U0, Z)=0

oU,w, Z) _. (0°U,, Z2) 93U, Z2)|, ~x - [ U, (v, Z) 93U, 4, Z)

=4 - +zak - >
v 072 0Z = 07> 0Z (7.22)

U,0, Z)=0

In the equation system, all equations, other than (7.20) differ from each other
only in the forcing or nonhomogenous term.'* The forcing term can be determined
by iterating over these equations (starting from »# = 1). At each step of the itera-
tions, the forcing term is obtained from the previous equation calculation. To com-
plete the procedure, one can infer @, from each equation k =4, . . . , n.

Bodurtha and Jermakyan develop an iterative optimization-based estimation
procedure of the parameters. They denote K, i = 1, , n traded strike prices and
T,j=1, , m, available option maturities ‘where T T Denote V. = T/T, Z,
In(et-9 T”z S/K s and Ui = eTiCH(0, S)/K.. Z, is the natural logarithm of the time-

41bid., pg. 35.
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zero and T-maturity forward price weighted by strike price K;; C¥(0, §) is the
time-zero call option price with strike K, and maturity T;; and U" is the K, strike
price weighted and T -maturity future value of this call. 5

The input parameter a, used to solve equation (7.20) is estimated by minimiz-
ing the following (least- squares) function:

6=y,

j=1i=1

v Zi ;) —uti[ (7.23)

Since, for any given 4, there are closed-form expressions for Uj/(v, Z, ;), one
can minimize (7.23) using a Newton-Raphson search for root of the first derivative
M,(a,). Given this estimate, one can compute both 9*U (v, Z)/0Z* and oU (v, Z)/dZ
and thus solve equation (7.21).'® The solution to equation (7.21) has the following

form:'”
exp[— [z =8 -ayv =) J
0T 4ay(v-x) 7.24
U, 2)= | | 2 F(x, E)dEdk (7:24)
0 oo \/4na0 v—X)
where

9*U, (x, g) U (x, €)
E 0 0
1(K’ &) K &{ a& 8§ J

For the 4, volatility perturbation, Bodurtha and Jermakyan define the associ-
ated minimizer, known as the minimand, as

=2

j=1i=1

vy Z;j)-UY Uy (v, Z,—,,—)]2+oc1£2(-) (7.25)

where o, is called a regularizing parameters and () is a nonnegative functional,
called a stabilizing functional, roughness penalty, or smoother, that satisfies certain

5Tbid.
16Tbid.
7Tikhonov and Samarskii (1963).
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conditions. While there are different stabilizing functional alternatives to use, the
following guarantee good numerical properties such as stability:

Le Sty 2
Qa,) = — (v, Z)| dZdv (7.26)
1 ! £ 6 ;0 awkazh
Le by +k 2
a 1 2
Q(F)= ——F (v, Z)| dZdv 727
1 I').J;kl J%_o[avk] ozt ! ) 727

These stabilizing functionals are squares of the H” norm, where p is a suitably
chosen nonnegative integer. Once the regularizing parameter o, is known, solve for
d, as the minimizer of optimand (7.25). The regularizing parameter can be deter-
mined by the discrepancy method of Tikhonov and Arsenin (1977). Define the dis-
crepancy function

piloy) = i
j=1 i

—1

n

. 2
U\(v), Z,j)-(U =Uy(v;, Z,))| - (7.28)

where 8 is a bound on the least-squares error of the traded option price quotes and
is nonnegative. Define U*’ as the actual call option value at time zero and spot price
$(0). Following the definition of the quoted option prices U/, the actual values U/
are also scaled by the strike price K, and maturity time v;. However, it is not ex-
pected that quoted option prices and the actual option values will coincide due to
nonsynchronous option and spot quotes, bid-ask costs, and other factors that in-
troduce the error U/ — U/, The term § is a chosen as the bound parameter on the
size of the least-squares error:

iil U™ —Un2<§? (7.29)

j=1 i=1

Given 9, the solution for the unique volatility function, 4, is the minimizer
of the optimand in (7.25). The regularizing parameter, o, is chosen such that it
is a root of the discrepancy function in (7.28) so that p (o) = 0. The general theory
of Tikhonov and Arsenin (1977) guarantees that a unique solution to the prob-
lem exists.

