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PREFACE

This text is written for instructors, students and researchers in the social and behavioral sciences
who wish to analyze data that result from subjective responses. This edition concentrates on
simplifying ways to handle data as opposed to the finer mathematics of how each program works
and is addressed to general practitioners interested in the measurement and representation of
attitudes. The methods presented have been chosen because they: (1) will handle the majority of
data analysis problems; (2) are useful; (3) are easy to comprehend; and (4) have functional
software solutions.

The second edition of Scaling Methods is prompted by the demonstrated value of the first edition
in helping faculty and students to do research in the behavioral sciences. The senior author has
taught a course in scaling methodology at the University of Hawai'i for three decades. Scaling
Methods (Dunn-Rankin, 1983) has been the primary text for this course since the books' initial
publication. During the last ten years the Department of Educational Psychology at the
University of Hawai'i graduated 45 Ph.D. candidates. Over 40 percent of these graduates utilized
some form of scaling methodology as part of their dissertation research. No other single course
has had as much influence on the exploratory research of the department's students. In addition, a
great many other doctoral candidates in such diverse fields as Communication and Information
Sciences, Zoology, Library Science, Linguistics, Teaching English as a Second Language, Social
Work, Public Health, Psychology, and Educational Administration have utilized scaling
techniques in their dissertations.

What's New?

The new text emphasizes functionality. The first edition was written to bring scaling
methodology into use in behavioral science research. Unfortunately the necessary software
existed mainly on paper in the back of the text or was isolated in places like Bell Laboratories or
in a few University computer systems. Functional auxiliary FORTRAN programs were only
available at the University of Hawaii or Florida State University, places where the senior author
taught a course in scaling methods.

Professor Susan Wallace has converted these auxiliary programs and several other
methodological programs to run on any personal computer with Windows. She has annotated

xi



xii PREFACE

each of these programs and provided elaborate readme files and error messages. A supplement
to this second edition is a CD-ROM of programs necessary to get raw data into matrix form such
as the program, PEROVER. This specific software takes free clustering results and produces a
percent overlap matrix. The CD-ROM also includes nine programs for unidimensional and
multidimensional analysis. It includes programs such as TRICIR, and MDPREF. TRICIR does a
circular triad analysis of paired comparison data. MDPREF takes the results of TRICIR and
produces a multidimensional preference analysis. Details on how to use the CD-ROM are
provided in Appendix A. One hundred pages of FORTRAN computer programs in the first
edition have been deleted and most of these programs are now included on the CD-ROM.

In this second edition the authors have simplified the measurement process. The text illustrates
that there are only four different kinds of tasks that one can ask of respondents. They are
ordering, categorical ratings, free clustering and similarity judgments. Each of these tasks, such
as paired estimates of similarity (judgments of similarity), lead to a specific matrix of responses.
The matrix can then be analyzed by Multidimensional Preference Analysis (MDPREF). Different
tasks require different types of responses and their analyses are not the same. To this end the
authors have created a Map of Scaling Methodology (see page 238). This is a flow chart with the
task types at the top, intermediate steps in the middle and final analyses near the bottom. This
map is a micro representation of the text and the authors are pleased that it graces the cover of
the book. After every task presented in the introduction a specific flow chart is included.

The basic methods and statistical measures presented have not radically changed. But their
presentation has been rewritten. Professor Shiqiang Zhang has gone over every calculation in
the text and corrected specific errors, errors of omission and statistical errors pointed out by the
reviewers. A new chapter on Order Analysis is introduced. The chapter on Factor Analysis has
been extensively rewritten. Every chapter has been rewritten and many new examples included.
For example, the introduction now includes a simple illustration of a two dimensional solution
which can be solved with paper and pencil.

The authors have changed the format. The second edition is larger in overall size and the font
size is larger. A more detailed table of contents with extensive page numbering is included.
Reference is made to the extensive and sophisticated methodologies available in the literature.
The authors have included in the text the methods thought to be most functional. SAS and SPSS
have very complete software programs for statistical analysis. The text identifies with SAS and
has included examples of the set up and results for its programs such as principal components
analysis, MDS and Proc Corr for calculating correlations.

More sophisticated software exists on the Internet and the World Wide Web has made scaling
methodology more available than ever. For those educators who are interested, the authors have
included in Appendix A some information on using the Internet to do analyses not included in
the text. For example, Thurstone's Case V, is described in the text but Tucker and Gulliksen's
software, while printed in the first edition is not extant. Readers, however, can obtain for a fee a
program called Case5 from marketing.byu.edu.

The overall goal of the new edition is to make scaling analysis more functional. A course in
scaling methodology, using a draft of the new text, has been taught for three summers at the
University of North Texas in Denton. The results were positive. The use of the CD-ROM was
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easily assimilated by the students and the application of various methods to their particular
research was useful and productive. Students using the text should be familiar with computers
and an initial course in statistics would be helpful but not necessary.

Content and Organization

Part I of the text introduces the major purposes for the analysis of psychological objects,
particularly any variable for which some degree of attitude or perception can be measured.
Scaling analyses attempt to produce estimates of the distance between each pair of psychological
objects and to provide a parsimonious representation of the objects; that is, a simplified picture (a
map of the data). Such objectives can have useful consequences such as enhancing the validity of
attitude measuring instruments to the discovery of new relationships underlying a set of objects.
Part I also provides an introduction to the types of tasks that an experimenter can initiate. It
details the major ways in which measures of proximity (similarity or distance) can be obtained
from responses to the objects of interest.

The next three parts of the book explain the various methodologies. A gradual progression from
simple representations to more complex is presented. The methods start with Part II:
Unidimensional Techniques, move to Part III: Clustering, and end with Part IV:
Multidimensional Analyses. The authors have found that if students learn the early techniques
first, the latter methods are more easily assimilated.

The text follows the pedagogy of instruction by example. Each chapter presents (1) an
exposition of the theory surrounding the particular methodology; (2) a simple example; (3) real-
world application(s); and (4) references to a computer solution. Each method is a complete unit,
so readers may turn directly to the chapter that explains a specific methodology.

Acknowledgements

The authors are indebted to Rebecca Swartz for her initial editing and contribution of the
ORDER program to the CD-ROM. Pat Dunn-Rankin's many suggestions and editing help are
greatly appreciated. Michael Gallia, Rhonda Christensen, Cesar Morales and many other readers
have assisted in reviewing the manuscript as well. The authors are indebted to Layne Wallace for
the development of the Scaling Methods website at http://www.iittl.unt.edu/scaling. The authors
are indebted to the reviewers of the initial manuscript John C. Caruso, University of Miami,
Shlomo S. Sawilowsky, Wayne State University and Xiang Bo Wang, The College Board.



This page intentionally left blank 



PART I

FOUNDATIONS

The foundations of scaling methods contain:

1. the definition of relative measurement,

2. the kinds of instruments or tasks that can be responded to, and

3. the measures of proximity that can be applied to the responses that have been
gathered.

1
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1
SCALING DEFINED

Relative Measurement

The Fahrenheit Scale

Scaling consists of measuring and comparing objects in some meaningful way. The process
includes some visual representation, usually a linear or multidimensional map. A thermometer is
an example of a linear representation. One cold winter, Gabriel D. Fahrenheit surrounded a glass
tube, containing mercury, with a mixture of snow and salt. He made a mark on the tube at the
height of the mercury and called this point zero. He knew that if the mercury ever went that low
again it would be very cold. He had, in fact, attached significant, if relative, meaning to the
height of the mercury.

The mercury heights for freezing and boiling water were also indicated on the tube. The distance
between the freezing and boiling marks was divided into 180 equal parts or units. The snow-salt
mark was observed to be 32 of these units below the freezing point of water. Thus the freezing
point of water was given as 32°F or 32 degrees on the Fahrenheit scale and the boiling point
became 212°F. Fahrenheit had created a relative scale for assigning temperatures to mercury
heights.

Psychological Objects

In the social sciences, researchers are continually trying to measure and compare human percep-
tions. They (a) create scales by assigning psychological objects to numbers and then (b) locate
individuals on the scale they have created. Psychological objects can be tangible, such as cars
and postcards, but they can also be anything which is perceived by the senses resulting in some
attitudinal response. Psychological objects can be colors, words, tones, and sentences as well as
houses, gold stars, and names or pictures of television stars. Psychological objects are most often
presented as sentences or statements such as "There will always be wars" or "I hate war." With
young children, the objects are often pictures.

3



PART 1: FOUNDATIONS

As an example, look at the following scale on attitudes toward reading

6 — When I become interested in something, I read a book about it.
5 — I almost always have something I can read.
4 — I read when there is nothing else to do.
3 — I only read things that are easy.
2 — I never read unless I have to.
1 — I seldom read anything.

Although there are several ways to score or place individuals, one way is to ask a respondent to
indicate which sentence best describes her or his attitude toward reading. Different people might
choose different answers. Respondents would then be placed at different positions on the scale.
Although this scale is short and reading interests are rarely in just one dimension, the scale can
differentiate subjects with varying reading interests.

Mapping

It is a basic problem of scaling to determine the proximities (similarities or distances) between a
set of objects and then locate or map these objects onto the smallest space that will effectively
retain the basic information about the data. This projection may reveal the underlying structure or
unique relationships among the items. Subsequently, it can provide relative positions of
individuals with regard to the mapped stimuli.

Introduction to Scaling

Suppose one is interested in the special education problem of mainstreaming children with
disabilities into the regular classroom. Four disabilities are chosen. The psychological objects
are:

(LD) Learning Disabled
(MR) Mentally Retarded
(D) Deaf (hearing impaired)
(B) Blind (visually impaired).

The disabilities are paired in the six [K(K-l)/2] possible ways, where K = 4 is the number of
disabilities. They are presented in the following task:

Pairings Similarity

LD

LD

LD

MR

MR

D

MR

D

B

D

B

B

4
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+ LD MR

+ LD D

+ LD B

MR +D

MR +B

D + B

_4_

_4_

_4_

5

_2_
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+ LD MR

+ LD D

+ LD B

MR +D

MR +B

D + B

_6__

_3

_2_

_8

_2 _

4

+ LD MR

+ LD D

+ LD B

+ MR D

MR +B

D +B

_5^_

3

4

_6

_3

_4

T4 Pairings Similarity T5 Pairings Similarity

+ LD MR

+ LD D

LD +B

MR +D

MR + B

D +B

_2 __

_2

_6

_4

2

_5

+ LD MR

+ LD D

+ LD B

+ MR D

MR +B

+ D B

_2

6

6

_7_

4

_5

1 SCALING DEFINED 5

First, teachers are asked to judge the similarity between two members of each pair of disabilities
using a number between 1 and 10. A 10 indicates that the pair is very similar and a 1 indicates
the pair is very dissimilar. This value is written in the blank to the right of each pair. Second, the
teachers are asked to choose, by marking with a + the type of disability student, in each pair,
they prefer to teach in a regular classroom. The responses for five teachers are presented below.

The medians of the five teacher similarity data are quickly determined by ordering each teacher's
ratings and selecting the middle value. These similarity values are placed in a similarity matrix as
follows:

Median Similarities for Disabilities

LD MR D B

LD

MR 4

D 4 6

B 6 2 5



Distances = 10 - Similarity

LD MR D B

Learning Disabled

Mentally Retarded 6

Deaf 6 4

Blind 4 8 5

6 PART 1: FOUNDATIONS

In order to map the data, the similarities are subtracted from 10 (maximum possible similarity).
This creates a matrix of distances.

A map is created by drawing circles using the distances as radii. First, the longest distance in the
matrix (8) is between MR and B. A line is drawn 8 units long. Using MR as a center, a circle
with a radius of 6 is drawn. This is the distance between MR and LD. Now, using B as a center, a
circle of radius 4 is drawn (the distance between B and LD). Where the two circles intersect is
the relative position of LD (see figure on the left) below.

Next, using MR as a center and 4 (the distance between MR and D) as a radius, a new circle is
drawn. Using B as a Center and a radius of 6, another circle is drawn fixing the position of D.
Hopefully, the remaining distance between LD and D is close to the tabled value. In this case, a
small compromise is made to accomodate all the distances by moving D slightly farther away
from MR and LD and closer to B.



1 SCALING DEFINED 7

The final mapping shows the relative positions of the disabilities. It suggests that there are
relative similarities and indicates that two dimensions can adequately accomodate the data.

Meaning can be attached to these two dimensions based on the original direction of the research.
The placement of the configuration of the disabilities in the space is arbitrary and as long as the
distances are maintained the objects can be rotated. In this case, arbitrary axes can be drawn
through the figure and dimensions assigned. Learning Disabled and Blind are suggested
candidates for regular class instruction. Deaf and Blind are physical disabilities and they are
contrasted with Mental disabilities.

The preference votes are tallied by counting the plus (+) signs indicating preferences for each
disability by each respondent. The vote vectors are tabled and summed below:

Mainstreaming Votes

LD MR D B

Rl 3 0 1 2

R2 3 0 1 2

R3 3 1 0 2

R4 2 0 1 3

R5 3 1 1 1

Total 14 2 4 10



8 PART 1: FOUNDATIONS

When each total is divided by 15 (the maximum number of possible votes) and multiplied by 100
the results can be displayed on a line as shown below.

The unidimensional map illustrates that Learning Disabilities and Blind are preferred as
mainstreaming candidates by the five teachers.

This exercise is used as a conceptual introduction to scaling. Hand-calculated methods can be
applied to various stimuli of interest. But, increasing the number of objects, the number of judges
and utlizing a variety of tasks makes hand solutions difficult. This text will illustrate ways to
make larger problems more tractable. The reader may compare this result with a sophisticated
analysis, TRICIR Analysis Summary (p. 71) and with SINDSCAL, (p. 186).

Euclidean Space

Generally, Euclidian space provides a framework within which numbers can be assigned to
objects in a relative but meaningful way. The use of one-dimensional space is demonstrated by
the scaling of lowercase letters of the English alphabet (letters are the psychological objects) on a
unidimensional or linear scale. Twenty-one letters are arranged in terms of their similarity to
specific target letters (see Fig. 4.4 p. 63). Note that when the letter a is used as a target, the other
letters are scaled in their perceived similarity to a as follows:

0 10 20 30 40 50 60 70 80 90 100

a a c e u g p s n h y m f k l
o d b r i w t

In this scale, the letter 1 is seen as least similar to the target letter a; whereas c, o, and e are
judged to be much closer to a. Relative meaning can be attached to the ends of the scale (i.e., the
numbers 0 and 100). They represent the unlikely prospect of having every one of the judges (315
second- and third-grade children) indicate that the same letter was most like the target letter a
and that one other letter was least like the target letter a, when presented with all possible pairs
of 21 letters. In this scale, the distance between a and c is shorter than the distance between a
and y. One can infer from the scaling technique that y is more different from a than c.

Multidimensional space (2, 3, or more dimensions) is used to display or map the distances
between objects that cannot be effectively placed on a linear scale.



1 SCALING DEFINED 9

Guttman Scales

Distances are not a necessary prerequisite for a scale. One could select a set of objects for which
its order is the scale. If, for example, the following math problems, ordered in difficulty, were
presented to a group of school children it would be known as a Guttman scale.

Each succeeding problem is more difficult than the one before it. The questions or psychological
objects constitute a scale based on difficulty. If we score a 1 for each correct answer and 0 for an
incorrect answer, the pattern of ones and zeros over the five questions tells us where the student
is on this math difficulty scale. Thus a person who has the pattern 11110 is farther along on the
scale than the student with scored responses of 11000. In a perfect scale, a single number (the
sum of the correct responses, 4 vs. 2) determines where a student is with regard to such items.
Such scales are called deterministic. Responses such as 01111 might indicate random error or
challenge the ordinal properties of the items.

Judgments or Choices

Figure 1.1 presents an outline for attitudinal measurement. First, the direction or focus of the
instrument is defined. Then psychological objects, selected or created, are presented in a task. If
the task requires judgments, methods are used to assign meaningful numbers to the objects.
From such an analysis, a subset or subsets of the objects are chosen and formulated into a scaling
instrument. This instrument can then be presented to the target group(s) and the responses
scored. When choices are obtained, a descriptive analysis occurs directly. Such analyses can
generate or test hypotheses.

Judgments are objective ratings of similarity, order, or value. It is possible despite a particular
bias to act as a judge. One can rate "I like school" as a more positive statement than "School is
OK" despite how he or she feels.

Choices or preferences are subjective and should reflect a personal point of view. In the example
given in the introduction to scaling, both judgments and choices were obtained on the same
instrument.

Generally, however, judgments of the similarity between the psychological objects are obtained
initially. This can be done using paired comparisons, free clustering, etc. (see Similarity
Judgments, p. 27). When the structure of the instrument, based on judgments is determined, then
it is used as a scale. The iterative nature of the scaling process is suggested in Figure 1.1. It is
generally important to judge, analyze the judgments and reformulate the task or instrument
before its final administration to insure its validity and reliability.
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10 PART 1: FOUNDATIONS

FIG. 1.1. The circular nature of the scaling process.

The first step in scaling, Determining Direction, is based on the theoretical rationale
surrounding the area of interest. A certain amount of argument is necessary to provide a
framework for selecting or creating the psychological objects. Tasks can vary widely and some
are easier and less valid than others. Once a trial instrument is developed, choices are analyzed
and a description may occur or the direction may be changed.



2
TASKS

A limited number of tasks in educational and psychological scaling have been established. The
tasks can be divided into four areas. These include: (1) Ordering Tasks, (2) Categorical
Ratings, (3) Similarity Judgments, and (4) Free Clustering (see Table 2.1).

Table 2.1

Tasks for Assessing People's Judgments or Choices About Psychological Objects

Tasks Examples

Ordering Who or What is best, next best, etc.

Categorical Rating Onions: Good: : : : : : Bad

Similarity Judgments How similar are fish and chicken?

Free Clustering Put the words that are similar together.

Differences in these primary tasks create differences in the direction and kind of analyses that
can be performed on the resulting data. Generally, however, a similarity matrix of some kind
forms the basic data set. Similarities are measures, like correlations, in which the larger the index
the more similar are the two objects being compared. A matrix of similarities is a collection of
similarity values for all pairs of objects. Similarities are changed into distances in order to view
the objects more effectively. This is often done by subtracting similarities from a constant. The
constant is usually the largest value in the set of similarities.

Ordering

Ordinal tasks involve ranking psychological objects in some way to produce dominance data
(Shepard 1972a), that is, one stimulus dominates another. Such data are often called nonmetric
because only judgments of greater than ( > ) or less than ( < ) are required. If we ask a class to
line up according to height (shortest to tallest) this is a ranking or ordering task.

11
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Paired Comparisons

Ranking can be accomplished directly or derived from pairing the objects and counting the votes
for each pair. The votes are inversely related to a ranking and can be called rank values. For
example, three statements: (a) Teacher gives you an A, (b) Friends ask you to sit with them, and
(c) Be the first to finish your work, are paired in all possible ways as shown below:

+ (a) Teacher gives you an A.
(b) Friends ask you to sit with them.

+ (a) Teacher gives you an A.
(c) Be the first to finish your work.

* (b) Friends ask you to sit with them,
(c) Be the first to finish your work.

In this example, the (V) represents the choice of a particular statement in each of the pairs. By
counting the votes for each statement, it is determined that (a) gets 2 votes, (b) 1 vote and (c) 0
votes and the rank values for these statements allows us to establish the rank order. Rank order
usually assigns a (1) to the best or highest rank. Votes are, therefore, a direct but inverse
reflection of typical ranks.

Circular Triads

It is possible for the votes to be circular. That is, a subject may like (a) better than (b), (b) better
than (c), but (c) better than (a). This results in tied votes. The analysis of circular triads is an
interesting addition to establishing the scale values of objects which have been paired and voted
upon (Knezek, Wallace, & Dunn-Rankin, 1998).

Partial Ranks and Balanced Incomplete Block Designs

Gulliksen & Tucker (1961) illustrated a compromise between direct
ranking and complete paired comparisons. This scheme involves the use
of Balanced Incomplete Block (BIB) designs. When the number of
objects becomes larger than 20 (20 objects involves K(K—1)/2 = (20)
(19)/2 or 190 pairs), then the time needed for a subject to vote on all the
pairs becomes increasingly tedious. In BIB designs, small subsets of the
objects or statements are grouped in such a way that all possible paired
comparisons can be inferred by directly ranking the objects in each small
subset (Gulliksen & Tucker, 1961). One of the simplest of the BIB
designs involves seven subsets of three objects. This design, sometimes
called a Youden Square, is presented on the right. In such arrangements,
each object is compared to each other object just once. The 21 pairwise
comparisons have been collapsed into 7 simple rankings. Table B in
Appendix B shows six designs for various numbers of Objects. Cochran
& Cox (1957) provide many others.

Youden Square

a_

b_

c_

d_

e_

f_

g_

b_

c_

d_

e_

f_

g_

a_

d_

e_

f_

g_

a_

b_

c_
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In the Youden Square, the simplest BIB design, the task is to rank order three objects at a time.
The objects are related to the letters in each block or row of the design. Suppose the objects were
adjectives and a single subject ranked the adjectives in each row in terms of which he or she
would most like to be: the smaller the value, the more the person wants to have that particular
characteristic.

(a) powerful_3_

(b) rich_2_

(c) honest_l_

(d) good-looking_2_

(e) generous_2_

(f) famous_2_

(g) intelligent_l_

(b) rich_l_

(c) honest_l_

(d) good-looking_3_

(e) generous_3_

(f) famous_l_

(g) intelligent_l_

(a) powerful_3_

(d) good-looking _2_

(e) generous_3_

(f) famous_2_

(g) intelligent_l_

(a) powerful_3_

(b) rich_3_

(c) honest_2_

Then rank values (votes) are derived by establishing a matrix in which a "1" is inserted if the
column object (adjective) is judged or preferred over the row object. For example (g) intelligent
is preferred over all other characteristics and its column sum is 6.

b

c

d

e

f

g

a

Sums

1

1

1

3

1

1

1

1

1

5

1

1

2

1

1

1

1

1

1

4

1

1

1

1

1

1

6 0

The sum of the votes can then be utilized as a profile of ordered data for a given subject. No
missing votes are allowed. Although this simple illustration can be analyzed by hand, a computer
program is needed to convert the data for larger designs. The CD-ROM that accompanies this
text contains a program which converts BIB data to rank preference profiles. Computer output
for the example above is listed under student 2 on page 17.

rich honest good- generous famous intelligent powerful
looking

b c d e f g a
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Direct Ranking

Direct ranking consists of assigning integers to objects, indicating order of preferences or
judgments. If there are k objects the integers will run from 1 to k.

Example: Given the following occupations, participants are asked to order them on the basis of
their personal preference. In this case a rank value of 1 is given the most desired occupation.

Occupations

Carpenter
Ranger
Mailworker
Police Officer
Firefighter

Occupations Ranked

Judge

1

2

3

4

5

£ Ranks

S Votes

C

5

3

4

4

3

19

6

R

3

4

5

5

5

22

3

M

4

2

3

3

2

14

11

P

2

5

2

1

4

14

11

F

1

1

1

2

1

6

19

Ranks and Rank Values

If respondents are to rank more than a few objects, initially splitting the objects into two groups
of the most and least desired occupations is a good first step. Providing room, on paper, for
sorting the ranks is also necessary. Ranks usually run from 1 to k with 1 given to the most
desired object and k the least. Because the votes in paired comparison studies are an inverse of
ranks, they are called rank values. Votes can provide a positive scale of interest for each
occupation. Votes = (k - Rk) where k = the number of objects and Rk is the rank of object k. For
the direct inverse use (k + 1) - Rk.

Tetrads (Pairs of Pairs)

Pairs of pairs may be created by the experimenter. Using the four objects man, woman, boy, and
girl generates six pairs and this in turn generates (6)(5)/2 =15 pairs of pairs. For example:

Pairs of Pairs

man-woman — man-boy

man-woman — man-girl

man-woman — woman-boy

man-woman — woman-girl

man-woman -- boy-girl

man-boy — man-girl

man-boy -- woman-boy

man-boy --woman-girl

man-boy -- boy-girl

man-girl — woman-boy

man-girl -- woman-girl

man-girl -- boy-girl

woman-boy — woman-girl

woman-boy -- boy-girl

woman-girl ~ boy-girl
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The 15 "pairs of pairs" can be handled like other paired data. Participants, for example, might be
asked which of each pair of pairs is closer or more similar. One can also ask the judge to indicate
degrees of similarity. Such data are useful in looking at the dimensions of relationships, within a
family, for example. Because the pairs of pairs increase dramatically with the number of objects,
this may restrict the use of pairs of pairs. For example, 11 objects generate 1,485 pairs of pairs.

Arranging Pairs

It has been customary to arrange the objects in pairs according to the method outlined by Ross
(1934). Table A in Appendix B presents balanced orders for the presentation of pairs for odd
numbers of objects from 5-17. For even numbers, the next higher odd set of pairs is used,
striking out all pairs containing the nonexistent odd object. Ross' pairing for five objects is as
follows:

Pair arrangements may be randomized if care is taken to randomize both the order of the pairs
and positions of the objects in the pairs. For example:

Flow Diagram for Analysis of Ordinal Tasks

An object's relative position resulting from Direct Ranking or from Pairwise Ranking can be
determined by averaging the rank values of the objects and testing them for statistically
significant differences (See RANKO on the CD-ROM). TRICIR (for circular triads) is a
program on the CD-ROM that scales the data and tests the data for circular judgments. There is
also a program for Complete Paired Comparisons, COMPPC, that handles pairs under
Thurstone's Case V normality assumptions. The FORTRAN program is found in Dunn-Rankin,
(1983).

When Balanced Incomplete Block Designs (BIB) are used to create partial ranks, a program
(BIB) on the CD-ROM is utilized to convert the partial ranks into one vector of the object's rank
values for each subject. (See BIB Example, p. 17.) In this example, responses to the instrument
on page 13 by two participants are converted into rank profiles. In order to utilize the CD-ROM
refer to Appendix A. The vector of integers can be utilized as input into Multiple Dimensional
Preference Analysis MDPREF which places the profile of the individual in the space of the
objects indicating their dimensional preference. This program is also on the CD-ROM. The fol-
lowing figure illustrates the flow of the analyses. For sophisticated users SAS Market also does
such analyses.

K = 5 1-2, 5-3, 4-1, 3-2, 4-5, 1-3, 2-4, 5-1, 3-4, 2-5

Not random K=4 1-2,1-3,1-4,2-3,2-4,3-4
Random K = 4 3-2,2-4,2-1,4-3,3-1,1-4
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BIB Example on CD-RON

Configuration File (bibl .cfg)

Bib Program Title Title
2 7 7 3 1 2 subjects, 7 objects, 7 blocks, 3 per block, 1 full output
bibl.dat Input file
bib Lout output file

Input File (bibl.dat)

713 1 2 4 2 3 5 3 4 6 4 5 7 561 672 BIB arrangement of objects and blocks
1 3 2 3 1 2 1 3 2 1 3 2 3 1 2 1 2 3 3 1 2 First Subject's Ranks
3 1 2 2 1 3 1 3 2 2 3 1 2 1 3 2 1 3 1 3 2 Second Subject's Ranks

Output File (bibl.out)

Bib Program Title
NUMBER OF OBJECTS = 7
NUMBER OF BLOCKS = 7
OBJECTS PER BLOCK = 3
NUMBER OF SUBJECTS = 2

7 1 3
1 2 4
2 3 5
3 4 6
4 5 7
5 6 1
6 7 2

Student 1 Student 2
1 3 2 3 1 2
3 1 2 2 1 3
1 3 2 1 3 2
1 3 2 2 3 1
3 1 2 2 1 3
1 2 3 2 1 3
3 1 2 1 3 2

1 2 3 4 5 6 7 1 2 3 4 5 6 7
1 | 0 1 1 1 1 1 1 1 ) 0 1 2 2 1 1 2
2 | 2 0 2 2 2 2 1 2 ( 2 0 2 2 2 1 2
3| 2 1 0 2 1 2 1 3 ( 1 1 0 2 1 1 2
4 ( 2 1 1 0 1 1 1 4 ( 1 1 1 0 1 1 2
5 ( 2 1 2 2 0 2 2 5 ( 2 1 2 2 0 1 2
6 ( 2 1 1 2 1 0 1 6 ( 2 2 2 2 2 0 2
7 | 2 2 2 2 1 2 0 7 ( 1 1 1 1 1 1 0

votes I 0 5 3 1 5 2 5 votes ( 3 5 2 1 4 6 0

The votes in the Profile Vectors make sense when you realize that the arrays are formed by hav-
ing a 1 represent the choice of a column object over a row object and the 2 represents a non vote.
The profile is found by summing the ones (1) in each column.

7 1 3
1 2 4
2 3 5
3 4 6
4 5 7
5 6 1
6 7 2

Student
1
3
1
1
3
1
3

3
1
3
3
1
2
1

2
2
2
2
2
3
2

1 Student
3
2
1
2
2
2
1

1
1
3
3
1
1
3

2
3
2
1
3
3
2

2

1 |
2|
3|
4 |
5|
6
7|

1
0
2
2
2
2
2
2
0

2
1
0
1
1
1
1
2
5

3
1
2
0
1
2
1
2
3

4
1
2
2
0
2
2
2
1

5
1
2
1
1
0
1
1
5

6
1
2
2
1
2
0
2
2

7
1
1
1
1
2
1
0
5

1|
2|
3|
4|
5|
6|
7|

1

1
0
2
1
1
2
2
1
3

2
1
0
1
1
1
2
1
5

3
2
2
0
1
2
2
1
2

4
2
2
2
0
2
2
1
1

5
1
2
1
1
0
2
1
4

6
1
1
1
1
1
0
1
6

7
2
2
2
2
2
2
0
0
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Categorical Ratings

Ordered Categories subsume many of the most frequently utilized unidimensional scaling tasks.
An example is provided in Fig. 2.1. These measures are commonly referred to as Summated
Ratings, Likert Scales, or Successive Categories. Such titles, however, refer to different
assumptions about the data and different analyses applied to the ordered categories data rather
than to the task itself.

For the following statements A = Agree, TA = Tend to Agree, TD = Tend to
Disagree, and D = Disagree. Mark an X in the appropriate box.

A TATD D
1.1 will be lucky to make a B in this class. : : : : :
2. This class has a tough professor. : : : : :
3. This is the kind of class I like. : : : : :
4.1 would not take this class if it wasn't required. : : : : :
5. The demands for this class will not be high. : : : : :

FIG. 2.1. The general form for an ordered category task.

Likert (1932) suggested that statements (psychological objects) should be written so that people
with different points of view will respond differently. He recommended that statements of
similar content vary widely in emphasis. For example, the statements "I would recommend this
course to a friend," and "This is the worst course I have ever taken" will evoke different
responses, but are generally evaluative in nature or dimensionality .

Specifically, social scientists should use statements that:
(a) refer to the present or future rather than the past;
(b) have only one interpretation;
(c) are related to the continuum under consideration;
(d) will have varied endorsements;
(e) cover the range of content;
(f) are clear;
(g) are direct;
(h) contain simple words;
(i) are short (rarely over 20 words);
(j) contain a complete thought;
(k) are not universal,
(1) are usually positive, and
(m) avoid double negatives.

Judgments

When creating a scale, asking for judgments should be an initial step. Respondents are asked to
determine a degree of similarity about the objects. With categorical ratings judging is a rare
occurrence because the form lends itself to making choices, that is, indicating a preference.
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Judgments can be determined, however, by creating category designations as degrees of
judgment rather than preference. In this case, categories can vary from Very Favorable to Very
Unfavorable. A survey might initially ask special education teachers to judge the severity of
behaviors in an ordered category task that runs from (N) Normal, (SA) Somewhat Abnormal, (A)
Abnormal, to (VA) Very Abnormal. For example:

N SA A VA
1. Threatening a teacher. : : : : :
2. Spitting on the floor. : : : : :
3. Chewing gum in class. : : : : :
4. Fighting another student. : : : : :

The Semantic Differential

The Semantic Differential (Osgood, Suci, & Tannebaum, 1957) has pairs of adjectives that
anchor a categorically ordered scale. All of the adjectives are related to a central psychological
object or concept. For example:

poetry
valuable

good
interesting

easy
light

simple

worthless
bad
boring
hard
heavy
complex

Intercorrelations among the bipolar pairs of adjectives are determined after the appropriate
administration. This matrix of similarities is then analyzed in order to find subsets of similar
adjective pairs that constitute distinct dimensions in attitudes towards the concepts or objects.

Simple Scoring

Most common in the behavioral and social sciences are survey instruments of the type shown in
Fig. 2.1 (p. 18). If k equals the number of categories, then the arithmetic average of the integers
1 to k assigned to the subjects' responses (checks, marks, or circles in the ordered categories) is
often immediately utilized as a variable. This requires that the category names be carefully
chosen in order to reflect equal weighting for each interval between them (where a weighting of
one is applied). A unidimensional scale and unit weighting are assumed under Likert Scaling.

A program (TSCALE), first developed by Veldman (1967), is provided on the CD-ROM. The
program orders each item in the instrument based on the frequency of all the subjects'
categorized responses. Green's Successive Interval Scaling (1954) can be used to produce a
unidimensional scale for summated ratings that controls for different interval widths. Scores can
be the average of the responses to a single statement, a set of statements, or an average for all the
statements in the survey.
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Subsets of Items

It is popular to create from reflection or introspection an ordered category instrument and
immediately evaluate the participants by averaging their responses to the items. This action
violates a first step in scaling which is to search for judgments of similarity between the
statements or psychological objects. Similarity judgments are necessary in order to substantiate
the instruments construct and content validity. Because most instruments will likely be
multidimensional, subsets of items representing latent traits, factors, or dimensions will generally
be established. Traits, factors, and dimensions reflect the construct validity of the instrument that
is being created. Their meaning is derived from matching the content of the subset to some
theoretical framework, sometimes called a nomological net. That is, a network of arguments and
research supporting the idea. For example, if a subset contained items such as:

It bothers me to see a grown man cry.
I don't like to look at an injured animal.
I don't like to look at pictures of poverty.
I feel bad when I see a dead cat in the road.

One might suggest an underlying dimension of empathy.

Subsets of items have the probability of being more valid and more reliable than single items.
This is because reliability is positively related to the number of effective items and a collection of
items is generally necessary to represent a construct effectively.

Steps in Ordered Category Scale Construction

It is effective to work on ordered category scales in a series of steps.
1. The items are created or obtained that have reasonable construct and content validity.
2. These items are judged in terms of their similarity, perhaps using the task of free
clustering, and analyzed. Or the items may be administered directly to a
reasonable sample of respondents (one that represents the target population).
3. The responses are coded into a subjects by items data matrix.
4. The items are interrelated using correlations or perhaps some measure of distance.
5. This produces a matrix of proximities which can be analyzed by Cluster analysis,
Multidimensional Scaling (MDS) or Factor Analysis. These methods are used
to determine outliers and collect effective subsets of items.
6. The subsets are analyzed using Test statistics calculating item difficulty, internal
validity, and reliability
7. Then the instrument is reorganized and administered to the target population.

Ordered Category Example

The Ordered Category task may be modified in many ways. In the example below, circles have
been used around the letters representing the category description as opposed to making checks
on a line. In this case SA represents Strongly Agree. DS represents Disagree Strongly and so
forth.



2 TASKS 21

1. The instructor appears well organized. © A U D DS
2. The instructor is interested in the subject. SA A © D DS
3. This course has improved my cognitive skills. SA © U D DS
4. Morale in class has been positive. SA A © D DS
5. The instructor is sensitive to student feelings. SA @ U D DS

Some researchers like to use only positive or negative adjectives such as Agree (A), Tend to
Agree (TA), Tend to Disagree (TD), and Disagree (D) because this eliminates the neutral
response.

The tendency for examinees to give only positive ratings with this type of instrument has had
researchers utilize categorical descriptions such as (A) In the top 1% of all teachers; (B) In the top
5% of all teachers but less than 1%; (C) Among the top 25% of all teachers but less than; etc.

Restrictions of Ordered Categories

Ordered Category tasks result in a similarity matrix (correlations) between all the items. Many
participants responses are required before the relationships between the items can be obtained. A
single person's responses are insufficient for any individual differences analysis.

Number of and Naming of Categories

How many categories should an instrument display? The consensus is from 3 to 9 categories with
the odd numbers 5 and 7 most preferred. For young children, 3 categories may be all they can
handle and 9 categories requires a lot of thought and response time.

What should the categories be named? Zhang (1995) studied 21 relevant scales and deduced a
stable semantic model of seven adverbs in the form of the following rank order:

1 extremely
2 unusually
3 decidedly
4 quite
5 rather
6 somewhat
7 slightly

These modifiers may be used with adjectives to capture fairly evenly distributed categories. For
example: Extremely (Sensitive, Valuable, Useful), Unusually (Sensitive, Valuable, Useful), and
so on.
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Flow Diagram for Ordered Category Analysis

If there are just two categories using ones and zeros, then ORDER Analysis or GUTTMAN
Scaling may be appropriate. In handling unidimensional scales, TSCALE should be used. For
most data, correlations and distances are the initial first calculations. These can be followed by a
variety of methodologies. The authors prefer the SAS software system but SPSS, MiniTab or a
variety of software may be used to compute correlations and do factor analysis.
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Free Clustering

Steps in Free Clustering

In this task, the psychological objects (usually words, statements or concepts) are individually
listed on slips of paper or cards. The participants are asked to put the objects they imagine or
believe are similar into the same group (a single object may be a group). The respondents can
constitute as many or as few groups as they feel are necessary. Free clustering is valuable
because the underlying structure of the objects is not predetermined.

On the back of each card is written an identifying number (consecutive integers from 1 to k
objects are used). When the groups have been formed, a new, smaller set of group numbers is
assigned. Each different object in a particular group receives the same specific group number.
For example, suppose five different judges are each presented the letters a, b, C, d, e, f, each
one on a different card. The respondents group the letters together based on their estimates of
letter similarity. Then the data might look as follows:

Group Numbers for Letters

Judges

K

L

M

O

P

1

2

1

1

1

1

1

3

1

1

2

2

2

2

2

1

1

3

1

1

2

2

1

1

2

3

1

2

3

2

The integers in the data matrix represent group numbers. The percent overlap between each pair
of letters can then be determined, a and b, for example, are in the same group three out of five
times or .60. (See Measures of Proximity, p. 37). A matrix of similarities can be determined for
these six lowercase English letters. This is accomplished by finding the number of times any two
letters are found with the same group numbers and then dividing this sum by the number of
subjects. A percent overlap matrix for the five judges in the example is provided in Table 2.2.

Table 2.2
Similarities Between Lowercase English Letters

a b c d e f

a
b
c
d
e
f

.60

.20

.60
60
.00

.00
1.00
.20
.20

.00

.60 .20

.40 .20 .20
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The program PEROVER (percent overlap), on the CD-ROM, calculates a similarity or distance
matrix from the group membership data.

A quick perusal of the similarity matrix indicates that b and d are seen as most alike for these
subjects since their similarity percentage is the highest (1.00).

Inter-Judge Differences

It is also possible to analyze the distances or dissimilarities between the judges. The differences
are found by pairing all the k objects, for each judge, and recording a 1 if a pair is in the same
group and a 0 otherwise. The judges' vectors are compared two at a time and the sum of the
absolute value of the difference is determined.