To implement their approach, Bodurtha and Jermakyan use an explicit finite-
difference scheme. They solve two separate minimization problems—one to com-
pute the a,’s and one to compute o,. They first calculate the Black-Scholes-Merton
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implied volatility for a fixed number of option quotes using a Newton-Raphson
search for the roots of the optimand derivative with respect to 4. Given closed-
form expressions for U, (v;, Z;,) terms and their partial derivatives, numerical inte-
gration procedures can be used to discretize them In particular, they make a change
of variables & = Z ay and denote a,w,8)=a,(v,Z)fork=1,...,nand Hv,
£) =U,, 2), é Z),. H (v, é) U, (v, Z) which changes the sys-
tem of equatlons in (7. 20) (7 21) and (7 22) to

aH0<UJ &) = azHO(U’ é)
v a2 (7.30)
0(0, &) = max(0, et -1)

w T oe? ok

Hl(Os E.a) =

O\, &) _ . PHw &), o o Holws &) Hy(v, &)
2 1’ ’ (7.31)

1N}

OH,w, Z) _ - 0*H,(v, §) +Ya O*H, (v, &) _9H, (v, §)
v 0 o2 i Je2 € 'L (7.32)
H,(0, &)=

The system can be discretized using an explicit finite-difference scheme with
time steps Av and state spacing AE with v, = 0, v, = v, + Av for j = 0, 1, , M
- 1, where M = 1/Av. The state space lme can be truncated by a number L > 0,
that is, E&e [-L, L]. Boundary conditions are imposed at § = L. For sufficiently
large L, it is assumed H(v,2L)=0for 0<v<1. Moreover,§{ =L, =& +Af
fori=0,1,..., N, where A =2L/(N + 1), _ =L,and §,&,,...,E arein-
ternal grid points that belong to (=L, L).

Equation (7.31) is discretized with a first-order forward difference formula for
0H,/dv and a second-order second central difference formula for 0°H,/0€?. These
discrete approximations lead to the trinomial method. For stability, the risk-neutral
probabilities of an up or down movement p satisfy the following inequality:

(Ag)? 2

The discretization of equation (7.31) becomes

PN - N £ (1) 13
H1(z,/+1)—pH1(z—1,/)+pmH1(z,1)+pH1(z+L1)+Ava1(z,/)T (7.33)



298

STOCHASTIC VOLATILITY

fori=1,...,Nandj=0,..., M- 1. The probability of no movementisp =1-
2p. Following Bodurtha and Jermakyan, the updated (j + 1)th time step value is
computed from p and

0’ Hyli, j) _ 0*Ho;, &)
aaz aZ&Z

as well as the previous (jth) step H (i, j) = H](v]., €), and a,(i, j) = ﬁ](vf, €,). More-
over, at all time steps, the

9”Hy (i, j)
0&?

terms can be determined from the computation of H (i, j). Given boundary condi-
tions H, = 0 at § + L, equation system (7.33) can be written in matrix form as

H,[j + 1] = AH,[j] + F,[/] (7.34)

where

[ PH, ) ]
Ava, (1, j)—2=2
1\ 7 8&2
- |H2, o Ava 2, —= L
H,[j]= 1<: / > Filj1= VAl ) €2 (7.35)
H1<N9 /) alH N i
Ava (N, j) olN, /)
i k& ]
D P 00 0]
P Pwm D 0 0 0
PO L 0.0 0
00 0 0 P P P
o0 0 O 0 P Pu]
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From the initial condition in equation (7.31), we know H,[0] = 0, and

H,[1]=F[0],
Hy[2]= AH, [1]+ F[1] = AF,[0]+ F;[1],
H,[3]= AH,[2]+F[2] = A’F; [0]+ AF,[1] + F,[2],

H,[M]=AH,[M -1]+F,[M 1]
= AM7IE [0]+ AMZ2E [1]+ ... + AF[M -2]+F,[M 1]

We can write this system as

H, = AF, (7.36)
where
[H,[1] Fy[1]
H, =| g 2| Bl (7.37)
| Hy[M] E[M-1]
[ 1 0 0 0 0 0 0]
A I 0 0
R
AA;*Z AM;3 AM*.“ AA;H A 1 6
AMTL AM=2 qAM=3 0 q M= A2 AT

In equation (7.36), H, and F, are NM x 1 column vectors, A is an NM x NM
lower triangular matrix, and I is the N x N identity matrix. The coordinates of vec-
tor H, correspond to option quotes that are indexed across maturities and strike
prices.'® Since the option quote set is not complete in the coordinate space of H,, H,
is underdetermined, which makes the system in (7.36) underdetermined. To resolve
the underdetermination of the system, projection and regularization steps are used.
For the projection step, denote m as the number of quoted option maturities and »

8Bodurtha and Jermakyan (1999), 40.
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as the number of quoted option strike prices for each maturity. Then, P : RMN —
N7 s the standard projection of the real (M x N)-dimensional space onto its (m
X n)-dimensional subspace. Bodurtha and Jermakyan let H} = P - H, and define
A as the mn x MN rectangular matrix obtained by eliminating the rows of ma-
trix A that correspond to the nonquoted options."” Rearranging equation (7.36)

yields

H;:A F (7.38)

p 1

However, since system (7.38) has more variables than equations, it is overde-
termined and thus has an infinite number of solutions (or no solution at all). To
find a unique solution, Tikhonov regularization is used. To define a regularizer, de-
note G as a vector on which a set of forward difference operators act (i.e., the func-
tion to be regularized),

G[1] G(j, 1)
G- G[:Z] and G[j] = G<:/, 2)
G[M-1] G(j, N)

which are MN x 1 and N x 1 vectors, respectively. Taking the first-order difference
of G over the state variable yields:

G(0, N)-G(0, N-1)
1 -G(0, N)

GM -1, 2)~GM -1, 1)

G(M -1, N)=G(M -1, N -1)
-G(M -1, N)

Tbid., 41.
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A good choice for G =2, is:
a,(1, 0)
Ei(&’ 0 (7.39)
a1, 1)
|3, (N, :M— 1)]

which is the vector of values one wants to ultimately solve for as solutions to use in
equation (7.13) to determine the volatility surface.

The corresponding first-order difference operator, which corresponds to 9/d&, is

D§=

1
AE|.

D, 0 0
0 D 0
0 0 D ..
0 0 0

0

0 1 1
0 0 -1
t |withDg=| 0 0
D§< | 0 0

0
1
-1

0

0

-1

Thus, _Dé is a bidiagonal MN x MN matrix with homogenous Dirichlet boundary
conditions (from the right). Similarly, we can define the second-order forward dif-
ference operator, corresponding to d*/9&2,

Dgz 0 0
0 Dgz 0
0 o0 Dgz
0 o0 0 0

0 _
1 -2
0 1
WhereDgz =10 0
0 0

D§24 L

-2
1

Dgz is an (N x N)-dimensional matrix, and D,, is an MN x MN block tridiagonal ma-
trix. The first-order difference operator over time, corresponding to d/dv, is given by

[-D, D, o0
0 -D, D,
0 0 -D, ..
o 0 0

0 0 1
0 0
: where D, =|0
_DV Dv
0 -D, | 0
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I_)V is an N x N identity matrix, and _DV is an MN x MN matrix. The forward second
difference operator over time, corresponding to 9%/dv? is given by

D', D), D', 0 .. 0 0 0
0 D' D) D', .. 0 0 O _ -
v v v 1 O
0 0 D' D% 00 0 1
_ 1 ) v v )
D.=—: 0 0 0 |withD',=|0 0
Av v .o
0 0 0 0 : D), D, 0
0 0 0 0 0 D', D? 000 0 1]
0 0 0 0 0 0 D',
and
2 0 0 0
0 -2 0 0
Dzz_ .
v -2
0 0 0 -2

_sz is an MN x MN block tridiagonal matrix with three N x N blocks, D}, D%, and

again D). Finally, the mixed forward difference operator, corresponding to 9*/0vdg,
over both time and state is given by

Dv§ _Dv§ 0 0 0 Fl -1 0 ... 0 0“
0 D, -Dy 0 0 0o 1 -1 0 0
— 1 . .
D, = : O : with D=0 0 1 .. & :
AVAE L
0 0 0o .. Dvg —Dvg : : o1 -1
0 0 0 ... 0 Dy o 0 0 .. 0 1]

D . isan N x N bidiagonal matrix and ﬁv ¢ is an MN x MN block bidiagonal matrix.
Denote the operator (U; V) as the L? scalar product of the (MN x 1)-dimensional
vectors U and V. Then we can write the regularizer as a function of the difference
operators and the general column vector G:

Q(G) = AvAE[(G; G) + (D,G; D,G) + (D,:G; D,:G) + (D,G; DG) + (D:G; D:G) + (D,,G; D, G)] (7.40)

To solve for a unique solution in equation (7.40), we need to solve a discrete
analog to the optimand in equation (7.25):

Me(F,) = (AF, - (H - H);AF, - (H -H?)) + 0, Q(G) (7.41)
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The interested reader can find the remaining details for minimizing equation
system (7.41), which requires also finding o, as a solution to a corresponding dis-
crepancy function, in Bodurtha and Jermakyan’s paper, which applies the method-
ology to Chicago Board Options Exchange (CBOE) S&P 500 option transactions.