The calculation of the differences for specific judges K and L based on their group membership
numbers (K membership numbers are 112123 and L numbers are 212121) is shown below:

The formulas for the mean and variance of the distribution of differences for k objects are:

Dunn-Rankin & Wong (1980) wrote a computer program JUDGED to determine interjudge
distances from the paired ratings of the k objects. This program is provided on the CD-ROM.

A single difference can be tested for its chance occurence using a Z-test. Unfortunately, the
normal distribution may not be appropriate because the clustering task implies fewer clusters
than objects. The exact distributions have not been enumerated beyond k = 3

£|d| *cpk = 3 cpk = 3
Sample 20,000 Enumeration

0 1.0000 1.00

1 0.7813 .789

2 0.4839 .493

3 0.0537 .049

*cp = cumulative probability

Letter Pairs
Judge

K

L

|d|

ab

1

0

1

ac

0
1

1

ad

1

0

1

ae

0
1

1

af

0
0

0

be

0
0

0

bd

1

1

0

be

0
0

0

bf

0
1
1

cd

0
0

0

ce

1

1

0

cf

0

0

0

de

0

0

0

df

0

1
1

cf

0

0

0 Z|d| = 6
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Individualized Free Clustering

Individualized free clustering can be accomplished by listing the same objects in consecutive
sets. The judges are asked to repeatedly mark or circle those objects that he or she would group
together for a particular reason and to indicate, next to each grouping, the reason for the judged
similarity. The respondents' reasons can be an important addition to the analysis. In this task, an
object can appear in more than one group and overlapping clusters may result from the analysis
of the similarity matrices. In this way, a percent overlap matrix can be constructed for each
judge. Repeated free clustering in one individual is guided by the criteria consistent with the
research question.

Flow Diagram for Free Clustering Analysis

A flow diagram for typical free clustering is provided below. After free clustering, a percent
overlap matrix must be created (see Measures of Proximity, p. 37) the program PEROVER can
analyze the raw group data and produce a similarity or distance matrix. The program JUDGED
uses the same information and produces a matrix of distances between the judges. These
programs are on the CD-ROM. The results can be input to SAS CLUSTER and MDS.
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CD-RON Example of Using PEROVER

letters.cfg (Configuration File)

5 6 1
letters.dat
letters.out

A configuration file lists the parameters and indicates the data input and output

letters.dat (Data Input File)

Data are group membership numbers for the five judges.

1 1 2 1 2 3
2 1 2 1 2 1
1323 12
1 1 2 1 1 3
112122

letters.out (Output File)

subjects = 5 variables = 6

raw data

1. 1. 2. 1. 2. 3.
2. 1. 2. 1. 2. 1.
1. 3. 2. 3. 1. 2. The raw data
1. 1. 2. 1. 1. 3.
1. 1. 2. 1. 2. 2.

percent overlap matrix

1.000 0.600 0.200 0.600 0.600 0.000
0.600 1.000 0.000 1.000 0.200 0.200
0.200 0.000 1.000 0.000 0.600 0.400 Square similarity matrix
0.600 1.000 0.000 1.000 0.200 0.200
0.600 0.200 0.600 0.200 1.000 0.200
0.000 0.200 0.400 0.200 0.200 1.000

A comparison can be made with Table 1.2 (p. 23) the lower half similarity matrix constructed by
hand. If a distance matrix was required the zero (0) in the configuration file would be changed to
a one (1). In that case the matrix would look as follows:

Distance (difference) matrix

0.000 0.400 0.800 0.400 0.400 1.000
0.400 0.000 1.000 0.000 0.800 0.800
0.800 1.000 0.000 1.000 0.400 0.600 Square distance matrix
0.400 0.000 1.000 0.000 0.800 0.800
0.400 0.800 0.400 0.800 0.000 0.800
1.000 0.800 0.600 0.800 0.800 0.000

subjects = 5 variables = 6

raw data

1. 1. 2. 1. 2. 3.
2. 1. 2. 1. 2. 1.
1. 3. 2. 3. 1. 2. The raw data
1. 1. 2. 1. 1. 3.
1. 1. 2. 1. 2. 2.

percent overlap matrix

1.000 0.600 0.200 0.600 0.600 0.000
0.600 1.000 0.000 1.000 0.200 0.200
0.200 0.000 1 .000 0.000 0.600 0.400 Square similarity matrix
0.600 1.000 0.000 1.000 0.200 0.200
0.600 0.200 0.600 0.200 1.000 0.200
0.000 0.200 0.400 0.200 0.200 1.000

Distance (difference) matrix

0.000 0.400 0.800 0.400 0.400 1.000
0.400 0.000 1.000 0.000 0.800 0.800
0.800 1.000 0.000 1.000 0.400 0.600
0.400 0.000 1.000 0.000 0.800 0.800
0.400 0.800 0.400 0.800 0.000 0.800
1.000 0.800 0.600 0.800 0.800 0.000

Square distance matrix
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CD-RON Example of Using JUDGED

letters.cfg (Configuration file)

56
letters.dat
letters.out

letters.dat (Input Data File)

1 1 2 1 2 3 I K
2 1 2 1 2 1 L
1 3 2 3 1 2 M }Judges
1 1 2 1 1 3 O
1 1 2 1 2 2 P

letters.out (Output file)

Number of subjects = 5 Number of variables = 6

1. 1.2. 1.2.3.
2. 1.2. 1.2. 1.
1.3.2.3.1.2. Raw Data
1. 1.2. 1. 1.3.
1. 1.2.1.2.2.

Pop distance Mean = 4.17 variance = 3.01 Mean and Variance

Matrix of interjudge distances

0. 6. 5. 4. 2.
6. 0. 5. 8. 8.
5. 5. 0. 5. 5.
4. 8. 5. 0. 6.
2. 8. 5. 6. 0.

The square matrix output is a distance matrix and the first value, the distance between Judge L
and Judge O or P is equal to 8, which is significant at the P<.05 level according to tabled sources
such as Cumulative Probability Distributions of Interjudge Distances (Dunn-Rankin, 1983). One
can also compare judges using a range test for outliers (Dixon & Massey, 1969).

Similarity Judgments

Paired Comparisons

In paired comparisons, the judges are presented the objects in all possible pairs and asked to
make judgments of similarity. This may be in addition to the preference choices in each of the
pairs.

Example: Five types of fishing lures are presented in all possible ways of choosing two objects
out of k items or [k(k - l)/2] = 10 ways. The judges provide values of similarity (Su) for each
pair.

56
letters.dat
letters.out

1 1 2 1 2 3 K
2 1 2 1 2 1 L
1323 12 M
1 1 2 1 1 3 O
112122 P

1. 1.2. 1.2.3.
2. 1.2. 1.2. 1.
1.3.2.3. 1.2.
1. 1.2. 1. 1.3.
1.

0. 6. 5. 4. 2.
6. 0. 5. 8. 8.
5. 5. 0. 5. 5.
4. 8. 5. 0. 6.
2. 8. 5. 6. 0.
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The judges also indicate their preference in each pair by checking the preferred item. In the
example below, to the right of each pairing, is a number which reflects how similar Judge A
thought each pair of lures happened to be. In this case 1 means not very similar and a 7 means
very similar.

Lure Selection by Judge Similarity

Rapala -*Lolo 3
*Rapala -Heddon 2

*Rapala -Windcheater 3
*Rapala -Kaku 2
*Lolo -Heddon 5

*Lolo- Windcheater 4
*Lolo -Kaku 4

*Heddon -Windcheater 2
Heddon -*Kaku 3

Windcheater -*Kaku 1

A similarity matrix can be established among the five lures for each judge. Judge A's responses
are tabled below:

Rapala Lolo Heddon Wind Cheater Kaku

Rapala

Lolo

Heddon
Wind Cheater

Kaku

3

2
3

2

5
4 2

4 3 1

In the example the starred lures (*) were chosen as the best for catching fish in each pairing by
Judge A. Using the asterisks, the votes are counted for each lure. A rank order for the lures
results from the sum of the votes. Ties can occur due to circularity (see Circularity Triad
Analysis, p.66). The votes by Judge A are as follows:

Ra Lo He WC Ka
3 4 1 0 2

Two programs on the CD-ROM, INDMAT and AVEMAT, are used to convert the basic data
into matrix form for each subject or to average a group of subjects' responses.

Ra Lo He WC Ka
3 4 1 0 2
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Ranking Pairs

This task consists of ranking pairs of objects whose subsequent scores can be used in
multidimensional scaling. For example, if the objects are man, woman, boy, and girl, six pairs
are created and the pairs ranked on judgments of similarity (1 most similar, 6 least similar):

These ranks may be used, in a matrix of the objects, as direct estimates of distance. For example:

Rating Similarity Between Pairs

Estimating similarities between pairs of objects can take the form on the bottom left and result in
a matrix of similarities shown below right. One respondent's data is recorded. This simple matrix
or a set of matrices can be explored multidimensionally. Several matrices can be averaged and
analyzed.

Pairs Similarity Rank
man — woman 4
boy — girl 3
boy — man 2
boy — woman 5
girl — man 6
girl — woman 1

Degree of Meaning Similarity

Least Most . .
Similar Similar Word Similarity Matrix

Word Pairs 0 1 2 3 4 5 6 rose rows date a t e

rose-rows X = rose

rose-date X rows 2

rose-ate X date 3 0

rows-date X ate 1 0 6

rows-ate X

date-ate X

Man Woman Boy Girl

Man

Woman 4

Boy 2 5

Girl 6 1 3
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Clustering Then Pairing

Once a number of objects have been clustered into groups, the groups may be paired and meas-
ures of similarity assigned to the paired groups. If, for example, one initially clusters the follow-
ing words: ice, blue, sea, sky, and salt as follows:

Cluster

1

2

3

Sea — salt

ice

Blue — sky

The clusters may be paired and rated in similarity. For example:

Pairs Similarity Distance

(sea — salt) — ice

(sea — salt) — (blue — sky)

ice — (blue — sky)

4

6

3

6

3

4

Next the similarities are converted to distances by subtracting from a constant larger than the
maximum rating, say 10. Then a picture of the relationship between the three clusters can be
drawn

This example can be expanded to include many items or objects. Clustering prior to pairing is a
way of reducing the number of objects so that using paired comparisons becomes a manageable
technique. Usually the centroid or average object of a cluster is chosen to represent the group in
the pairing. In Euclidean space, the centroid is found by averaging the coordinates of the objects.
This requires that a set of axes be established in which the set of objects is embedded.

Triadic Comparisons

In making triadic comparisons, the objects are formed in all possible triples. In this situation, the
participant is asked to judge which two objects of each triple are most alike and which two are
least alike. A set of scores can then be formed from the number of times that any object is judged
more like one of a pair. Example: Four objects—chuck, chock, check, chunk—formed in all
possible [k(k - l)(k - 2)]/6 = 4 triples.



2 TASKS 31

1
2

3

4

Four Triples

chuck chock

chuck

chuck

chock

chock

check

check

check

chunk

chunk

chunk

The paired triples can be handled like other paired data. Such data are useful in looking at the
dimensions of relationships. Suppose the judgments from a single subject are as follows:

Pairs of Triples Most Alike

1

2

3

4

Score

Chock — check

Chuck — chunk

Chuck — chunk

Chock — check

2

Least Alike

Chuck — chock

Chunk — chock

Chunk — check

Check — chunk

0

Remaining

Chuck-

Chuck—

Chuck-

Chock—

1

check

chock

check

chunk

A matrix (array of scores) for each subject can be formed in which choices are weighted, giving
2 points for pairs most alike, 0 for pairs least alike, and 1 for the remaining pairs. The summed
scores represent measures of similarity. By subtracting the similarity score from a constant (in
this case 5, one more than the maximum similarity), distances can be formed.

Similarity Distance (5 - Similarity)

chuck

chock

check

chunk

chuck

1

2

4

chock

4

1

check chunk

0

chuck

chock

check

chunk

chuck

4

3

1

chock

1

4

check chunk

5

In this case, the objects may be approximately arranged in two dimensions as follows:

The scores for a number of respondents may be summed or averaged and then analyzed in a
variety of ways. The data may also be handled as proportions (Torgerson, 1958).
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Ratio Estimation

Another method of estimating similarities is ratio estimation (Ekman, 1963). In this method, the
judge is asked to estimate what percent of stimulus "A" is contained in "B" and conversely what

percent of "B" is contained in "A." Suppose, for example, the letters O, b, and 1 are used as

stimuli. Judges are then asked, "Graphically, how much of O is contained in b, how much of 1 is

in b, " and so on. The ratios are as follows: o in b, b in o, o in 1, 1 in o, b in 1, 1 in b. The results
for a single judge are given in the following matrix:

First Judge

0

b

1

o

.90

.05

b

.40

.50

1

.00

.50

The matrix is read, "How much of the column object is contained in the row object?" Thus the

judge estimated 90% of O was contained in b but only 40% of b was contained in O. This array
of data is therefore asymmetrical because the column by row entries are not equal to the row by
column values. Such array data are generally averaged (using the mean or median) over a
number of subjects. The resulting mean ratios are then converted to scalar products (see page 45)
and factor analyzed. There are sophisticated methods for handling asymmetrical sets of data
(Harshman, 1978).

Conditional Ranking

In conditional ranking one of the objects or stimuli is taken as a standard (S). Judges are asked to
choose which of the (k - 1) remaining objects is most similar to the standard, then which of the
(k - 2) objects is most similar, and so on until all of the objects have been ranked. Next, another
object is randomly chosen as a standard and the process repeated. One can create a conditional
rank order square distance matrix in this way. Each element of the matrix represents the rank
similarity of object j to standard i. This may create an asymmetric (upper and lower triangles are
not equal) set of data. Zeros on the diagonal assume a stimulus is most like itself. In the example
below a 1 indicates very similar and 3 dissimilar. One person's responses are represented.

(S) apple- pear(l), peach(2), orange(3)
(S) peach- pear(l), apple(2), orange(3)
(S) orange- peach(l), pear(2), apple(3)
(S) pear- apple(l), peach(2), orange(3)

The upper and lower triangles of the matrix may be analyzed separately or the corresponding
entries (i, j) and (j, i) can be added and averaged if the values are similar.

apple peach orange pear

apple 0 2 3 1

peach 2 0 3 1

orange 3 1 0 2

pear 1 2 3 0
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Same—Different

In perception experiments paired objects are briefly exposed visually or aurally and the
participants are asked to determine whether the two objects are the same or different. The
proportion of errors in judgment acts as a measure of similarity between the paired objects. For
example trial and trail are presented together for 50 milliseconds and the judge is asked whether
the words were the same or different. Or the two words clothe and clove might be spoken on
tape and the respondent asked if the words were the same or different.

Latency

The length of time it takes to respond is sometimes used as a measure of similarity. In perceptual
research, this usually requires some sort of shutter and a timing device. Computer programs now
display data like a Tachistascope. Two objects (letters, words, pictures, etc.) are hidden. When
the stimuli are exposed a clock starts. The subject is asked to indicate whether two stimuli are the
same or different; similar to a target or not by pressing one of two keys. Once a key is pressed
the clock stops. If the average latency, for example, for judging whether r and n are the same is

400 milliseconds and the latency between 1 and n is 250 milliseconds one may assume that n is

more similar to r than it is to 1. If all pairs are used, a similarity matrix can be established.

Ranking Versus Rating Pairs

Because the most widely used methods for obtaining direct judgments of similarity are ranking
and rating, it is worthwhile to investigate whether or not the separate scaling of ranking and
rating responses to the same pairs of psychological objects achieves the same results. The rating
task usually involves assigning estimates of similarity between each pair of objects on a scale of
some stated range, whereas ranking calls for the ordering the pairs of objects in terms of
increasing or decreasing similarity. Although ranking maximizes the transitivity (order) of the
objects, it is the more demanding of the two tasks (takes more time). The difficulty it presents
increases dramatically with an increase in the number of psychological objects. Rating, on the
other hand, seems to be less demanding, requiring a shorter time for completion.

In order to determine whether rating can substitute adequately for ranking pairs of objects,
judgments of similarity using both rating and ranking methods were compared. One such study
was done using all pairs of seven campus places (Villanueva & Dunn-Rankin, 1973). The seven
campus "places" were: classroom, dormitory, library, cafeteria, gymnasium, theater, and
laboratory. The sequence of pairs, as they appeared on a rating sheet and in the pile of pairs
followed the optimum presentation order recommended by Ross (1934) and was the same for
both tasks and for all subjects.

For the rating task, each subject was instructed to assign any number from zero to 100 to each
pair according to how similar the two places appeared. The most similar pair would have the
highest rating, whereas the least similar would have the lowest rating. The 100-point rating scale
was chosen because of its familiarity and relatively wide range.
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Rating: The seven campus units yield 21 pairs of places. In the example below, each pair has
been rated in similarity by one subject.

class-dorm 5

class-library 24

class-cafe 2

class-gym 34

class- 27
theater

class-lab 47

dorm- 6
library

dorm-cafe 4

dorm-gym 8

dorm- 9
theater

dorm-lab 4

library-cafe 7

library-gym 2

library-theater 19

library-lab 6

cafe-gym 2

cafe- 8
theater

cafe-Lab 3

gym- 6
theater

gym-Lab 9

Theater- 4
Lab

Ranking: For the ranking task, there were 210 pairings. Each judge was instructed to sort the
pairs initially into two piles consisting of (1) similar and (2) dissimilar pairs of pairs of objects.
This initial sorting procedure had previously been found effective in simplifying the ranking task
(Green & Carmone, 1970). Each respondent was instructed to order the pairs in both piles by
circling the most similar of paired "campus places" on each card, that is, the votes for each pair
of pairs was determined. The similarity configurations derived from both methods were then
matched and compared. The authors concluded, with sophisticated judges and familiar objects,
that both methods produce similar configurations under multidimensional scaling. Rating pairs
can be substituted for ranking the pairs of pairs. Under similar conditions, the use of the rating
method will economize the time and effort needed for tasks requiring judgment of similarity.

Analysis of Similarities

Similarity judgments can be handled by CLUSTER analysis or by multidimensional scaling
(MDS). First, however, the data, which usually results from a number of pairings, must be coded
with a key line indicating the order of the pairs. The data are a row (subjects) by column
(similarity between each pair) matrix. This paired data is then put into either a square or half
diagonal matrix.

For general analyses, all the examinees' data is averaged and usually converted into distances by
subtracting them from the largest similarity value, that is usually a number found on the diagonal
of the similarity matrix (the similarity of the object with itself). To do this, auxilliary programs
on the CD-ROM such as AVEMAT or INDMAT are utilized. If the researcher is interested in
individual differences then individual differences scaling using SINDSCAL on the CD-ROM or
SAS MDS. These programs utilize an individual matrix for each subject.

When using direct judgments of similarity, the objects can be paired in a variety of ways (1 with
2, 8 with 5, etc.). The pairing code is provided by the researcher as part of the format of the
auxiliary programs.
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Flow Diagram for Similarity Judgments

Similarity judgments must initially be put into matrix form and then analyzed.

CD-ROM Example of AVEMAT

avemat.cfg (Configuration File)

547 # of Judges, # of objects, Maximum Similarity
avemat.dat
avemat.out

avemat.dat (Input Data File )

010201030104 key code
02 03 02 04 03 04
5 2 4 2 2 5 DS
6 2 4 3 2 7 HA
4 2 4 4 2 4 DB data, ID is ignored
645336 BB
536325 AF

avemat.out (Output File)

Variables = 4 Subjects = 5

7.000 5.200 2.600 4.600
5.200 7.000 3.000 2.200 Square matrix of Similarities
2.600 3.000 7.000 5.400
4.600 2.200 5.400 7.000
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CD-RON Example of INDMAT

indmat.cfg (Configuration File for INDMAT)

5 4 7
indmat.dat
indmat.out

indmat.dat (Input File for INDMAT)

indmat.out (Output File for INDMAT)

The averages from AVEMAT are used as input to HICLUS and MDS by editing out the
unwanted lines and adding the SAS input code. The matrices from INDMAT may be used in
Simplified Individual Differences Scaling, SINDSCAL.

01 02 01 03 01 04 02 03 02 04 03 04
5 2 4 2 2 5
6 2 4 3 2 7
4 2 4 4 2 4
6 4 5 3 3 6
5 3 6 3 2 5

Variables = 4 subjects = 5

7.000 5.000 2.000 4.000
5.000 7.000 2.000 2.000
2.000 2.000 7.000 5.000
4.000 2.000 5.000 7.000

7.000 6.000 2.000 4.000
6.000 7.000 3.000 2.000
2.000 3.000 7.000 7.000
4.000 2.000 7.000 7.000 In this output there is one matrix of similarities for each subject

7.000 4.000 2.000 4.000
4.000 7.000 4.000 2.000
2.000 4.000 7.000 4.000
4.000 2.000 4.000 7.000

7.000 6.000 4.000 5.000
6.000 7.000 3.000 3.000
4.000 3.000 7.000 6.000
5.000 3.000 6.000 7.000

7.000 5.000 3.000 6.000
5.000 7.000 3.000 2.000
3.000 3.000 7.000 5.000
6.000 2.000 5.000 7.000
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MEASURES OF PROXIMITY

Proximities are numbers that indicate how close or how far apart objects appear. If two objects
are very similar and this similarity is represented by a large number then such data are called
similarity data or similarities. However, if two objects are very similar and this similarity is
represented by a relatively small number, such data are inferred to be dissimilarities or
distances. Most data in scaling methodology needs to be represented as distances so they can
be mapped. If data are similarities they are usually converted to distances before any detailed
analysis.

A number of proximity measures are available that relate to the tasks that have been previously
presented. These can be categorized as measures of: (1) correlation; (2) distance; and (3)
association. In order to analyze a set of objects through clustering or multidimensional scaling,
some measure of similarity or dissimilarity between all the pairs of the objects is usually
needed.

Correlations

Pearson's Correlation (r)

The Pearson Product-Moment Correlation (r) is a common measure of similarity. Pearson's r
is defined as the average cross product of standardized scores or:

Where: Zx and ZY are standardized scores and N is the number of scores and

This definition is important because it illustrates that all the scores that are handled by
Pearson's r are standardized. This standardization assumes that (1) the data are samples from
normal population with (2) similar variances and (3) X and Y are linearly related.

37
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The raw score formula for r is as follows:

The formula can be applied to an N by K (subjects by objects) set of raw data to generate a
square K by K (object by object) symmetric matrix of correlations (R). (A symmetric matrix
is a square array of numbers whose entries above the diagonal equal those below the
diagonal.) Because information in a symmetric matrix is redundant, sometimes only the
upper or lower triangle of entries is used. The results are graphically illustrated as follows:

Data Matrix

Items
K = 4

Correlation Matrix (r)

Judges A B C D N = 6 Items A B C D

1 8 6 8 4 A 1.00 . 3 3 . 4 2 . 7 4
Yields =>

2 5 2 5 1 B .33 1.00 .19 -.11

C .42 .19 1.00 .49
3 9 4 4 4

D .74 -.11 .49 1.00
4 6 5 4 3

5 8 2 7 6

6 5 3 4 3

FIG. 3.1. An illustration of a raw data matrix producing a similarity matrix of
correlations (r) between items.

SAS Example of Calculating Correlations

There are number of software packages that calculate correlations. The SAS (1999) system is
representative. It is applied to the data of Fig. 3.1. The results provide the matrix of correlations
as well as levels of significance.

Data Matrix

Items
K = 4

Judges A B C D
N = 6

1 8 6 8 4

2 5 2 5 1

3 9 4 4 4

4 6 5 4 3

5 8 2 7 6

6 5 3 4 3

Yields =>

Correlation Matrix (r)

Items

A

B

C

D

A

1.00

.33

.42

.74

B

.33

1.00

.19

-.11

C

.42

.19

1.00

.49

D

.74

-.11

.49

1.00
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SAS Input

data rexample;
input subjects 11-14;
datalines;
018684
02 5 2 5 1
03 9 4 4 4
04 6 5 4 3
05 8 2 7 6
06 5 3 4 3
9

proc corr;
run:

SAS Output
The CORR Procedure

4 Variables: II 12 13 14

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

11 6 6.83333 1.72240 41.00000 5.00000 9.00000
12 6 3.66667 1.63299 22.00000 2.00000 6.00000
13 6 5.33333 1.75119 32.00000 4.00000 8.00000
14 6 3.50000 1.64317 21.00000 1.00000 6.00000

Pearson Correlation Coefficients, N = 6
Prob > |r| under HO: Rho=0

II 12 13 14

11 1.00000 0.33183 0.41995 0.74200
0.5205 0.4071 0.0913 Note that the value under each correlation is the probability of that value

occuring by chance (if the null hypothesis of 0 r is true through random
12 0.33183 1.00000 0.18650 0.07454 sampling in a population in which X and Y have no correlation)

0.5205 0.7235 0.8884

13 0.41995 0.18650 1.00000 0.48653
0.4071 0.7235 0.3278

14 0.74200 0.07454 0.48653 1.00000
0.0913 0.8884 0.3278

Significance of r

The statistical significance of the Pearson correlation, its chance probability, can be
determined by the following formula:

Where r2 is the square of the correlation and N is the number of pairs of objects. You can
determine the alpha probability values for r in any "Critical Values for F" Table. Look under
one (1) degree of freedom (df) for the numerator and N - 2 (df) for the denominator. Statistical
significance means the absolute value of a correlation is so large that it wouldn't occur very
often by chance. P = .05, for example, means that a specific correlation or one larger would
occur only five times in 100 by chance.

data rexample;
input subjects 11-14;
datalines;
018684
02 5 2 5 1
03 9 4 4 4
04 6 5 4 3
05 8 2 7 6
06 5 3 4 3
9

proc corr;
run:

Variable

11
12
13
14

The CORR Procedure

4 Variables: 11 12 13 14

Simple Statistics

N Mean Std Dev Sum

6 6.83333 1.72240 41.00000
6 3.66667 1.63299 22.00000
6 5.33333 1.75119 32.00000
6 3.50000 1.64317 21.00000

Minimum Maximum

5.00000 9.00000
2.00000 6.00000
4.00000 8.00000
1.00000 6.00000

Pearson Correlation Coefficients, N = 6
Prob > |r| under HO: Rho=0

11 12 13 14

11 1.00000 0.33183 0.41995 0.74200
0.5205 0.4071 0.0913 Note that the value under each correlation is the probability of that value

occuring by chance (if the null hypothesis of 0 r is true through random
12 0.33183 1.00000 0.18650 0.07454 sampling in a population in which X and Y have no correlation)

0.5205 0.7235 0.8884

13 0.41995 0.18650 1.00000
0.4071 0.7235

14 0.74200 0.07454 0.48653
0.0913 0.8884 0.3278

0.48653
0.3278

1.00000
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By substituting the value of 4 for F (a value close to the 95% level) and solving for r in the
formula above, a quick approximation of significant correlation at the .05 probability level can
be obtained by using:

If N = 14 the approximate correlation needed is .50, for example.

Squaring the Correlation Coefficient

When dealing with correlations it is wise to remember that a correlation can be statistically
significant, that is, occur rarely by chance, but be of little predictive value. Squaring the By
correlation coefficient (r2) tells us how much variance in one variable can be accounted for by
the other. If a correlation between vocabulary and reading is rvr = .50 then rvr

2 = .25 and we
can say that 25% of the variance in the scores in reading can be predicted by knowing scores
on vocabulary, r2 is sometimes called the coefficient of determination and 1-r2 the coefficient
of non-determination. Sometimes (1 - R2) 2 is used as a measure of predictability known as the
"badness of fit"

Pearson's r can be applied to binary data and to ranked data. When this happens the
correlation has historically taken on different names. The Point Biserial Correlation (rptbis)
measures the association between two variables one of which is continuous and the other a
dichotomy. The tetrachoric correlation (rtet) measures the association between two dichotomies
which have been converted from continuous distributions and Rho is the correlation between
ranks.

Pearson's r Relationships

Correlations Based on Pearson's r Measures based on r2

rtet Tetrachoric (Two Dichotomies) r2 (Accountable Variance or
Coefficient of Determination)

rptbis Point Biserial (One continuous 1-r2 (Coefficient of Non
and one dichotomy) Determination)

Spearman Rank Rho (Data are ranks) (1 - r2)1/2 (Badness of Fit)

Kendall's Tau Correlation
Kendall's (1952) tau has special relevance for measuring similarity because it is a rank order
correlation coefficient with fewer assumptions than Pearson's r. It can be applied to ordered
category scales and it forms the basis for other widely used measures of association, such as
Goodman-Kruskal's gamma (g). In rtau all possible pairs of scores are compared for each
variable separately. When + 1 is assigned to concordant pairs and -1 to discordant pairs, the
tau coefficient can be calculated by finding the sum of the products of the concordant or
discordant scores in the two sets of pairings and dividing by the number of possible pairs [N
(N-l)/2]. (A pair is concordant if the numbers associated with each pair are in ascending rank
order, otherwise the pair is discordant.)

Pearson's r Relationships

Correlations Based on Pearson's r Measures based on r2

rtet Tetrachoric (Two Dichotomies) r2 (Accountable Variance or
Coefficient of Determination)

rptbis Point Biserial (One continuous 1 - r2 (Coefficient of Non
and one dichotomy) Determination)

Spearman Rank Rho (Data are ranks) (i - r2)1/2 (Badness of Fit)
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Suppose the following rank data are provided for six students.

Rank Scores

Students Achievement Motivation

1 2 3

2 1 2

3 3 4

4 4 6

5 6 5

6 5 1

Comparing students 1 and 2, in the table above, their Achievement ranks are not in descending
order (2 is before 1). The same is also true for their Motivation ranks (3 over 2). In both cases
a -1 is recorded. The product of these two cases, however, is concordant or [(-!)(-!) = +1].
The six students can be paired in 15 ways and the order of their scores shown as follows:

Students 1-2 1-3 1-4 1-5 1-6 2-3 2-4 2-5 2-6 3-4 3-5 3-6- 4-5 4-6 5-6

Achievement - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 - 1

Motivation - 1 1 1 1 - 1 1 1 1 - 1 1 1 - 1 - 1 - 1 - 1

Product 1 1 1 l _ i l 1 1 -i l 1 _i -i -1 1

10 concordant (Nc =10) and 5 discordant (N^ = 5) sums are recorded and S = the sum of the
positive and negative l 'sorS = 10-5 = 5.

rtau = S/[n(n -l)/2], n is the number of subjects.
= (5/15)
= 0.33

S AS PROC CORK KENDALL calculates tau-b correlations and provides tests of significance
based on the normal distribution of rtou, where

Tau-b correlations are corrected for ties by dividing S by the geometric mean of the number of
pairs not tied in each of the two sets of scores. If X = 2, 3, 2, 2 and Y = 2, 3, 3, 2 the six
ordered pairs are scored as follows:

rtau = S/[n(n -l)/2], n is the number of subjects.
= (5/15)
= 0.33
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rtau will usually provide smaller sized coefficients than Pearson's r even though the statistical
significance may be the same.

Gamma Correlation

Gamma (g) is simply the number of concordant products minus the number of discordant
products divided by the sum of the concordant and discordant products or

If there are no ties in the data, gamma will equal tau. If ties are present gamma will be greater
than tau. Usually there are a great many ties in data that are to be ranked. Gamma will,
therefore, provide larger indices of proximity but will use less of the data.

Distances

Sometimes respondents are intercorrelated using objects or variables as profile information.
Care must be taken in interpreting profile results because two judges can be highly correlated
(because their profiles have the same pattern) yet differ widely in the level of their scores. This
is true, for example, with subjects 01 and 02 in Fig. 3.1.

In this case the difference between the two profiles is relatively large yet they correlate highly
r = .97. Should such differences in profiles be important, other measures must be obtained,
such as the sum of the absolute differences

or some measure of Euclidean distance.

Measures of distance are dissimilarity measures of proximity. They can, for example, solve the
problem of similar profile patterns that vary in magnitude. The distance measure between two
points in a plane is

Standardized Distances

Distance calculations are often applied to a profile of standardized scores. After the raw data
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Mahalanobis d2

The Mahalanobis d2 statistic standardizes the variables before calculating Euclidean distance
by dividing each dimensionally squared difference by the variance of that variable. If i and j
are variables then:

Minkowski Metric

A general formula for distance, called the Minkowski metric, can be written as follows:

When p (the power) = 2 the formula is equal to Euclidean distance. In this case, 1/p becomes
1/2 or another symbol for the square root. If p = 1, the formula reduces to:

commonly known as the city block metric. This is so named because to go from one corner of
a block in the city to the diagonally opposite corner you can't go through the buildings and
must go around the block.

Using the data from Fig. 3.1, Euclidean distances were calculated using the Minkowski Metric
with p = 2. Note that the distances between the objects are different from the correlations.
Where objects A and D are highly correlated (.74); they are relatively far apart (8.6) when
distances are calculated.

Correlation Matrix (r) Euclidean Distance Matrix

Items A B C D Items A B C D

A 1.00 A 0.0

B .33 1.00 B 8.8 0.0

C .42 .19 1.00 C 5.6 4.5 0.0

D .74 -.11 .49 1.00 D 8.6 5.0 5.9 0.0

Correlation Matrix (r) Euclidean Distance Matrix

Items A B C D Items A B C D

A 1.00 A 0.0

B .33 1.00 B 8.8 0.0

C .42 .19 1.00 C 5.6 4.5 0.0

D .74 - .11 .49 1.00 D 8.6 5.0 5.9 0.0
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Triangle Inequality

When using distances, most methods of analysis must satisfy the following properties:

1. The distance between any two objects is symmetrical (i.e., dxy = dyx).
2. The distance between x and y is zero only if x = y.
3. If x, y, and z are three objects, the distances between the three objects must form a
triangle (i.e., dxz < dxy + dyz).

This last condition is called the triangle inequality. Sometimes when this condition is not
satisfied a constant may be added to each value to fulfill the third condition. It is known, for
example, that the psychological distance between the letters o and 1 is considered to be much
larger than the sum of the psychological distances of o and b, and b and 1.

Schematically:

Thus, in raw form, the distances do not form a triangle. By adding 3 to each distance the
inequality can be solved as follows:

Usually the minimum constant required to satisfy the triangle inequality for all triples in an
entire matrix is added to each distance. Note: adding a constant is suitable with data measured
on the interval scale but not appropriate with data measured on a ratio scale with a meaningful
zero.

1. The distance between any two objects is symmetrical (i.e., d^ = dyx).
2. The distance between x and y is zero only if x = y.
3. If x, y, and z are three objects, the distances between the three objects must form a
triangle (i.e., d^ < dxy + dyz).
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Scalar Products

Distances and correlations can be functionally related by using scalar products. In order to
understand this relationship, it is useful to review the law of cosines. Several multidimensional
methods calculate the scalar product as an initial step in their analysis.

In a right triangle the cosine of the angle equals the length of the adjacent side (x) divided by
the length of the hypotenuse (c).

The relationship between points B and C can be inferred by calculating the scalar product by
just knowing the distances a, b, and c.
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The distance (a) between two points (B and C) can be obtained by knowledge of the length of
two vectors (that terminate at B and C) that have the same origin (A) and by knowing the size
of the angle included between the two vectors.

The left-hand side of Equation 8 is called the scalar product and is often taken as a substitute
for the correlation between the two points represented by the vectors. The correlation is
sometimes written

when the data have been standardized (h = length of vector).

If two vectors are of unit (1.0) length and the angle between them is acute, then the cosine of
the included angle should directly reflect their correlation. If a perpendicular line is drawn
from the end of unit vector hj to hi, its projection point represents the scalar product.

An evaluation of the scalar product and therefore the correlation can be made with only the
knowledge of the distance between the objects. Suppose, for example, one knows only the
distances between objects i, j, and k as follows:

Suppose also that interest is in the scalar product between j and k (call this value bjk).

From step 8 we know that

Several methods in multidimensional scaling convert similarities to distances to scalar products
because the algebra associated with their solutions is amenable to this measure of proximity.
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The methods may also calculate the scalar product based on the coordinates of the points. This
scalar product

is known as the dot product (dot represents multiplication), and Xj and xk are the vector
coordinates of objects j and k on dimension t.t runs from 2 to r dimensions. The sum of the
cross products of the coordinates, bjk, provides the scalar product.

Association

Direct Estimation of Proximity

Usually direct estimates of similarity are gathered in some form of pairwise comparisons. In
addition to asking for a preference or choice, degrees of judged similarity are sought.

Example: Given four objects A, B, C, and D paired in all possible (6) ways. If two students
make direct estimates of similarity between each pair of objects, their raw data might look as
follows:

A-B A-C A-D B-C B-D C-D

Student 1 7 4 1 5 2 6

Student 2 5 5 2 6 3 7

For each subject a matrix of direct similarities results.

Subject 1 Subject 2

Object A B C D Object A B C D

A A

B 7 B 5

C 4 5 C 5 6

D 1 2 6 D 2 3 7

These data may be analyzed together by averaging the scores, or analyzed separately for each
subject or both.

Percent Overlap

In a free clustering task, where judges are asked to group similar objects together, different
judges may each include the same objects in the sets of objects they place together. Should two
objects be frequently placed together by most or all of the subjects, the assumption is that they
are similar. An index of this similarity is the proportion of times any two objects are found in
the same group. Suppose for example, five subjects group the words love, hate, happy, bitter
and sad as follows:
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Subjects
1 [love, hate] [sad, happy] [bitter]
2 [love, happy] [sad, bitter] [hate]
3 [love, hate, happy, sad] [bitter]
4 [love, hate, bitter] [sad, happy]
5 [love, sad] [hate, bitter] [happy]

Because love and hate are put together in a group by three of the five subjects the similarity
score is 3/5 or .60.

A similarity matrix of the proportions for the foregoing data is as follows:

love hate sad happy bitter

love 1.00

hate 0.60 1.00

sad 0.40 0.20 1.00

happy 0.40 0.20 0.60 1.00

bitter 0.20 0.40 0.20 0.00 1.00

Minimum Percentage

The sum of the estimated time or percentage between two variables or categories is simply

For example, the estimated time spent for various activities over a 24-hour period is presented
in the following table:

Ideal Real Minimum

% Overlap =17/24 Teaching 3 3 3
= . 7 1 Recreation 3 3 3

Writing 1 1 1The value of .71 repre-
sents the extent to Research 3 1 1
which the person is Eating 1 1 1
approaching an ideal sleeping 8 6 6

life or a value of 1.00.

Social 2 1 1

Travel 1 1 1

Misc. 0 2 0

Total 24 24 17
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Interjudge Differences Following Free Clustering

Often, judges will not cluster objects in similar ways. The researcher is interested in whether
some judges should be excluded or separated from the rest and the analysis performed over
separate subsets of judges.

One way to determine the difference between two judges is to pair the objects in all possible
ways and create a vector of ones and zeros for each judge by providing a score of one (1) when
paired group numbers are the same and zero otherwise (the same group numbers are given to
all objects placed in the same group or cluster). The difference between two judges is simply
the sum of the absolute or squared differences between their two vectors of ones and zeros.

For example, the five words love, hate, happy, sad, and bitter are paired in all possible 10
ways. A vector of ones and zeros is created for the first two subjects indicating whether or not
they placed the pair together in their free clustering. The sum of the absolute difference vector
equals the interjudge difference.

love love love love hate hate hate happy happy sad

Judge 1 1 0 0 0 0 0 0 1 0 0

Judge 2 0 1 0 0 0 0 0 0 0 1

[Difference) 1 1 1 1 D 1 2 = 4

The interjudge difference D12 is equal to 4.