7.5 ONE-FAGTOR MODELS

If the Black-Scholes assumption of constant volatility is relaxed, we can try to
model the evolution of the asset price using a volatility diffusion coefficient that is a
deterministic function of time—that is, 6 = 6(¢)—so that the SDE of the asset price
can be written as

dse) _ .
S = (r—q)dt +o(t)dz(t) (7.42)

Define a conditional variance under the risk-neutral measure Q as follows:
VarQ[X(T)] = ES[XX(T)] - (E9[X(T)])?

t

Then the instantaneous variance of the return on the asset over an infinitesimal
time interval dt is

Var, [@] = Var, [w] —E, |:(rdt +olt) dte(t))2 } —(rdt)? = G (1)t

S(t) S(t)
ln(S(T)j
S(t)

the continuously compounded return over the entire finite time horizon, then from
Ito’s lemma we have:

If we consider a random variable

T T
S(T)=S(¢t) exp{(r —q)t— %J’Gz (u)du + J.G(u)dz(u)} (7.43)

t

The Ito integral

o(u)dz(u)

~ C—y
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is a normal random variable with mean zero since it is a martingale (i.e., no drift),
and with variance

T T
Var{jo(u)dz(u)] - JGZ ()du (7.44)
Therefore, we get
ST ess
ln( S ] = pt+ote(T) (7.45)
where
1 T
6% == | 6% (u)du
T

is defined as the average volatility over the time horizon and

-
2 q 2
We can rewrite equation (7.43) as
S(T)=S(2) exp(m + G«ES(T)) (7.46)

Thus, we see that if we allow the volatility to be a deterministic function of time,
the pricing formula is still Black-Scholes, where we need to plug in the average
volatility over the lifetime of the option.

The result is also very intuitively simple if we look at it in discrete time. In dis-
crete time:

S(T) = S(t)exp(ur+§&)

where the random variable
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where

N T
2.1V e2_1{s
52 = Ng'ci _T}[G ()du (7.47)

is the average volatility?® on [¢#, T']. Thus,
&= JING%e
where ¢ is the standard normal deviate. Then,
S(T) = S(t) exp(u‘r + aﬁe)

is a lognormal random variable with volatility 6. Notice that this model of time-
dependent volatility allows fitting to any term structure of implied volatility and
there is no smile effect: Implied volatilities for options of all strikes with the same
maturity have the same implied volatility equal to the average volatility.

7.6 CONSTANT ELASTICITY OF VARIANCE MODELS

If we assume that the volatility is a function of the underlying asset, S—that is, ¢ =
o(S)—then we get the following process:

S0 - q)dt +o(S)dz(t) (7.48)

However, in general, we are no longer able to solve the SDE analytically, and have
to do it using numerical methods. The constant elasticity of variance (CEV) model,
initially posed by Cox and Ross (1976),2! assumes such a volatility function:

s\
o(5)= 50| 557 (7.49)

ds(t)
S

20Average volatility can be viewed as the volatility implied by ATM options.
21Cox and Ross (1976), 145-166. Cox and Ross assume the volatility function is 6S*where
0 < o < 1. Thus, their model for the asset price is dS = uSdt + 6S'°dz.
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where S(0) is the spot level at time 0 (when we calibrate the model). The CEV in
(7.20) is characterized by two parameters: the ATM local volatility 6, and the skew
parameter V. The estimates of y that produce the observed implied smile curve in
the S&P 500 option market are around —4. The model with 0 <y < 1 is called re-
stricted CEV since the gamma is not enough to fit the observed smile. The model
with vy = 1 is the standard Black-Scholes lognormal process. Models with v < 0 are
called unrestricted CEV. They fit the smile rather well. The problem, however, is
that for the unrestricted CEV, the volatility goes to infinity as the asset price goes to
0. This is an undesirable feature of the model that can be handled by introducing a
cutoff point that prevents the volatility from blowing up. The restricted CEV PDE
is actually analytically tractable and can be expressed in terms of hypergeometric
(Bessel) functions as shown by Cox and Ross (1976). However, while there are al-
ternative parametric choices that allow the model to fit the observed smile for a
given maturity date, such parameterizations do not fit the model to the term struc-
ture. Alternative specifications of the volatility are needed.