A FORTRAN program, JUDGE, has been written which calculates the differences between all
the judges following free clustering and provides the mean and variance of the difference
distribution. It is provided on the CD ROM.

Gower's Similarity Measure

Gower (1971 has defined a general measure of similarity between two subjects or objects that
can combine qualitative, binary, and quantitative data. The measure can be used independently
on a set of scores of a single type or on a mixture of scores. This index is:

or the similarity measure between objects i and j over k variables divided by the weight
associated with each i, j, and k. The weights (Wijk) are usually 1 for each variable so that the
ZWjjk for all variables will ordinarily be the number of different variables. If a comparison is
not valid, or variable k is unknown or absent for one or both of the objects being compared,
then the Wijk is equal to 0. The weight depends on what type of data is being analyzed. Sjjk is
computed as follows:
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Binary: Sij- = 1 if values of variable are same for both objects.
Qualitative: Sjj = 1 if same quality is present in both objects.
Quantitative Sij = 1 - | Xjk - .Xjk| / Rk where x is the score and R is the range of the

variable k.

If, for example, respondents are measured on IQ, reading score, sex, and ethnic origin as
follows:

Quantitative Binary Qualitative

Subjects IQ Reading Sex* Ethnic Origin

1 100 50 1 Caucasian

2 90 50 2 Japanese

3 110 45 1 Japanese

4 115 60 2 Filipino

5 130 54 1 Caucasian

The similarity between each pair of respondents can be calculated. The similarity between
persons 1 and 2 is used as an example.

Measure Variable 1 - |xjk - Xjkl / Rk Similarity Weight Ratio
Sl2(k) W1,2(k) S1,2(k)/W1,2(k)

1. Quantitative IQ 1 -1100-90|/40 =.75 1 .75

2. Quantitative Reading 1-|50-50|/15 =1.0 1 1.0

3 . Binary S e x = 0 1 0

4. Qualitative Ethnic Origin =0 1 0

1.75 4 1.75

Gower's Index is:

Table 3.1 presents all the pairwise measures of similarity for these data.
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Table 3.1

Set of Gower's Sij Measures

S 1 2 3 4 5

1

2 .44

3 .60 .54

4 .24 .43 .22

5 .75 .07 .48 .31

A number of computer programs are useful in establishing measures of proximity (similarity
or distance). Most programs translate the data from raw form (subject by object data) into
some form of proximity matrix (usually object by object). The most common measure of
similarity used is Pearson's r correlation. Not so common is the calculation of Kendall's tau
although it is found in SAS and SPSS (see p. 30). SAS has a sample library, a % Distance
Macro which contains a number of measures of similarity and distance. These include
GOWER (Gowers's similarity measure), EUCLID (Euclidean distance), L(p) (Minkowski
distance where p is a positive value), and many others including the MINRATIO (for binary
data). A listing is provided as a guide. Measures of association are also available. PEROVER
(a program on the CD-ROM) converts free clustering group data into distances. This auxiliary
program is provided with this text along with the program JUDGED to determine interjudge
differences.

Kappa

Kappa is a measure of inter-rater agreement and ranges from 0 to 1.

Kappa = (observed concordance) - (concordance by chance) /1 - concordance by chance.

Rater 2
Suppose two raters rate 20 objects into two categories A B Sum
and B. These are the marginal sums. The raters agree
that 8 of the objects belong in category A and 6 in Raterl A 8 4 12

category B. The data might look as shown on the right. B 2 6 8

Sum 10 10 20

Observed concordance (agreement) = diagonal sum divided by N
= (8 + 6)/20
= .70.

Expected concordance (chance) = the sum of each row total multiplied by its corresponding
column total / N. That is (12)(10) / 20 = 6 and (8)(10) / 20 = 4. These are the expected
diagonal frequencies. They are also summed and divided by N or (6 + 4) / 20 = .50



52 PART 1: FOUNDATIONS

SAS supports the calculation of Kappa and calculates its standard error. Use

Proc Freq;
Table Judge 1 Judge2 / kappa;
Run;

A Distance Macro From SAS

SAS provides a distance macro to calculate similarity or dissimilarity data in a number of
ways. (See SAS V8). Suppose four judges have scores on five variables and the researcher
wishes to determine the similarity or dissimilarity between the judges. The experimenter
chooses the City Block Metric, that is, the Minkowsky metric when p = 1. The SAS input data
set data might look as follows:

data distance;
input judge $ il-i5;
datalines;

J 1 2 4 6 8 2
J2 3 6 2 1 5
J3 1 3 5 8 3
J4 5 7 4 3 7

»
run;
%inc 'C:\Program Files\SAS Institute\SAS\V8\STAT\SAMPLE\xmacro.sas'
%inc 'C:\Program Files\SAS Institute\SAS\V8\STAT\SAMPLE\stdize.sas'; Locates the distance macro
%inc 'C:\Program Files\SAS Institute\SAS\V8\STAT\SAMPLE\distnew.sas'
%distance(out =distout, id=judge,
method=L(l), var=il-i5); The method is L(p), p = 1
Proc print data=distout; Prints the matrix
Run;

The results of L(l) which is the sum of the absolute differences for each Judge is:

Judge jl j2 j3 J4

jl
J2 17

J3 4 17

j4 18 9 18

Methods that can be substituted for the City Block are: Euclidean distance, correlation, squared
correlation, Minkowski metric, similarity ratio, and many others.

data distance;
input judge $ il-i5;
datalines;

J 1 2 4 6 8 2
J2 3 6 2 1 5
J3 1 3 5 8 3
J4 5 7 4 3 7

»
run;
%inc 'C:\Program Files\SAS Institute\SAS\V8\STAT\SAMPLE\xmacro.sas'
%inc 'C:\Program Files\SAS Institute\SAS\V8\STAT\SAMPLE\stdize.sas';
%inc 'C:\Program Files\SAS Institute\SAS\V8\STAT\SAMPLE\distnew.sas'
%distance(out =distout, id=judge,
method=L(l), var=il-i5);
Proc print data=distout;
Run;

Judge jl j2 j3 J4

jl

j2 17

J3 4 17

j4 18 9 18



PART II

UNIDIMENSIONAL METHODS

Unidimensional Scaling attempts to represent similarity judgments or preferences using a
straight line. Carol Pang (1996), for example, ordered over 6000 nouns, taken from Webster's
college dictionary. She did this on the basis of the one dimension of familiarity. For example,
mom is more familiar than bicycle is more familiar than chef is more familiar than frigate is
more familiar than cetacean, etc.

The words were then grouped into 32 levels of familiarity. It is possible to locate an individual's
level of familiarity by displaying just five words, one at a time, and asking the person how well
he or she understands each particular word. Using a computer and an interactive program (Berg,
1995) this binary sort can be repeated 20 times in just a few minutes with a high degree of
reliability.

In Part II, five major unidimensional methods are presented. Despite recent advances in
multidimensional scaling, unidimensional methods have value because of their simplicity,
versatility, and history. They are also less exploratory than multidimensional methods. Their
underlying simple structure is usually well and narrowly defined. Unidimensional scales may
have greater construct validity. They are also amenable to hand-calculated solutions.
Multidimensional analysis often ends with several separate unidimensional scales which can be
separately tested. One methodology can serve as a check on the other.

Each of the unidimensional methods presented offers something unique to scaling analysis. With
Rank Scaling it is simplicity and tests of significance. In Comparative Judgment it is meeting
normality assumptions about attitude. Scalogram analysis provides an "order" definition of
scaling. In Successive Categories, profile data are handled instead of paired data. In Successive
Category scaling the effect of varying interval widths is explored. Summated Ratings assumes
equal intervals and relies extensively on test statistics.
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4
RANK SCALING

Variance Stable Rank Sums

The variance stable rank method of scaling (Dunn-Rankin, 1965, Dunn-Rankin & King, 1969) is
an adaptation of a two-way analysis of variance by ranks. In other words it is a nonparametric
(distribution free) subject by treatment analysis in which the treatments are the psychological
objects that are scaled. The basic assumption of the method is that the scale values are
proportional to the sum of the ranks assigned by the judges to each of the objects. In this method,
the maximum and minimum possible rank totals, for a given number of judges and objects, act as
a convenient and interpretive frame of reference within which the objects are scaled. A linear
transformation of these two extreme rank totals into 100 and zero, respectively, defines the limits
of the scale.

The psychological objects can be ranked directly or the ranks can be determined from the votes
given to the objects when they are arranged in all possible pairs and a choice made of the most
preferred of each pair. Complete ordering can also be derived from partial ranking procedures,
that is, Balanced Incomplete Block (BIB) designs (see p. 12).

A group of second-grade children were asked what they most preferred as a reward after a job
was well done; an A, a 100, a Gold Star (GS), or the word Excellent (Ex). For these children
the objects were formed in all [K(K - l)/2] or six possible pairs. The marked objects in Figure.
4.1 indicate the preferred choice in each pairing for the first child. The figure also shows the
preference values for child 1. These values are found by summing the votes for each different
object. In this case, three choices or votes were made for a 100, two votes for an A, 1 vote for the
Gold Star and no preference for the word Excellent. The 3, 2, 1, and 0 rank values are the
reverse of the rank order of the objects but are utilized in this position so that the value
associated with the most preferred object has the largest magnitude.

FIG. 4.1. Reward pairings. Marked object (+) was preferred in each pairing.
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Table 4.1 shows the rank values obtained for 24 students over the same objects. After obtainin
the rank value totals (Rk), the Scale Values (SV) are obtained by dividing each vote total by th
maximum vote possible (Rtot) and multiplying by 100. These values and a unidimensional grap
are presented at the bottom of Table 4.1.

Table 4.1

Calculation of Scale Values (SV) from Sum of the Rank Values

Students Min Ex GS A 100 Max

1 0 1 0 2 3 3

2 0 0 1 3 2 3

3 0 0 1 2 3 3

* 4 0 1 1 1 3 3

5 0 3 2 0 1 3

6 0 0 1 2 3 3

7 0 1 0 3 2 3

8 0 0 3 2 1 3

9 0 0 1 3 2 3

* 1 0 0 2 0 2 2 3

1 1 0 1 0 2 3 3

1 2 0 1 0 3 2 3

1 3 0 0 1 3 2 3

1 4 0 3 2 0 1 3

1 5 0 1 0 2 3 3

1 6 0 0 1 3 2 3

1 7 0 3 0 2 1 3

1 8 0 0 1 2 3 3

1 9 0 0 3 1 1 3

2 0 0 0 3 2 2 3

2 1 0 2 0 2 2 3

2 2 0 0 1 3 2 3

2 3 0 0 1 2 3 3

2 4 0 0 1 2 3 3

Sums(Rk) 0 19 24 49 52 72

SV=(1OORk/Rtot) 0 26.3 33.3 68.1 72.2 100

*Circular triads present. For student 4, Ex is chosen over GS; GS over A, and
A over Ex. In such cases the procedure assigns the mean of the three rank
values to each of the items involved. Rtot = N (K- l).

Calculation of Scale Values (SV) from Sum of the Rank Values

Students Min Ex GS A 100 Max

1 0 1 0 2 3 3

2 0 0 1 3 2 3

3 0 0 1 2 3 3

* 4 0 1 1 1 3 3

5 0 3 2 0 1 3

6 0 0 1 2 3 3

7 0 1 0 3 2 3

8 0 0 3 2 1 3

9 0 0 1 3 2 3

* 1 0 0 2 0 2 2 3

1 1 0 1 0 2 3 3

1 2 0 1 0 3 2 3

1 3 0 0 1 3 2 3

1 4 0 3 2 0 1 3

1 5 0 1 0 2 3 3

1 6 0 0 1 3 2 3

1 7 0 3 0 2 1 3

1 8 0 0 1 2 3 3

1 9 0 0 3 1 1 3

2 0 0 0 3 2 2 3

2 1 0 2 0 2 2 3

2 2 0 0 1 3 2 3

2 3 0 0 1 2 3 3

2 4 0 0 1 2 3 3

Sums(Rk) 0 19 24 49 52 72

SVKlOORt/R^nt) 0 26.3 33.3 68.1 72.2 100
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Graph of Reward Preference Scale Values

Rmin EX GS A 100 Rmax

0 20 26 30 33 40 50 60 68 72 80 90 100

Test of Significance

When tests of significance are incorporated into the scaling process, variance stable scales of
paired comparison data can be constructed. The rank method has units that are equal in a
variance stable sense. They are variance stable because a specific difference between rank sums
has the same probability of occurrence wherever the rank totals (and the scaled scores) may be
located. In Table 4.1 the .05 critical range is a value of 23. Any difference between rewards that
is equal to or greater than 23 is statistically significant. In scaling, we are usually interested in all
the possible comparisons that can be made between the objects. Utilizing rank totals in the
scaling process provides the opportunity to examine significant differences between pairs of
psychological objects.

The nonparametric method of multiple comparisons (Wilcoxon & Wilcox, 1964) concentrates on
detecting differences between treatments and in this case is analogous to the Tukey method of
multiple comparisons (Hays, 1973). This method uses the range and declares that objects with
significantly large rank sum differences will have significantly different means.

Dunn-Rankin and Wilcoxon, 1966 investigated the true distribution of the range of rank totals,
that is, the distribution of the largest differences between the rank sums. The study determined
the exact probability values necessary when using small numbers of judges and objects. Table D
in Appendix B presents critical values of the rank sum differences where K (objects) and N
(judges) are less than or equal to 15. The study was also able to verify that the normal
approximation to this distribution is accurate when the number of judges or objects is greater
than 15. Thus, the probability can be easily calculated for N or K > 15.

Calculation of the critical range for the sample of 24 subjects shown in Table 4.1 is illustrated
below. The critical range is the product of the expected standard deviation, E(S) and a value from

the range distribution, Qa.

Where K = the number of objects and N = the number of judges.

If K = 4 and N = 24 then

Qa = W/S is the Studentized range for K treatments and infinite df. For N = 24, K = 4 and P
= .05, the value, 3.633, is obtained from Table C in Appendix B.
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An illustration of the calculation of the significant range for 24 judges and four objects where
the .05 probability level is chosen is provided. The values of the Studentized range (Qa = W/S)
have been extensively tabled by Harter (1959) or may be found in Dixon and Massey (1969).
Appendix B, Table C, presents frequently used Qa, values for K = 2 to 100.

In this example, the .05 probability level has been chosen and the critical range is 23. Table 4.2
presents a matrix of rank differences for the data for Table 4.1, in which the significant values
have been starred. Calculation of a simple scalability index (SI) is based on dividing the number
of significantly different pairs by the number of possible pairs (k(k-l)/2).

Table 4.2

Matrix of Rank Differences

100 A GS Ex

Ri 52 49 24 19

52

49 3

24 *28 *25

19 *33 *30 5

* Significant at the .05 level (critical range = 23)

Scalability Index = No. Sig. Different Pairs / K(K-l)/2
SI = 4 / 6 = .67

A relative scalability index may also be calculated. Given a limited number of judges the number
of possible significant pairs is determined by using N times the integers 1 to K as the rank sums
and testing how many of those paired sums are significantly different. These sums represent the
maximum possible scale scores. Note that when the number of judges (N) exceeds the critical
range [Qa E(S)], the relative scalability index (RSI) equals the scalability index.

Relative Scalability Index = No. Sig. Different Pairs / No. Possible Sig. Different Pairs
RSI = 4/6

= .67
Number of Judges

If tests of significance are considered to be an important part of the scaling process then a
sufficient number of judges (N) need to be selected. This will ensure that the objects have the
opportunity to be significantly different. In Table 4.3 are the sample sizes necessary at
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the .01, .05, and .10 probability levels. For the (K) and alpha levels not listed a solution can be
obtained by solving for N in the formula at the bottom of Table 4.3 where Q is taken from the
values by Harter (1959) or Dixon and Massey (1969).

Table 4.3

Number of Judges Necessary to Insure the Possibility
of K Items Being Significantly Different
Number of Judges Needed at Selected Alpha Levels

Items .01 .05 .10

3 17 11 9

4 33 19 18

5 53 38 31

6 80 57 47

7 112 82 68

8 150 111 92

9 194 145 123

10 244 184 157

11 301 228 195

12 364 278 239

13 434 333 287

14 511 394 341

15 594 461 400

N = Q2a(K)(K+l)/12

Discussion

Multiple comparison tests of significance would appear to be a useful adjunct to the scaling
process for the following reasons:

1. Tests of significance can provide help in making decisions about whether two objects come
from the same population of stimuli. In the example presented, 100 and A were scaled very close
to each other. The difference between the sums for A and 100 is three. The small difference of
three or less has an extremely high probability of occurrence by chance so that the observed
difference is likely just a chance difference. Thus 100 and A (which can be categorized as adult
approval rewards) could be chosen to represent one category of reward preference on alternate
forms of an instrument that compares adult approval with independence rewards. That is, a child
might be asked whether he or she preferred an "A" to "being free to do what he or she liked " on
one form and whether he or she preferred a "100" to "being free to go outside" on another (Dunn-
Rankin& King, 1969).

2. Significance tests can create categories of stimuli that may be considered discrete. In Likert
scaling, for example, the categorical descriptions can be tested to see that they were significantly
different as well as equally spaced.

Table 4.3

Number of Judges Necessary to Insure the Possibility
of K Items Being Significantly Different

Number of Judges Needed at Selected Alpha Levels

Items .01 .05 .10

3 17 11 9

4 33 19 18

5 53 38 31

6 80 57 47

7 112 82 68

8 150 111 92

9 194 145 123

10 244 184 157

11 301 228 195

12 364 278 239

13 434 333 287

14 511 394 341

15 594 461 400

N = Q2
a(K)(K+l)/12
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3. Significance tests can be used to build an index of scalability for psychological objects
somewhat analogous to Guttman's coefficient of reproducibility. One index consists of a ratio of
the number of significantly different pairs of objects to the total number of possible pairs. In the
illustration provided in this chapter (see bottom of Table 4.2) there were four significantly
different pairs out of six. This resulted in a scalability index of .67.

A relative scalability index (Knezek, 1979) can also be calculated by forming the ratio of the
significantly different pairs over the number that could be significantly different. The
denominator is found by first using the N(K - 1) values as the maximum possible scale scores,
then testing these pairs of values for significance, and finally counting the number of significant
pairs. Such indices can be utilized to quantify the ability of different groups of people to
distinguish between psychological objects.

4. By solving for N, the number of judges necessary to insure that all objects have a possibility of
being significantly different at the .05 alpha level can be determined.

To summarize, this method of scaling has value because:
1. It is simple and easy to use.
2. It allows scaling along a continuum with meaningful end points.
3. Its scale values correlate highly with those obtained by other techniques.
4. It allows for tests of significance between the items.

The scale scores obtained by this simplified rank method can be utilized in traditional ways and
are strikingly isomorphic (a close one-to-one relationship) with values obtained under Thurstone's
Case V Model (Thurstone, 1927).

Smith (1968) showed, in a study of 19 actual paired comparison matrices varying in size from
four to 21 items, a decidedly linear distribution regardless of the number of items in the matrix.
The correlation between the actual distribution and the theoretical uniform distribution varied
between .967 and 1.00. This indicates that purposeful judgments tend to create uniform
distributions of responses. Related techniques are also proposed by Mosteller (1958), Guilford
1954) and Rummel (1964).

Application 1: Direct Ranking of Counselor Roles

Furlong, Atkinson, and Janoff (1980) developed a list of 14 elementary school counselor roles
such as program planning, counseling, pupil assessment, and disciplinarian. Fifty-four counselors
ranked the list in two ways: (1) the order in which they actually spend their time; and (2) the
amount of time they would like to spend practicing each of the roles. Figure 4.2 shows the results
of this scaling. By visually comparing ideal and actual scale scores it can be seen that the role of
disciplinarian has the greatest disparity. The authors concluded that research and evaluation,
(which comprises a role at the low end of the scale) is the least preferred (both actual and ideal)
activity for elementary counselors.



FIG. 4.2. Difference between actual and ideal roles for 54 counselors. The
largest difference between roles occurs for disciplinarian.
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Application 2: Letter Similarity Scales

Dunn-Rankin (1968, 1978) scaled lowercase letters of the English alphabet using the Simplified
Rank Method (see Figs. 4.3 and 4.4). In this study, the objects (Century School Book font lower
case letters) were paired and votes (rank values) obtained. Each child was asked to circle one
letter of each pair that looks most like the target on the left. Figure 4.3 illustrates one child's task.

FIG. 4.3. Letter similarity instrument, one of 21 pages of pairs.
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Letter Similarity Scales shown in Fig. 4.4 were constructed (Dunn-Rankin, 1968) on the basis of
a letter similarity test. In the test instrument, 21 lowercase letters were matched in pairs to
determine their relative similarity to one another. The cumulative choices made by 315 second
and third-grade children over all 210 possible pairings were then analyzed. Sets of linear scale
values were assigned to the letters in terms of their relative similarity to each target letter. (The
comparatively infrequent letters not included in the study were j q v x and z because to include
them made the task too time consuming for young children.) In the arbitrary frame of reference
in which the letters are plotted, zero indicates no differences among the judges in choosing a
letter most like the target letter. 100 indicates no differences in choosing the letter most unlike
the target letter. The scales are organized by similar letter groups

FIG. 4.4. Letter similarity scales.
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CD-ROM Example Using RANKO

Available on the CD-ROM is the variance stable scaling program called RANKO. RANKO
handle ranked data as well as paired comparisons. Using the Data from the example presente
Table 4.1 and presenting the data as ranks in reverse order the analysis is as follows:

rewardLcfg

Reward Preferences (data switch=l)
24 4 1 Subjects, Objects, Switch. 1 means rank order data
reward.dat
reward.out

reward.dat

2134
1243
1234
2224
43 12

1234
2143
1432
1243
3 133

2 1 3 4 Data in rank form
2143
1243
43 12
2134

1243
4132
1234
1432
1423

3133
1243
1234
1234

reward.out

Reward Preferences (data switch =1)

Scale scores from ranks
Subjects = 24
Categories = 4
Data Type- 1



Subject Ranks

1 2 1 3 4
2 1 2 4 3
3 1 2 3 4
4 2 2 2 4
5 4 3 1 2
6 1 2 3 4
7 2 1 4 3
8 1 4 3 2
9 1 2 4 3

1 0 3 1 3 3
1 1 2 1 3 4
1 2 2 1 4 3
1 3 1 2 4 3
1 4 4 3 1 2
1 5 2 1 3 4
1 6 1 2 4 3
1 7 4 1 3 2
1 8 1 2 3 4
1 9 1 4 3 2
2 0 1 4 2 3
2 1 3 1 3 3
2 2 1 2 4 3
2 3 1 2 3 4
2 4 1 2 3 4

Item Rank Total Scale Score

Min 24 0
1 43 26
2 48 33
3 73 68
4 76 72
Max 96 100

10 20 30 40 50 60 70 80 90 100

,_.+ — +--*-+-*-+- — + — + — *+* — + — + — +

Table of Rank Differences

Items
4 3 2 1

4 0
3 3 0
2 28 25 0
1 33 30 5 0

Significance Level Rank Difference Needed
0.999 1
0.995 2
0.990 3
0.975 4
0.050 10
0.025 10
0.010 11
0.005 11
0.001 12

4 RANK SCALING
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Circular Triad Analysis

Circular triads are proposed as a basis for determining object scalability and individual judge
consistency when using complete paired comparisons data. Circular triads are formed whenever
intransitive (inconsistent) pair wise choices occur. If a subject is presented with all possible pairs
of three objects, A, B, and C, for example, and is asked on each occasion to judge which member
of the pair is preferred, then a preference pattern of the following type may result:

A>B, B>C, C>A where > means " is chosen over."

This preference pattern is called a circular triad. The first object is preferred to the next, whereas
the remaining object is preferred to the first. There is no indication of which object is most or
least preferred. Whenever a circular triad exists, a nonlinear ordering has taken place. When no
circular triads occur in a set of paired data a linear ordering results.

Because all intransitive preference patterns, involving more than three objects, can be
decomposed into circular triads (Kendall & Babington-Smith, 1939), the number of circular
triads can serve as an index of intransitivity in complete paired comparisons data.

Judge Circular Triads (JCT)

Kendall and Babington-Smith (1939) suggested that the relative consistencies of judges could be
determined by counting the total number of circular triads each judge produced in the course of
making choices among all possible pairs of objects. They were unable to determine exactly how
inconsistent any one judge was because the exact probability distributions of Circular Triads for
more than eight objects were unknown. Knezek, Wallace and Dunn-Rankin (1998) were able to
solve this problem by using a computer to generate the true distributions from 5-15 objects.
These exact distributions are given in Table E in Appendix B. The authors were also able to
show that the Chi Squared approximation is a very accurate approximation to the true
distribution. For k objects larger than 15 see one of the two references above.

Kendall (1955) developed a method for calculating the number of judge circular triads (JCT)
from a vector containing a judge's preference for each object.

Suppose there are k = 5 objects A, B, C, D, E and a judge's vote vector showing ties indicating

circular triads is 2, 2, 3, 1, 2. ay = number of times judgej preferred object j. The votes for each
object are squared and summed. Eay2 = 22.

JCT = 5(4)(9)/12-22/2
= 4 circular triads.

The four circular triads are (1) A > B > C> A; (2) A > D > E > A; (3) B > C> D > B and (4) B >
E > D > B
The four circular triads are (1) A > B > C> A; (2) A > D > E > A; (3) B > C> D > B and (4) B >
E > D > B

JCT = 5(4)(9)/12-22/2
= 4 circular triads.

A>B, B>C, C>A where > means " is chosen over."
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Coefficient of Consistency

Kendall and Babington-Smith (Kendall, 1955) developed measures of judge consistency also
based on the number of circular triads. These formulas are:

Consistence! = 1 - 24(JCTi)/(K3 - K) for odd K, and

Consistence) = 1 - 24(JCTi)/(K3 - 4K) for even K

Where K = number of objects and JCTj is the number of circular triads produced by Judge}.

Tests for Circularity

Suppose one conducts a complete paired comparison experiment and is interested in analyzing
the confusions that occur. One might ask "How consistent were the judges?; What objects did
they involve in circularity? What objects should be removed from the final scale?"

1. Judge Consistency: One can test whether an individual judge has significantly fewer circular
triads, across all the objects, than is expected by chance. The researcher can use the values in
Table E as a check.

2. Overall Circularity: One can test whether the total circularity that occurs for all the judges
across all the objects is less than one would expect by chance (Knezek, 1979). This test should
generally be significant at the conventional alpha level (.05) because if the data are discriminable
and the dimension of judgment well defined, then logical, not chance, choices will prevail.
Consistency however, can be determined using other p levels, p < 0.20 for example.

3. Relative Consistency: One can test whether an individual judge has a significantly greater
number of circular triads than the group average using a Z test.

4. Object Circularity: One may wish to know whether a particular object is involved in
significantly less circularity across all the judges than would be expected by chance. This test
will normally not be significant at the conventional level of .05. A conservative probability can
found using Cheybshev's inequality (Gnedenko & Khinchin, 1962): OCT indicates the Object
Circular Triad involvement.

d is chosen by the experimenter, OCT = object circular triads, K = the number of objects,
2

Meanoci= {(K - 3K + 2)/8}/ N and VarianceocT = % MeanocT-

5. Relative Object Circularity: One may wish to test, therefore, whether a specific object is
involved in more or less circularity than other objects, that is, a relative test. In this case, the Z
statistic can be used after calculating (using conventional formulas) the mean and standard
deviation of object circular triads for a particular set of data.

d is chosen by the experimenter, OCT = object circular triads, K = the number of objects,
2

MeanocT = {(K - 3K + 2)/8}/ N and VarianceocT = % MeanocT-

Consistence! = 1 - 24(JCTi)/(K3 - K) for odd K, and

Consistence) = 1 - 24(JCTi)/(K3 - 4K) for even K
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6. Pairwise Object Circularity: Circular triads are sometimes associated with a particular pair
of objects, and these circularities are often unidirectional. Therefore, one may wish to test
whether the direction of the preferences between two objects, involved in a large amount of
circularity, is significantly greater than expected by chance. Here the traditional binomial test can
be employed: where X runs from S to T (Gnedenko & Khinchin, 1962):

where T = the number of times a particular pair of objects is involved in a circular triad (the
number of trials), S = the larger number of single direction occurrences (the number of
successes), p = .50 is the random probability of each preference being in the direction with the
larger number of occurrences (the probability of success on each trial), and X is a random
variable that can take on any value within the range of the distribution.

Because the value yielded is a one-tailed probability, it should be doubled whenever a specific
directionality is not hypothesized. A computer program is usually necessary to count directional
circularity. This is provided in program TRICIR on the CD-ROM.

7. Coefficient of Variation: It is helpful to calculate the coefficient of variation CV = [100
(Standard Deviation/Mean)] among object circular triads for each pair of objects involved in
circularity. This determines whether circularity is evenly distributed across the judges. A large
coefficient indicates that only a few judges are involved in the circularity for that particular pair
of objects, whereas a small coefficient shows the circularity is widely distributed.

Application: Circularity Among Adjective Pairs

An example serves to illustrate some of the procedures described in the foregoing section. In a
study (Dunn-Rankin, Knezek, & Abalos (1978), 15 adjectives were selected on the criterion that
all were socially desirable. All adjective pairs were presented and 39 high school students were
asked to choose the trait preferred in each case (Fig. 4.5 illustrates the instrument used). The
resulting rank ordering and scale values were based on rank scaling.

DIRECTIONS
You will find 105 pairs of words below. For each pair of words, you are to choose one according to your
own preference. Underline your choice for each pair of words. For example: Healthy or Sociable. If you
prefer to be sociable rather than healthy, then underline the word Sociable. There is no time limit for this
task, so take your time!

WHAT WOULD YOU RATHER BE?
1) Good-Looking or Sociable 54) Loving or Healthy
2) Healthy or Good-Looking 55) Rich or Generous
3) Generous or Just 56) Just or Loving
4) Honest or Famous 57) Sociable or Courteous
5) Healthy or Sociable 58) Sociable or Successful
6) Generous or Courteous 59) Good-Humored or Powerful
7) Successful or Just 60) Good-Looking or Just
8) Powerful or Good-Looking 61) Considerate or Intelligent
9) Loving or Courteous 62) Honest or Generous
10) Loving or Generous 63) Sociable or Honest
11) Just or Rich 64) Sociable or Loving
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12) Healthy or Successful 65) Courteous or Considerate
13) Healthy or Honest 66) Successful or Good-Looking
14) Good-Humored or Loving 67) Rich or Courteous
15) Powerful or Loving 68) Good-Humored or Just
16) Successful or Generous 69) Intelligent or Generous
17) Good-Humored or Famous 70) Famous or Loving
18) Considerate or Honest 71) Powerful or Sociable
19) Intelligent or Healthy 72) Loving or Rich
20) Considerate or Healthy 73) Generous or Healthy
21) Healthy or Powerful 74) Generous or Famous
22) Powerful or Courteous 75) Honest or Good-Looking
23) Honest or Good-Humored 76) Considerate or Powerful
24) Powerful or Intelligent 77) Generous or Powerful
25) Intelligent or Loving 78) Good-Humored or Good-Looking
26) Healthy or Rich 79) Good-Looking or Loving
27) Just or Considerate 80) Good-Looking or Considerate
28) Healthy or Courteous 81) Courteous or Good-Humored
29) Intelligent or Famous 82) Courteous or Good Humored
30) Intelligent or Sociable 83) Successful or Good-Humored
31) Loving or Intelligent 84) Good-Looking or Generous
32) Rich or Successful 85) Powerful or Honest
33) Famous or Considerate 86) Honest or Successful
34) Rich or Good-Humored 87) Powerful or Successful
35) Good-Humored or Sociable 88) Good-Looking or Intelligent
36) Rich or Powerful 89} Healthy or Just
37) Considerate or Just 90) Loving or Successful
38) Just or Powerful 91) Generous or Sociable
39) Good-Humored or Considerate 92) Loving or Considerate
40) Good-Humored or Considerate 93) Just or Sociable
41) Famous or Rich 94) Sociable or Considerate
42) Loving or Honest 95) Rich or Good-Looking
43) Rich or Honest 96) Famous or Healthy
44) Considerate or Successful 97) Intelligent or Honest
45) Intelligent or Courteous 98) Courteous or Honest
46) Rich or Intelligent 99) Famous or Sociable
47) Famous or Powerful 100) Just or Honest
48) Famous or Just 101) Courteous or Good-Looking
49) Good-Humored or Intelligent 102) Successful or Intelligent
50) Considerate or Generous 103) Healthy or Good-Humored
51) Successful or Famous 104) Good-Looking or Famous
52) Courteous or Just 105) Rich or Sociable
53) Successful or Courteous

FIG. 4.5. 105 pairs of adjectives presented to 39 high school students.

|

Circular Triad Analysis

1. Judge Consistency. Most of the students were highly consistent in their choices. There was,
however, one exception. One student produced 107 circular triads. Because the number produced
is greater than the p = .05 critical value of 97 (probability = .053) shown in Table E of Appendix
B, (see p. 220) the null hypothesis of random choices is retained for this judge. One can assume
this judge was guessing or doubt the judge's competence. In either case, the student's data should
probably be removed from the analysis.

12) Healthy or Successful 65) Courteous or Considerate
13) Healthy or Honest 66) Successful or Good-Looking
14) Good-Humored or Loving 67) Rich or Courteous
15) Powerful or Loving 68) Good-Humored or Just
16) Successful or Generous 69) Intelligent or Generous
17) Good-Humored or Famous 70) Famous or Loving
18) Considerate or Honest 71) Powerful or Sociable
19) Intelligent or Healthy 72) Loving or Rich
20) Considerate or Healthy 73) Generous or Healthy
21) Healthy or Powerful 74) Generous or Famous
22) Powerful or Courteous 75) Honest or Good-Looking
23) Honest or Good-Humored 76) Considerate or Powerful
24) Powerful or Intelligent 77) Generous or Powerful
25) Intelligent or Loving 78) Good-Humored or Good-Looking
26) Healthy or Rich 79) Good-Looking or Loving
27) Just or Considerate 80) Good-Looking or Considerate
28) Healthy or Courteous 81) Courteous or Good-Humored
29) Intelligent or Famous 82) Courteous or Good Humored
30) Intelligent or Sociable 83) Successful or Good-Humored
31) Loving or Intelligent 84) Good-Looking or Generous
32) Rich or Successful 85) Powerful or Honest
33) Famous or Considerate 86) Honest or Successful
34) Rich or Good-Humored 87) Powerful or Successful
35) Good-Humored or Sociable 88) Good-Looking or Intelligent
36) Rich or Powerful 89} Healthy or Just
37) Considerate or Just 90) Loving or Successful
38) Just or Powerful 91) Generous or Sociable
39) Good-Humored or Considerate 92) Loving or Considerate
40) Good-Humored or Considerate 93) Just or Sociable
41) Famous or Rich 94) Sociable or Considerate
42) Loving or Honest 95) Rich or Good-Looking
43) Rich or Honest 96) Famous or Healthy
44) Considerate or Successful 97) Intelligent or Honest
45) Intelligent or Courteous 98) Courteous or Honest
46) Rich or Intelligent 99) Famous or Sociable
47) Famous or Powerful 100) Just or Honest
48) Famous or Just 101) Courteous or Good-Looking
49) Good-Humored or Intelligent 102) Successful or Intelligent
50) Considerate or Generous 103) Healthy or Good-Humored
51) Successful or Famous 104) Good-Looking or Famous
52) Courteous or Just 105) Rich or Sociable
53) Successful or Courteous
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2. Overall Circularity. Although words, thought to be close to each other in social desirability,
were chosen with hopes that high circularity would be produced, the adjectives instead proved to
be highly scalable. Only 1343 judge circular triads were produced by the 39 judges, an average
of (1343/39) or 34. This is far fewer than the average of 113.75 expected by chance [15(15 - 1)
(15 - 2)/24]. The Coefficient of Consistence, C = 1.0 - 24(34.43) /5360) is high at 0.754. Note
that the student with 107 circular triads is very close to the chance average of 113.75.

3. Relative Judge Consistency. This measure is calculated by finding the number of circular
triads for all judges. Then determine the Mean and Standard Deviation and calculate Z to identify
outliers. In this area, a strong case can again be made against the aforementioned student. The
relative reliability of two other students can also be questioned. The first student's 107 circular
triads, standardized utilizing the Mean and Standard Deviation of all JCTs, is transformed to a Z
score of +3.1. The other two judges each produced 88 circular triads, each equivalent to a Z score
of +2.29. All these scores are significantly inconsistent at the .05 level, according to the group
distribution under the assumption of the applicability of the standard normal curve. (A
Kolmogorov-Smirnoff test uncovered no deviation [p = .05] from normality in the data). It is
possible therefore to remove the choices of all three students from the analysis.

4. Absolute Object Scalability. The object involved in the greatest number of circular triads
(sociable) was subjected to this test. If NK > 16, the distribution of the Object Circular Triads
(OCT) will be approximately normal, therefore, a Z test was used. The 370 object circular triads
for "sociable" were equivalent to a theoretical Z score of-3.21, with a probability level of less
than .001, where

(as Z values approach zero, objects are less scalable). The null hypothesis of random scalability
would therefore be rejected. Because sociable was found to be scalable, all other objects, that
have fewer circular triads, would also be highly scalable.

5. Relative Object Scalability. Three objects were selected for this test. They were the two with
the highest number of circular triads and the one with the lowest. Using the mean and standard
deviation of the entire group of object circular triads, Z scores of + 2.28, + 1.24, and
- 1.83 were derived for sociable, intelligent, and powerful, respectively. Sociable deviates
significantly (p = .05) from the circularity of others in the group, whereas the remaining two
objects do not. If the goal is improvement of the scale of social desirability, the word sociable
would be eliminated from the scale.

6. Pairwise Circularity. A large number of circular triads (101) were found to be associated
with the pair of objects sociable and rich. Because this number was much larger than the
average value of 38.37, for all pairs involved in circular triads, and because 80 of these 101
involvements were in the direction of sociable being preferred to rich (binomial probability <
0.01), the pair was singled out for further study. The word rich was found to be involved in only
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about the average (38) number of circular triads, whereas sociable, as previously stated, was
involved in a significantly greater amount of circularity than the remainder of the objects in the
group. These facts, in combination with consideration of a low coefficient of variation for
sociable (1.22 versus a mean c.v. of 1.49), illustrate that the word sociable is often preferred to
rich, rich is preferred to many other words, and these words are then preferred to sociable.
Removal of the word sociable should eliminate this inconsistent adjective, leading to an
improvement in a linear scale of social desirability.

Discussion

The analysis of data through circular triads should be especially appropriate whenever the
concept of judge reliability does not depend on interjudge agreement. Data from paired
comparison instruments such as the Edwards Personal Preference Schedule (EPPS, Edwards,
1959) might meet this requirement. Circular triad analysis of such data would determine the
degree to which individuals were consistent in their personality choices, as well as test for the
overall consistency of the group. The test of absolute judge consistency allows for the possibility
of perfect consistency within a judge even if the ordering of the objects for every judge is unique.

The exact cumulative probabilities for circular triads, given in Table E, Appendix B, are limited
to the upper and lower 10% tails. For other values and K larger than 15 one can use Kendall's
chi-square approximation (Kendall & Babington-Smith, 1939):

where k is the number of objects and d is an individual's number of circular triads. For example
if a person had 13 circular triads, given 10 objects, x2 = 42 and v = 20. Knezek, Wallace, and
Dunn-Rankin (1998) showed that the Chi-square estimate of the probability for 13 or fewer
circular triads is .0028, close to the actual cumulative probability value the authors enumerated to
be .0021. To aid in the analysis of circular triads, the computer program, TRICIR, is available
on the CD-ROM.

CD-RON Example Using TRICIR

The disability data from Chapter 1 (p. 5) demonstrates the use of the TRICIR program. In this
brief example some tests for circularity are inappropriate because the number of objects is too
small (n = 4). First a configuration file is constructed as a text file. See tricir_readme.txt for a
full explanation. The file consists of:

1. title line; 2. a parameter line (the number of judges, number of variables, 1 for full
output, 0 for a summary, data code ( 0 = 1 and 0, 1 = 1 and 2), separated by spaces; 3. the input
file name. The input file contains the key code for the pairings, each code separated by blanks.
This is followed by the pair choices, a 1 for the first of each pair or a 2 recorded if the second of
each pair is selected; and 4. the output file name.
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disablty.cfg (Configuration file )

Disability Data Set Title
5 4 0 1 # Judges, # Objects, 0 = full output, 1 = 1 - 2 coding
disab.dat Input file Name
disab.out Output file Name

disab.dat (Input File)

01 02 01 03 01 04 02 03 02 04 03 04 Pairing Key
1 1 1 2 2 2
1 1 1 2 2 2
1 1 1 1 2 2 Pair Choices (land 2)
1 1 2 2 2 2
1 1 1 1 2 1

In this analysis Object 1 = Learning Disability, 2 = Mentally Retarded, 3 = Deaf, and 4 = Blind

disab.out (Output File)

Disability Data Set

Analysis summary

Object # CT's In ABS Z ABS Prob Grp Z # Votes Scaled

1 0 -1.00 0.1587 -1.50 14. 93.33
2 1 -0.73 0.2317 0.50 2. 13.33
3 1 -0.73 0.2317 0.50 4. 26.67
4 1 -0.73 0.2317 0.50 10. 66.67

Kendall's Coefficient of Concordance (W) for Judges Votes

W « .7913 Prob (x>=W) =.0078

Probability not accurate for 7 or fewer objects (small numbers of objects are not
normally distributed)

Judge # CT Consis Abs Prob Grp Z

1 0. 1.0000 0.1968 -0.45
2 0. 1.0000 0.1968 -0.45
3 0. 1.0000 0.1968 -0.45
4 0. 1.0000 0.1968 -0.45
5 1. 0.5000 0.4468 1.79

Mean # CT's = 0.200

Standard deviation = 0.447

Average consistency =0.9000

Prob(<= 1. ct's for 5 Judges)= .0004000

Significant Scale Differences for Objects

Objects Diff P=.l P=.05 P=.01
1 2 80.00 1. 1. 0.
1 3 66.67 1. 0. 0.

Critical Differences 63.37 70.83 85.47
(Approximate)
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May not be accurate for 15 or fewer judges (See RANKO for table of exact values)

Significantly different pairs (p=.05) = 1.

Possible significant pairs (p=.05) = 1.

Relative scalability index =1.0000

Probability (x>=index) = 0.0500

Judge: 1

Object # CT's in ABS Z ABS Prob # Votes Scaled
1 0 -1.00 0.1587 3. 100.00
2 0 -1.00 0.1587 0. 0.00
3 0 -1.00 0.1587 1. 33.33
4 0 -1.00 0.1587 2. 66.67

Total circular triads for judge 1 = 0.
Kendall's coefficient of consistence = 1.0000
prob(x<=#ct) = prob(x>coef) = .196784884

Judge: 2

Object # CT's in ABS Z ABS Prob # Votes Scaled
1 0 -1.00 0.1587 3. 100.00
2 0 -1.00 0.1587 0. 0.00
3 0 -1.00 0.1587 1. 33.33
4 0 -1.00 0.1587 2. 66.67

Total circular triads for judge 2 = 0.
Kendall's coefficient of consistence = 1.0000
prob(x<=#ct) = prob(x>coef) = .196784884

Judge: 3

Object # CT's in ABS Z ABS Prob # Votes Scaled
1 0 -1.00 0.1587 3. 100.00
2 0 -1.00 0.1587 1. 33.33
3 0 -1.00 0.1587 0. 0.00
4 0 -1.00 0.1587 2. 66.67

Total circular triads for judge 3 = 0.
Kendall's coefficient of consistence = 1.0000
prob(x<=#ct) = prob(x>coef) = .196784884

Judge: 4

Object # CT's in ABS Z ABS Prob # Votes Scaled
1 0 -1.00 0.1587 2. 66.67
2 0 -1.00 0.1587 0. 0.00
3 0 -1.00 0.1587 1. 33.33
4 0 -1.00 0.1587 3. 100.00

Total circular triads for judge 4 = 0.
Kendall's coefficient of consistence = 1.0000
prob(x<=#ct) = prob(x>coef) = .196784884
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Judge: 5

Object # CT's in ABS Z ABS Prob # Votes Scaled
1 0 -1.00 0.1587 3. 100.00
2 1 0.33 0.6306 1. 33.33
3 1 0.33 0.6306 1. 33.33
4 1 0.33 0.6306 1. 33.33

Total circular triads for judge 5 = 1.
Kendall's coefficient of consistence = 0.5000
prob(x<=#ct) = prob(x>coef) = .446761280

Circular triad distribution (across all judges)

Objects > < Total
234 1. 0. 1. .5000

(The > is read 1 circular triad and the direction i s 2 > 3 > 4 > 2 )

Total circular triads across 5 judges = 1.

Preference Matrix for Circular Triads

Objects # A>B # A<B Total Prob(x<=min) Varcoeff
12 0 . 0 . 0 . 1.0000 *******
13 0 . 0 . 0 . 1.0000 *******
1 4 0 . 0 . 0 . 1.0000 *******
23 1 . 0 . 1 . 0 .5000 2.2361
2 4 0 . 1 . 1 . 0.5000 2.2361
3 4 1 . 0 . 1 . 0.5000 2.2361

Means 0.33 0.17 0.50 0.7500 ******

Note that in this brief data there is only one circular triad. It occurs with Judge 5 and involves
objects 2, 3, and 4. The judges were consistent. TRICIR also performs the rank scaling of the
votes and these are the same as presented in the original calculation. Object 1 (LD, Learning
Disability) is seen as significantly (p. < .05) more preferred to be mainstreamed than 2 (MR,
Mentally Retarded) or 3 (D, Deaf).

Kendall's coefficient of concordance, W, is a measure of agreement among raters. It can range
from 0 to 1 (Siegel, 1956). The rank sums are found. If there is complete agreement among the
judges the rank sums would be some multiple of the number of judges and produce the largest
variability. A ratio is formed between the rank sum variability that does occur divided by the
maximum variability. For the vote data of the example: (0, 5, 10, 15) SS max = 125 and (14, 2, 4,
10) SS obtained = 91. W = 91/125 or W = .73 (uncorrected for ties). To correct for ties subtract
the [(number of judges) I(t3-t)/12] from the denominator, t is the number of tied ranks. Judge 5
has three tied ranks, t = 3. Subtract 5(27-3)712 or 10. W = 91/115 = .7913.
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Guttman Scaling

Guttman (1944, 1950) described a unidimensional scale as one in which the respondents'
responses to the objects would place individuals in perfect order. Ideally, persons who answer
several questions favorably all have higher skills than persons who answer the same questions
unfavorably. Arithmetic questions make good examples of this type of scale. Suppose
elementary school children are given the following addition problems:

(1) 2 (2) 12 (3) 28 (4) 86 (5) 228
+3 +15 ±24 ±88 +894

It is probable that if subject A responds correctly to item 5, he or she would also respond
correctly to items 1, 2, 3, and 4. If subject B can answer item 2 and not item 3, it is probable that
he or she can answer item 1 correctly but would be unable to answer item 4 and 5. By scoring 1
for each correct answer and 0 otherwise, a profile of responses can be obtained. If the arithmetic
questions form a perfect scale, then the sum of the correct responses to the five items can be
used to reveal a person's scale type. Their sum, is reflected in a series of ones and zeros. In our
example:

Items
1 2 3 4 5 Sum

Subject A has scale type 1 1 1 1 1 =5
Subject B has scale type 1 1 0 0 0 =2

Given a perfect scale, the single summed score reveals the scale type. Thus a single digit can be
used to represent all the responses of a person to a set of items. Guttman Scales have been
labeled deterministic. With five questions and scoring the item as correct or incorrect there are
only six possible scale types. These are:

1 2 3 4 5 6

1 1 1 1 1 1 1 1 1 0 11100 11000 10000 00000

75
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Although there exist 32 possible arrangements (2 ) of five ones and zeros, only six of these
form scale types. In general, the number of scale types for dichotomously scored data is (K
+ 1), where K is the number of objects. Although a perfect Guttman scale is unlikely to be
found in practice, approximations to it can be obtained by a judicious choice of items and
careful analysis of a set of responses to a larger number of items than are to be used in the final
scale.

Goodenough's Error Counting

Goodenough revised error counting in Guttman Scaling in a method sometimes known as
Scalogram Analysis (Edwards, 1957). First, a set of psychological objects is selected. The
objects should be ones that will differentiate participants with varying attitudes or perceptions
about the objects along some single dimension. Suppose the following six statements have
been chosen and 12 student's responses have been obtained in the form of Agreement or
Disagreement with these statements. Do these statements constitute a Guttman Scale along the
dimension of attitudes toward school? The students are scored (1) for agree and (0) for
disagree with the statements. Results are presented in Table 5.1.

Statements Agree Disagree
A. School is OK.
B. I come to school regularly.
C. I think school is important.
D. It is nice to be in school.
E. I think school is fun.
F. I think school is better than a circus.

Table 5.1

Item Response Data in the Form of Ones and Zeros

Students A B C D E F Scores

1 0 1 1 1 1 0 4

2 1 1 1 0 0 0 3

3 1 0 0 0 0 1 2

4 1 1 0 0 0 0 2

5 0 0 1 1 1 0 3

6 0 1 0 1 1 0 3

7 0 1 0 0 1 0 2

8 0 1 1 0 0 0 2

9 1 1 0 1 1 1 5

1 0 0 1 1 1 0 0 3

1 1 0 0 1 0 0 0 1

1 2 0 1 1 0 1 0 3

S u m 4 9 7 5 6 2 3 3

Statements Agree Disagree
A. School is OK.
B. I come to school regularly.
C. I think school is important.
D. It is nice to be in school.
E. I think school is fun.
F. I think school is better than a circus.

Table 5.1

Item Response Data in the Form of Ones and Zeros

Students A B C D E F Scores

1 0 1 1 1 1 0 4

2 1 1 1 0 0 0 3

3 1 0 0 0 0 1 2

4 1 1 0 0 0 0 2

5 0 0 1 1 1 0 3

6 0 1 0 1 1 0 3

7 0 1 0 0 1 0 2

8 0 1 1 0 0 0 2

9 1 1 0 1 1 1 5

1 0 0 1 1 1 0 0 3

1 1 0 0 1 0 0 0 1

1 2 0 1 1 0 1 0 3

S u m 4 9 7 5 6 2 3 3



Rearrangement of Ones and Zeros

Students B C E D A F Scores Errors

9 1 0 1 1 1 1 5 2

1 1 1 1 1 0 0 4 0

2 1 1 0 0 1 0 3 2

5 0 1 1 1 0 0 3 2

6 1 0 1 1 0 0 3 2

1 0 1 1 0 1 0 0 3 2

1 2 1 1 1 0 0 0 3 0

3 0 0 0 0 1 1 2 4

4 1 0 0 0 1 0 2 2

7 1 0 1 0 0 0 2 2

8 1 1 0 0 0 0 2 0

1 1 0 1 0 0 0 0 1 2

Sum 9 7 6 5 4 2 33 20
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The basic data are arranged in a table of ones and zeros in which one (1) stands for agree and
zero (0) for disagree, and the rows and columns are summed.

It is initially convenient to rearrange the first table in order of the row and column sums (see
Table 5.2). Errors in scale types are calculated by subtracting the profile of ones and zeros for
each respondent from the perfect scale type with the same summed score. For example:

Perfect Scale Type for a score of 5 = 1 1 1 1 1 0
Subject 9 has a score of 5 = 1 1 0 1 1 1
Difference = 1-1

The sum of the absolute value of each difference is the error. In this case 1 + |-1| = 2 errors.

Table 5.2

The total possible number of errors is equal to the product of N subjects and K objects (items)
or in this case (N)(K) = (12)(6) or 72 possible errors. This is because the maximum possible
number of errors is six for any one subject. An estimate of how accurately the particular
arrangement approximates a perfect scale is to take the ratio of the found errors to the
maximum number of possible errors. Subtracting this ratio from 1.0 renders a coefficient of the
scale's ability to reproduce the scores based on the row sums. The Coefficient of
Reproducibility is:

CR = 1 - (20 Total Errors/72 Possible Errors) = .723.
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A Coefficient of Scalability, CS = 1 - E / X is determined by finding the ratio of the number
of errors (E) to the number of errors by chance (X), subtracted from 1. That is, CS = 1 - No. of
Errors /.5(N)(K) or 1 - 20 / .5(12)(6) = 0.45. The original items form a poor approximation to
a true Guttman scale. 0.60 has been suggested as the lower limit for CS. Item C (I think school
is important.) accumulates six errors, out of a possible 12, so it is reasonable to eliminate this
item. After eliminating item C the responses to the remaining items are reorganized. In this
second reorganization (Table 5.3), 12 errors occur.

Table 5.3

Reduced Matrix of One and Zeros

Judges B E D A F Score Error

9 1 1 1 1 1 5 0

1 1 1 1 0 0 3 0

6 1 1 1 0 0 3 0

1 2 1 1 0 0 0 2 0

7 1 1 0 0 0 2 0

2 1 0 0 1 0 2 2

4 1 0 0 1 0 2 2

1 0 1 0 1 0 0 2 2

5 0 1 1 0 0 2 2

3 0 0 0 1 1 2 4

8 1 0 0 0 0 1 0

1 1 0 0 0 0 0 0 0

Sum 9 6 5 4 2 26 12

p .75 .50 .42 .33 .17

q .25 .50 .58 .67 .83

Note that four errors occur for Judge 3. This person's data should be checked for accuracy in
following instructions or for errors in coding. In this new arrangement, a coefficient of the
ability of the column sums to reproduce all the responses accurately is CR =1- Errors/(N)(K)
or 1 - 12/60) = .80. The CR index has been slightly improved by deleting item C from the
analysis. CS = 1 - 12 / .5(12)(5) = .60. Because further deletion appears not to be of benefit
(that is, does not increase the coefficient of reproducibility) no more rearrangements are
performed.

A test of the effectiveness of a reproducibility coefficient can be made in light of the minimal
reproducibility possible given the average proportion of agree (p) and disagree (q = 1 - p)

Reduced Matrix of One and Zeros

Judges B E D A F Score Error

9 1 1 1 1 1 5 0

1 1 1 1 0 0 3 0

6 1 1 1 0 0 3 0

1 2 1 1 0 0 0 2 0

7 1 1 0 0 0 2 0

2 1 0 0 1 0 2 2

4 1 0 0 1 0 2 2

1 0 1 0 1 0 0 2 2

5 0 1 1 0 0 2 2

3 0 0 0 1 1 2 4

8 1 0 0 0 0 1 0

1 1 0 0 0 0 0 0 0

Sum 9 6 5 4 2 26 12

p .75 .50 .42 .33 .17

q .25 .50 .58 .67 .83
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responses in each column of Table 5.3. By averaging the maximum of p or q in each column,
the Minimal Marginal Reproducibility (MMR) can be obtained. Thus the sum of (.75 + .50
+ .58 + .67 + .83) / 5 = .67. The difference between a CR of .80 and the MMR of .67 is .13.
This number is the Percentage of Improvement (PI).

It is possible to assign a coefficient of reproducibility to a given respondent. This coefficient
may be obtained by subtracting the individuals^ profile from a perfect scale vector with the
same score. The sum of the absolute differences divided by K items and subtracted from 1
gives the CR for the subject chosen. For example if there are nine objects and a single
respondents total score is six then:

Objects, K>9 1 2 3 4 5 6 7 8 9

Scale type Y = 1 1 1 1 1 1 0 0 0 Score = 6
Subject's vector X = 1 1 1 0 1 1 1 0 0 Score = 6

1 -1

CRi = 1 - [(1 + | -l|)/9] = 1 - 2/9 = .7778

Application 1: Cloze Tests in Reading

F. J. King (1974) has utilized scalogram analysis (Guttman Scaling) to grade the difficulty of
cloze tests. A cloze test asks the subject to complete passages in which a specific scattered set
of words has been deleted. King has suggested that a system for getting children to read
materials at their appropriate reading level must be capable of locating a student on a reading
level continuum so that he or she can read materials at or below that level. This is what a cloze
test is designed to measure.

King constructed eight cloze passages ordered in predicted reading difficulty. If a student
supplied seven of 12 words on any one passage correctly, he was given a score of one. If he
had fewer than seven correct answers, he received a score of zero. A child's scale score could
vary from zero to eight, a score of 1 for each of the eight passages. If the test passages form a
cumulative scale, then scale scores should determine a description of performance. A scale
score of 4, for example, would have the vector

and this would indicate that a student could read text material at the fourth level and below. By
constructing a table to show the percentage of students at each scale level who passed each test
passage, King was able to indicate that "smoothed" scale scores were capable of producing the
score vectors with considerable accuracy.

Once the scalability of the passages was determined, King related the reading difficulty of the
test passages to the reading difficulty level of the educational materials in general. Thus he was
able to indicate which reading material a child could comprehend under instruction.

Objects, K = 9 1 2 3 4 5 6 7 8 9

Scale type Y = 1 1 1 1 1 1 0 0 0 Score = 6
Subject's vector X = 1 1 1 0 1 1 1 0 0 Score = 6

1 -1

CRi = 1 - [(1 + | -l|)/9] = 1 - 2/9 = .7778
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Application 2: Arithmetic Achievement

Smith (1971) applied Guttman Scaling to the construction and validation of arithmetic
achievement tests. He first broke simple addition into a list of 20 tasks and ordered these tasks
according to hypothesized difficulty. Experimental forms containing four items for each task
were constructed and administered to elementary school children in grades 2-6. Smith reduced
his 20 tasks to nine by testing the significance of the difference between the proportion passing
for each pair of items. He chose items that were different in difficulty with alpha < .05 for his
test. The nine tasks were scored by giving a one (1) each time three or more of the four parallel
items for that task were answered correctly and a zero (0) otherwise. These items were
analyzed using the Goodenough Technique. The total scale score for each subject was defined
as the number of the item that preceded two successive failures (zeros). Thus a subject with the
following vector:

Tasks 1 2 3 4 5 6 7 8 9
Subject's vector 1 1 1 0 1 1 0 0 0

would have a scale score of 6.

Table 5.4 shows the coefficients of reproducibility obtained by Smith on the addition tests for
two schools and grades 2-6.

Table 5.4

Obtained Coefficients of Reproducibility
Grade Shadeville Sopchoppy Both

2 .9546 .9415 .9496

3 .9603 .9573 .9589

4 .9333 .9213 .9267

5 .9444 .9557 .9497

6 .9606 .9402 .9513

All .9514 .9430 .9487

The high coefficients of reproducibility indicate that a student's scale score accurately depicts
his or her position with regard to the tasks necessary in solving addition problems. For this
reason Smiths' results can be used: (1) to indicate the level of proficiency for a given student;
(2) as a diagnostic tool; and (3) to indicate the logical order of instruction.

Significance of a Guttman Scale

Guttman has stated that a scale with a CR < .90 cannot be considered an effective
approximation to a perfect scale. Further study comparing significance tests from Rank
Scaling suggests that a CR of .93 approximates the .05 level of significance. Other sources
suggest that the CS should be greater than .60.

Tasks 1 2 3 4 5 6 7 8 9
Subject's vector 1 1 1 0 1 1 0 0 0

Obtained Coefficients of Reproducibility

Grade Shadeville Sopchoppy Both

2 .9546 .9415 .9496

3 .9603 .9573 .9589

4 .9333 .9213 .9267

5 .9444 .9557 .9497

6 .9606 .9402 .9513

All .9514 .9430 .9487
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It is possible to test the statistical significance of a Guttman Scale by creating a chance
expected scale using a table of random numbers. Two sets of error frequencies are made for
each subject. That is, the obtained or observed errors and the expected errors. The observed
and expected error frequencies are tested using the Chi Square distribution with N -1 degrees
of freedom.

CD-RON Example Using SCALO

SCALO, using the Goodenough Technique and restricting the data to 0 or 1 responses is
provided on the CD ROM. Using the attitude toward school data from Table 5.1 with item C
removed, the output is provided below.

scalo.out

Mokken Scales

Mokken Scales (Mokken & Lewis, 1982) are like Guttman scales but probabilistic rather than
deterministic. That is, the item difficulties are taken into account when ordering the items of
the scale. A subject who answers a difficult item correctly will have a high probability of
answering an easier item correctly. Loevinger's H statistic is used to test how well an item or
set of items corresponds to Mokken's idea of scalability:

Scalo Title Line

Number of subjects

SubMtem

9.
1.
6.
2.
3.
4.
5.
7.
10.
12.
8.
11.

p 0.
q 0.

2.

1.
1.
1.
1.
0.
1.
0.
1.
1.
1.
1.
0.

9.
75
25

4.

1.
1.
1.
0.
0.
0.
1.
1.
0.
1.
0.
0.

6.
0.50
0.50

= 12 Number of variables =

3.

1.
1.
1.
0.
0.
0.
1.
0.
1.
0.
0.
0.

5.
0.42 0.
0.58 0.

1.

1.
0.
0.
1.
1.
1.
0.
0.
0.
0.
0.
0.

4.
33 0.
67 0.

5.

1.
0.
0.
0.
1.
0.
0.
0.
0.
0.
0.
0.

2.
17
83

Sum

5.
3.
3.
2.
2.
2.
2.
2.
2.
2.
1.
0.

26.

Coefficient of reproducibility (CR) = 0
Minimum marginal reproducibility (MMR)
Percentage of improvement (PI) = 0.1333
Coefficient of scalability (CS) = 0.6000

Err

0.
0.
0.
2.
4.
2.
2.
0.
2.
0.
0.
0.

12.

CS

1.
1.
1.
0.
0.
0.
0.
1.
0.
1.
1.
1.

5

(i)

0000
0000
0000
6000
2000
6000
6000
0000
6000
0000
0000
0000

.8000
= 0.6667
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In this case E is the probability of "errors in direction"
given a Guttman Scale. These have been called Guttman
errors. Eo is the probability of a Guttman error under the
hypothesis of totally unrelated items. In the analysis of the
responses on the right, the data are arranged in a reverse
order so that a 1 represents an easier item than a zero (0).
Following Guttman scaling the data are initially rearranged
in ascending order of ease of response using the column
sums. That is, the probability of 1 is greater than the
probability of a zero. In this example, an error occurs in the
fifth row where a (1 0) response is counter to expectation.

Formally, let item j be easier than item i which means that the P(Xj) = 1 > P(Xi) = 1 or the
probability] is 1 is greater than i is 1, where 1 is a correct response.

Hy = 1 - E/Eo

Where E = P(Xj = 1 and Xj = 0) and Eo = P(Xi = l)P(Xj = 0)

H12 = 1 - 0/5[(.2)(.4)] =1-0 /(.2)(.4) = 1.00
H13 = 1 - 0/5[(.2)(.2)] =1-0 /(.2)(.2) = 1.00
H21 = 1 - 2/5[(.6)(.8)] = 1 - .4 /(.6)(.8) = 1 - .83 = .17
H23 = 1 - l/5[(.6)(.2)] = 1 - .2 /(.6)(.2) = 1 - 1.67 = -.67
H3, = l-3/5[(.8)(.8)] = 1 - .6/(.8)(.8) = 1 - .9375 = .0625
H32 = 1 - 2/5[(.8)(.4)] = 1 - .4 /(.8)(.4) = 1-1.25 = -.25

For the example above, individual item (Hi) values are obtained and averaged.

The overall mean provides an H value for the scale. H = .65625/3 = .22

A customary criterion is that individual items should have H values > .30. Strong total scale
values are > .50 and moderate ones > .40. In this case, either item 2 (B) or 3 (C) creates trouble
and the scale as constituted is not stable.

ProGamma (Now Science Plus Group) has a software catalog that provides Mokken Scale
Analysis called MSP for Windows (see "Using the Internet," p. 208). A good example of the
application of Mokken Scaling to psychiatric diagnosis can be found in de Jong and Molenaar
(1987).

H = 1 - E/Eo.

Items

Sum

P

q

A

1

0

0

0

0

1
.2

.8

B

1

1

0

0

1

3

.6

.4

C

1

1

1

1

0

4

.8

.2

Hn -
H13 =

H21 =
H23 =
H31 =
H32 =

1
1
1
1
1
1

-0/5[(.2)(.4)]
-0/5[(.2)(.2)]
-2/5[(.6)(.8)]
- l/5[(.6)(.2)]
-3/5[(.8)(.8)]
-2/5[(.8)(.4)]

= 1
= i

= 1
= j

= |
1

-0/(.2)(.4)
-0/(.2)(.2)
-.4/(.6)(.8) =
- .2 /(.6)(.2) =
-.6/(.8)(.8) =
-.4/(.8)(.4) =

1
1
1
1

-.83
-1.67
- .9375
-1.25

= 1.00
= 1.00
= .17
= -.67
= .0625
= -.25
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Dominance Theory of Order

83

This theory is used with dichotomously scored items that suggest the dominance of one choice
over the other (right > wrong or before > after), scored 1 or 0. The idea is that if someone can
answer item 1 correctly and not item 2 then item one should come before item 2. The logical
pattern of the number of correctly answered questions versus the number of incorrectly answered
can be used in a number of ways. These can consist of determining the sequence of skills
necessary for reading, in child development, in designating a hierarchy of cognitive processes,
etc. As long as one can develop a key which defines "acceptable" correct answers, the Order
Dominance Model can be utilized.

The model, based on the early work of Krus, Bart, and Airasian (1975), attempts to build a chain
or network of items indicating their relative dominance. The steps are as follows:

From a survey or test each question is marked correct or incorrect for each respondent. Every
correct answer is marked 1 and incorrect 0. After ordering the items based on their total scores
all pairs of questions are compared. If the first question is mostly right and the second question
is mostly wrong it is assumed that the first question is a prerequisite for the second and is in the
correct order. The researcher looks for pairs of confirmatory responses whose pattern is (1 - 0),
and for disconfirmatory patterns (0 - 1). The pairings (0 - 0) and (1 - 1) do not help decide
dominance and they are not considered in the initial analysis but are used in Fisher's Exact Test
(Finney, 1948).

Suppose five judges respond to six items and their responses are scored and presented as in Table
5.5.

Table 5.5

Response Profiles Over 6 Items

Items

Judge

A

B

C

D

E

£

1

1

1

1

1

0

4

2

0

0

1

0

1

2

3

0

1

1

0

1

3

4

1

0

1

1

0

3

5

1

0

0

0

0

1

6

0

0

0

1
0

1

£

3

2

4

3

2

14

In large samples it is useful to eliminate response pattern profiles which constitute only a small
proportion of the data, say less than 5 or 10%, before proceeding farther.
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Next, as in Guttman Scaling, the rows and columns are rearranged based on the magnitude of
their sums.

Table 5.6

Rearranged Profiles

Items

Judge

C

*A

D

B

E

Sum

1

1

1

1

1

0

4

3

1

0

0

1

1

3

4

1

1

1

0

0

3

2

1

0

0

0

1
2

5

0

1

0

0

0

1

6

0

0

1

0

0

1

Sum

4

3

3

2

2

14

The six items are paired in all possible (15) ways and each pair is examined to determine if the
pairing is confirmatory or disconfirmatory over the five judges. As shown in Table 5.6, Subjects
*A's responses to items 1 and 3 are: item 1 correct, Score = 1 and item 3 incorrect, Score = 0.
The order is confirmatory. Table 5.7 details the frequencies of the 1-0 and 0-1 responses and
sums their differences. The 1-1 and 0-0 frequencies aid in calculating Fisher's exact test.

Table 5.7

Confirmatory (1-0) and Disconfirmatory (0-1) Frequency by Pairs

Items

C (1-0)

D(0-l)

C— D

1-3

2

1

1

1-4

1

0

*1

1-2

3

1

2

1-5

3

0

3

1-6

3

0

3

3-4

2

2

0

3-2

1

0

1

3-5

3

1

2

3-6

3

1

2

4-2

2

1

1

4-5

2

0

2

4-6

2

0

0

2-5

2

1

1

2-6

2

1

1

5-6

1

1

0

(1-D

(0-0)

Fisher's p

2

0

.60

3

1

.40

1

0

.40

1

1

.80

1

1

.80

1

0

Fisher's

.30

2

2

0

1

0

1

1

1

1

2

1

2

0

2

0

2

0

3

One-tail Probabilities

.30 .40 .40 .70 .30 .60 .60 .60 .80

A preliminary network (chain)
can be made in which zero (0)
differences assume the items
are unrelated, that is, no logical
dominance
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The frequencies for confirmatory and disconfirmatory responses are placed in an item by item
matrix in which the confirmatory responses are placed in the upper triangle and disconfirmatory
in the lower triangle as shown in Table 5.8.

Table 5.8

Frequencies of Response

Confirmatory

Disconfirmatory

Items 1

1

3

4

2

5

6

1

0

1

0

0

3

2

2

0

1

1

4

1

2

1

0

0

2

3

1

2

1

1

5

3

3

2

2

1

6

3

3

2

2

1

In this case there are 42 total dominance responses, 32 confirmatory and 10 disconfirmatory. The
frequencies are converted to proportions by dividing by the number of judges (5) and their sums
and differences determined. These are presented in Table 5.9. For items 1 and 3, for example: d13

- d31 = 2/5 - 1/5 = .20 and d13 + d31 = 2/5 + 1/5 or .60.

Table 5.9

Sums and Differences in Proportions of Response

Confirmatory - Disconfirmatory Proportions

Confirmatory
+Disconfirmatory

Proportions

Items

1

3

4

2

5

6

1

.60

.20

.80

.60

.60

3

.20

.80

.20

.80

.80

4

.20

.00

.60

.40

.40

2

.40

.20

.20

.60

.60

5

.60

.40

.40

.20

.40

6

.60

.40

.40

.20

.00
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It is useful to provide a significance test on the items to aid in the decision of accepting or
rejecting the item relationships. It is possible that some answers were the result of guessing,
fatigue, or misreading. One possible measure of statistical significance is a Z score. The ratio of
the difference to the square root of the sum is used in McNemar's critical ratio for the calculation
of Z:

In Table 5.10 below are the Z values for the order dominance matrix. This model gives the
researcher the power to decide how many disconfirmatory responses he or she is willing to keep
when building a prerequisite list. The larger the Z score, selected as a cutoff, the more
disconfirmatory responses will be included. This cutoff decision is made subjectively. A Z of
over 2.5 means the researcher would like to include 95% of all disconfirmatory pairings. The
higher the Z score one selects the more likely recursiveness will occur in the dominance lists and
the prerequisite list will have fewer levels.

Table 5.10

Z values for the Order Dominance Matrix

Items 1 3 4 2 5

1

3

4

2

5

6

.26 .45 .63 .77

.00 .45 .45

.26 .63

.26

6

.77

.45

.45

.26

.00

A listing can be made for the items using the Z values as estimates of each item's dominance:

Item 1 > 3, 4, 2, 5, 6
Item 3=4
Item 3 > 2, 5, 6
Item 4 > 2, 5, 6
Item 2 > 5, 6
Item 5 = 6.

A hierarchical graph or chain can be formed from the data. In this chain item 1 is the easiest and
seen as prerequisite for all other items. Items 3 and 4 and 5 and 6 are independent of each other.

Zij = (dij-dji)/(dij+ dji)1/2

for Z13 = .20/(.60)1/2 = .26.

Item 1 > 3, 4, 2, 5, 6
Item 3=4
Item 3 > 2, 5, 6
Item 4 > 2, 5, 6
Item 2 > 5, 6
Item 5 = 6.



5 ORDER ANALYSIS 87

CD-ROM Example Using ORDER

The ORDER analysis program (order.exe) analyzes the data with three different models. Model
C, which is based on using Z scores is applied to the data of Table 5.5. A very small Z score
(.25) and a moderate Z score (1.58) are used for comparison purposes.

order2.cfg (see readme file)

order2.dat

100110
101000
1 1 1 1 0 0
100101
011000

order2.out

Order Program with Data from Table 5.5
5622.25 1.58
order2.dat
order2.out

%

Order Program with Data from Table 5.5

Number of subjects: 5
Number of items: 6
z_values: 0.25 1.58

Model C

Model C (Z-Value = 0.25)

Item Prerequisites

1=> 3 4 2 5 6
3==> 2 5 6
4==> 2 5 6
2==> 5 6
5=>
6=>

Model C (Z-Value=1.58)

Item Prerequisites

1 => 2 5
3=>
4=>
2=>
5==>
6=>
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One can see that if the cut off values are small the prerequisites are well delineated but are more
subject to error. With larger values of Z the prerequisites list shrinks but has greater probability
of being correct.

Fisher's Exact Probability

The degree of recursiveness of the 0-1 and 1-0 responses can be studied using Fisher's exact
probability test (Finney, 1948). This includes the 1-1 and 0-0 responses as well. Extremely easy
or very difficult items will result in a deflated number of (0-1) responses. This is because the
likelihood is that A > B increases as A and B are different in item difficulty. Very easy or very
difficult items would result in a smaller number of counter dominances, that is, (0-1). Fisher's
exact probability can provide an indication of the degree of recursiveness or circularity in the
data. When the (1-0) and (0-1) responses dominate in the four fold table and are evenly
distributed in frequency, the probability of their occurrence is the smallest. For Example using
one-tail probabilities:

Where p = (a + b)! (c + d)! (a +c)! (b + d)!/ a! b! c! d! N!

In Table 5.11, Fisher's probabilities for the items in the example are presented. One can observe
that lower probabilities are associated with items with larger frequencies of (1-0) and (0-1)
responses. Item 3, for example has an average p = .52. The number of agreements, that is, the di-
agonal values (1-1) and (0-0) for item 3 compared with other items is small.

Table 5.11

Fisher Probabilities

Items

1

4

3

2

5

6

1

.80

.60

.40

.80

.80

4

.80

.30

.70

30

.60

3

.60

.30

.30

.40

.40

2

.40

.70

.30

.60

.60

5

.80

.30

.40

.60

.80

6

.80

.60

.40

.60

.80

Avg.

.68

.54

.52

.52

.58

.64

Item j Item j Item j Item 3

1 0 1 0 1 0 1 0

i l a b i l 3 1 1 3 1 2 1 1 2

O c d 0 2 0 1 0 2 1

Model Recursive p =. 10 Less recursive p = .80 Example p =.30
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Fisher's probabilities suggest that item 3 has the most ambiquity associated with the responses
and the researcher may wish to exclude items with low average probabilites in revised
instruments. Because there are many chains that can be built for any dichotomously scored test
(2n), selecting the best chain can be handled by eliminating the most recursive item and
recalculating reliability and then trying with the second most recursive item deleted. The best
chain is the longest chain with the highest internal consistency.

CT3 Index

KR-21 or Cronbach's alpha can provide an index of the instrument's overall internal consistency.
However, the test reliability or internal consistency of dominance data is better determined by
Cudeck's CT3 index, also formulated by Loevinger (1948) and Cliff (1977). This index is
determined to be better (Cudeck, 1980) because KR-21 and Cronbach's alpha are primarily based
on the number of items as opposed to the dominance of those items. Cudeck's Index is:

where:

Suppose five judges respond to six items as presented in Table 5.12 below.

Table 5.12

Item Analysis for Cudeck's Index

Judge

D

C

A

B

E

I

P

pq

i
i
i
i
i
0

4

.8

.16

3

1

1

0

1

1

4

.8

.16

Items

4

1

1

1

0

0

3

.6

.24

2

1

1

0

0

1

3

.6

24

5

1

0

1

0

0

2

.4

.24

6

1

0

0

0

0

1
.2

.16

X

6

4

3

2

2

17

(X-X)2

6.76

.36

.16

1.96

1.96

11.2
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v = 33
vc = 38.2
vm = 21

CT3 = .3023

Rescaling Reliability

One can rescale the CT3 index as well as KR-20 or KR-21 by adding a unit of (1) to the value
found and dividing by two (2). This essentially eliminates negative reliabilities for such indices.

CT3 rescaled =
(CT3 +1.0)72.0 =
(.3023+ 1.0)72.0 = .651

CT3 values should normally range between -1 and 1, although outliers beyond these limits are
mathematically possible. Swartz (2002) enumerated CT3 distributions for 5 objects by 5 judges.
She then compared CT3 to KR-21 reliability indices in this range. As shown in Table 5.13, scaled
CT3 = .90 while scaled KR-21 = .66 for the alpha = .05 level. When scaled CT3 reaches .99, then
scaled KR-21 = .78, alpha = .01. CT3 may be a more appropriate measure of consistency for
some kinds of binary data.

Table 5.13

Critical Values for CT3 versus KR-21 for 5 Objects and 5
Judges at the 80-99 Percentile Levels

Cumulative %

80

90

95

99

CT3 (-1 to 1)

.02

.36

.50

.84

CT3 (0 to 1)

.60

.79

.90

.99

KR21(0 to l)

.50

.57

.66

.78

Application Example

An example serves to illustrate how CT3 can give a different view of consistency than KR-21.
Table 5.14 contains data from two sets of sixth grade students who participated in a summer
camp for children exploring space and time concepts (Gelphman, Knezek, & Horn, 1992). This is
a robotic imaging technology in which the image-capture view and the path of the camera can be
modified to yield perspectives different from the normal human eye. Two sets of students re-
sponded to five questions about space and time. As shown in Table 5.14, both sets of students had
high reliability indices for these five questions (CT3 = 1.0). KR-21, however, was .80 and .85 for
the two sets, respectively. No item-inconsistent response patterns were displayed in either set of
data, so it seems reasonable that the consistency index should be "1.0." CT3 produces the more
intuitively valid indicator in this case. The ORDER program on the CD-ROM calculates CT3.

v = 33
vc = 38.2
vm = 21

CT3 = .3023

CT3 rescaled =
(CT3 +1.0)72.0 =
(.3023+ 1.0)72.0 = .651
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Table 5.14

Right/Wrong Data for Ten Students Completing
Topocam-Enriched Content Lesson

Obs

11

12

13

14

15

16

17

18

19

20

COL1

Group 1

Group 1

Group 1

Group 1

Group 1

Group 2

Group 2

Group 2

Group 2

Group 2

1

1

0

0

0

1
1
1
0

0

COL2

1

1

1

0

0

1

1

1

1

0

COL3

1

0

0

0

0

1
1
0

0

0

COL4

1

1

1

0

0

1
1
1
1
0

COL5

1

1

1

1

0

1
1
1
1
0

ROWT

5

4

3

1

0

5

5

4

3

0

Partial Correlations as a Measure of Transitivity

Douglas R. White (1998) has written a computer program for Multidimensional Guttman Scal-
ing. In viewing dominance, White uses the term entailment between A and B. By this he means
B is easier than A, B is a subset of A, if A then B, or A entails B. Using his program, as many as
50 dichotomous items can be analyzed to determine a network of transitive entailments.