It is important to note that with the CEV model, the variance of the asset rate of
return depends on the price of the underlying asset, and/or time as well. This is a dif-
ferent framework than the Black-Scholes, which assumes constant variance and in-
dependence of changes in asset returns on the asset’s price level. The Black-Scholes is
actually a special case of the CEV model when y = 1.

Cox and Rubinstein (1985) provide a closed-form analytic formula for pricing
a European call with CEV:

oo o

C=8) gl )G+, y)-Xr™ Y gln+h, x)G(n, y)

n=1 n=1
where
he— L - 2Mogr ann g, 2Mog  an
20-7)" 7 &t - ’ &' - 1)
and
9= T2

is the gamma probability density function and

oo

Gln, w)= [ gln, 2)dz
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is the cumulative gamma distribution function. When using the CEV formula for
different values of v, the values of 6 are standardized so that the current volatility is
the same in each case. Thus, as the skew parameter y changes, G changes so that GS”
= 08. Thus, changes in option prices are due solely to the differences in the way the
volatility changes as the asset price changes.??

7.7 RECOVERING IMPLIED VOLATILITY SURFACES

In the nonparametric approach, we try to infer the local vol surface from market-
traded options using a numerical optimization procedure such as the procedure
shown earlier of Bodurtha and Jermakyan (1999). In an ideal world, we would like
to find the implied volatility surface o(S, t) that produces the continuum of observ-
able option prices C(S(0), 0; X, T) at time 0. By Dupier’s equation, we have

a—c+(r—q)Xa£—qC
GZ(S t)z 8T aX
1,2 9C
2 aXZ X—-8,T—t

Thus, the local volatility is expressed through an infinitesimal calendar spread, an
infinitesimal call spread, and an infinitesimal butterfly spread.

The problem with Dupier’s equation is that only a finite number of strikes and
maturities are actually traded in the market, and the problem of inferring the local
volatility surface (and implied probability distribution) from option prices is ill-
posed. We can try to overcome this problem by using a nonparametric procedure to
handle the case of a finite number of strikes and maturities, known as the inverse
problem for the option-pricing PDE. Suppose we have a finite number of market
quotes C, for calls with strikes X, and maturities T,. At the same time, these option
prices must satisfy the pricing PDE:

2 - S T+ =f

1.,09C aC 9C
2 JS? oS ot

subject to the terminal conditions:

C(S(T), X, T.) =max(S(T)) - X,0)attime T,i=1,2,...,N,j=1,2,..., M
i ] i 4 ] ’

22Cox and Rubinstein (1985), 364.
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The inverse problem for the pricing PDE is to find a local vol surface that pro-
duces the observable market quotes for options as solutions to the pricing PDE.
Since there are only a finite number of option quotes, the problem is ill-posed. One
can try minimizing the least-squares error on the set of option quotes:

N M _
Y Ycs, s X;, T,)-C, (7.50)

i=1 j=1

where C(S, #; X, T)) are Black-Scholes vanilla option prices (calculated assuming a
functional Volatlhty) and C;; are quoted market vanilla option prices (the arithmetic
average of recent known bid and offer prices) over a range of strike prices, X, j =1,
, M, and maturities T,, i = 1, , N2

An additional criterion that we mlght impose is to find a solution that is also
closest to some Black-Scholes (lognormal) prior or which is the smoothest solution.
Unfortunately, it is a very complicated numerical optimization problem and gives
rise to rather unstable results when a limited number of strikes and expirations is
used. In fact, Tikhonov regularization is needed to cope with the ill-posedness of
the problem. Such regularization is a self-stabilizing procedure to force “well-
posedness” in the problem. Regularization restricts the solution to the smoothest
functions that minimize the difference between Black-Scholes prices and quoted
market prices. Jackson, Suli, and Howison (1999) use such an approach to generate
a deterministic volatility surface represented as a space-time spline by minimizing;:

N M _ 1/2
ZZ( i[C(S, 5 X;, T,)-C; ) +G? (7.51)

i=1 j=1

where G is the regularizer:

Q2 0 , t.)/dS L czac , th)/ot
=Z;Z P+1PQ11 +2.2 P+p1 .

p :1 p=1

and P is the state-space dimension of the natural cubic spline for Se [S_ ,S_ 1, O
is the temporal space dimension of the spline, w is a weighting function that reflects
the importance of particular prices; that is, at-the-money prices should be weighted

23The Black-Scholes prices can be found by solving the Black-Scholes PDE by transforming
the problem via a change of variables and then solving the resulting transformed problem by
a piecewise quadratic finite-element method in space and Crank-Nicolson finite-difference
method in time. See Jackson, Siili, and Howison (1999) for details.
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higher than out-of-the-money prices since they are more liquid (it is assumed that
w;; > 0 and X;; w;; = 1), and ¢, and ¢, are positive constants.** Their approximation
of (S, t) is specified by the matrix of spline weights qu = G(Sp, tq).

7.8 LOCAL VOLATILITY SURFACES

To fit both the smile and the term structure (the entire implied volatility surface),
we need to consider a more general process that allows the volatility to be a func-
tion of the asset price and time to maturity, that is, 6 = o(z, S):

dS(t) = uS(z)dt + o(t, S)S(t)dz(¢) (7.52)

where L = 7 — g. We need to solve an inverse problem: find a local volatility sur-
face o(S, #) that produces the given implied volatility surface (matrix). There are
two approaches: parametric and nonparametric. In the parametric approach, a
parametric form for the local volatility surface is assumed and its parameters are
then estimated. After the parameters are estimated, robustness analysis is per-
formed to ensure the model can properly fit the evolution of the surface over
time. The model is walked forward on (out of sample) data and the parameters
are reestimated at each step. If the parameters are stable (i.e., change slowly over
time), the model is said to be robust. Otherwise, if the parameters are unstable
(i.e., change sharply over time), the model is not robust. An example of a para-
metric approach would be to try estimating a CEV process with time-dependent
ATM volatilities:

N
dS(t)=uS(t)dt+60(t)(mj dz(t) (7.53)

24Jackson, Siili, and Howison (1999), 12.
The natural cubic spline is the smoothest of all piecewise cubic interpolants such that the en-
ergy functional

8

% J d9%o(S, t)/0S*dS
Smin
is minimized. When specifying the spline, P + 1 state nodes areused 0 <S_ =S5 /<S8 <+ <
§,<-+-<8,=5 <, while O + 1 temporal spline nodes are used 0 =z, <#, <+ - - <t <---
T max q
t, = .
0] ma;

X
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An alternative parametric form is:

dS(t)=uS(t)de + o, (2) exp(—K[%)]dz(t) (7.54)

The volatility does not blow up as the asset price, S(¢), tends to 0, but approaches
the finite value o,(z)e".

Brigo and Mercurio (2001b, 2001¢) have developed a more sophisticated ana-
lytic model for finding the local volatility based by allowing the asset marginal
(risk-neutral) density to be a mixture of known basic probability densities. They
consider an extension of (7.22) to N basic diffusion processes with dynamics®®
given by:

dsi(t) = uS(t)dt + v(S'(2), t)S'(t)dz(t),i=1,..., N (7.55)
with an initial value §'(0) and where, for each #, p'(¢,+) is the density function of Si(z),
that is, pi(¢, y) = d(QT{S'(¢) < y})/dy, where pi(0) is the 8-Dirac function centered in
S5,0), and v (t, y)’s are real functions satisfying regularity conditions to ensure exis-
tence and uniqueness of the solution in (7.24). In particular, for suitable positive

constants L and L s, the linear-growth conditions hold for the local volatility o(z, y)
function and the real-valued volatility functions vz, y):

6% (y, t)y? < L(1 + y?) uniformly in ¢ (7.56)
and
vi(y,t) <L(1+y?*) uniformlyinzi=1,...,N (7.57)

We need to find a local volatility such that its T-forward risk-adjusted measure, Q-
density of § satisfies:

N N
Pt =107 50 < =Y 0 L0TS W= Y A ) (7.59)
dy i=1 dy i=1

2587 can be any asset that follows a diffusion process such as a stock or foreign currency as
well as a spot or forward interest rate (simply use F' instead of §').
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The A s can be interpreted as weights of each individual marginal density function
pi(-, t). As Brigo and Mercurio show, indeed p(-, #) is a Q"-density function since, by
definition, the T-forward expected asset price is:

o N o N
Jyote, yidy =Y % [p' e, vidy = 31,80 = S(0)et
0 i=1 0 i=1

Brigo and Mercurio claim that the inverse problem is essentially the reverse
of that of finding the marginal density function of the solution of an SDE when
the coefficients are known. In particular, 6(z, S(¢)) can be found by solving the
Fokker-Planck PDE, which is the equation that must be satisfied for the (ran-
dom) asset price to be a martingale; that is, the PDE sets the drift of the stochas-
tic process to 0.