His program is built on a test of the assumption of transitivity. If A exceeds B, and B exceeds C
then we infer A exceeds C. A exceeds C if A, B, C pass the tests of transitivity. The sum of the
exceptions to such transitivity is called the strong measure of transitivity. For example, if a 1 pre-
ceeds a 0 in a set whose sums are ordered from small to large, this is an exception to transitivity.
In the table below exceptions occur in the fifth, seventh, and ninth rows.

FINAL -KR VALIDATED &
CT3 VALIDATED

CT3 KR21

Group 1 1.00 0.80

Group 2 1.00 0.85



92 PART II: UNIDIMENSIONAL METHODS

For a weak measure of transitivity White uses the partial correlation, finding, for example the
partial r between A and B controlling for C: rAB-C

 = rAB - rAcrBC/[l - rAC
2)(l - rBC

2]1/2. Zero or
positive partial correlations are indications of transitivity. White's analysis is based on using a
two by two table. If one looks at items A and B and counts the number of times the responses are
1-1,1-0, 0-1 and 0-0, these are entered as:

The correlation between A and B is .408. A implies B exceptions are cell d or 1 and the percent
is d/N or 1/10 or .10. B implies A exceptions are cell for 2 and the percent is .20. If A implies B
is less than or equal to B implies A, it is defined as a Strong inclusion. Using the column sums of
the initial data (4, 5 ,7, 8) random distributions are created and compared to the original, using
signal detection to distinguish entailments from statistical noise. Finally, a set of suggested
chains is given. One can experiment with this program which can be downloaded free at:

s
u
B
J
E
C
T
S

a

A

1
1
1
0

1
0

0

0

0

0

4

Data

B

1

1

1

1

0

0

1
0

0

0

5

C

1
1
1
1
1
1
0

0

1
0

7

D

1

1

1

1

1

1

1

1

0

0

8

B B

1 0 1 0

A _!__ e d A _1 3 1_

0 f g 0 2 4

http://eclectic.ss.uci.edu/~drwhite/entaU/emanuaL html.



6
COMPARATIVE JUDGMENT

Thurstone (1927) provided a rationale for ordering objects on a psychological continuum.
Psychological objects are stimuli for which some reaction takes place within the sensory system
of the individual. The objects can be a beautiful girl, a telephone's ring, sandpaper, sugar water,
or nitrous oxide. They may also include statements, such as "I hate school," or "I am a patriot".

Attitudes are Normally Distributed

Thurstone postulated that for any psychological object: (1) reactions to such stimuli were
subjective; and (2) judgment or preference for an object may vary from one instance to another.
Thurstone suggested that, although we may have more or less favorable reactions to a particular
psychological object, there is a most frequent, or typical, reaction to any object or stimulus. The
most frequent reaction is called the modal reaction. The mode can be based on repeated
reactions of a single individual or the frequency of the reactions of many subjects.

Because the normal curve is symmetrical, the most frequent reaction (the mode) occupies the
same scale position as the mean. Thus, the mean can also represent the scale value for the
particular psychological object. In his simplest case, Case V, Thurstone assumed that reactions
to various stimuli were normally distributed. He also assumed that the variance of the reactions
around each mean would be the same. Scale values can be acquired, however, only within a
relative frame. It is necessary, therefore, to have at least two objects so that a comparison can be
made. Figure 6.1 illustrates this case.

FIG. 6.1. Theorectical normal distribution about two
different psychological objects.

93
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Suppose Xi and Xj are two psychological objects that are to be judged on a continuum of
positive affect toward school. Suppose Xj is "I hate school," and Xj is "Sometimes school is
dull." We might ask a group of participants to judge which statement is more favorable toward
school attendance. If 80% of the subjects choose j as more favorable than i and therefore only
20% choose i as more favorable than j, we might argue that the average reaction to j should be
higher on a scale than the average reaction to i or Xj > Xj. The separation between Xj and Xj is a
function of the number of times j is rated over i. Using paired comparisons, we can count the
votes and get proportions of preference. If, with 50 subjects, Xj (School is dull.) is chosen 40
times over X! (I hate school.), then the proportion is 40/50 or .80.

Thurstone's Case V

Proportions can be expressed as normal variates (i.e., Z standard scores can be obtained for
proportions). In this case the normal deviate Zij = .84 (for p = .80). The scale separation
between two psychological objects can be made in terms of this normal variate.
Diagrammatically, we can say that somewhere on the continuum of attitude toward school
(attendance) Xj and X} are separated by a distance of .84 as follows:

Note that the mean of the distribution of responses around the stimuli will never be known. The
difference between any two means, however, can be estimated if one makes the assumption of
normality mentioned previously. Thurstone's use of the normal variate as a measure of distance
(Case V) is justified in the following way:

Following Thrustone (1927), a test of the difference between means of two normal distributions
is:

Where S represents the standard error and r is the correlation between the two groups. Modern
researchers would suggests that this is the formula for Student's t.

Thurstone solves this equation for the difference between the means and then letting the means
represent the scale values of two stimuli (the mean and the mode are the same in a normal
distribution) and by assuming the items to be uncorrelated (i.e., r = 0), the formula reduces to:

By assuming that the variances of response are equal for the two items, the value under the
radical becomes a constant and assuming the constant to be one (1) in this case (Thurstone's
Case V) the formula reduces to:
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Case V Example

Thurstone's procedure for finding scale separations starts with the votes derived from some
paired comparison schedule of objects. The votes can be accumulated in a square array by
placing a 1 in each row and column intersection in which the column object is judged or
preferred over the row object.

A matrix can accumulate a large number of persons' responses to the objects. In the fictitious
example that follows, the first table (Table 6.1) contains the frequency of choices of 100
student's to the psychological objects cafeteria, gymnasium, theater, library, classroom. The
students were asked to judge the importance of each to their college education. The objects
were paired in the 10 possible ways and votes accumulated in a frequency matrix.

Table 6.1

Accumulated Frequency (Fu Matrix), N = 100

classroom

cafeteria

gymnasium

library

theater

Sum

class

80

70

65

90

305

cafe

20

70

60

80

230

gym

30

30

55

85

200

lib

35

40

45

75

195

the

10

20

15

25

70

Note: Each entry contains the votes of column objects over the row objects

Initially, the column sums are found and if the sums are not in order (as shown) the rows and
columns of the matrix are rearranged so that the column sums are ordered from smallest to
largest. Under the variance stable or simplified rank method we would proceed directly to use
the sum of the votes as scale scores. But, under Thurstone's rationale, the individual frequencies
are converted to proportions as shown in Table 6.2

Table 6.2

Proportions FIJ/N

the

lib

gym

cafe

class

the

.50

.25

.15

.20

.10

lib

.75

.50

.45

.40

.35

gym

.85

.55

.50

.30

.30

cafe

.80

.60

.70

.50

.20

class

.90

.65

.70

.80

.50

A proportion of .50 is placed on the diagonal of this matrix under the assumption that any
object judged against itself would receive a random number of votes. The expectation is that
50% of the time, the subject would choose the column object and 50% of the time the row
object. Note that the objects have been rearranged according to the sums in Table 6.1. Next, the
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proportions are converted to normal deviates by reference to the normal distribution as shown in
Table 6.3. Normal values are readily available on the Internet.

Table 6.3

Normal Deviates

the

lib

gym

cafe

class

the

.00

-.67

-1.03

-.84

-1.28

lib

.67

.00

-.13

-.25

-.38

gym

1.03

.13

.00

-.52

-.52

cafe

.84

.25

.52

.00

-.84

class

1.28

.38

.52

.84

.00

*Normal deviates are found in any statistical text and on the internet or in any statistics text.
(For PQRS use www.eco.rug.nl/medewerk/knypstra/)

Finally, the differences between column stimuli are found as shown in Table 6.4. If the data are
complete, the differences between the column sums of the normal deviates are equal to the sums
of the column differences.

Table 6.4

Column Differences

Sum

K

Average

lib - the

.67

.67

.90

.59

.90

3.73

5

.746

gym - lib

.37

.13

.13

-.27

-.14

.22

5

.044

cafe - gym

-.19

.12

.52

.52

-.32

.65

5

.13

class - cafe

.44

.13

.0

.84

.84

2.25

5

.45

Knowing the differences among the objects we can assign scale values to each by accumulating
the differences or distances among them. Therefore:

theater the =000 = .00
library lib =000+ .75 = .75
gymnasium gym =000+ .75+ .04 = .79
cafeteria cafe =000 +.75 + .04 = .13 = .92
classroom class = 000 + .75 = .04 = . 13 + .45 =1.32

A graphical representation can be made as follows:

theater the =000 = .00
library lib =000+ .75 = .75
gymnasium gym =000+ .75+ .04 = .79
cafeteria cafe =000 +.75 + .04 = .13 = .92
classroom class = 000 + .75 = .04 = . 13 + .45 =1.32
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Should proportions greater than .98 occur in the data, they are reduced to .98. This is similarly
true for proportions less than .02, which are made equal to .02. The reason for this restriction is
that normal deviations for extreme proportions usually result in an extreme distortion of the
scale values (100% equals infinity, for example). If data are missing, the entries are left blank
and no column differences are found for the blank entries. Averages of column differences are
then found by dividing by k (the number of stimuli) reduced by the number of incomplete
entries. The Case V method requires assumptions of equal dispersion of reactions and a lack of
correlation between judgments of different objects. If these assumptions cannot be met, some
other method or case may have to be used. The Case V is the simplest and most frequently used
of the various cases that Thurstone explored.

Reliability

A test of the effectiveness of any linear scale can be based on the ability of the scale scores to
recapture the original proportions or frequencies used to produce the scale. Traditionally (for the
Case V model) this is done by converting the Z scale values to obtained proportions (p'). That
is, finding differences between all pairs of Z scale values and converting each difference into a
proportion. Then the average difference between the original (p) and obtained proportions (p')
is calculated. A measure, called the average deviation (AD) of the two sets of proportions, is
then used as the index of scalability. Smith (1968), did a Monte Carlo study of the distribution
of the AD and confirmed its relationship to Mosteller's (1951) X2 test.

Gulliksen and Tukey (1958) have approached the problem of scale reliability using analysis of
variance because they wished to answer the question of how effectively the scale scores account
for variability in responses (i.e., what percentage of the total variance is accounted for). In this
case the traditional definition of reliability, rtt = 1 - Se

2/Si2 (where Se
2 = error variance and ST

2 =
total variance) is used as an index of scalability.

Application: Seriousness of Crimes: Then and Now

Mahoney (1986) had 62 college students judge the seriousness of the same 19 crimes first
reported on by Thurstone (1927), Thurstone's study was replicated by Coombs (1964). The
crimes, abortion, adultery arson, assault, battery, bootlegging, burglary, counterfeiting,
embezzlement, forgery homicide, kidnapping, larceny, libel, perjury, and rape were paired
in all possible (171) ways and presented according to Ross (1934). The resulting data were
processed using Gulliksen's (1958) COMPPC program which analyzed the data under the Case
V model and provided a reliability measure (Gulliksen and Tukey, 1958). For the 1986 scale,
the reliability was .88. The results are shown in Fig. 6.2. Abortion, seduction, smuggling and
adultery have continued their downward trend in perceived seriousness

Case V Program

Thurstone's method is not often used, but its historical perspective makes later methods more
understandable. The Case V method can be found in the PC-MDS programs (called Case5)
promulgated by the Department of Marketing at Brigham Young University over the internet
(Webpage = http://marketing.byu.edu). The FORTRAN listing for Complete Paired
Comparisons can be found in Scaling Methods (Dunn-Rankin, 1983).



FIG. 6.2. College student perception of seriousness of crimes 1927, 1966, and 1986.



7
CATEGORICAL RATINGS

The most popular unidimensional method of attitude measurement involves ordered categories.
More traditional names such as Summated Ratings, Likert Scaling and Semantic Differential
are forms of ordered categories. In this method, the judges are asked to place items in a fixed
number of categories, usually 2, 3, 4, 5, 7, 9, or 11. A typical example of this format is given in
Table 7.1. A unidimensional scale of attitude toward reading is proposed for these eight
statements. Judges are asked to indicate the degree of positive affect toward reading for each
statement by marking appropriately. It is clear that the format can accommodate a great many
statements and it calls for only one action per statement by each judge. It is the accumulation of
the responses of a number of judges that provides the data for creating the scale.

Table 7.1

Example of an Ordered Category Rating Scale

No Yes
1 2 3 4 5 6 7

1.1 try reading anything I can get my hands on. : : : : : : : :
2.1 read when there is nothing else to do. : : : : : : : :
3. When I become interested in something I read about it : : : : : : : :
4.1 have never read an entire book. : : : : : : : :
5.1 seldom read anything. : : : : : : : :
6.1 almost always have something I can read. : : : : : : : :
7.1 never read unless I have to. : : : : : : : :
8.1 only read things that are easy. : : : : : : : :

Because the formulation of survey instruments is easily made, abuses of the ordered category
method are frequently found. Some of the more common abuses are: First, it is rare that
judgments are initially sought by the experimenter. Rather the category headings ask for degrees
of personal agreement. If the use of such an instrument is to be valid and reliable one must
speculate that agreement and judgment are similar and that the trial sample is similar to the final
population. These two speculations are not always justified. Second, the statements formulated
are seldom unidimensional in character yet are analyzed as if they were. Third, an assumption of
equality of intervals is made. For example, the value of the distance between 5 and 4 and the
distance between 4 and 3 (in Table 7.1) is assumed to be equal and is usually assigned a value of
1 (see p. 21, naming categories).
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Green's Successive Categories

PART II: UNIDIMENSIONAL METHODS

The scaling method of successive intervals (Green, 1954) is an attempt to accommodate more
items than other unidimensional techniques can and to estimate the distance or interval between
the ordered categories. When a number of judges have marked the items, a distribution of
judgments for each item is created (see, for example, Table 7.2). In this method, the average of
the normal deviates assigned to the cumulative proportions of responses in each category
represents the scale score of the item but only after each deviate is subtracted from the
category boundary. As in the Case V model (see previous chapter), variances around scale
values are assumed to be equal.

Table 7.2

Frequencies of Response by 15 Judges to Reading Attitude Statements

Statements

1

2

3

4

5

6

7

8

No

1

0

2

0

8

10

0

8

4

2

0

1

0

4

4

2

4

5

3

1

3

0

1

0

0

1

0

4

3

4

1

2

0

1

0

4

5

3

0

1

0

1

1

1

1

6

1

1

5

0

0

4

1

0

Yes

7

7

4

8

0

0

7

0

1

The boundaries of the intervals are located under the assumption that the judgments for each item
are distributed normally. In order to analyze the items under the cumulative normal distribution,
the categories are arranged from least to most favorable and the cumulative frequency
distributions are found, as in Table 7.3.

Table 7.3

Cumulative Frequency Distributions

Statements

1

2

3

4

5

6

7

8

No

1

0

2

0

8

10

0

8

4

2

0

3

0

12

14

2

12

9

3

1

6

0

13

14

2

13

9

4

4

10

1

15

14

3

13

13

5

7

10

2

15

15

4

14

14

6

8

11

7

15

15

8

15

14

Yes

7

15

15

15

15

15

15

15

15
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These summed frequencies are then converted to cumulative proportions, as shown in Table 7.4.

Table 7.4

Cumulative Proportions

Statements

1

2

3

4

5

6

7

8

No

1

.13

.53

.67

.53

.27

2

.20

.80

.93

.13

.80

.60

3

.07

.40

.87

.93

.13

.87

.60

Categories

4

.27

.67

.07

1.00

.93

.20

.87

.87

5

.47

.67

.13

1.00

1.00

.27

.93

.93

6

.53

.73

.47

1.00

1.00

.53

1.00

.93

Yes

7

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

Any proportions greater than .98 or less than .02 are rejected and the cumulative proportions are
converted into normal deviates by referring to areas of normal distributions (see Table 7.5). The
cumulative proportions are converted to Z scores

Table 7.5

Unit Normal Deviates (Z scores)

Statements

1

2

3

4

5

6

7

8

No

1

-1.13

.08

.44

.08

-.61

2

-.84

.84

1.48

-1.13

.84

.26

3

-1.48

-.25

1.13

1.48

-1.13

1.13

.26

Categories

4

-.61

.44

-1.47

1.48

-.84

1.13

1.13

5

-.08

.44

-1.13

-.61

1.48

1.48

6

.08

.61

-.08

.08

1.48

Yes

7

The differences between the categories for each item are found and the average of the differences
is equal to the boundary between the two columns. For missing entries no differences are found
and the average is found for those items for which a difference is available. See Table 7.6. The
averages in the bottom row of Table 7.6 are the distances or intervals between the categories.
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Table 7.6

Matrix of Differences
Statements

1

2

3

4

5

6

7

8

Sum

n

Average

2-1

.29

.76

1.04

.76

.87

3.72

5

.74

3-2

.59

.29

.00

.00

.29

.00

1.17

6

.20

4-3

.87

.69

.00

.29

.00

.87

2.72

6

.45

5-4

.53

.00

.34

.23

.35

.35

1.80

6

.30

6-5

.16

.17

1.05

.69

.00

2.07

5

.41

By setting the first boundary arbitrarily as BI = 0, the remaining boundaries can be computed by
summing the boundaries cumulatively from left to right as follows:

A comparison between an equal interval assumption and the boundaries obtained is shown by
dividing the sum (2.10) by five this yields equal intervals of .42.

This illustrates that the length between 1 and 2 is quite long whereas the interval between 2 and 3
is fairly small. In order to obtain the scale scores, the normal deviate values (given in Table 7.5)
are subtracted from the category boundaries. In this case the first boundary is taken as zero and no
values are found for column 7. Table 7.7 shows this calculation. The row sums are then averaged.

B1 = 0 = .00
B2=0 + .74 = .74
B3 = 0 + .74 + .20 = .94
B4 = 0 + .74 + .20 + .45 =1.39
B5 = 0 + .74 + .20 + .45 + .30 = 1.69
B6 = 0 + .74 + .20 + .45 + .30 + .41 = 2.10
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Table 7.7

Boundaries Minus Column Normal Deviates

Statements

1

2

3

4

5

6

7

8

Scale

B1-l

1.13

-.08

-.44

-.08

.61

B2-2

1.58

-.10

-.79

1.87

-.10

.48

B3-3

2.42

1.19

-.19

-.54

2.07

-.19

.68

B4-4

2.00

.45

2.86

-.09

2.23

.26

.26

B5-5

1.77

1.25

2.82

2.30

.21

.21

B6-6

2.02

1.49

2.18

2.02

.62

Sum

8.21

7.59

7.86

-.37

-1.81

10.49

.10

2.86

k

4

6

3

3

4

5

5

6

Average

2.05

1.27

2.62

-.12

-.45

2.10

.02

.48

These scale values or scores indicate that the reading items should be arranged as follows:

3. When I become interested in something I read a book.
6.1 almost always have something I can read.

* 1.I try reading anything I can get my hands on.
2.I read when there is nothing else to do.
8.I only read things that are easy.
7.I never read unless I have to.

*4.I have never read an entire book.
5.I seldom read anything.

Starred items may be deleted from final scale. The experimenter may wish to delete items close
together on the scale. In this study, the experimenter might eliminate items 1 and 4 from the final
scale.

Discussion

The Program TSCALE formulated by Veldman (1967) performs Successive Interval Scaling and
is provided on the CD-ROM. Veldman's program differs slightly from Green's method but the
relative positions of the objects remain much the same. When using TSCALE, if complete
endorsement occurs for an item, (for example all the respondents strongly agree with the
statement) then the variance of the item is zero (0) and it will appear at the zero point of the scale
even though it may have universal endorsement and should have the highest scale value or the
lowest. Such items cannot be scaled but may provide insight into the upper or lower boundaries
of the scale. The FORTRAN program for TSCALE can be found in Scaling Methods (Dunn-
Rankin, 1983). If an ordered category instrument has a large number of items, it may be expected
that the instrument contains more than one unidimensional scale. If this is expected, the
multidimensional methods of clustering, factor analysis, or multidimensional scaling
methodologies may be used (See PART III and PART IV of this text).
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TSCALE Analysis of Reading Attitude

PART II: UNIDIMENSIONAL METHODS

The reading attitude data were submitted to the TSCALE program on the CD-ROM and the
results are given below. There are slight differences with Green's method due to rounded Z
values and the location of the zero point (see the relative positions of items 1 and 6).

tscale.cfg

tscale.dat

tscale.out

Reading Response Attitude Statements Title
15 8 7 Parameters (Judges, Items, Categories)

tscale.dat
tscale.out

3 1 4 1 1 2 1 1
4 1 5 1 1 2 1 1
4261 1 4 1 1
4361 1 5 1 1
5361 1612
5461 1612
6471 1612
74721722
7472 1724
76722724
77722724
77732734
77742755
77745767
53611612

}Data

TSCALE Output

Reading Response Attitude Statements

ITEMS = 8 JUDGES = 15 CATEGORIES = 7

SCALE VALUES FREQUENCIES

RANK-ORDERED ITEM-ORDERED 1 2 3 4 5 6 7

3 3.13 1 2.48 0 0 1 3 3 1 7 3. When I become interested in something
I read a book about it.

1 2.48 2 1.55 2 1 3 4 0 1 4 I.I try reading anything I can get my hands on.

6 2.44 3 3.12 0 0 0 1 1 5 8 6.I almost always have something I can read.

2 1.55 4 -0.06 8 4 1 2 0 0 0 2.I read when there is nothing else to do

8 0.76 5 -0.30 10 4 0 0 1 0 0 8.I only read things that are easy.

7 0.24 6 2.44 0 2 0 1 1 4 7 7. I don't read unless I have to.

4 -0.06 7 0.24 8 4 1 0 1 1 0 4.1 have never read an entire book.

5 -0.30 8 0.76 4 5 0 4 1 0 1 5. I seldom read anything.
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Likert (1932) argued that: (1) category intervals are generally equal; (2) category labels can be
preset subjectively and (3) the judgment phase of creating a scale can be replaced by an item
analysis performed on the results of the respondents responses. These three arguments mean that
in Likert scaling, the strength of a person's preference about all the psychological objects
replaces the direction and intensity of the specific objects that a respondent would have judged.
Successive Interval Scaling and Likert Scaling, when carefully applied, often yield similar
results. Because Likert Scaling is easier, it is more popular.

An Example of Likert Scaling

The objects are chosen and unit values are assigned to each ordered category, for example, the
integers 1 through 7. After subjects respond by checking or marking one of the categories for
each item, an N by K (subject by item) matrix of information is generated as shown in Table 7.8.
If this was a final instrument, the Total attitude scores in the right hand column would be utilized
directly. In this instrument, each item correlates positively with the total score.

Table 7.8

Responses to Reading Attitude Survey
Students

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Sum

Mean

S

Ttot

Items

1-1

3

4

4

4

5

5

6

7

7

7

7

7

7

5

7

85

5.6

1.44

.89

1-2

1

1

2

3

3

4

4

4

4

6

7

7

7

3

7

63

4.2

2.14

.94

1-3

4

5

6

6

6

6

7

7

7

7

7

7

7

6

7

95

6.3

0.90

.81

1-4

1

1

1

1

1

1

1

2

2

2

2

3

4

1

4

27

1.8

1.08

.90

1-5

1

1

1

1

1

1

1

1

1

2

2

2

2

1

5

23

1.53

2.06

.74

1-6

2

2

4

5

6

6

6

7

7

7

7

7

7

6

7

86

5.73

1.75

.80

1-7

1

1

1

1

1

1

1

2

2

2

2

3

5

1

6

30

2.0

1.55

.85

1-8

1

1

1

1

2

2

2

2

4

4

4

4

5

2

7

42

2.8

1.78

.94

Total

14

16

20

22

25

26

28

32

34

37

38

40

46

25

50

453

30.2

10.6
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A review of the Attitude Survey data is made through item analysis. Each respondent's
categorical value is provided in the body of Table 7.8. Using SAS PROC Corr Alpha, the mean
(item difficulty) and standard deviation of each item are calculated and Pearson (r) correlations
of items with the "total score on all items" are found. The correlation acts as a discrimination
index for each item. That is, if the item correlates highly with the total score it is internally
consistent. From the item analysis, Item 5 (I seldom read anything) has the lowest correlation
(.74) with the total test score. Item 3 has the lowest variability (S = .89). Items with low
variability may fail to discriminate. Finally, Cronbach's alpha reliability coefficient (Cronbach,
1951) is determined. Despite using only 8 items, Alpha is 0.95 or very consistent. Items are
eliminated on the basis of poor internal consistency, very high or low endorsement, or lack of
variability. If the items are ordered, based on their sums, the order is:

This is the same order obtained in using TSCALE, Successive Interval Scaling on the CD-ROM.

Discussion

Initial item selection for ordered category scaling can be aided by using the guidelines prescribed
in chapter 1, p. 18. One should be careful to avoid "foldback" analysis in which a selection of
discriminating items is used to predict differences in the sample from which the items were
originally selected. (See Blumenfeld, (1972); "I am never startled by a fish".) The steps used in
creating an ordered category scale are as follows:

1. Decide on the number of dimension(s). (If more than one dimension
see multidimensional methods.)

2. Collect objects (observe criteria table, p. 18; make a pilot instrument).
3. Make a semantic description and exclude semantic outliers (see p. 109).
4. Present items to judges and obtain their similarity judgments (could be done

by free clustering).
5. Find item statistics (mean [proportion passing], S.D., r of item with total test

score).
6. Run on TSCALE (see CD-ROM ) for successive intervals.
7. Revise scales. In the finished scale the category continuum is changed to one

of agreement versus disagreement instead of judgments of similarity.

It is always useful to include negatively worded items in ordered category scale construction.
This makes the subjects read the items more carefully. When clustering or scoring such items
their responses may need to be reversed (see p. 113).

Example: Remmers's General Scale

Remmers (1963) popularized the use of the ordered category scale and produced general scales,
(Fig. 7.1). It is interesting to note that Remmers includes some very extreme statements to ensure
that all possible representations are available in the final instrument. Also note that each
statement is reasonably short and that there are no compound sentences. When surveys like
Figure 7.1 are given, a selection of demographics (age, sex, occupation, education, ethnicity,
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etc.) relating to the problem being studied are sought. These may then be correlated with the
scores of the respondents.

Please fill in the blanks below. (You may leave the space for your name blank.)
Name Boy Girl (circle one), Date, Grade
What occupation would you like to follow?

Directions: Following is a list of statements about a school subject Place a plus (+) sign before each statement
with which you agree with reference to the subjects listed.

English —Math
E M

1. 1 am. crazy about this subject
2. The very existence of humanity depends upon this subject.
3. If I had my way, I would compel everybody to study this subject.
4. This subject is one of the most useful subjects I know.
5. 1 believe this subject is the basic one for all school courses.
6. This is one subject that all Americans should know.
7. This subject fascinates me.
8. The merits of this subject far outweigh the defects.
9. This subject gives pupils the ability to interpret life's problems.
11. This subject makes me efficient in school work..
13. This subject is interesting.
14. This subject teaches methodical reasoning.
15. This subject serves the needs of a large number of boys and girls.
16. All methods used in this subject have been thoroughly tested.
17. This subject has its merits and fills its purpose quite well.
18. Every year more students are taking this subject.
19. This subject aims: mainly at power of execution or application.
20. This subject is not based on untried theories.
21. 1 think this subject is amusing.
22. This subject has its drawbacks, but I like it.
23. This subject might be worth while if it were taught right.
24. This subject doesn't worry me in the least.
25. My likes and dislikes for this subject balance one another.
26. This subject is all right, but I would not take any more of it.
27. No student should be concerned with the way this subject is taught.
28. To me this subject is more or less boring.
29. No definite results are evident in this subject.
30. This subject does not motivate the pupil to do better work.
31. This subject had numerous limitations and defects.
32. This subject interferes with developing,.
33. This subject is dull.
34. This subject seems to be a necessary evil.
36. The average student gets nothing worth having out of this subject.
37. All of the material in this subject is very uninteresting.
38. This subject can't benefit me.
39. This subject has no place in the modern world.
40. Nobody likes this subject.
42. This subject is all "junk".
43. No sane person would take this subject.
44. Words can't express my antagonism towards this subject.
45. This is the worst subject taught in school.

Fig. 7.1. A scale for measuring attitude toward school subjects.
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Application: Revising A Scale

McClarty (1980) selected A Foreign Language Attitude Scale for revision. An inspection of
the items suggested several incongruent items. The scale was designed to measure "attitude
toward learning a (particular) foreign language" yet it contained items like "I would like to be a
(Japanese) teacher," and "Everyone in school should take a foreign language." The original scale
is given in Figure 7.2. Two hundred and thirty-one high school students (grades 7-12) taking
their first year of high school Japanese responded to the scale. Many of these students were of
Japanese ancestry and had attended Japanese language schools in their elementary school years.

Foreign Language Attitude Scale

1 - do not agree at all 2 - agree a little bit 3 - agree quite a bit 4 - agree very much

1.1 would like studying Japanese.
2.1 would like to learn more than one foreign language.
3.1 like to practice Japanese on my own.
4. Most people enjoy learning a foreign language.
5. Everyone in school should take a foreign language.
6. Japanese is interesting.
7. It is too bad that so few Americans can speak Japanese.
8. Anyone who can learn English can learn Japanese.
9.1 would like to travel in a country where Japanese is spoken.
10. The way Japanese people express themselves is very interesting.
11. Japanese is an easy language to learn.
12.1 would like to be a Japanese teacher.
13.1 would like to take Japanese again next year.
14. The Japanese I am learning will be useful to me.
15.1 would like to know Japanese-speaking people of my own age.
16. Students who live in Japanese-speaking countries are just like me.
17. I'm glad Japanese is taught in this school.
18. My parents are pleased that I'm learning Japanese.
19.1 like to hear Japanese people talk.
20. Japanese is one of my most interesting subjects.
21. Studying Japanese helps me to understand people of other countries.
22.1 think everyone in school should study a foreign language.
23. Americans really need to learn a foreign language.
24. What I learn in Japanese helps me in other subjects.
25. Learning Japanese takes no more time than learning any other subject.
26. Sometimes I find that I'm thinking in Japanese.
27. My friends seem to like taking Japanese.
28. I'm glad that I have the opportunity to study Japanese.
29.1 use Japanese outside the classroom.
30. I'm looking forward to reading Japanese books on my own.
31.1 would like to study more Japanese during the next school year.
32. Japanese is one of the most important subjects in the school curriculum.

Fig. 7.2. The original foreign language scale which is to be revised.

Because the attitude scale is relatively complex, it was decided to use the semantic description
matching design given by Levy and Guttman (1975) as an initial attempt in obtaining
unidimensionality. In this technique, an effort is made to classify statements by their semantic
items, it is reasonable to redefine items using this method. First, a model sentence, denoting the

Foreign Language Attitude Scale

1 - do not agree at all 2 - agree a little bit 3 - agree quite a bit 4 - agree very much

1.1 would like studying Japanese.
2.1 would like to learn more than one foreign language.
3.1 like to practice Japanese on my own.
4. Most people enjoy learning a foreign language.
5. Everyone in school should take a foreign language.
6. Japanese is interesting.
7. It is too bad that so few Americans can speak Japanese.
8. Anyone who can learn English can learn Japanese.
9.1 would like to travel in a country where Japanese is spoken.
10. The way Japanese people express themselves is very interesting.
11. Japanese is an easy language to learn.
12.1 would like to be a Japanese teacher.
13.1 would like to take Japanese again next year.
14. The Japanese I am learning will be useful to me.
15.1 would like to know Japanese-speaking people of my own age.
16. Students who live in Japanese-speaking countries are just like me.
17. I'm glad Japanese is taught in this school.
18. My parents are pleased that I'm learning Japanese.
19.1 like to hear Japanese people talk.
20. Japanese is one of my most interesting subjects.
21. Studying Japanese helps me to understand people of other countries.
22.1 think everyone in school should study a foreign language.
23. Americans really need to learn a foreign language.
24. What I learn in Japanese helps me in other subjects.
25. Learning Japanese takes no more time than learning any other subject.
26. Sometimes I find that I'm thinking in Japanese.
27. My friends seem to like taking Japanese.
28. I'm glad that I have the opportunity to study Japanese.
29.1 use Japanese outside the classroom.
30. I'm looking forward to reading Japanese books on my own.
31.1 would like to study more Japanese during the next school year.
32. Japanese is one of the most important subjects in the school curriculum.
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dimensions. Although Guttman recommends using this technique in the construction of trial
items, it is reasonable to redefine items using this method. First, a model sentence, denoting the
attitude being "measured" by the scale, was created (I would like to study Japanese) and each
scale sentence was compared to the model.

Table 7.9

Semantic Description of Attitude Statements

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

I

X

X

X

people

everyone

Implied

Americans

Anyone

X

Implied

X

X

X

X

X

X

X

parents

X

Implied

X

everyone

Americans

X

X

X

friends

X

X

X

X

Implied

(would) like

X

X

X

X

should

interest

should

can

X

interest

easy

X

X

useful

X

am like

X

X

X

interest

helpful

should

need

helpful

easy

-

X

X

use

X

X

important

Model

to study

X

X

X

X

speak

-

speak

learn

travel

speech

learn

teach

X

X

meet

-

X

X

hear

X

X

X

X

X

X

think

X

X

-
read

X

X

Japanese (qualifier)

X

f.l.

x on my own

f.l.

f.l.

X

X

X

X

X

X

X

next year

X

X

X

X

x by me

X

x

X

f.l.
f.1.
X

X

X

X

X

x out of class

x on my own

x nest year

x

sum*

4

3

4-

2

1

3

1

1

3

2

2

3

4-

3

3

3

4

3-

3

3

3

1

1

3

3

3

3

4

3-

3-

4-

3

Students

Mean

2.86

2.78

2.15

2.70

2.96

3.20

2.77

2.63

3.00

3.20

2.34

1.39

3.24

3.45

2.87

2.87

3.45

3.60

2.77

2.49

2.54

3.03

3.06

1.86

2.46

1.98

2.43

3.36

2.22

2.36

3.20

3.25

SD

.74

1.67

.84

.86

1.11

.81

.99

1.03

1.03

.87

.88

.65

1.05

.73

.89

.92

.72

.65

.86

.88

.99

.95

.97

.85

1.09

.90

.92

.75

.82

.96

1.01

.89

*Abbreviations: x = matches the model, f.l. = foreign language, "-" = not a part of, nor negated by the sentence,"Sum" =
the number of x's (followed by a minus sign if additionally qualified).
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Semantic bipolar categories were used in comparing each statement to the model:

(1) self (I) versus other (people),
(2) like or value versus dislike or not value,
(3) study versus use;
(4) Japanese versus foreign language;
(5) alone versus in class;
(6) presently versus later.

This technique provided a stable framework with which to compare the items. Incongruent sums
indicate items that lack content or semantic validity.

Item means and standard deviations for the total group are also given in Table 7.9. This group of
students was fairly positive with regards to most of the items. Although the respondents were not
inclined to want to teach Japanese (item 12) or to think it would help in other subjects (item
24). The correlations between the items and the total score were also determined and items 4, 16,
and 25 had low internal consistency (correlations with the total score were less than .20). A final
descriptive technique is made by scaling the items. The method of successive intervals was
selected as representative (see Fig. 7.3).

Scale Values of Selected Items with Scale Beginning at -.40

FIG. 7.3. Successive interval scaling of foreign language.

A final revised scale is determined by selecting items that (1) provide an approximation to an
equal interval scale, (2) satisfy a semantic description and (3) satisfy an item analysis (see Fig.
7.4.

Directions: Select the three statements with which you most nearly agree.

A. Japanese is one of the most important subjects in the school curriculum. (32)
B. I'm looking forward to reading Japanese books on my own. (30)
C. Japanese is one of my most interesting subjects. (20)
D. I like studying Japanese. (1)
E. I would like to study more Japanese during the next school year. (31)
F. I would like to take Japanese again next year. (13)
G. Japanese is interesting. (6)
H. I'm glad that I have the opportunity to study Japanese. (28)
I. I'm glad that Japanese is taught in this school. (17)
J. My parents are pleased that I'm learning Japanese. (18)

FIG. 7.4. The revised scale of foreign language attitude.

Note: Because of the similarity of wording in items E and F and in items H and I, it may be
desirable to either scramble the item order or to eliminate one from each pair.

-.4

Items

_ 2 0

32

.2 .4

30

.6 .8

20

1.0 1.2 1.4

1

1.6

31

1.8 2.0

13

2.2

6

2.4

28

2.6

17

2.8

18

Directions: Select the three statements with which you most nearly agree.

A. Japanese is one of the most important subjects in the school curriculum. (32)
B. I'm looking forward to reading Japanese books on my own. (30)
C. Japanese is one of my most interesting subjects. (20)
D. I like studying Japanese. (1)
E. I would like to study more Japanese during the next school year. (31)
F. I would like to take Japanese again next year. (13)
G. Japanese is interesting. (6)
H. I'm glad that I have the opportunity to study Japanese. (28)
I. I'm glad that Japanese is taught in this school. (17)
J. My parents are pleased that I'm learning Japanese. (18)
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Discussion

Shaw and Wright (1967) provide a complete text of ordered category scales (see also Robinson,
Rusk, & Head, 1969 a, b, c). Check also the bibliography containing references compiled by G.
David Garson and the many search engines on the Internet, most preferably google.com, and
dialog.com. Kendalls's Tau Correlations can be used to intercorrelate items in categorical rating
scales (see SAS PROC CORR K).

Cronbach's Alpha

Cronbach's alpha is most commonly used to determine the reliability of a set of categorical
ratings. Alpha reliability is based on the assumptions that item variance is error variance. One
definition of reliability is:

Because True variance is elusive (not known) it is estimated by subtracting estimates of the Error
variance from the Total Variance of the test.

The Sum of the item variances is substituted for the Error variance and a correction for small
numbers of k items is applied and the formla is:

When items are scored dichotomously (1,0) then the simple product of (p), the proportion
passingand (1-p) or q equals the item's variance. Zpq is then substituted for the error and KR21
reliability results. Note:

Programs: SAS Proc Means, alpha, rtot al and SPSS

One can use SAS to calculate alpha as part of the Proc Means procedure. SPSS has a statistics
option which allows the researcher to select variables they wish to constitute a dimensional
subset. The objects can be summed and designated as a new variable. This new variable can then
be correlated with information such as gender, age, years of education, and other demographnics.
The correlation of each item with this sum can also be easily determined and a reliability measure
found.
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PART III
CLUSTERING

Clustering methods have value because of their simplicity and lack of assumptions. Cluster
analysis is a general term for those methods that attempt to separate objects or individuals into
groups. The methods covered in this section are ones that the authors have found to be useful
and represent the major techniques. These methods include (1) graphic similarity analysis, (2)
single and complete linkage clustering, (3) divisive clustering, and (4) K- means iterative
clustering. The essential function of these methods is data reduction and description, but they
can be useful in hypothesis generation or hypothesis testing by uncovering a meaningful hidden
structure.

It is useful to routinely cluster the items in any ordered category instrument. Clustering provides
information on the probable dimensionality of the instrument and pictorially identifies items
that do not belong.

The typical analysis for clustering is as follows:
1. Objects are identified.
2. Similarities or distances between all objects are obtained.
3. Objects are grouped together based on a measure of distance.
4. A graphical representation of the groups is created.
5. An interpretation is made.

Reverse Scoring for Negative Items

Similarities are often correlations. If correlations are used with negatively worded items, the
original scoring of these items should be reversed so that similar items will be correlated
positively. The typical correlation between two items such as "I like school" and "School is
worthless" would be negatively correlated. Reversing the scoring means that "I like school" and
"School is not worthless" would be positively correlated. This is an important consideration for
clustering methods which convert similarites to distances. With ordered category data and unit
weights, a reverse score is equal to K + 1 categories minus the subjects response score. If, for a
given item, a strongly disagree response is scored as 5, then the reverse value, for K = 5
categories, is equal to (6 - 5) or 1.

113
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8
GRAPHIC SIMILARITY ANALYSIS

The first technique, proposed by Waern (1972), is one of the simplest methods for analyzing
similarities among the members of a set of objects. In this method, the magnitudes of the
similarity measures are utilized in stepwise fashion. Initially, the experimenter sets absolute or
relative standards of association under which he or she will identify and select pairs of objects
at or above the standard. Waern cautions conservatism in the selection of standards. Little
insight is be gained by making all possible connections.

If the standard chosen for clustering are levels of significance for correlations, the experimenter
may choose conventional .01, .05, and .10 significance levels. One may, however, choose cut-
off values for each step that include certain small percentages of the pairwise similarity data.
For example, steps that include 5% of the highest similarity values at each step might be
chosen. That is, steps would be chosen such that the top 5% of all similarity data values would
be included in step 1, the second 5% would make up step 2, and so on.

Graphing Ability and Achievement

Table 8.1 consists of Pearson correlation coefficients between ablility and achievement scores
based on N = 224 (Moore, 1994). They consist of high school seniors scores on the Scholastic
Achievement Test (Verbal and Math), their grade point average (GPA) and high school math

Table 8.1

Correlations Between Ability and Achievement Scores

GPA

SATM

SATV

HSM

HSS

HSE

GPA

.25

.11

.44

.33

.29

SATM

.46

.45

.24

.11

SATV HSM HSS HSE

.22

.26 .58

.24 .45 .58
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(HSM), English (HSE) and science (HSS) grades. Because N is so large almost all the
correlation coeffients are statistically significant at p < .01. A decision is made, therefore, to
connect tests with two lines which are correlated r >.50 and with one line for test correlated r
> .40 but r < .50. The graph is as follows:

The graph illustrates, with the exception of math grades, that high school grades and GPA are
marginally related to scores on the SAT.

Generally conventional levels of statistical significance .01, .05, .10 are used. A search for all
pairwise correlations that reach the .01 random chance level (p < .01) is made as a first step.
These selections are drawn in the two-dimensional space of a plain sheet of paper and
connected by two heavy black lines. Next the correlations at the .05 level are placed, using
single lines, and finally those at the .10 level, using dotted lines. The length of the lines is not
generally used as an indication of similarity. Should negative correlations occur an O is placed
on the connecting line. For example, if A correlates with B -.78, p < .05. A — O — B.

Some subjectivity is necessary in this analysis but the results can be revealing and rewarding
because subtle connections between clusters and chains may be lost in more conventional
methods such as factor analysis and multidimensional scaling. The technique is particularly
useful in interpreting the results from other more technical methods.

Graphing Letter Similarity

In this illustration, connecting lines indicate known similarities. Above and below the "ground"
letters (a, c, o p, b, h, n, etc.) are "figural" letters. The left oriented letters (q, d, j, i, and 1) are
together at the top of Figure 8.1 and the linearly dominated (z, x, y, and v) are at the bottom.
(Dunn-Rankin, 1990) The letters have also been arranged according to familiar feature patterns
as found by Dunn-Rankin (1968), Kuennapas and Janson (1969) and Bouma (1971).

FIG. 8.1. Graphic similarity of lowercase English letters.
Dark lines indicate scale values < 20 and light lines indi-
cate values < 30, where the range is 0 to 100.
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The lowercase letters are shown in standard form. The letters are arranged to accomodate the
similarities found in several studies. The letters with large almost closed areas are located in the
middle of the array. Linear or figural letters are located on the edges. One could conceivably
roll the array end to end and edge to edge to form a multidimensional donut or torus of letters.

Graphic Analysis of Word Similarity

Dunn-Rankin (1995) analyzed 50 graduate students' reponses to the free clustering of 22 words
following the instructions: "Group similar words together." In Fig. 8.2, a network graph of the
percent overlap similarity measures is presented for all the subjects. It is easy to delineate the
relative importance of graphic, phonetic, or semantic characteristics for specific words. For ex-
ample, fool and food are seen as graphically and phonetically similar, whereas fool and fellow
have semantic similarity. Students were later easily clustered into groups which prefered either
the semantic, phonetic, or graphic dimensions of similarity.

FIG. 8.2. A network graph of the percent
overlap measures for 50 graduate students on
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Elementary Linkage Analysis

Elementary linkage analysis (McQuitty, 1957) is a simple method of clustering. It can be used
to cluster any objects (people or items) that have distinctive characteristics of similarity.
Advantages of elementary linkage analysis are speed, objectivity and its provision for
investigating a particular theoretical position. A 15-variable matrix can be analyzed into
objectively determined "types" in 5 to 10 minutes. Furthermore, all elementary linkage analysis
operations require only pencil and paper. (McQuitty's method has been programmmed and is
availiable in SAS PROC Cluster.) The steps are:

1. Underline the highest (absolute) entry in each column of the matrix.
2. Select the highest entry in the matrix. Write the variable code on a piece of paper with

reciprocal arrows; for example: A<=> B. Call this the first Type or Type I.
3. Select all those variables (objects or subjects) that are most like members of the first Type

by reading only the rows containing the first two variables (A and B) and selecting
previously underlined entries in these rows. Write down these variable codes and
connect them to the related variable by a single arrow; for example: A <=> B <= C.
Call these variables (C) first Cousins.

4. Select all those variables that are like the first-Cousin variables. Write them down with
connecting arrows; for example:

Call these variables (D and E) second cousins.

5. Search for higher order cousins until no more exist.
6. Exclude all variables already classified and repeat steps two to five. Increment the type

number by one for each time through the steps.
7. Repeat these steps until all variables are classified.

Linkage Analysis of Test Scores

A linkage analysis is illustrated using the data of Table 8.2. The data set consists of correlations
between achievement test scores of high school students. First the highest values were
underlined in each column. Then the correlation (.72) between spelling (S) and reading (R) is
initially selected as Type A review of the Reading and Spelling rows reveals one
other underlined correlation (.63) between History (H) and Reading (R). History becomes a first
cousin. As no other underlined correlation exists in these two rows, a search is made for the
next highest correlation not already utilized. This occurs between Algebra and Geometry where
(r = .64). This initiates the second type, to which Chemistry is attached. The similarity of
linkage analysis to factor analysis has allowed researchers to sometimes equate Types with
Factors, (see Factor Analysis p. 149).
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Table 8.2

Intercorrelations of Test Scores of High School Students

Reading

Reading

Spelling

Algebra

Geometry

Chemistry

History

32

.12

.27

.20

.63

Spelling Algebra

.72 .12

.16

.16

.40 M

.12 .48

.56 .10

Geometry

.27

.40

.64

.50

.21

Chemistry

.20

.12

.48

,50

.14

History

,63

.56

.10

.21

.14

Discussion

Graphic methods can be quickly applied to any form of proximity matrix. Proximities can be
similarities like correlations or distances. In the three examples presented, Graphic Similarity
analysis was used on:

1. Ability and achievement. The size of r was used as a standard of similarity.
2. Letter similarity. The size of the scale values was used as a standard.
3. Word similarity. The percentage of overlap was used as a standard.

Nearly every computer center has packaged programs that routinely calculate correlations. The
SAS system PROC CORK can be called on to print only the highest correlations with each
variable. For example:

The results will then display each variable with the ten variables most highly correlated and
printed in order. This makes selection much easier than perusing a total matrix of r's. It is
possible to write a program to print only values of a certain size, relative size, or significance.
This would aid the graphic methods in that the selection of relevant variables would be easier.
Although McQuitty's method is done easily by hand, a computer solution is available in SAS
PROC Cluster Mcquitty.
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9
SUCCESSIVE COMBINING

Agglomerative methods of clustering begin with the calculation of a distance matrix. Similarities
such as correlations are converted to distances by subtracting each value from a constant such as
1.00. Objects which are most similar and therefore not far apart are grouped together. The
number of groups (each object is a group of one to start with) is reduced in stepwise fashion by
forming new groups of similar objects at each step. The process is continued until all the objects
are formed into a single group. The graphic representation of this process is called a tree or
dendogram.

Ward's Minimum Variance Method

Ward (1963) uses the "sum of squares" as the basis for inclusion of objects in a group. The sum
of squares, a measure of variation, is given by

where X is the variable and N is the number of objects. At each stage of the clustering, SS is
calculated for every possible pair of objects and the pair is chosen which provides the minimum
sum of squares. Suppose paired distances between six lowercase letters are as listed in Table
9.1:

Table 9.1

Distances Between Letters

1

2

3

4

5

6

1

X

X

k

h

q

P

g

0

2

4

8

10

14

2

k

0

2

6

8

12

3

h

0

4

6

10

4 5

q P

0

2 0

6 4

6

g

0
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In this matrix, direct estimates of the distances between lower case letters of the English alphabet
are presented. It can be seen that the distance between any letter and itself is zero. Therefore the
calculation of the SS between letters x and k is as follows:

Initially each object (letter) is considered a group consisting of a single member. Next all
possible pairwise groups are formed and the pair that has the smallest SS forms the first group.
The process is repeated with K - 1 groups until all the objects are in a single group. Table 9.2
provides the sum of squares for all possible (15) pairs of letters.

Table 9.2

SS for Six Letters

1
2

3

4

5

6

2

8

32

50

98

2

18 8

32 18 2

72 50 18 8

Because the pairs 1-2, 2-3, and 4-5 have equally small sums of squares, the first clustering is
arbitrary. Objects 1 and 2 are chosen simply because they are first.

By calling 1 and 2 a new group A (1&2) the six original objects or groups have been reduced to
five:

A(l&2),3,4,5,6,

In the second stage of clustering there are (5 choose 2) or 10 possible pairings:

Pairs A-3 A-4 A-5 A-6 3-4 3-5 3-6 4-5 4-6 5-6
SS 8 35 56 115 8 18 25 2 18 8

Using the table of distances the SS for A-3 is calculated (0 - 2)2 + (2 - 2)2 + (4 - 2)2 = 8, where
(0 + 2 + 4)/3 = 2 is the mean.

Now 4 and 5 are grouped (SS = 2). Calling this new group B (4 & 5), four groups remain:

A ( l & 2 ) 3 B(4&5) 6
There are six pairs in the third stage.
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Pairs A-3 A-B A-6 B-3 3-6 B-6
SS 8 68 115 19 25 9

Now A and 3 are combined. Calling this new group C(l &2&3)we have groups

C B 6

Next the sums of squares for these three groups are calculated.

Pairs C-B C-6 B-6
SS 35 115 9

Finally, B and 6 are combined. Calling the new group D, only groups C and D are left to
combine and this combination is called E. This analysis can be summarized in a dendogram as
follows:
Because the increase in SS to combine C and D is relatively large the experimenter may wish to
stop clustering after this step. Any hidden structure revealed by the clustering should be visually

FIG. 9.1. A dendogram showing the hierarchical clustering of
lower case letters. Note that two clusters differ markedly.
Cluster x, k, h has an angular component whereas Cluster q, p, g
has a circular component with a descender.

Pairs A-3 A-B A-6 B-3 3-6 B-6
SS 8 68 115 19 25 9

Pairs C-B C-6 B-6
SS 35 115 9

C B 6
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stop clustering after this step. Any hidden structure revealed by the clustering should be visually
apparent. In this example it is easy to see that (x, k, h) differ from (q, p, g). A somewhat more
objective means of finding the right number of clusters is to divide the total sums of squares by
the number of objects and use this average SS value as an interval on the y axis. The clusters are
equally spaced on the x axis. A plot of clusters versus. SS will reveal when it no longer is useful
to continue clustering (see p. 131).

When starting with a similarity or distance matrix it can be shown (Anderberg, 1973) that the
pairwise distance measures are proportional to the calculated sums of squares between all pairs
of objects. The entries in the distance matrix (without summing the squares), therefore, may be
taken as fas first step in Ward's method. Ward (1980) relates that for job classification and task
analysis, percentage of overlap is used more often than correlation as a measure of similarity. In
order to do Ward's minimum variance method use:

S AS PROC Cluster Method = Ward.

Grouping Students on Reward Preference

Dunn-Rankin, Shimizu, and King (1969) studied the reward preference of fifth and sixth-grade
children. They had students respond to a paired comparison task involving five kinds of reward
using a Reward Preference Inventory (RPI): Adult Approval (A), Competitive Rewards (C),
Peer Approval (P), Independence Rewards (I), and Consumable (eatable) Rewards (E). A child
would be asked, for example, whether he or she would rather have an Excellent on his or her
paper (A) or some candy (E).

As shown in Fig. 9.2 the 10 possible pairs of rewards were repeated four times using parallel
items. The summed votes provided a reward preference profile for each subject. The profiles
were intercorrelated and the correlation values were used in Ward's (1963) method to cluster the
subjects. A final selection of four groups was made and these groups are presented in Table 9.3.

RPI
Directions: Which one of each pair do you like best? Circle the Letter to the right of each statement you like best

1.

2.

3.

4.

5.

6.

Teacher writes "100" on your paper.
Be first to finish your work.

Package of bubble gum.
Students ask you to be on their team.

Be free to do what you like.
Teacher writes "100" on your paper.

Students ask you to be on their team.
Be first to finish your work.

Be free to do what you like.
A package of bubble gum.

Teacher writes "100" on your paper.
Students ask you to be on their team.

A
C

E
P

I
A

P
C

I
E

A
P



7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Be first to finish your work.
Be free to do what you like.

A package of bubble gum.
Teacher writes "100" on your paper.

Students ask you to be on their team.
Be free to do what you like.

Be first to finish your work.
A package of bubble gum.

Be the only one that can answer a question.
Candy

Friends ask you to sit with them.
Be free to go outside.

Candy.
Teacher writes "A" on your paper.

Be the only one that can answer a question.
Be free to go outside.

Teacher writes "A" on your paper.
Friends ask you to sit with them.

Be free to go outside.

Candy.

Friends ask you to sit with them.
Be the only one that can answer a question.

Be free to go outside.
Teacher writes "A" on your paper.

Candy.
Friends ask you to sit with them.

Teacher writes "A" on your paper.
Be the only one that can answer a question.

Have only your paper shown to the class.
Teacher writes "very good" on your paper.

Classmates ask you to be a class leader.
Ice Cream.

Teacher writes "very good" on your paper.
Be free to play outside.

Have only your paper shown to the class.
Classmates ask you to be class leader.

Ice cream.
Be free to play outside.

Classmates ask you to be class leader.
Teacher writes "very good" on your paper.

C
I

E
A

P
I

C
E

C
E

P
I

E
A

C
I

A
P

I
E

P
C

I
A

E
P

A
C

C
A

P
E

A
I

C
P

E
I

P
A
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27. Be free to play outside. I
Have only your paper shown to the class. C

28. Teacher writes "very good" on your paper. A
Ice cream. E

29. Be free to play outside. I
Classmates ask you to be class leader. P

30. Ice cream. E
Have only your paper shown to the class. C

31. A soft drink. E
Have your paper be the best in the class C

32. Be free to work on something you like. I
Friends ask you to work with them. P

33. Teacher writes "excellent" on your paper. A
A soft drink. E

34. Be free to work on something you like. I
Have your paper be the best in the class. C

35. Friends ask you to work with them. P
Teacher writes "excellent" on your paper. A

36. A soft drink. E
Be free to work on something you like. I

37. Have your paper be the best in the class. C
Friends ask you to work with them. P

38. Teacher writes "excellent" on your paper. A
Be free to work on something you like. I

39. Friends ask you to work with them. P
A soft drink. E

40. Have your paper be the best in the class. C
Teacher writes "excellent" on your paper. A

FIG. 9.2. Reward Preference Inventory. Counts of (A) Adult approval, (C) Competitive Rewards,
(E) Eatables, (P) Peer Approval and (I) Independence create a profile.

Table 9.3
Major Preference Profile Groups of 5th and 6th Grade Children

Related Behavioral and Ethnic Variables

A

Group 1
16
16
11
9
10
14
12
11
12
16
14

C

5
9
8
4
4
6
8
6
5
12
11

Profile

P

8
8
11
11
11
13
10
7
7
8
5

I

17
14
18
20
20
14
12
16
16
20
20

E

14
13
12
16
15
13
18
20
20
4
10

Sex

0
1
1
1
1
1
1
1
1
0
1

Ethnic
Origin

0
N
0
N
N
N
0
0
0
0
N

Grade

6
5
5
6
6
6
5
6
6
5
6

Variables

SES

3
6
6
6
2
6
3
3
5
6
0

IQ

133
131
141
127
139
115
137
129
140
137
121

Step
Math

258
233
257
267
261
244
254
265
252
253
251

Step
Reading

259
252
264
279
263
258
259
267
283
267
253

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Be free to play outside.
Have only your paper shown to the class.

Teacher writes "very good" on your paper.
Ice cream.

Be free to play outside.
Classmates ask you to be class leader.

Ice cream.
Have only your paper shown to the class.

A soft drink.
Have your paper be the best in the class

Be free to work on something you like.
Friends ask you to work with them.

Teacher writes "excellent" on your paper.
A soft drink.

Be free to work on something you like.
Have your paper be the best in the class.

Friends ask you to work with them.
Teacher writes "excellent" on your paper.

A soft drink.
Be free to work on something you like.

Have your paper be the best in the class.
Friends ask you to work with them.

Teacher writes "excellent" on your paper.
Be free to work on something you like.

Friends ask you to work with them.
A soft drink.

Have your paper be the best in the class.
Teacher writes "excellent" on your paper.

I
C

A
E

I
P

E
C

E
C

I
P

A
E

I
C

P
A

E
I

C
P

A
I

P
E

C
A



9 SUCCESSIVE COMBINING 127

Group 2
16 4' 20 12 8 0 0 5 5 134 263 273
15 6 20 13 6 0 0 5 6 141 251 261
11 9 20 16 4 0 0 5 5 152 258 276
12 8 20 16 4 0 0 6 2 135 266 296
12 8 19 17 4 0 0 6 5 133 249 251
14 8 19 15 4 1 0 6 6 138 263 287
12 7 18 18 5 0 0 6 6 141 269 291
18 6 14 13 9 0 0 5 2 131 244 260
16 6 15 17 6 0 0 5 4 110 249 267
15 10 12 15 8 1 0 5 3 120 240 242
17 9 11 17 6 0 0 6 6 125 251 259
18 7 11 16 8 1 0 6 5 131 259 266

Group 3
17 13 17 9 4 0 0 6 6 109 244 248
17 11 17 9 6 0 0 5 3 129 256 261
15 13 20 8 4 1 0 5 5 131 261 273
20 10 15 11 4 0 N 5 3 130 257 255
19 11 14 11 5 1 N 5 6 125 245 267
19 11 15 11 4 0 N 6 4 107 245 256
18 11 16 11 4 0 0 5 5 126 253 273
18 12 16 10 4 0 0 6 5 88 245 251
17 12 15 12 4 1 0 5 3 111 254 262
17 10 15 13 5 0 N 6 2 123 263 271
20 10 13 12 5 0 0 6 3 99 251 257
19 11 13 13 4 0 0 6 0 100 258 252
19 10 12 11 8 0 0 5 6 125 230 255
10 8 15 10 8 0 N 6 5 99 266 255
Group 4
20 16 12 7 5 0 0 5 3 121 239 242
19 16 13 7 5 1 0 6 5 100 243 254
19 17 12 6 6 0 0 5 1 118 243 262
20 16 12 8 4 1 0 5 6 120 239 256
20 16 12 8 4 1 0 6 3 102 250 260
19 16 12 9 4 0 0 6 3 126 249 261
19 16 13 8 4 0 N 5 5 108 240 255
19 17 12 8 4 1 0 6 3 112 258 267
17 18 12 8 5 0 N 5 6 127 245 242
20 13 15 8 4 0 0 5 3 115 245 261
20 13 14 9 4 0 0 6 6 146 261 257
19 15 14 8 4 0 0 6 5 112 243 252
20 14 14 8 4 I N 6 4 126 240 247
18 14 14 10 4 0 N 6 5 139 270 271
18 14 14 7 7 N 5 5 113 244 259
20 14 11 11 4 N 6 0 111 263 266
18 14 12 11 5 0 0 5 5 119 257 260
1 9 1 5 1 1 1 1 4 0 6 6 1 2 0 2 4 9 2 6 7
1 9 1 4 9 1 4 4 0 5 6 1 1 7 2 4 7 2 6 2
1 6 1 5 1 0 1 3 6 0 6 3 1 1 2 2 4 9 2 5 5
19 17 9 11 4 0 N 5 6 127 252 267
17 13 12 14 4 0 N 5 6 134 251 263
16 14 13 13 4 0 0 6 5 123 266 264

Table 9.4
Summary Table

Average Profile In Grade Step Step
Group A C P I E N Male Orient 6 S E S I Q Math Read

1 13 7 9 17 14 11 9 6 7 4.2 131.8 254.1 264.0
2 15 7 17 15 6 12 3 12 6 4.6 132.6 255.2 269.1
3 18 11 15 11 5 14 3 9 7 4.0 114.4 252.0 259.7
4 19 15 12 9 5 24 10 15 12 4.4 119.0 249.2 257.8

Total 61 25 42 32 4.3 123.0 251.9 261.6

Table 9.4 illustrates that reward preference is related to a variety of variables in different ways.
The mean profiles for each group illustrate that ability and achievement, judged by SCAT
(School and College Ability) and STEP (Sequential Tests of Educational Progress) tests, are
related to high scores for independence rewards. Lower achievement is related to a professed
desire for adult approval. A theory of relative satiation for these rewards is postulated.
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CD-RON and SAS Clustering Example

PROC Cluster in SAS starts with a distance matrix. If the data are similarities they must be
converted to distances prior to the analysis. In this example, the initial data come from the free
clustering of 11 words all begining with the letter a. First we use program perover.exe on the
CD-ROM to convert the group numbers to distances. Note this is sample data for illustration
purposes only.

Words.cfg: A configuration file is formed

Words.dat: A data file is also needed

Words.out: The Output File

Words Beginning With a
subjects = 14 variables = 11
raw data

A distance matrix between the 11 words beginning with a is also part of the output by
PEROVER which measures the percent overlap from free clustering.

Similar Words Beginning With a Title
14 11 Number of Subjects and Number of variables

Words.dat Input data file
Words.out Output data file

1232431 1566
123221 1 1322
1212231 1333
12344156788
12344156788
12334516788
122223 1 1222
12345677899
12324516444
1234521 1266
123423 1 1333
1232451 1675
1232451 1677
123223 1 1323

1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.

2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.

3.
3.
1.
3.
3.
3.
2.
3.
3.
3.
3.
3.
3.
3.

2.
2.
2.
4.
4.
3.
2.
4.
2.
4.
4.
2.
2.
2.

4.
2.
2.
4.
4.
4 .
2.
5.
4.
5.
2.
4.
4.
2.

3.
1.
3.
1.
1.
5.
3.
6.
5.
2.
3.
5.
5.
3.

1.
1.
1.
5.
5.
1.
1.
7.
1.
1.
1.
1.
1.
1.

1.
1.
1.
6.
6.
6.
1.
7.
6.
1.
1.
1.
1.
1.

5.
3.
3.
7.
7.
7.
2.
8.
4.
2.
3.
6.
6.
3.

6.
2.
3.
8.
8.
8.
2.
9.
4.
6.
3.
7.
7.
2.

6.
2.
3.
8.
8.
8.
2.
9.
4.
6.
3.
5.
7.
3.

}Data: group membership numbers

End of file carriage return
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Ward's hierarchical grouping methodology can be found as one of the methods in the Statistical
Analysis System (SAS, 2000) under the procedure PROC Cluster. The template example
provided below uses the results of Words.out as the input.

SAS file

data words; Defines data file
input a admits aged almost aiming and as at areas army away; List variables
lines; Starts data
0.000 1.0000.929 1.000 1.0000.7860.2140.357 1.000 1.000 1.000
1.000 0.000 0.929 0.429 0.643 0.929 1.000 1.000 0.857 0.786 0.857
0.929 0.929 0.000 0.857 0.929 0.786 0.929 0.929 0.714 0.857 0.786
1.000 0.429 0.857 0.000 0.571 1.000 1.000 1.000 0.929 0.786 0.857
1.0000.643 0.9290.571 0.000 1.000 1.000 1.0000.8570.7140.786 }Data lines
0.786 0.929 0.786 1.000 1.000 0.000 0.929 0.929 0.714 0.857 0.714
0.214 1.0000.929 1.000 1.0000.9290.0000.286 1.000 1.000 1.000
0.357 1.0000.929 1.000 1.0000.9290.2860.000 1.000 1.000 1.000
1.000 0.857 0.714 0.929 0.857 0.714 1.000 1.000 0.000 0.714 0.643
1.000 0.786 0.857 0.786 0.714 0.857 1.000 1.000 0.714 0.000 0.143
1.000 0.857 0.786 0.857 0.786 0.714 1.000 1.000 0.643 0.143 0.000

>
proc cluster method=ward Starts Ward Clustering
outtree=tree; SAS output data tree
proc tree; Proc tree on "tree"
run;

Results of this CLUSTER procedure provides a Cluster History and a measure of the sums of
squares determined as each cluster is joined.

0 .000 1.000 0 .929 1.000 1.000 0 .786 0.214 0.357 1.000 1.000 1.000
1.000
0 .929
1.000
1.000
0 . 7 8 6
0.214
0.357
1.000
1.000
1.000

0 .000
0 .929
0 . 4 2 9
0 . 6 4 3
0 . 9 2 9
1.000
1.000
0.857
0 .786
0.857

0
0
0
0
0
0
0
0
0
0

.929

.000

.857

.929

.786

.929

.929

.714

.857

.786

0 . 4 2 9
0.857
0 .000
0.571
1.000
1.000
1.000
0.929
0 .786
0.857

0 . 6 4 3
0 .929
0.571
0 .000
1.000
1.000
1.000
0.857
0.714
0 .786

0 .929
0 .786
1.000
1.000
0 .000
0 .929
0 .929
0.714
0.857
0.714

1.000
0 . 9 2 9
1.000
1.000
0 .929
0 .000
0 .286
1.000
1.000
1.000

1.000
0 . 9 2 9
1.000
1.000
0 .929
0 .286
0 .000
1.000
1.000
1.000

0.857
0.714
0 .929
0.857
0.714
1.000
1.000
0.000
0.714
0 .643

0 . 7 8 6
0.857
0.786
0.714
0.857
1.000
1.000
0.714
0 .000
0.143

0.857
0 .786
0.857
0 .786
0.714
1.000
1.000
0 .643
0.143
0 .000

Distance (difference) matrix

0.000 1.0000.929 1.000 1.0000.7860.2140.357 1.000 1.000 1.000
1.000 0.000 0.929 0.429 0.643 0.929 1.000 1.000 0.857 0.786 0.857
0.929 0.929 0.000 0.857 0.929 0.786 0.929 0.929 0.714 0.857 0.786
1.000 0.429 0.857 0.000 0.571 1.000 1.000 1.000 0.929 0.786 0.857
1.0000.6430.9290.571 0.000 1.000 1.000 1.0000.8570.7140.786
0.786 0.929 0.786 1.000 1.000 0.000 0.929 0.929 0.714 0.857 0.714
0.214 1.0000.929 1. 000 1.0000.9290.0000.286 1.000 1.000 1.000
0.357 1.0000.929 1.000 1.0000.9290.2860.000 1.000 1.000 1.000
1.000 0.857 0.714 0.929 0.857 0.714 1.000 1.000 0.000 0.714 0.643
1.000 0.786 0.857 0.786 0.714 0.857 1 .000 1.000 0.714 0.000 0.143
1.000 0.857 0.786 0.857 0.786 0.714 1.000 1.000 0.643 0.143 0.000
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Cluster History

*NCL is the number of clusters (11 objects to start with), OB is object and Cl is cluster. Freq is
the number of objects contributing to each cluster. SPRSQ (SemiPartial RSQ) is a measure of the
variance used to join the objects in the particular cluster. 1 - RSQ is the amount of variance
unaccounted for.

FIG. 9.3. The words and their object numbers are given at the bottom of the graph and the
number of the clusters are given at the nodes.

NCL*
11
10
9
8
7
6
5
4
3
2
1

Clusters Joined
(None Joined)

OB10 OB11
OB7 OB8
OBI CL9
OB2 OB4
OB3 OB9
CL7 OB5
CL6 OB6
CL4 CLIO
CL5 CL3
CL8 CL2

Freq

2
2
3
2
2
3
3
5
8
11

SPRSQ

0.0017
0.0064
0.0094
0.0142
0.0411
0.0453
0.0598
0.1570
0.1920
0.4731

RSQ

.998

.992

.983

.968

.927

.882

.822

.665

.473

.000
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Discussion

The clustering reveals that when words begin with the same letter and have few semantic
similarities then judges use the graphic feature of length as an important dimension in deciding
which words to group together as similar. This is evidenced by the large of amount of variance
necessary to group the very small words (a, as, at) with the other words. The words admits,
almost and aiming are the longest words and each has two or more ascenders. The middle
cluster consists of middle sized words.

In chapter 14 (p. 183), (MDS), another look is given to the data in which the clustering is
superimposed on a two dimensional plot of the words.

Because Ward's method provides a "variance accounted for" measure at each heirarchial step, a
diagram can be drawn to reflect the ease or difficulty in joining any two clusters. The final
clusters are ordered sequentially on the horizonital axis from left to right. The total Sums of the
Squares (SS) is equally divided by the number of clusters and projected on the vertical axis. A
smooth curve is plotted at the height of the SS for each cluster. A rule of thumb is that when the
rise and run are equal further clustering is unecessary (see p. 124).

FIG. 9.4. Plot of clusters against variance accounted for. When Rise = Run stop
clustering.
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Johnson's Nonmetric Single and Complete Link Clustering

In Johnson's (1967) nonmetric clustering method similarities are converted to distances.
Distances are either measured to the closest member in a cluster or the farthest member in a
cluster. As in most clustering methods, the basic steps are as follows:

1. Gather and establish a data matrix.
2. Calculate a distance matrix between pairs of objects.
3. Join the closest objects into a cluster.
4. Join the next closest pair of objects (using the closest or farthest member of a cluster

to represent that cluster).
5. Continue until all objects are in a single cluster.

Suppose that five objects are to be grouped hierarchically and the matrix of distances (dij)
between the objects has been calculated as shown in Table 9.4.

Table 9.4

Distance Matrix

1

2

3

4

5

1

4

6

8

10

2 3 4 5

3

7 2

5 6 1

Objects 4 and 5 should be clustered first, as the distance between these two objects is the
smallest in the table (d4:5 =1). Thus objects 4 and 5 are united into a single group.

Under the complete linkage method sometimes known as the "farthest neighbor" method the
maximum distances between the elements of the new group and each of the remaining objects
are obtained.

These maximum distance values are now entered into a reduced matrix of distances as shown in
Table 9.5. The new matrix is reduced by eliminating the minimum values of 4 and 5 and keeping
the maximum values. (Note, it is also possible to retain the minimum distances and a different or
"nearest neighbor" analysis can be made).

d(4:5)i = max (di4, di5) =10 Comparing dn = 8 and di5 = 10,10 is maximum
d(4;5)2 = max (d24, d2s) = 7 Comparing d24 = 7 and d2s = 5, 7 is maximum
d(4;5)3

 = max (d34, ds5) = 6 Comparing da4 = 2 and d35 = 6, 6 is maximum
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Table 9.5

Reduced Distance Matrix

1

2

3

(4:5)

1 2

4

6 3

10 7

3 (4:5)

6

Table 9.5 is now examined for its smallest entry, which occurs between objects 2 and 3 or a
value of 3. These objects are united into a single group and the maximum values from this new
entry are determined.

These clusters are now placed in the third reduced matrix, shown in Table 9.6.

Table 9.6

Reduced Distance Matrix

1

(2:3)

(4:5)

1

6

10

(2:3)

7

(4:5)

The smallest entry in this matrix is d(2:3)i or 6. When these two groups are united only two entries
are left to finally unite. A dendogram of the process is given in Fig. 9.5.

FIG. 9.5. Dendogram of complete linkage clustering

(1(2:3)1 = max (d12, d13) = do or 6
d(2:3X4:5)= H13X (d2(4:5), d3(4:5) = d2(4:5) Or 7
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Clustering the WISC Tests with HICLUS

In the single-link method, the smallest or minimum distances to the potential entries of the
reduced matrix is used instead of the maximum, otherwise the procedure is the same. The single-
link or connectedness method has a strong theoretical rationale in the biological sciences and is
useful in determining items that belong to a subtest or factor. Practice shows that the complete-
link or diameter method is more effective with social science data. Complete link creates more
discrete clusters. Johnson's (1967) nonmetric method, HICLUS, is detailed in the CD-ROM. An
example is given using the complete link method or diameter method to cluster the correlations
between the Wechsler Intelligence Scales for Children (WISC) Table 9.7. The WISC is proposed
to have two intelligence measures, a verbal score and a performance measure. The clustering
dendogram below supports two measures of intelligence. The verbal and spatial subtests are
clearly delineated.

Table 9.7
Intel-correlations Among Wechsler Subtests

8 9 10 11
information
vocabulary
arithmetic
similarities
comprehension
sentences
animal house
picture
mazes
geometric design
block design

0.60
0.58
0.53
0.60
0.52
0.41
0.47
0.37
0.40
0.43

0.49
0.44
0.57
0.46
0.36
0.45
0.35
0.35
0.38

0.46
0.51
0.51
0.42
0.42
0.41
0.47
0.50

0.55
0.51
0.31
0.36
0.28
0.30
0.35

0.53
0.34
0.42
0.33
0.36
0.39

0.36
0.35
0.30
0.34
0.38

0.38
0.36
0.43
0.38

0.44
0.42
0.45

0.48
0.46 0.48

The lower triangular matrix, shown as Table 9.7, is copied into a text file and is named Wise,
dat. A configuration file is created.

Wisc.cfg

The HICLUS routine on the CD-ROM, hiclus.exe, is called and the data analyzed. The results
of the connectedness or diameter method are presented.

Clustering Wise Subtests Title
11-1 11 variables which are similarities
Wisc.dat Input file
Wisc.out Output
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In this form of dendogram the objects are clustered from the top down. First the pairs 1 and 5 are
formed at the lowest level. Next Vocabulary (02) is added to 01 and 05. Next 4 and 6 are com-
bined, etc. Finally the spatial tests are combined with each other and the Verbal measures are
combined at a correlation level 0.360.

The cluster statistic is designed to act as a Z score (Johnson, 1967).

0.600
0.570
0.510
0.500
0.480
0.440
0.420
0.410
0.360
0.280

. XXX
XXXXX
XXXXX XXX
XXXXX XXX
XXXXX XXX
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
XXXXXXXXX}

. . . . XXX

. XXX . XXX

. XXX . XXX

. XXX XXXXX

. xxxxxxxxx
xxxxxxxxxxx
(XXXXXXXXXXX

POINTS IN A CLUSTER CLUSTER STATISTIC

2 PTS. 1.901
1 5 (Information and Comprehension)

3 PTS. 3.330
2 1 5[ Vocabulary and (information Comprehension)]

2 PTS. 1.412
4 6 (Similarities and Sentences)

2 PTS. 0.786
3 11 (Arithmetic and Block Design)

2 PTS. 1.366
9 10 (Mazes and Geometric Design)

5 PTS. 4 .386
2 1 5 4 6

3 PTS. 0.508
8 3 11 [Picture Completion and (Arithmetic-Block Design)]

5 PTS. 1.769
9 10 8 3 11 [All performance tests]

6 PTS. 1.459
7 9 10 8 3 11 [All Verbal tests]

DIAMETER METHOD
0 0 0 0 0 0 0 1 0 0 1
2 1 5 4 6 7 9 0 8 3 1
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10
PARTITIONING

If researchers could see as well in n dimensions as they can in two, partitions of data points into a
specified set of clusters could be done visually. In the two-dimensional example that follows
(Figure 10.1), a good solution may be obtained by a simple inspection and placement of the data.
For illustrative purposes, however, an objective solution is sought that is analogous to solutions
obtainable for a larger number of data points measured on a larger number of variables or
dimensions.

K-Neans Iterative Clustering

The minimum distance method is as follows:

1. The data are initially assigned to one of a prespecified number of clusters. (This assignment
can be made at random or by some other method).

2. The mean or centroid of each of the original clusters is determined.
3. Each data point is put into a new cluster that has the closest centroid to that data point.
4. The centroids or means of the new clusters are computed.
5. Alternate steps 3 and 4 until no data points change membership.

Table 10.1

Random and Iterative Assignments of Students

Subjects Reading IQ Random 1st 2nd

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

4
1
2
3
4
2
3
5
4
5
6
3
4
4
5

0
1
1
1
1
2
2
2
3
3
3
4
4
4
5

1
1
2
1
1
2
2
2
1
2
2
1
1
1
2

2
1
1
1
2
1
1
2
2
2
2
1
2
2
2

1
1
1
1
1
1
1
2
2
2
2
2
2
2
2

137
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FIG. 10.1. Fifteen student's scores on measures of IQ and reading.
Students are to be clustered into two groups.

Figure 10.1 illustrates the positions of the each of the students based on the coordinates of their
Reading and IQ scores. Called It-means iterative clustering, classification into two groups is
prespecified, that is, the number of groups is set at K = 2. The number of partitions is indicated
prior to the analysis. In the example, a random assignment (coin flip) placed students into two
groups. The centroids of these two groups are calculated by averaging the coordinates of all the
subjects in each group. That is, the mean of IQ values for each initial group yields the IQ
coordinate of the centroid for each group and the mean of reading values for each group yields
the reading coordinate of the centroid for each group. Figure 10.2 shows the initial random
assignment and the centroids of the two random groups. The data set is drawn from Table 10.1

The distances from all the data points to these two centroids were measured and points were
reassigned based on the minimum distance to one of the two initial means. The process is
repeated until no new assignment is possible.The resulting clusters and the new centroids are
shown in Fig. 10.3.

The term "K-means iterative clustering" is understandable when we realize that k is the number
of groups and thus the number of means that are prespecified. When dealing with many
variables, over which a number of objects or subjects are to be classified, it is useful to employ a
minimum variance criterion as a substitute for minimum distance. The "k-means" procedure is an
attempt to minimize the variance within each cluster and consequently to maximize the variance
between clusters. The sum of the squares of the distances of each point, within a cluster, from the
centroid of that cluster, provides a within measure of variance. If, by relocating the data points,
the sums of squares can be reduced, relocation takes place. Cluster solutions of this type have
been called minimum variance partitions.



FIG. 10.2. Initial random assignment of students into one of two
groups and the group means.