2 oty y)= = Guyptt, Y+ L2 (62, iyt ) (7.59)
o 0 YT TGy WP YIS e !

given that each marginal density pi(z, y) satisfies the Fokker-Planck equation and as-
suming the volatility of underlying asset i = 1, ..., N, is v(t, y) = o(t, y)y, which is
a deterministic function of time and the underlying itself.

) 2
L0ty y)= = e, Y+~

ot Jy 20y yIP'(ts y)) (7.60)

Using the linearity of the derivative operator and using definition (7.59),

N N
> ’at y)= Y A -[—— wyp' (, y} Zk{ 2(t, Y20, y))]
i=1 i=1

Then by substituting from (7.60) we get

S L2 w2 e v |= S L2 0 iy | 1)
28 P z ) D) i 28)}2 5 P} .

i=1 i=1

Using the linearity of the second-order derivative operator,

82 . 2 ) aZ 2 2 S i
e DA A = 7|° & YY" D bt y)
Y | i=1 y

i=1
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This second-order differential equation for 6(¢, -) can be solved to yield the
general solution:

N N
O (1, Yy Y Nb' (1 )= D it Y)p', ¥)+ Alt)y + B(E)
i=1 i=1

However, the regularity condition in (7.56) implies that the limit on the left-
hand side is zero as y — . In this case, the right-hand side must have a zero limit
as well. This occurs if and only if A(#) = B(¢) = O for all z. Therefore, we obtain a
function for o(z, y) that is consistent with the marginal density (7.58) and satisfies
its regularity condition in (7.56):

Nt Vo y)
olt, y)= o DY (7.62)

N .
>k )

Brigo and Mercurio denote

At NPy

2 A y)

foreachi=1,...,Nand (¢ y) > (0, 0), so that the local volatility can be written as

(7.63)

N (t )
ol (t, )= 3 Alt, y) P L2

i=1 y

The volatility can be written as a (stochastic) convex combination of the
squared volatilities of the basic processes in (7.55). Moreover, for each (¢, y), A(t, y)
> 0 for each 7 and

1A (t, y)=1

Moreover, the regularity condition (7.56) is satisfied by setting L = max,_, L,
and using the regularity conditions of the basic processes (7.57):

N

N
o’ (t, y)y* = Y Al Z Li(1+y*) < L{+y%)

i=1

While we have shown a strong solution of the local volatility, it is not necessar-
ily unique as verification must done on a case-by-case basis. However, we assume it
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is and plug (7.62) into the model SDE in (7.50) to yield the asset price dynamics un-
der the forward measure QT:

A )
dS(t) = uS(t)dt+ i=1 S dW(t) (7.64)

Y St wr s)

Equation (7.64) leads to analytical formulas for European options since using
basic densities p’ that are analytically tractable leads to explicit option prices under
the model process for the underlying asset which preserves the analytic tractability.
In particular, the marginal density as a mixture of lognormals, that is,

i 1
Pt y) = ————=exp| -

2
e+ V2
y\/‘i(t)m 2Viz(t)|:n ue + i ()]

Sh 2

where the standard deviation is defined as:
t

vit)= [ o )
0

has been studied often?® due to its relationship to Black-Scholes and due to its ana-
lytical tractability. Moreover, mixtures of lognormal densities work well in practice
when used to reproduce market volatility structures. Note that the absence of
bounds on the number of basic assets, N, implies that many parameters can be used
in the asset-price dynamics to improve consistency with market data. Finally, view-
ing local volatilities as a mixture of densities can be interpreted by viewing the un-
derlying asset S as a process whose marginal density at time # coincides with the
basic density p/(z, y) with probability A.