FIG. 10.3. Final assignment of students to two clusters.
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Minimum variance partitions follow typical analysis of variance models. For example, consider a
set of objects divided into two groups, say x and y. If an object belongs to x it will be called X; if
it belongs to y it will be called Y. The means of the two groups are:

The Grand Mean (M) will be equal to

Then, the total (7) sum of squares of all x and y from the grand mean (M) is equal to

Within each group the sum of squares is

The sum of squares between the weighted means of each group equals

From traditional analysis of variance we know that

This may be shown graphically as follows:

FIG. 10.4. Total sums of squares.
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FIG. 10.5. The within sums of squares

FIG. 10.6. The between sums of squares

In comparing various parititions of the objects it is reasonable to try to minimize |W(i)|. This is
one of the options in most "k-means" partitioning programs

Application: Visual or Auditory Preference for Reading Instruction

Donovan (1977) attempted to classify children into three learning modality groups. These were
Auditory Preference (AP), Visual Preference (VP), and No Preference (NP). She used a battery
of ten diagnostic subtests from the Illinois Test of Psycholinguistic Abilities and the Gates
MacGinitie Readiness Skills Test.

These tests were administered to 107 chidren in pre-reading programs. Donovan specified a
clustering into three groups without specifying any basis for the clustering. A k-means iterative
clustering using a computer program developed by McRae (1971) called MICKA used the
minimization of the within cluster variance and distance criterion was Mahalanobis' d2 (see p.
43).
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The three clusters of children identified by the program were then compared with a clinical
assessment of their modality preference. The clinical classification identified 36 pupils with
Verbal Preference, 29 of whom were found in Cluster 2. Nineteen Auditory preference pupils
were clinically classified, 14 of whom were found in Cluster 1. Clinical prodedures identified 52
pupils as having No Specific Modality Preference. Twenty were found in Cluster 3.

Verbal
Preference

Auditory
Preference

No Peference

Clinical
Aassignment

36

19

52

K-Means
Assignment

29

14

20

Percentage

0.81

0.74

0.38

The results indicated that 78% of the children with an instructional modality preference (VP and
AP) were identified through cluster analysis. The cluster means for the subtests are presented in
Table 10.2.

Table 10.2

Cluster Means on Diagnostic Tests
Tests

Visual Sequential
Memory

Visual Discrimination

Visual -Motor
Coordination

Word Recognition

Following Directions

Auditory Sequential
Memory

Listening

Auditory Discrimination

Letter Recognition

Auditory Blending

Cluster 1

37.0

6.3

6.1

6.4

4.3

44.5

4.8

6.1

7.2

5.3

Cluster 2

38.4

5.9

6.5

6.3

4.1

32.5

4.1

5.6

7.1

5.2

Cluster 3

28.9

5.0

5.4

5.8

3.7

33.7

4.2

5.1

6.6

4.8

Discussion

K-Means clustering is one of the few programs that allows for testing hypotheses. It allows the
researcher to prespecify the number of groups of objects that will be delineated. If theory
suggests there are only three types it can be tested. K-means clustering is part of the SAS
packages of programs under PROC VARCLUS. For example:

PROC VARCLUS maxclusters = 3
outtree=new;
proc tree;
run;
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Successive Splitting

Hierarchical divisive methods, also known as disjoint cluster analysis, starts with all the objects
in one cluster. This cluster is then divided into two clusters. Then one of these two clusters is
subdivided resulting in three clusters. Next one of the three clusters is subdivided, and so on. The
process continues until the N original objects are all separate clusters. Divisive clustering usually
produces clusters in which all the members within a cluster are very similar. These are called
monothetic classifications.

Dividing by Largest Variance

The Howard-Harris method (Blashfield & Oldenderfer, 1978) selects the one variable, in the set
of variables, that has the largest variance. All subjects or objects with scores greater than the
mean of this variable are placed in one group and all subjects with scores less than the mean are
placed in the other group. This results in two initial clusters. The method uses a K-means
iterative solution (K = 2) to determine the membership of the two clusters. Next, the one variable
in the two beginning clusters that has the largest variance is selected and its mean is used to
subdivide the high and low scores in that cluster. A K-means solution is applied to these two
clusters to produce a three-cluster solution. As illustrated in Fig. 11.1, the process is repeated
until some preset number of clusters is reached.

FIG. 11.1. Illustration of hierarchical divisive method of clustering.

The divisive clustering procedure is valuable because it can be applied to as many as 2000
subjects and as many as 20 variables. The method is part of the PC-MDS package of programs
provided by BYU. The FORTRAN code for this method is given in Scaling Methods (Dunn-
Rankin, 1983). SAS provides an extensive discussion of clustering methodology in its SAS
documentation.
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They state: "If you want to hierarchically cluster a data set that is too large to use with PROC
CLUSTER directly, you can have PROC FASTCLUS produce, for example, 50 clusters, and let
PROC CLUSTER analyze these 50 clusters instead of the entire data set." PROC FASTCLUS,
unlike factor analysis, produces clusters that are not fuzzy. For example:

Application: Grouping Ham Radios

J. Hills, one of the main author's students, had ten ham radio operators rank the similarity
between six equipment manufacturers using paired comparisons. The radio manufacturers
included Icom, Yaesu, Kenwood, Collins, Drake, and Ten Tech. The raw and standardized data
are provided in Tables 11.1 and 11.2. Each profile has a mean of 3.5. The most frequent standard
deviation is 1.71.

Table 11.1

Preference Profiles for Ham Radios

Radio

Incom

Yaesu

Kenwood3

Collins

Drake

Ten Tech

1

4

3

5

6

1

2

2

1

3

3

6

5

3

3

3

2

6

5

4

1

4

3

3

3

6

5

1

Subjects

5 6

2

1

4

6

3

5

4

3

2

6

5

1

7

1

6

3

5

2

4

8

3

4

2

5

6

1

9

2

3

4

3

3

6

10

1

4

3

6

5

2

Table 11.2

Standardized Preference Profiles for Ham Radios

Radio

Incom

Yaesu

Kenwood3

Collins

Drake

Ten Tech

1

.29

-.29

.88

1.46

-1.46

-.88

2

-1.56

-.31

-.31

1.56

.93

-.31

3

-.29

-.88

1.46

.88

.29

-1.46

4

-.31

-.31

-.31

1.56

.93

-1.56

Subjects

5 6

-.88

-1.46

.29

1.46

-.29

.88

.29

-.29

-.88

1.46

.88

-1.46

7

-1.46

1.46

-.29

.88

-.88

.29

8

-.29

.29

-.88

.88

1.46

-1.46

9

-1.19

-.40

.40

-.40

-.40

1.99

10

-1.46

.29

-.29

1.46

.88

-.88

PROC FASCLUS Maxc = 3 nomiss; (Recommended for large data sets)
VarVl-V20;
run;
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Howard-Harris divisive clustering was utilized to group the manufacturers

The two-group and three-group solutions are presented below

Hills was able to make sense of the three-group solution because Group 1 were all Japanese
manufacturers, Collins and Drake were similar U.S. companies, and Ten Tech was a new
company.

Number of Clusters

Although an appraisal of the cluster solution (number of clusters) in Wards' method can be
made based on the size of the sums of squares, two other methods can be employed. One is to
split the original data and cluster both sets. If the clustering is similar in both cases, it can be
concluded that a reliable solution has been obtained. The clustering can also be replicated.

Another method is to use an outside criterion consisting of a set of predictor variables. This
method has the following steps: (1) Select a reasonable range of groups, and (2) Sequentially
predict group membership using discriminant function analysis (multiple regression used to
predict membership into varying numbers of clusters). The chi-square value for each cluster
solution divided by the resulting degrees of freedom can be used as a selection index (i.e.,
where chi square/df is maximum).

Graphing the Clusters

All clustering should be presented pictorially in order for the information to be easily
understandable. The basic clustering dendogram can be thought of as a mobile. In this mobile,
each horizontal bar is free to rotate around the connecting vertical line. Figure 11.2 consists of
words beginning with the letter h. In Fig. 11.3, a rearrangement has been made so as to afford a
better pictorial contrast between short and long words. Chambers and Kleiner (1980) suggested
different ways of displaying the results of clustering. The dendogram can be altered by
shortening the end lines or by making a straight line connection to the nodes (points of
departure from a continuous line; see Fig. 11.4).

It will be seen in Part IV, Multidimensional Methods, that clustering can be pictorally
superimposed on a dimensional solution by drawing circles around clusters of plotted objects.

1
Icom

Yaesu

Kenwood

Ten Tech

2

Collins

Drake

1 2 3

Icom

Yaesu

Kenwood

Collins

Drake

Ten Tech
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FIG. 11.2. Regular Dendogram.

FIG. 11.3. Dendogram rearranged to enhance the difference between clusters.

FIG. 11.4. A branching Dendogram.



PART IV

MULTIDIMENSIONAL METHODS
Part IV presents four useful multidimensional scaling methodologies. The technique of factor
analysis, traditionally developed and utilized with tests of ability and achievement, has also been
applied extensively to the reduction of matrices of correlations. Factor analysis however,
contains restrictive assumptions of linearity between variables and homogeneity of variance
among the variables. Singular value decomposition (SVD) can be applied to any rectangular
matrix. It is used in multidimensional preference analysis (MDPREF) The simpler
assumptions underlying multidimensional scaling allow the methodology to be utilized in a
different and generally more concise description of a data matrix. Preference mapping and
individual differences scaling are extensions of factor and multidimensional scaling analyses
that provide insights into how individuals differ with regard to the same psychological objects.
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12
FACTOR ANALYSIS

Representation of the Correlation Matrix

Factor Analysis attempts to simplify a large body of data by identifying or discovering
redundancy in the data. The factors are smaller representations that are derived from a larger
matrix of correlations. In psychological research intercorrelations among a set of tests, such as
the subtests of Wechsler Intelligence Scale for Children (WISC), reveal groups of subtests that
are interrelated. In Table 12.1 are intercorrelations among five subtests of WISC.

Table 12.1

Intercorrelations Among Five Subtests of the WISC

Information Vocabulary Comprehension Mazes Geometric D.

Information

Vocabulary

Comprehension

Mazes

Geometric D.

1.00

.60

.60

.37

.40

.60

1.00

.57

.35

.35

.60

.57

1.00

.28

.30

.37

.35

.28

1.00

.48

.40

.35

.30

.48

1.00

Are the relationships among the three Verbal tests redundant? That is, can one predict a person's
Comprehension score by her or his score on Vocabulary? Can scores on Mazes predict scores on
Geometric Design? The correlations suggest that some prediction is possible and suggests that
the matrix contains overlaping information or is redundant to some degree. A graphic analysis
suggests two groups of subtests, one verbal and one visual.
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If a matrix is redundant, its true rank (the number of independent rows or columns) will be less
than its original rank. The original rank is the number of variables or subtests. In our example,
the original rank is five (5) since there are five subtests. The total variance of the matrix is also
five. This can be found by noting that each variable, when standardized as Z scores, initially
contributes 1 unit to the total variance. The values of the diagonal elements in the initial matrix
are all 1.00 and sum to 5.00.

The question to be answered by Factor Analysis is: What is the approximate true rank of the
matrix? Approximate because the true rank can only be estimated. This is because errors of
measurement in the social sciences do not allow the researcher to find truly dependent variables,
that is, perfect correlations. If one estimates that there are two factors that represent the five
subtests in our example, the suggestion is that the approximate rank of the matrix is two (2).

The elements of a factor are the correlations of each test with the factor, called factor loadings.
The factor matrix, also known as the factor pattern, is represented by F. If one can estimate the
elements of each factor, then by multiplying the factor matrix by its transpose (F • F') an effort is
made to recreate the original correlation matrix (R). A comparison of the new (R*) matrix with
the original (R) matrix indicates how successful the estimate has been.

The transpose of F exchanges the rows and columns as illustrated below. Matrix multiplication is
demonstrated in the R* matrix. Note F is a 3 rows by 2 columns matrix. F' is 2 by 3 and this
results in a 3 by 3, R* matrix.
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Trial and Error

151

Based on the Graphic Analysis (p. 115), it is assumed that there are two factors. How can one
estimate the values to be inserted in the factor matrix? One way is trial and error. The
intercorrelations between the first three variables are approximately .60. In matrix multiplication
with two factors (FF'), .60 can be determined by the sum of two products (.60 = ab + de). What
values will best satisfy this equation? That is, what should the Factor matrix look like? First a
number of trials are made to search for acceptable elements of the F matrix as shown below.

Two estimates, .7 and .3 appear to be good choices for the first three tests. This selection is
based on approximating the other elements in the R matrix away from the diagonal. (.7)(.7) + (.3)
(.3) = .58, for example, which is close to .60.

The same question can be asked for the intercorrelations between the last two variables (Mazes
and Geometric Design) which is .48. Here we select .3 and .6 whose summed products (.3)(.3) +
(.6)(.6) = .45, which is close to the recorded value of .48.

Now we put our best estimates into a factor matrix as shown below in Table 12.2. We designate
the factors by the letters a and b.

Trial Factor Matrices

a b a b a b a b a b a b

1.0

1.0

1.0

0

0

0 .9

0 .9

0 .9

1.0 .1

1.0 .1

.1 .8

.1 .8

.1 .8

.9 .2

.9 .2

.2 .7

.2 .7

.2 .7

.8 .3

.8 .3

.3 .6

.3 .6

.3 .6

.7 .4

.7 .4

.4 .7

.4 .7

.4 .7

.6 .3

.6 .3

.3

.3

.3

.6

.6

Table 12.2

Final Trial Factor Matrix, F

Information

Vocabulary

Comprehension

Mazes

Geometric D.

Factor a

.70

.70

.70

.30

.30

Factor b

.30

.30

.30

.60

.60
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In multiplying the Factor matrix (F) by its transpose (F'), the row and columns are interchanged
and the product is found as follows:

Table 123

Matrix Multiplication of the Factor Matrix by
its Transpose (FF' = R*)

info voc comp Maze Geo.

a

.7

.7

.7

.3

.3

a

b

.3

.3

.3

.6

.6

.7 .7 .7

.3 .3 .3

.58 .58 .58

.58 .58

.58

.3

.6

.39

.39

.39

.45

.3

.6

.39

.39

.39

.45

.45

The off diagonal elements of the recreated R* matrix are subtracted from their corresponding
original correlations and the average absolute difference is calculated. The average difference
equals .039. This difference is small and fairly evenly distributed. The factor matrix (F) is a
reasonable representation of the original correlations of the R matrix.

The original diagonal elements (1.00) are not closely approximated by matrix multiplication. The
values in the diagonal (see Table 12.3) are closer to the Squared Multiple Correlations (SMC =
r2) of each variable with all the others. When SMC are placed in the diagonal of the correlation
matrix, then the Factor Analysis will analyze the common variance, rather than the total
variance, in the data.

Predicting one variable from a number of other variables is a problem in multiple regression
analysis. The r2 that results from this analysis is a measure of the accountable variance in
prediction (Pedhazuer and Schmelkin, 1991).

Test Score Assumptions

The factor loadings can derive meaning from basic assumptions surrounding test scores. First, a
test score is assumed to be the sum of a number of components. This is called the additive
assumption. A particular intelligence test score may, for example, consist of the sum of separate
contributions made by verbal and numerical ability, plus a component specific to the individual
items plus a component due to error. Symbolically, after standardization, this assumption can be
written as follows:

Ztest = Zv +' Zn +Zs + Ze
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Zv and Zn,the verbal and numerical components, are called common factors because they are
dimensional elements found in both subtests. The extent to which any two tests are related
depends on the extent to which their common factor components are similar. This does not
include the specific or error components. The assumption of additivity of the components of a
total score can be more formally stated as follows:

where a, b, . . ., q are weights assigned to each component.

The equation is expressed in standard Z form. This equation states that a total test score is a
weighted summation of common factor scores plus a specific component plus an error
component (Guilford, 1954, p. 476). The assumption can also be applied to the variance of the
scores:

The total variance of the scores on a test or variable may also be subdivided into three general
types - common, specific, and error variance. Common variance is that portion of the total
variance that correlates with other variables. Unique variance is the sum of specific variance
and error variance. Specific variance is that portion of the total variance which does not
correlate with any other variable. Error variance is chance or random variance, due to errors of
sampling, measurement, . . . and "the host of other influences which may contribute
unreliabilities," (Fruchter, 1954, p. 45).

Each component of the variance equation can be expressed as a proportion of the total variance.
For convenience, simpler terms are substituted for the proportions. The variance equation then
becomes

Accountable Variance

h2
x is called "communality." Communality is defined as the sum of the proportions of common

factor variance in the test score. Uniqueness (u2
x) is the portion of the total variance that is not

shared in common with any other variable. And specificity (s2
x) is the proportion of specific

variance in a test or variable.
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Because u2

x can be obtained as (1 — h2

x), u2

x is not computed directly in factor analysis. In other
words, the specific and error components are not estimated. Factor analysis relies on the factor
loadings on common factors to approximate the R matrix. The factor coefficients or loadings exist
as correlations (i.e., square roots of variance components). They are correlations of the
particular test with the factor. In our example, Vocabulary correlates (.70) most highly with
Factor a. Mazes (.60) correlates more highly with Factor b. The loadings are squared, in order to

provide estimates of variance (any r2 is the proportion of variance accounted for). For the
example given in Table 12.4, the sum of the squares of the factor loadings for each row is
calculated to obtain h2 or the communality. This is an estimate of how well the factors account for
the variance in each test.

Summing the squares of the factor loadings for each column, the sum is 1.65 for the first factor
and .99 for the second. These are sometimes called the eigenvalues (λ)* in a statistical analysis.
The total of 2.64 is equal to the sum of the diagonal elements of the new R* matrix, also known
as the estimated total communality. This total is subtracted from 5.0, the total variance, which
leaves 2.36 left over. Therefore, these two factors (2.64/5.0) account for 53% of the total
variance.

Table 12.4

Accounting for Variance Using Factor Loadings

Factor Loadings Factor Variance Communality Uniqueness

Tests a b a2 b2 h2 u2 Total
(a2+b2) 1-h2

Info. .7 .3 .49 .09 .58 .42 1.0

Vocab. .7 .3 .49 .09 .58 .42 1.0

Comp. .7

Maze .3

Geo. D. .3

Sumsλ,

.3

.6

.6

.49

.09

.09

1.65

.09

.36

.36

.99

.58

.45

.45

2.64

.42

.55

.55

2.36

1.0

1.0

1.0

5.0

.33 .20 .53 .47 1.00

*Eigenvalues are the solutions to the characteristic equation used in some formal solutions of factor analysis
such as principal components analysis. Eigen comes from the German word for root, that is, root of the
equation.
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Principal Component Analysis (PCA)

There are more objective and sophisticated ways of determining the best factors rather than using
trial and error. Just as in estimating the best fitting line in regression analysis, similar
procedures can be used to estimate the best factors. Factor solutions take advantage of matrix
algebra. Factor analysis (such as principal components) is used to reduce the array of data in a
correlation matrix to a smaller factor matrix. A principal concept in this theory is the rank of a
matrix. Fortunately, given any matrix and using computers, there are standard methods for
determining its approximate rank (Harman, 1967, Rummel, 1970). By using SAS for the
Personal Computer, a template for principal component analysis (PCA) starting with a
correlation matrix is as follows:

The results of PROC Factor for our WISC correlations are as follows:

The FACTOR Procedure
Initial Factor Method: Principal Components

Prior Communality Estimates: ONE

(These variance estimates are placed in the diagonal. Their sum = 5)

Eigenvalues of the Reduced Correlation Matrix: Total = 5 Average = 1

For this example, two factors will be retained by the NFACTOR criterion.

/*Principal Components (PC) Analysis*/ Title
data wise (type = corr); Name of the SAS data set
_type_ = 'corr1; Need if data is an r matrix
Input _name_$ inform vocab compre mazes geodsn;
datalines;
inform 1.000.600.600.370.40
vocab 0.60 1.00 0.57 0.35 0.35
compre 0.60 0.57 1.00 0.28 0.30 datalines
mazes 0.37 0.35 0.28 1.00 0.48
geodsn 0.40 0.35 0.30 0.48 1.00
; Each part ends with ;
proc factor method=principal Asks for PC analysis
priors=one scree nfact=2 , Ones in Diagonal, a scree test, 2 factors,
rotate=varimax reorder; Rotate using varimax, Order factors
run;

Eigenvalue Difference Proportion Cumulative
1 2.7389 1.8054 0.5478 0.5478
2 0.9335 0.4119 0.1867 0.7345
3) 0.5216 0.0973 0.1043 0.8388
4) 0.4242 0.0426 0.0848 0.9237
5) 0.3815 0.0763 1.0000

(The calculated eigenvalues are divided by the estimate (5.0) to get the proportion.)
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Eigenvectors (V)

1 2

inform 0.4986 -0.2384
vocab 0.4809 -0.2894
compre 0.4606 -0.4286
mazes 0.3868 0.5999
geodsn 0.3977 0.5618

Factor Pattern (VL5)

Factor 1 Factor 2
inform 0.8252 -0.2303
vocab 0.7959 -0.2796
compre 0.7623 -0.4141
geodsn 0.6582 0.5429
mazes 0.6402 0.5796

(The initial factor loadings are presented)

Variance Explained by Each Factor
Factor 1 Factor 2
2.7389 0.9335

(These are eigenvalues, k, the sum of squares of the factor loadings)

Final Communality Estimates: Total = 3.6725
inform vocab compre mazes geodsn
0.7341 0.7117 0.7526 0.7458 0.7280

(These are h2 the sum of the squares for each row)

Rotation Method: Varimax
(Kaiser's maximum variance criterion is used rotate uncorrelatedfactors)

Orthogonal Transformation Matrix
1 2

1) 0.8131 0.5820
2) -0.5820 0.8131

(The varimax criterion indicates a rotation of 36° 44'. Cos = .801, Sin = .582)

Rotated Factor Pattern
Factor 1 Factor 2

Com 0.8609 0.1069
inf 0.8100 0.2359
voc 0.8015 0.2930
geo 0.1831 0.8439
maz 0.2192 0.8246

(The original factor pattern was post multiplied by the tranformation matrix)

Variance Explained by Each Factor
Factor 1 Factor 2
2.1272 1.5452
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Factor Rotation

In the statistical analysis, a rotation is performed on the initial factor pattern. The orthogonal
transformation matrix is of the form:

where 0 is 36.8 degrees. In Figure 12.1 the original WISC factor loadings are plotted using the
horizontal and vertical axes for Factors 1 and 2. A 37 degree rotation sharpens the analysis by
reading the new loadings (bold type) off the rotated axes.

FIG. 12.1. Illustration of a 37° rotation.
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For example, if one reads the approximate coordinates of geodsn (Geometric Design) on the
original axes, Factors 1 and 2 are .658 and .542. Reading these same values from the rotated
axes yields .22 and .82. The rotated values are approximated by the trial and error method. No
rotation was performed on the experimental solution indicating that trial and error values have
utilized some theoretical justification in the initial solution.

Specific Problems Associated With Factor Analysis

1. What value should be placed in the diagonal of the correlation matrix? Placing 1 in each
diagonal entry indicates that the experimenter is interested in all of the variance in the data,
specific and error as well as common. Placing some other value in the diagonal indicates that an
estimate of the communality is available and is meaningful. The largest row correlation (without
regard to sign) or squared multiple correlations (SMC) have been suggested as the best values to
place in the diagonal. Harman (1967) has a good discussion of these issues.

2. How many factors should be extracted? Kaiser (1958) suggested that if the sum of the
squares of each set of factor loadings is less than (1) little is to be gained by extracting further
factors. He reasoned that initially each variable contributed a value of 1.0 and questioned what
factor could contribute less than a variable. Cattell (1962) suggested that the decision on the
number of factors be based on what is called the Scree Test. The Scree Test consists of plotting
the factors in equal intervals on the x axis against the variance accounted for by each factor.

Cattell (1966) represented a line plot of the variances accounted for by the factors as similar to
the erosion from a tall cliff. First there is a precipitous drop from the first one or two factors
down to the rubble accumulating at the base of the cliff or the scree. The first one or two factors
usually account for the most variance and then the other factors account for less and less variance
until a straight line will fit the remaining variances. The point at which there is a break between
the downward fall of the variance and the straight line representing the scree is usually the
cutting point for the number of factors.
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Reliable Component Analysis (Cliff & Caruso, 1998) provide a useful method for determining
the number of factors or components that should be retained.

3. What kind of rotation should be performed? The initial solution is always based on the
assumption of uncorrelated factors. This is known as the "orthogonality" restriction imposed on
PCA analysis. Usually the general factor solution that emerges before rotation is not as
interpretable as a solution that can be obtained by rotating the axes in order to contrast the factor
loadings more effectively. The most popular rotational procedure is Kaisers' orthogonal varimax
rotation. This process attempts to rotate the axes so as to maximize the variance accounted for by
each factor. This is done by minimizing the sum of the rectangular areas encompassed by the
coordinates of the points and the axes from which they are drawn. Non-orthogonal or oblique
rotations allow for the factors to be correlated. If one is interested in higher order factors, then an
oblique rotation allows a matrix of factor correlations to be analyzed.
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13
NAPPING INDIVIDUAL PREFERENCE

In determining the preference for almost any entity (Pepsi, grape jelly, University of North
Florida, Tiger Woods, high school, etc.), a directional identification can be made. That is, given
two or more psychological objects, subjects usually prefer one of the elements of a set.
Individual differences in preference are of interest to the behavioral scientist because attitude by
treatment interactions have not been fully explored. Different people may react differently to the
same stimulus. Some people prefer spinach, others dislike it. Some children prefer teacher
approval as a reward; others prefer freedom, competitive success, peer approval, or consumable
rewards. The methods previously discussed have looked at psychological objects from the view
of the average subject. A multidimensional mapping of objects (like a unidimensional scale) has
also been represented as the average respondent's judgment or preference between pairs of
objects. It is important, however, to look at the specific individual's preference. That is, to study
individual interaction between attitude and treatment

Singular Value Decomposition

Before multidimensional preference analysis is examined, a brief introduction to matrix
reduction (estimating the approximate rank) using Singular Value Decomposition is needed.
Carroll and Chang (1970) introduced the use of this process in preference analysis.

Many multidimensional analyses are based on a matrix theorem of Ekart and Young (1936)
Their theorem indicates how the largest or most important eigenvalues of a correlation matrix
can be used as a quantitative measure of the approximate rank of a matrix. The singular values
(the solution) are the square roots of the eigenvalues given in descending order of importance.
They end up as values in the diagonal matrix. Just as any number like 42 can be factored in its
primes (2)(3)(7), The theorem indicates that any rectangular data matrix can be put in diagonal
form with the aid of Singular Value Decomposition (SVD), which means:

161
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Where RLL and SMM are different singular matrices and ALM is diagonal matrix whose entries
are the singular values. The rank of the product is equal to the rank of the diagonal matrix
when its extremely small values are discounted. The research decides how small these values
should be. It could be a ratio of 1/100 of the total variance or less. For example

The reader can verify that the product of the three matrices on the right equals the original
matrix. In the middle is the diagonal matrix. Thus a diagonal matrix has been found whose
diagonal elements are the square roots of the singular values. The singular values are ordered on
the diagonal and 0.366 is very small compared to 5.47. In practice, very small values indicate
redundancy in the data and suggest a matrix of lower rank can be utilized to explain the data.

Carroll and Chang's Mulitidimensional Vector Model

The vector model of preference mapping (Carroll, 1972) is analogous to scoring a subject's
preference, on a unidimensional scale, in the multidimensional space of the objects. The process
usually starts with a two or three-dimensional configuration of objects whose interpoint
distances (the distances between the objects in t dimensions) have been derived from judgments
of their similarity. The subject's preference direction is then included in that configuration.

Suppose, for example, the similarities among four desserts: chocolate cake, chocolate ice
cream, pound cake and vanilla ice cream were judged by a group of children and the resulting
configuration of the four desserts is as shown in Fig. 13.1.

FIG. 13.1. Configuration of desserts.

DLM - R-LlALNlSMM
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It is easy to label the dimensions as Chocolate versus Non-chocolate and Cake versus Ice
cream. Next, suppose a child was asked to rank order her or his preference for the four desserts
and the results were as follows:

Child A— (1) Chocolate Cake, (2) Chocolate Ice Cream, (3) Pound Cake, (4) Vanilla Ice Cream

Surprisingly, the preference direction, for this subject, can be estimated by the constraints
imposed by the initial configuration of desserts on the child's rank order of preference.

FIG. 13.2. Perpendicular projection preserves rank or-
der. The ranks determine the vectors direction

As shown in Fig. 13.2 the perpendicular projection of the stimuli preserves the respondent's
preference values (rank order). The direction of the vector is of particular interest because it
reveals individual differences in preference with regard to the dimensions represented by the
desserts. A large number of different vectors may be accommodated in a two dimensional
space. When there are several objects and their configuration has been well defined (as by the
children, in this case), the direction of each subject's preference vector is uniquely determined.
Generally, the stimulus configuration and preference vectors (direction) are analyzed from the
same data. Preference mapping, using the vector model, assumes that the stimulus points
(objects) are projected onto individual subject's vectors.

It is possible to start the analysis with a predetermined configuration of objects. The case in
which the object configuration is determined in advance of the preference mapping has been
called external analysis.

If the respondent's vectors are of unit length, the projection of an object vector onto the
respondent's vector can be obtained from the scalar product. If, for example, Yj is the unit
length vector for student C, and Xj is the vector for object j, then Sij, the theoretical scale value
of Xj for YJ, is:
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As shown in Fig. 13.3, Yi is the vector for Student C and Xj is the object. The object is
projected onto the student's vector.

FIG. 13.3. Illustration of object projection creating a theoretical scale value.

Therefore, given a respondent's preference for a set of stimulus objects such as X1, X2,...Xj with
a preference rank of 1, 2, ... J, the problem is to find the vector that best fits the stimulus
projections. The object projection (scalar product) onto any specific vector is proportional to the
distance between the vector's end point and the stimulus point. The question can be resolved by
determining that specific point where the vector terminates on a circle enclosing the space of
the objects. The circles origin is the centroid of the objects. Mathematically the problem of
preference mapping is to find the slope of each respondents's preference vector. The problem
becomes one of minimizing the sum of the differences between the preference values (ranks) Sy
and the distances from the objects to the vector terminus on the circle that are proportional to
the projections S*ij on a vector through the origin; that is,

MDPREF

MDPREF is a factor analysis, using Singular Value Decomposition that not only produces the
factor structure of the objects but processes the subjects as well. Carroll and Chang (1968)
wrote a program that performs a linear factor analysis on the stimuli and fits preference vectors
to the object configuration. It has particular usefulness in perception and attitude measurement
where rank profiles of preference are available. Their program plots the individual's vector
direction within the object space. MDPREF has the unique advantage of being able to handle a
large number of participants if the number of objects is relatively small.

Sij = YiXj Cos 0

S (S*y - Sy)2 is to be minimum, which is the typical problem in linear prediction.
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MDPREF is what is known as a " vector model". This means that the objective of the MDPREF
analysis is to identify a map displaying the participant's preference vectors. The model assumes
that preference is greatest near the end of his or her vector. The stimuli or object points are
plotted in the space. To form the vectors visually, lines are drawn from the origin of the plot to
each participant's point on a circle.

Each stimulus point projects (at a 90 degree angle) onto each subject's vector. This projection
attempts to preserve the preference for the stimuli. More technically, MDPREF is a metric
model based on a principal components analysis (Ekart-Young decomposition, SVD). In this
analysis, a data matrix of i subjects by j stimuli is decomposed into two smaller matrices, each
of which approximates the original data matrix using least squares. The first of these resulting
matrices is a principal component score matrix of size (i x t), where t is the number of
dimensions. This matrix depicts the j subjects in the t dimensions. The second matrix is called
the principal component matrix and is of size (t by j). This matrix depicts the j stimuli in the t
principal component dimensions.

CD-ROM Example Using MDPREF

An example related to the four desserts: Chocolate Cake, Pound Cake, Vanilla Ice-Cream, and
Chocolate Ice-Cream is presented. Seven adults voted their preference for one of each of the six
possible pairs. In this data the higher the value the more it is preferred. The program,
MDPREF, is found on the CD-ROM. First a configuration file is created:

mdpref.cfg

mdpref.dat

In this data, note that the first subject least preferred items 1 and 4 and most preferred 2 and 3.
In this case there are ties that result from circularity in the respondents paired choices.

This is the Second Trial for MDPREF on Four Desserts ^^ = ?> #items = factors = 2> #factors

42 2 2 Plotted = 2, (standardization, 1= subtract mean
mdpref.dat from each SCQT^ 2 = make z SCQre^
mdpref.out

2 3 3 2
2 1 4 3
2 1 4 3
1 4 2 3
3 2 2 3
3 1 2 4
3 2 2 4
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mdpref.out

This Is the Second Trial for MDPREF on Four Desserts (Title)
#of #of #of Plotted

Subjects Stimuli Factors Factors Data Form
7 4 2 2 2 (Persons, stimuli, factors, factors plotted, standardize)

MEAN OF THE RAW SCORES (BY SUBJECT) (Mean = LX/N)
2.500 2.500 2.500 2.500 2.500 2.500 2.500

SD OF THE RAW SCORES (BY SUBJECT) (Square roots of (I(X - Mean)/N)
0.500 1.118 1.118 1.118 0.500 1.118 1.118

FIRST SCORE MATRIX (Standardized (Z) scores of original preference data)
SUBJJECT STIMULUS

1 ~-1.000 1.000 1.000 -1.000
2 -0.447 -1.342 1.342 0.447
3 -0.447 -1.342 1.342 0.447
4 -1.342 -0.447 0.447 1.342
5 1.000 -1.000 -1.000 1.000
6 1.342 -1.342 0.447 -0.447
7 1.342 -1.342 -0.447 0.447

CROSS PRODUCT MATRIX OF SUBJECTS (Covariances = IZXZY)
3 0.000 4.000 4.000 2.400 0.000 1.600 0.800
4 0.000 2.400 2.400 4.000 0.000 -1.600 -0.800
5 -4.000 0.000 0.000 0.000 4.000 1.789 3.578
6 -1.789 1.600 1.600 -1.600 1.789 4.000 3.200
7 -3.578 0.800 0.800 -0.800 3.578 3.200 4.000

CORRELATION MATRIX OF SUBJECTS (Correlations= r = IZXZY/(N)
1 1.000 0.000 0.000 0.000 -1.000 -0.447 -0.894
2 0.000 1.000 1.000 0.600 0.000 0.400 0.200
3 0.000 1.000 1.000 0.600 0.000 0.400 0.200
4 0.000 0.600 0.600 1.000 0.000 -0.400 -0.200
5 -1.000 0.000 0.000 0.000 1.000 0.447 0.894
6 -0.447 0.400 0.400 -0.400 0.447 1.000 0.800
7 -0.894 0.200 0.200 -0.200 0.894 0.800 1.000

CROSS PRODUCT MATRIX OF STIMULI (Covariances, basis for determining item dimensions)
1 7.800 -3.800 -3.800 -0.200
2 -3.800 9.400 -1.800 -3.800
3 -3.800 -1.800 6.200 -0.600
4 -0.200 -3.800 -0.600 4.600

ROOTS OF THE FIRST SCORE MATRIX (Eigenvalues, variance accounted for by item factors)

13.569 9.905 4.526 0.000

SECOND SCORE MATRIX (Captured values from preference vector fitting.
SUBJECT STIMULUS Attempts to mirror First Score Matrix. Values are

distances from the origin.)
1 -0.700 0.586 0.339 -0.226
2 -0.284 -0.661 0.606 0.340
3 -0.284 -0.661 0.606 0.340
4 -0.547 -0.388 0.706 0.229
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MULTIPLE POINTS IDENTIFIED AS # (subjects 2 and 3)

In the plot above one can see that different individuals have fairly varied positions the two di-
mensional space of ice cream versus cake and chocolate versus vanilla.

5 0.700 -0.586 -0.339 0.226
6 0.546 -0.766 -0.104 0.324
7 0.650 -0.665 -0.252 0.268

POPULATION MATRIX (Subject factor loadings used in plotting points)
FACTOR

1 0.955 -0.354 -0.354 0.049 -0.955 -0.999 -0.986
2 0.297 0.935 0.935 0.999 -0.297 0.049 -0.166

STIMULUS MATRIX (Item factor loadings. In order: Chocolate Cake,
Pound Cake, Vanilla Ice Cream, Chocolate Ice-Cream)

FACTOR
1 -0.571 0.746 0.138 -0.313
2 -0.520 -0.425 0.700 0.245
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In this plot the dimensions of chocolate versus vanilla and cake versus ice cream are cap-
tured.
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In this plot both subjects and stimuli are presented. The preference vector for subject 1 (item 5
in the plot) is shown. This respondent likes vanilla as opposed to chocolate. One can see that the
projections match the values in the second score matrix. These values are distances measured
from the origin. For this subject, who had tied scores, the match with the original scores is only
approximated.
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Application : Occupational Ranking by Japanese

Hiraki (1974) studied the relative status of teachers in Japan and in Hawaii by having native
Japanese visitors rank sets of occupations as to prestige. She then compared these ranks with
local respondents. Hiraki used a Balanced Incomplete Block design (BIB) with 21 selected
occupations ranked in groups of five (Appendix B, Table B). Figure 13.4 shows her
instrument and Table 13.1 reports the results of the votes for the Japanese tourists. The
Japanese vote vectors were analyzed by MDPREF and the two-space configuration shown as
Fig. 13.5 was the result.

Hiraki also scaled the preference vectors for 21 occupations by Japanese tourists and by
Americans of Japanese ancestry.

The occupations were arranged according to Plan 13.13 of Table B in the Appendix. The 21
occupations were as follows:

1. physician
2. governor
3. professor
4. banker
5. priest

6. lawyer
7. artist
8. factory owner
9. captain
10. teacher

11. union official
12. columnist
13. electrician
14. bookkeeper
15. farmer

16. policeman
17. barber
18. fisherman
19. singer
20. taxi driver
21. janitor

Directions: In each section, rank order the occupations. Place (1) beside the most prestigious job (2)
the next most prestigious and so on until five have been ranked.

SECTION 1 SECTION 6 SECTION 11 SECTION 16 SECTION 21

farmer army captain janitor physician taxi driver

artist professor lawyer policeman farmer

bookkeeper governor factory owner nightclub singer barber

factory owner nightclub singer barber fisherman union official

policeman farmer army captain janitor physician

SECTION 2 SECTION 7 SECTION 12 SECTION 17

artist professor lawyer policeman

banker electrician columnist priest

army captain janitor physician taxi driver

physician taxi driver bookkeeper governor

priest artist professor lawyer
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SECTIONS SECTIONS SECTION 13 SECTION 18

banker electrician columnist priest

barber fisherman union official teacher

professor lawyer policeman farmer

policeman farmer army captain janitor

teacher banker fisherman columnist

SECTION 4 SECTION 9 SECTION 14 SECTION 19

barber fisherman union official teacher

bookkeeper governor physician nightclub singer

electrician columnist nightclub singer artist

priest artist fisherman lawyer

nightclub singer barber janitor union official

SECTION 5 SECTION 10 SECTION 15 SECTION 20

bookeeper governor phsysician nightclub singer

army captain janitor policeman taxi driver

fisherman union official nightclub singer banker

teacher banker fisherman columnist

taxi driver bookkeeper janitor factory owner

FIG 13.4. Example of a BIB instrument used to evaluate occupations.