7.9 JUMP-DIFFUSION MODELS

The jump-diffusion model allows for large price movements over small time inter-
vals. This is a more realistic model than the Black-Scholes GBM process, which as-
sumes small price movements over small time intervals. In a pure jump process,

26See Ritchey (1990), Melick and Thomas (1997), and Bhupinder (1998).
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each successive price is almost as close to the previous price, but occasionally, there
is a low, but nonzero, probability that the price will be significantly different.

Merton proposed a model where in addition to a Brownian motion term, the
price process of the underlying asset is allowed to have jumps with frequency A.
The size of the jump is normally distributed. However, the risk of these jumps is as-
sumed to not be priced. It can be shown that the asset price movements converge to
a log-Poisson distribution, rather than to a lognormal distribution as # — <. The
pricing formula of European call option C is

© ATy 1
c=Y e s, %, 1 0 1

n
n=0

where 1= T2, A=A1 +x), C,4(*) is the Black-Scholes formula,
c,=Vo + nd*/1
and

nln(l1+x)
T

7, =r—AK+

In implementing the formula, we need to terminate the infinite sum at some
point. But since the factorial function is growing at a much higher rate than any
other term, we can terminate at approximately # = 50, which should be on the con-
servative side. To avoid numerical difficulties, use the following expression:

e—}»‘t (5\,’[)"

n!

At n 5 N n
U =exp ?vt+nln(7w)—21ni

i=1

=exp| In| ¢

The following is an implementation for pricing a European call option using
Merton’s jump-diffusion model:

/**********************************************************************************

calcJumpDiffusion

[in] :

calculates the value of a call option with jump diffusion.

double price : price of the stock

double strike strike price

double rate risk-free interest rate
double div : dividend yield of stock 1
double vol : volatility of stock 1
double T time to maturity (in years)
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double lambda : parameter of jump diffusion process

double kappa : parameter of jump diffusion process

double delta : parameter of jump diffusion process
[out] : double : call option price

**********************************************************************************/

double JumpDiffusionModel::calcJumpDiffusion (double price, double strike, double
rate, double vol, double T, double lambda, double kappa, double delta)

{

const int MAXN = 50; // maximum number of iterations
double lambdatilde = lambda* (1 + kappa) ; // lambda tilde

double logn = 0.0; // sum of log(i), i =1 . . . n
double r n = 0.0; // adjusted risk-free rate
double deltasgr = deltaxdelta; // delta squared

double vol sgr = vol*vol; // variance

double voln = 0.0; // sum of volatilities

double gamma = log(l + kappa); // gamma

double call = exp(lambdatilde*T)*calcBSCallPrice(vol,rate-lambda*kappa,0.0,
strike,price,T);

for (int n = 1; n <= MAXN; n++)
{
logn += log(n) ;
voln = sqgrt(vol sgr + n*deltasqr/T);
r n = rate - lambda*kappa + n*gamma/T;
call += exp(lambdatilde*T + n*log(lambdatilde*T) -
logn) *calcBSCallPrice(voln,r n,0.0,strike,price,T);

}

return call;

7.10 TWO-FAGTOR MODELS

Since one-factor models cannot capture the evolution of the implied volatility sur-
face, the next stage of generalization is to use a two-factor stochastic model where
both the underlying asset and its volatility, both random variables, evolve simulta-
neously by SDEs. Such stochastic models are used to model the time evolution of
the implied volatility surface. However, since these two random variables are corre-
lated, it is necessary to impose their correlation into the model:

ds /S =u(S, t)dt + (S, 1)dW,
do = oo, t)dt + V (o, t)dW

where o is the drift of the volatility and V is the volatility of the volatility. Note that
dW’s are Wiener processes that are correlated.

E[dW,dW ] = pdt
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We can translate these correlated deviates into uncorrelated deviates by letting

dzy =dWg and  dz, =pdWs ++1-p*dW,

so that E[dz,dz,] = 0. This two-factor process can be simulated starting from some
initial conditions $(0) and ¢(0).

The correlation is an important part of the model. If the correlation is negative,
volatility increases as the underlying asset falls, and volatility decreases as the un-
derlying rises. Empirically, the volatility smirk in the S&P 500 index with a fatter
lower tail in the implied probability distribution is observed. If the correlation is
zero, the symmetric smile with both slightly fat tails is observed as in the foreign ex-
change market. If the correlation is greater than zero, volatility decreases as the un-
derlying falls and increases as the underlying rises. Empirically, one gets a skew
with a fatter upper tail in the implied probability distribution, which is usually not
present in financial markets.

The following is 