Table 13.1

Occupational Votes (Japan)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

20
16
15
12
20
13
19
15
16
15
4
19
20
17
15

17
2
9

14
16
7
13
11
20
20
17
11
19
10
17

15
13
8

14
15
11
17
5
17
11
17
19
16
5
12

16
11
9

12
14
2
13
6
7
10
3
16
10
3
10

9
5

14
6
3
0
13
15
18
8
13
14
15
18
15

17
16
19
9

18
14
17
19
19
17
7
18
18
15
18

11
20
11
7
11
16
11
1
13
10
12
12
7

14
11

17
16
6

14
19
6

15
12
9

19
16
12
14
1
19

9
3
0
7
12
4
6
9
0

18
17
12
12
0
5

8
9

15
9
6
8
3
11
13
6
1

14
5
11
11

10
2
2
6
9

14
7
5
6

14
0
6

17
11
7

11
19
12
7
10
12
20
15
14
12
20
9

11
13
11

14
5

18
14
13
17
11
13
11
12
18
17
13
10
18

8
0
5

15
3
1
3
12
11
5
7
8
3
3
6

6
18
20
14
17
19
16
14
13
16
12
6
9

20
17

6
10
8
7
3
3
7
6
6
1
6
6
8
7
5

3
11
15
13
8
9
6
9
4
7
11
4
4
10
5

3
11
12
7
0
20
8
5
7
4
9
3
5
19
4

2
8
1
6
4

18
1

14
1
0
11
0
3
7
3

4
9
6

10
6
11
1

11
3
3
3
3
1
5
1

4
6
5
7
3
5
3
2
2
2
6
1
0
11
0



172 13 MAPPING INDIVIDUAL PREFERENCE

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

17 17
19 14
15 11
16 19
20 13
18 15
14 7
9 20
16 19
19 20
20 16
17 19
17 20
18 16
20 11
15 20
15 20
17 13
17 17
20 13
18 9
19 9
17 10
17 19
14 17
19 15
15 17
16 7
19 13
9 16

16 18
20 7
13 18
2 3
15 14

17 13
18 16
6 9

20 13
11 8
12 18
12 11
14 8
15 8
14 13
11 17
15 6
15 15
19 6
19 10
17 13
16 13
12 14
18 13
12 18
12 13
20 14
12 19
13 8
15 15
13 18
15 4
19 4
16 7
18 3
12 7
9 9

18 14
4 8
9 19

7 18 14
8 16 8
10 13 2
12 18 10
16 19 8
5 17 10
6 10 7
7 15 14
10 18 14
4 18 6
4 13 4
6 20 1

12 18 9
14 20 15
10 17 4
9 18 12
6 19 17
12 15 15
20 17 16
0 19 5
7 16 19
11 18 12
16 14 15
5 18 8
9 19 19
9 18 12

17 18 12
20 14 10
9 16 10
1 17 7
6 17 3
7 11 2
7 18 16
20 5 18
9 17 11

13 7
20 10
9 3

14 4
18 0
17 10
13 1
15 19
17 12
17 12
17 16
11 13
19 0
12 16
17 5
19 4
17 9
20 2
13 5
15 17
13 0
10 12
20 2
20 16
17 6
19 10
19 6
8 11
11 6
16 1
19 1
6 0

16 11
1 0

20 7

15 18
10 10
3 5
17 6
16 4
1 10

15 20
14 6
13 5
9 8

10 9
15 7
11 12
10 10
14 4
16 13
7 11
8 12

13 9
9 8
9 8

15 5
12 0
12 6
6 2
9 3

14 1
18 6
20 6
13 17
9 5

11 10
10 5
7 10
5 4

5 9 10
12 12 13
5 17 7
5 8 6
9 15 7

11 11 6
16 18 6
9 13 3
9 11 5

15 12 10
3 11 12
10 18 9
7 8 5
6 10 3

10 14 17
8 11 5
11 6 10
19 8 3
9 5 4

11 14 14
11 16 5
10 17 8
8 8 6
9 15 13
5 11 5
12 6 5
12 5 3
5 11 3
3 16 5

20 15 8
16 14 12
8 18 17
9 12 5

11 12 13
14 7 14

8 8
8 4

20 11
14 12
13 8
20 3
19 0
10 9
20 6
7 11
19 9
15 12
12 13
11 11
13 5
11 4
7 4
13 1
10 9
12 5
19 6
10 2
18 5
12 1
11 2
14 6
10 5
12 6
14 18
12 7
19 6
14 6
17 9
6 9

18 3

5 2
4 2

14 18
8 2
5 10
7 9
9 2
1 1
5 2
7 3
8 2
7 3
5 5
2 6
7 1
6 2
4 0
6 10
3 5
2 5
13 8
4 3
8 11
9 1

10 8
4 2
6 11

11 14
11 0
10 5
10 11
15 19
6 3
17 19
4 12

6
0
1
0
3
8
3
19
0
2
0
0
1
4
1
0
15
1
0
7
1
4
1
4
12
14
10
10
1
4
0
1
0

14
3

1 0
2 4

14 17
5 1
4 3
1 1
4 17
4 1
1 4
1 2
6 2
4 2
4 2
1 0
9 2
3 4
1 2
4 5
3 4
3 1
3 4
6 1
3 5
1 3
4 3
1 1
5 4
3 2
6 3
7 4
6 3
6 14
1 2

15 16
0 5

Output MDPREF Preferred Occupations by Japanese Tourists

For this analysis only the object and subject factor coordinates are provided below.
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FIG. 13.5. Two dimensional configuration of occupational votes by Japanese tourists using
MDPREF.

Hiraki was able to show that native Japanese visitors neatly divide occupations into professional
and less prestigious categories. Only a few respondents indicated a preference for the traditional
occupation of fisherman but farmer is still desired. These occupations are contrasted with the
military occupation of captain.
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Inclusion of the Ideal Point

13 MAPPING INDIVIDUAL PREFERENCE

A simple way to measure individual preference is to include an "ideal" stimulus among the
authentic stimuli and obtain similarity estimates among all the (n + 1) stimuli. If, for example,
the ideal professor is included among the names of the graduate faculty and similarity
estimates among faculty members are obtained from each graduate student in a department, it
is assumed that those professors scaled closest to the student's ideal professor are most
preferred. The scaling is done using multidimensional methods for each student.

Ideal Point Projection

If we can find the most preferred combination of attributes on the map of the stimuli, this
would be the ideal point. The distances to the ideal point from the stimuli should closely
match the preference scale values. The differences between these distances and the scale
values are minimized and the location of the ideal point is determined. Finding a respondent's
ideal point is analogous to finding the vector solution. Suppose a child's preference ranking
for the four desserts chocolate cake, chocolate ice cream, pound cake and vanilla ice cream is
1, 2, 3,4. Using the ranks as distances we can project them onto and ideal point as follows:

FIG. 13.6. Ideal point projection.

By placing Child A's ideal point in the position shown in Fig 13.6, the distances closely
approximate the preference values. Carroll and Chang (1968) produced the program
PREFMAP which attempts to locate the ideal points for subjects in the space of the Stimuli.
This progam is available from BYU or Bell Labs netlib.
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Multidimensional Scaling (MDS) is the name for specific methods that attempt to spatially
represent the proximities between a number of stimuli. MDS attempts to provide a picture of the
similarities between objects by mapping the distances between them. The MDS methods are
alternatives to cluster and factor analysis. Each object is represented as a point in space (usually
in the Euclidean space of two or three dimensions but could include hyperspace). The distances
between the objects inversely represent the similarities. Two objects close together are highly
similar. Two objects far apart are dissimilar. A brief historical introduction to MDS is given by
Davison (1983) and Young (1985)

Multidimensional Scaling is applicable to a large number of measures of similarity or
dissimilarity. Unlike factor analysis, MDS can be used on data with fewer assumptions about the
data. Its primary purpose is a parsimonious spatial representation of the objects. Shepard (1962)
first showed that MDS could utilize ordinal (nonmetric) assumptions about the data and produce
metric solutions.

The nonmetric process of arriving at the best spatial configuration to represent the original
similarities has been presented by Kruskal (1964a). This multidimensional scaling proceeds as
follows:

1. There is a given set of (n) objects.
2. For every two objects (i and j), some measure or function of proximity is obtained.

(These measures may be correlations, similarities, associations, etc.). Distance and similarity
measures are related inversely. If, for example, the similarity between the words "war" and
"peace" is estimated to be small, then the two words should be a relatively "large" distance apart.
If similarities are obtained (Sjj), they are converted to distances (dy) usually by subtracting from a
constant. An additive constant may also be needed to fulfill the requirements of the triangle
inequality.

3. A number of dimensions, t, are selected that may be needed to fit the data. The n
objects are then placed (randomly or selectively) in the space of the chose number of dimensions
spaces.

4. Multidimensional scaling (MDS) searches for a replotting of the n objects so that
(created) distances (d*ij) between pairs of objects in the plot are related to their original distances

175
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In KruskaTs method, a resolution of the initial spatial configuration is made in iterational steps.
At each step the objects are moved from their initial placement in the t dimensional space
(usually 2 or 3 dimensions) and new distances between all pairs of objects are calculated. The
distances (dij*) between pairs of objects in the new placement are ordered and then compared
with the original dissimilarities (dy) between the same pairs of objects. The original distances
have also been ordered. If the relationship between the two sets of ranks is increasingly
monotonic, that is, if the order of the new distances is similar to the order of the original
distances, the objects continue to move in the same direction at the next step. If the relationship is
not monotonic, changes in direction and step length are made. A measure of monotonicity is
primary in non-metric scaling. This measure is provided by ordering the distance measures (dij*)
on the x-axis and measuring horizontal deviations of the newly obtained distances in the plot
from the original distances (dy) on the y-axis. The deviations are squared so they can be summed.
The object is to make the sum of the squared deviations as small as possible. That is, to make Z

2
(dij - dij*) a minimum, which is a typical least squares problem.

How Kruskal's Method Works

Suppose the similarities (Sij) among four fish (all pacific trevallys) are obtained as an average of
several fisherman's subjective estimates.
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The fisherman's average similarities are formed into a square matrix, Table 14.1:

Table 14.1

Similarities (sij) Among Trevallys

177

Giant

Bluefin

Brassy

Bigeye

Giant

10

6

3

5

Bluefin

6

10

7

4

Brassy

3

7

10

4

Bigeye

5

4

4

10

These are converted to distances (dij) by subtracting each similarity score from 10.

Table 14.2

Distances (dij) Between Trevallys

Giant

Bluefin

Brassy

Bigeye

Giant

0

4

7

5

Bluefin

0

3

6

Brassy

0

6

Bigeye

0

No additive constant needed.

As an initial step, the four fish are placed, randomly as points in a two-dimensional plane (t = 2).
Euclidean distances, d*ij between all pairs, are determined from the initial placement coordinates.

Brassy (1,9)

FIG. 14.1. Random placement of fish in two dimensions.



178 PART IV: MULTIDIMENSIONAL METHODS

Because the rank of the original distances and the rank of the plotted distances are not in the
same order, the first spatial representation based on random assignment does not fit the
assumption of monotonicity (that is, steadily increasing or decreasing values).

Table 14.3

Distances Between Pairs of Reef Predators

dij
2 Rank d*ij Rank D = (dij-d*ij)

Bluefin-Brassy

Bluefin-Giant

Giant-Bigeye

Bluefm-Bigeye

Brassy-Bigeye

Giant-Brassy

3

4

5

6

6

7

9

16

25

36

36

49

152

1

2

3

4.5

4.5

6

5.1

6.1

2.2

5.1

7.3

9.2

2.5

4

1

2.5

5

6

Sum D2

-2.1

-2.1

2.8

0.9

-1.3

-2.2

= RawStress

4.41

4.41

7.84

.81

1.69

4.84

13.0

As one measure of how well the random point placement fits the original data, a calculation of
Raw Stress, which is the sum D2 = S(dij - dij*)2can be made. In this case, dij are the original
distances and d*ij are the distance estimates based on random assignment. Kruskal averages the
Raw Stress Sum of Squares by dividing by the Sum of dy2 and then getting back to the original
units by taking the square root. In this example 13 /152 = .086 and the square root is .29.

One can also find the correlation (r) between the ranks. One measure of fit is the square root of (1
- r2) sometimes called the badness of fit. The smaller the value, the better the fit to the original
data, r2 is the proportion of variance accounted for and (1 - r2) is the coefficient of
nondetermination.

As a next step, the four points are moved varying small amounts in distance and direction so as to
reduce the stress index or badness of fit index. In the example above, the Giant Trevally and the
Bigeye Trevally should be moved away from each other and the Bluefin-Brassy pair and the
Bluefin-Giant pair should be moved closer together.

In practice, Kruskal's method is one of successive approximation. Theoretically the problem is to
minimize a stress function involving many variables in t dimensions. The solution of the problem
is found in the method of steepest descent. See Kruskal (1964b) and Kruskal and Wish (1978). In
current versions of MDS, principal components analysis is used to determine the initial
placement of the points in space.

Using SAS MDS the original similarities were analyzed: SAS detects whether the data are
similarities or distances by comparing the diagonal elements with largest off diagonal values.The
reader may also download (kyst2a.f) from the Bell-Labs net library as well as the manual. (See
Using the Internet, p. 208).



14 MULTIDIMENSIONAL SCALING 179

SAS Analysis of Trevally Data

data trevally;
input Bluefin Giant Bigeye Brassy;
datalines;
10 6 4 7
6 10 5 3 }Input to SAS
4 5 10 4
7 3 4 10

i
proc mds data=trevally dim=2 out=out level=ord
pfinal;
proc plot data=out;
plot dim2*diml;
run;

Multidimensional Scaling: Data=WORK.TREVALLY

Shape=TRIANGLE Condition=MATREX LevelORDINAL
(Shape = TRIANGLE means the upper triangle of the symmetric matrix was used)

CoeMDENTITY Dimension=2 Formula=l Fit=l (data are distances)
(Coef= IDENTITY means principal axis rotation and scaled to a standard deviation of I)

(Formula = I means Kruskal's Stress formula I)

Mconverge=0.01 Gconverge=0.01 Maxiter=100 Over=2 Ridge=0.0001

Badness- Convergence Measures
of-Fit Change in

Iteration Type Criterion Criterion Monotone Gradient

0 I n i t i a l 0 . 0 3 9 1 ! ! T ~
1 Monotone 0.002918 0.0362 0.0325 0.8852
2 Gau-New 0.001365 0.001552
3 Monotone 0.000632 0.000733 0.001210 0.8825
4 Gau-New 0.000297 0.000334 . 0.003527

Convergence criteria are satisfied.

Configuration

Diml Dim2

Bluefin -0.65 0.76
Giant 1.17 0.90
Bigeye 0.95 -1.25
Brassy -1.48 -0.42
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If one physically measures the distances between the trevallys in the plot, the final distances
(d*ij) match the original distances very closely. For fisherman, the arrangement makes sense.
The bluefin and brassy trevallys are shallow water reef predators whereas the giant and bigeye
trevallys are found in deeper water. The brassy and bigeye trevallys are more common south of
the equator whereas the giant and bluefin's habitat is wide ranging.

Application Word Similarity (SAS MDS Using PEROVER Data)

Fifteen adults were given 11 words on slips of paper. Each word began with the letter a. The
subjects were asked to group similar words together. A percent overlap matrix was calculated
and a distance matrix produced. (See Free Clustering, p. 23).
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SAS Data Set

The results are listed below:

data words;
input a admits aged almost aiming and as at areas army away; } SAS Data Step
datalines;
0.00 1.00 0.93 1.00 1.00 0.73 0.27 0.33 1.00 1.00 1.00
1.00 0.00 0.93 0.40 0.67 0.93 1.00 1.00 0.87 0.80 0.80
0.93 0.93 0.00 0.93 0.93 0.80 0.93 0.93 0.67 0.87 0.87
1.00 0.40 0.93 0.00 0.60 1.00 1.00 1.00 0.93 0.80 0.80
1.00 0.67 0.93 0.60 0.00 1.00 1.00 1.00 0.87 0.73 0.73 }Data = Distance Matrix
0.73 0.93 0.80 1.00 1.00 0.00 0.87 0.87 0.73 0.87 0.80
0.27 1.00 0.93 1.00 1.00 0.87 0.00 0.27 1.00 1.00 1.00
0.33 1.00 0.93 1.00 1.00 0.87 0.27 0.00 1.00 1.00 1.00
1.00 0.87 0.67 0.93 0.87 0.73 1.00 1.00 0.00 0.73 0.73
1.00 0.80 0.87 0.80 0.73 0.87 1.00 1.00 0.73 0.00 0.13
1.00 0.80 0.87 0.80 0.73 0.80 1.00 1.00 0.73 0.13 0.00
5

proc print;
proc mds dim=2 out=out pfinal; } Analysis
proc plot data=out;
plot dim2*diml

0
1
2
3
4
5
6
7
8
9
10
11

Initial
Monotone
Gau-New
Monotone
Gau-New
Monotone
Gau-New
Monotone
Gau-New
Monotone
Gau-New
Gau-New

0.2560
0.1372
0.0842
0.0809
0.0793
0.0723
0.0711
0.0699
0.0693
0.0688
0.0675
0.0674

0.1188
0.0530
0.003358
0.001596
0.006932
0.001251
0.001149
0.000663
0.000457
0.001362
0.0000120

0.2176

0.0229

0.0328

0.0135

0.007731

0.7605

0.4051

0.3139

0.2474

0.2031
0.0197
0.002906

Multidimensional Scaling: Data=WORK. WORDS
Shape=TRIANGLE Condition=MATRIX LevelORDINAL

Coef=IDENTITY Dimension=2 Formula=l Fit=l

Mconverge=0.01 Gconverge=0.01 Maxiter=100 Over=2 Ridge=0.0001

Badness- Convergence Measures
of-Fit Change in

Iteration Type Criterion Criterion Monotone Gradient

0.00 1.00 0.93 1.00 1.00 0.73 0.27 0.33 1.00 1.00 1.00
1.00 0.00 0.93 0.40 0.67 0.93 1.00 1.00 0.87 0.80 0.80
0.93 0.93 0.00 0.93 0.93 0.80 0.93 0.93 0.67 0.87 0.87
1.00 0.40 0.93 0.00 0.60 1.00 1.00 1.00 0.93 0.80 0.80
1.00 0.67 0.93 0.60 0.00 1.00 1.00 1.00 0.87 0.73 0.73
0.73 0.93 0.80 1.00 1.00 0.00 0.87 0.87 0.73 0.87 0.80
0.27 1.00 0.93 1.00 1.00 0.87 0.00 0.27 1.00 1.00 1.00
0.33 1.00 0.93 1.00 1.00 0.87 0.27 0.00 1.00 1.00 1.00
1.00 0.87 0.67 0.93 0.87 0.73 1.00 1.00 0.00 0.73 0.73
1.00 0.80 0.87 0.80 0.73 0.87 1.00 1.00 0.73 0.00 0.13
1.00 0.80 0.87 0.80 0.73 0.80 1.00 1.00 0.73 0.13 0.00
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FIG. 14.2. Similarity between words beginning with the letter a.

In this example, one could argue that the horizontal dimension is one of word length. The
vertical dimension is characterized by words with middle ascenders versus words without. The
badness of fit criterion ends at .0675 which is good and convergence was reached. Note this
solution was nonmetric in that only ordinal conditions were imposed on the solution.

Configuration
Diml Dim2

a
admits
aged

almost
aiming

and
as
at

areas

army
awav

1.59

-1.01

-0.09

-1.01

-1.14

0.76

1.61

1.58

-0.41

-0.99

-0.89

0.35

0.94

-1.65

1.12

0.74

-0.86

0.53

0.61

-1.20

-0.29

-0.30



14 MULTIDIMENSIONAL SCALING 183

The cluster analysis of this same data can be super-imposed on the MDS solution as shown
below:

FIG. 14.3. Superimposing clustering on the MDS analysis.

The clustering emphasizes word length, creating clusters of small, medium, and large words. The
word and stretches its cluster because some judges see it as a small word.
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15
INDIVIDUAL DIFFERENCES SCALING

Individual Differences Scaling is a form of weighted multidimensional scaling. Its basic
assumption is that each individual responds to all the dimensions of the stimuli but may utilize
the dimensions in varying degrees. That is, each subject weights the dimensions separately and
perhaps differently. The classic example is people who may be color blind in the red-green
dimension of the color wheel. For such subjects, the red-green dimension has a minimal weight.
It can be seen that a separate matrix of information is required from each subject. The auxiliary
program INDMAT accepts paired similarity data and produces a set of stacked matrices. For
example:

Output from INDMAT

SINDSCAL

The initial individual differences methodology was developed by Carroll and Chang (1968) and
promoted through the effective FORTRAN program sindscal.f. This program can be downloaded
free from the Bell Telephone Laboratories Library of MDS programs (see Using the Internet). It
can also be found on the CD-ROM (SINDSCAL).

185

7.00 5.00 2.00 4.00
5.00 7.00 2.00 2.00
2.00 2.00 7.00 5.00
4.00 2.00 5.00 7.00
7.00 6.00 2.00 4.00
6.00 7.00 3.00 2.00
2.00 3.00 7.00 7.00
4.00 2.00 7.00 7.00

•

•

•

7.00 3.00 1.00 6.00
3.00 7.00 6.00 3.00
1.00 6.00 7.00 4.00
6.00 3.00 4.00 7.00

or Judge 1
7 5 2 4
5 7 2 2
2 2 7 5
4 2 5 7

Judge 2
7 6 2 4
6 7 3 2
3 3 7 7
4 2 7 7

Judge 8
7 3 1 6

3 7 6 3

1 6 7 4

6 3 4 7
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CD-RON Example of SINDSCAL With Learning Disability Data

The data in which five subjects gave estimates of the similarity between Learning Disability
(LD), Mentally Retarded (MR), Deaf (D), and Blind (B) is examined under SINDSCAL (see p.
5). SINDSCAL can handle a variety of input matrices. In this example, the data is a lower half
matrix for each judge without the diagonal.

The first line is the title line.
The second line contains the parameters:

The minimum dimensions. 2
The maximum dimensions. 2
The number of subjects. 5
The number of objects. 4
Max number of iterations 20
Uses a lower half matrix 1
Plot the data. 0
A random starting number 3333

The third line is the input file name
The fourth line is the output file name

sindscal.cfg (Configuration file)

sindscal.dat (Input file)

Sindscal on Disability Data
2 2 5 4 20 1 0 3333
sindscal.dat
sindscal.out

4.00
4.00 5.00
4.00 2.00 5.00
6.00
3.00 8.00
2.00 2.00 4.00
5.00
4.00 6.00
4.00 3.00 4.00
2.00
2.00 4.00
6.00 2.00 5.00
2.00
6.00 7.00
6.00 4.00 5.00



SINDSCAL ON DISABILITY DATA
**************************************************

PARAMETERS
DIM IRDATA ITMAX IPLOT IRN
2 1 100 0 3333

NO. OF MATRICES = 5 NO. OF STIM. = 4
**************************************************
INITIAL STIMULUS MATRIX

1 -0.009 -0.191 -0.496 0.349 (Randomly generated coordinates)
2 -0.100 0.366 0.490 -0.078

HISTORY OF COMPUTATION
ITERATION CORRELATIONS BETWEEN VAF LOSS

Y(DATA) AND YHAT (R**2) (Y-YHAT)**2
0 0.583882 0.340918 0.659082
1 0.854795 0.730674 0.274808
2 0.913084 0.833722 0.166281
3 0.934468 0.873230 0.126772
4 0.941055 0.885585 0.114416
5 0.941746 0.886885 0.113115
6 0.942028 0.887416 0.112584
7 0.942143 0.887633 0.112367
8 0.942154 0.887655 0.112345
9 0.942160 0.887666 0.112334

10 0.942162 0.887668 0.112331
11 0.942162 0.887669 0.112331

REACHED CRITERION ON ITERATION 11
FINAL 0.942162 0.887669 0.112331

NORMALIZED SOLUTION

SUBJECTS WEIGHT MATRIX
1 0.633 0 .454 0.606 0 .872 0.882
2 0.719 0.815 0.700 0.303 0 .087

STIMULUS MATRIX
1 0.576 -0.600 -0.380 0 . 4 0 4
2 -0 .472 -0.455 0.197 0 .729

NORMALIZED SUM OF PRODUCTS (SUBJECTS)
1 1.000
2 0 .754 1.000

SUM OF PRODUCTS (STIMULI)
1 1.000
2 0.221 1.000

APPROXIMATE PROPORTION OF TOTAL VARIANCE ACCOUNTED FOR BY EACH DIMENSION
1 2
0.521 0.367

CORRELATION BETWEEN COMPUTED SCORES AND SCALAR PROD. FOR SUBJECTS
1 0.981081
2 0.951668
3 0.947979
4 0.937011
5 0.890787
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sindscal.out (Output file)

ITERATION

0
1
2
3
4
5
6
7
8
9

10
11

CORRELATIONS BETWEEN
Y(DATA) AND YHAT

0.583882
0.854795
0.913084
0.934468
0.941055
0.941746
0.942028
0.942143
0.942154
0.942160
0.942162
0.942162

VAF
(R**2)

0.340918
0.730674
0.833722
0.873230
0.885585
0.886885
0.887416
0.887633
0.887655
0.887666
0.887668
0.887669

LOSS
(Y-YHAT) **2
0.659082
0.274808
0.166281
0.126772
0.114416
0.113115
0.112584
0.112367
0.112345
0.112334
0.112331
0.112331
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The dimensional structure indicates that the vertical or y axis can be thought of as contrasting
physical versus mental disabilities. It is suggested that the horizontal or x axis is the contrast be-
tween disabilities that are capable of being mainstreamed, blind and learning disabled as op-
Dosed to more severe educational handicaps.

The plot indicates that subject E is making judgments of similarity primarily on the basis of
mainstreaming whereas subject B is primarily using the Physical — Mental Disabilities
dimension in making judgments of similarity (see plot of stimuli). The length of the lines from
the origin to the plotted points reflect the amount of variance accounted for by the judgments for
each subject. Note that all subjects variance is generally accountable. Subject E has the lowest
correlation between computed scores and original scalar products. The scale is slightly distorted
so that it will fit on regular 8 1/2 by 11 inch paper.
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How SINDSCAL Works

Weighted MDS provides a group stimulus space and a weight space. The weights describe the
importance each judge gives to each dimension. The closer the weight is to one (1.0) the more
that dimension is used in making similarity decisions.

More formally a SINDSCAL analysis is performed on the scalar product (see p. 45) distances
between objects. There is an initial configuration and created configuration. The function to be
minimized is

where Si are the known symmetric matrices of scalar products,

Wi are unknown diagonal matrices with weights (the weights are positive) and
X and Y are unknown configuration matrices which converge.

Carroll and Chang (1970) obtain convergence with an algorithm called CANDECOMP for
Canonical Decomposition similar to singular value decomposition (SVD). A canonical form of a
matrix is the most convenient and usually simplest form to which a square matrix can be reduced
by a certain type of transformation. The canonical form has nonzero elements in the diagonal and
zeros elsewhere as was demonstrated in Singular Value Decomposition (SVD).

After the scalar products are determined as well as the additive constant, if necessary, the sums
of the squares between all the stimuli are determined and the objects randomly placed in (t)
dimensions. The original distances d and the created d-hat distances are iteratively compared and

2
adjusted, using a number of iterations or a specific R2 as a criterion. The data are normalized and
plotted.

ALSCAL

Young (Young & Lewyckyj, 1979) developed ALSCAL which stands for Alternating Least
Squares Analysis which is used by SAS for classical MDS as well as weighted MDS usually
known as Individual Differences Scaling, and a number of other methods. The Market Research
Application (SAS, 1996) is the most user-friendly option for using ALSCAL but restricts the
data to a certain form, that is, a square symmetric matrix or a set of square matrices (one for each
judge) in which the number of judges is an even multiple of the number of objects. If there are
five (5) stimuli then the number of judges must be five (5) 10, 15, 20, etc. The user goes to SAS
and selects SOLUTIONS then ANALYSIS then MARKET. When in Market the user selects
Multidimensional Scaling.
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Example with Dessert Data Using SAS Market

In this example 8 students were asked to judge the similarity of four desserts. The desserts are
Chocolate Cake, Pound Cake, Chocolate Ice Cream and Vanilla Ice Cream.Note that there are
twice as many judges as objects.

A SAS data set is created.

This data set is run to produce a WORK file. The WORK file is then handled by the Market
command or program.

data indd;
input judge $ 1 ccake pcake vaice chice dessert $;
data lines;

1 7 5 2 4 ccake
1 5 7 2 2 pcake
1 2 2 7 5 vaice
1 4 2 5 7 chice
2 7 6 2 4 ccake
2 6 7 3 2 pcake
2 3 3 7 7 vaice
2 4 2 7 7 chice
3 7 4 2 4 ccake
3 4 7 4 2 pcake
3 2 4 7 4 vaice
3 4 2 4 7 chice
4 7 6 4 5 ccake
4 6 7 3 3 pcake
4 4 3 7 6 vaice
4 5 3 6 7 chice
5 7 5 3 6 ccake
5 5 7 3 2 pcake
5 3 3 7 5 vaice
5 6 2 5 7 chice
6 7 1 1 3 ccake
6 1 7 5 2 pcake
6 1 5 7 4 vaice
6 3 2 4 7 chice
7 7 4 4 4 ccake
7 4 7 5 2 pcake
7 4 5 7 3 vaice
7 4 2 3 7 chice
8 7 3 1 6 ccake
8 3 7 6 3 pcake
8 1 6 7 4 vaice
8 6 3 4 7 chice
run;

1 7 5 2 4 ccake
1 5 7 2 2 pcake
1 2 2 7 5 vaice
1 4 2 5 7 chice
2 7 6 2 4 ccake
2 6 7 3 2 pcake
2 3 3 7 7 vaice
2 4 2 7 7 chice
3 7 4 2 4 ccake
3 4 7 4 2 pcake
3 2 4 7 4 vaice
3 4 2 4 7 chice
4 7 6 4 5 ccake
4 6 7 3 3 pcake
4 4 3 7 6 vaice
4 5 3 6 7 chice
5 7 5 3 6 ccake
5 5 7 3 2 pcake
5 3 3 7 5 vaice
5 6 2 5 7 chice
6 7 1 1 3 ccake
6 1 7 5 2 pcake
6 1 5 7 4 vaice
6 3 2 4 7 chice
7 7 4 4 4 ccake
7 4 7 5 2 pcake
7 4 5 7 3 vaice
7 4 2 3 7 chice
8 7 3 1 6 ccake
8 3 7 6 3 pcake
8 1 6 7 4 vaice
8 6 3 4 7 chice
run;
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Multidimensional Scaling of WORK.INDD
Analysis Summary

Distance data
Measurement level: Ordinal
objects: CCAKE PCAKE VAICE CHICE
id variable: DESSERT
subject (matrix) variable: JUDGE
number of dimensions: 2 (default)
Stress formula: Kruskal's stress formula 1

WORK file results provide input selections to the analysis.

Based on the WORK file SAS Market is entered. The Work file is used and the Option to
perform Individual Differences analysis is selected. In the analysis summary, Kruskal's Stress
Formula is given in addition to the R2 fit statistic. As shown in Table 15.1 and Figure 15.1, the
relationshsip between the original distances and the fitted distances is very high.

Table 15.1

Goodness of Fit Statistics for MDS of Several
Desserts

No. of
Dimen-

sions

2

2

2

2

2

2

2

2

2

Judge

-

1

2

3

4

5

6

7

8

Badness
of Fit

.043

.006

.040

.020

.070

.093

.119

.024

.063

Distance r

.988

.999

.972

.998

.922

.865

.724

.998

.973

Fitr

.988

.999

.972

.999

.922

.865

.724

.998

.974

Table 15.2

Coordinates of Two Dimensions

Dessert

ccake

pcake

vaice

chice

Dim 1

0.91

1.08

-1.00

-0.99

Dim 2

1.02

1.07

0.93

0.98
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The coordinates are plotted in Fig. 15.1. The dimensions are identified as:

193

FIG. 15.1 Dessert Configuration.

By checking the Results and choosing coefficients instead of coordinates the vector positions of
each judge are produced as shown in Table 15.3 and in Fig. 15.2.

Table 15.3
Individual Coefficients of 2
Dimensional Configuration

Judge

1

2

3

4

5

6

7

8

Diml
1.25

1.32

1.00

1.35

1.07

0.90

0.99

0.48

Dim 2

0.66

1.00

0.50

0.43

0.92

1.09

1.01

1.33
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FIG. 15.2. Judge coordinates showing use of dessert dimensions.

Young (Young & Lewyckyj, 1979) points out that subjects with vectors oriented in the same
direction are similar. The end points are not necessarily similar groups. The vector's distance
represents the amount of variance accounted for by the two dimensions. In this analysis each
subject's variance is effectively determined by one or both of these dimensions. Subject 8 makes
decisions primarily based on whether the desserts are icecream or not and subjects 1 and 2 based
their judgments on whether the desserts are chocolate or not. Other judges use both dimensions
in judging similarity.

How ALSCAL Works

A1SCAL is a repetitive analysis procedure. At each iteration, two steps are taken. These are an
optimal scaling step and a model estimation step. Each of the procedures is a least squares fit
and the process alternates back and forth until a criterion is reached (improvement < .001 or
number of steps < 30, for example). The steps in the process are:

1. The basic data are usually distances between the stimuli and as a first step an additive
constant is calculated so that the triangle inequality holds and there will be no
imaginary solutions.

2. A scalar products matrix is computed for each subject and an average B* scalar
products matrix is determined. This results in an initial stimulus configuration.

3. Initial weight configuration matrices are computed for each subject.
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The optimization algorithm is presented graphically as described by Young and Lewyckyj
(1979).

Initial distances in ALSCAL are computed based upon

where: w is the weight for subject k on dimension a. Xj and Xj are the coordinates of stimulus i
and j on a. The iterative ALSCAL process is diagrammatically displayed in Figure 15.3.

FIG 15.3. Young's convergence diagram.

Alternating Search Analogy

Although the multiple analysis using the alternating least squares approach is not readily
demonstrated, the reader can gain some appreciation of the method by observing the simplest
technique in an alternating one dimensional search. In this example all variables except one are
held constant. The remaining one varies. Solutions are obtained until a minimum of the equation
or function is reached. The remaining variables are treated similarly one at a time. The process is
repeated until a desired solution is obtained.

2 2
Suppose, for example, one wished to find the minimum of Z = 2X2 + 4Y2 - 4X, where X and Y
are greater than or equal to zero. First, X is held constant at some arbitrary value. For example X
= 3 is chosen and the values of Y are varied over the values 3,2,1,0. Solutions for Z are then
obtained. The smallest value for Z occurs when Y = 0. Next Y is then held constant at zero and X
is varied through the values 2,1,0. In this case the minimum value of Z occurs when X is
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equal to one. Holding X constant at one (X = 1), other values of Y are tried to assure that the
sixth trial values of X = 1 and Y = 0 are optimum, that is, result in the minimum value of the
function. Figure 15.4 illustrates this solution. The function is Z = 2X2 + 4Y2 - 4X.

Trials
1
2
3
4
5
6
7
8
9
10
11

X
3
3
3
3
2
1
0
1
1
1
1

Y
3
2
1
0
0
0
0
1
.5
.25
0

z
42
22
10
6
0

-2
0
2

-1
-1
-2

minimum

.75
minimum

FIG. 15.4. An example of an alternating one dimensional search.

The reader should consult Kruskal & Wish (1978) for a more complete explication of
INDSCAL. See also Carroll (in Shepard, 1972a; Carroll & Chang, 1968, 1970; Tucker, 1972;
and Young, de Leeuw & Takane, 1976).

Application: The Letter Wheel

Some researchers have suggested that the processing of the visual features of letters and words is
sequential. But evidence for the hypothesis of integrated or parallel processing has been found.
It occurs in an analysis of the reaction times of individual subjects to a set of letters, paired in all
possible ways. The length of time it takes for someone to respond to such stimuli (latency)
appears to be closely related to reading level. Fifty-two children and adults responded to the
question of whether two letters were the same or different (Dunn-Rankin, 1978). In this
experiment, two letters placed side by side on a card, are hidden by a shutter. When they are
exposed, a clock starts. As soon as the subject presses a switch indicating that the letters are the
same or different, the clock stops. The length of time it takes the subject to respond is recorded in
hundredths of a second. The reaction time then serves as a measure of letter similarity.

A matrix of these similarities is analyzed using ALSCAL. The 13 letters selected for this study
(f, t, n, h, k, x, z, g, p, q, e, S, and C) were chosen because they could be combined
in various ways to form pairs containing similar letter features. More letters were not included
because the increase in paired comparisons makes the task too tiring for young children. The
multidimensional scaling analysis takes the form of a circular pattern of letters much like a
color wheel. This representation suggests that the dimensions of letters are not immutable but
integrative, in other words, one letter melds into the next in a continuous way.

A general division can be suggested for the 13 letters (in terms of angle versus curve or ascender
versus descender). The letter k is opposite e, and t is opposite g, for example.The letter wheel
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indicates that a parallel processing approach to the perception of familiar letters is preferable to a
serial model. Most of the 13 letters contain two or more of the basic constituents, and an analogy
between primary-color combinations and letter-feature combinations is strongly suggested. Just
as orange is seen as a unique color even though it is a combination of red and yellow, the letters
of the letter wheel are seen as integrated units that are combinations of basic features. In this
model x combines with 1 to produce k, and 1 combines with n to produce h, yet h and k are
perceived as wholes.

Further reinforcement for an integrative perception of familiar units comes from the fact that the
two basic dimensions indicated (curve versus angle, ascender versus descender) are in general
relied on equally by all subjects. When the positions of the 52 subjects with respect to the use
they made of these two dimensions were plotted, it was clear that none of the subjects, young or
old, good reader or poor, chose one feature exclusively. Some subjects, however, recognized the
combination of the two basic features more readily than others. These subjects were also the
most mature readers in the sample. Such a result might be an artifact of consistency of response,
or might reflect the importance of these dimensions to perception in reading, or both.

FIG. 15.5. A letter wheel configuration using ALSCAL MDS. Note in
this circular representation, extremely unlike letters tend to be opposite
each other. The letter n is not on the circumference of the wheel because
it shares certain characteristics with e, s, and c. Its left vertical
component and its striking similarity to h, however, place it closer to the
letters with vertically ascending components.
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APPENDIX A

Using a Computer to Solve Problems

SAS

Personal Computers are so powerful today that they can handle Scaling programs quite easily.
The SAS System is available to teachers and instructors and educational institutions at nominal
rates. System Version 8 (V8) can be installed for as little as $75.00 a year. The authors feel SAS
has the most to offer in its data analysis procedures (PROC) and in its Market Research
Applications. The market command contains two programs (MULTIDIMENSIONAL
SCALING, and MULTIDIMENSIONAL PREFERENCE ANALYSIS) which are easy to use
and provide functional results. They require that the data be in a particular form. Once the data
form has been mastered, the solutions are a matter of selecting options.

Other analyses require a more conventional SAS approach to their solutions. In SAS V8, there is
a program editor and work log and an output log. The raw data are written in or copied into the
program editor. Here three steps are required: (1) the data definition step, (2) the input step and
(3) the raw data. Each statement is ended by a semicolon. For example:

Example of a SAS input file

This data can be submitted by clicking the run button or writing submit in the command space.
The results can be observed and any errors will be marked in the log window.

199

data Measures; (Defines the data)
input height weight sex; (Variables are separated by spaces)
datalines; (Indicates that raw data follows)
72 165 1
742101
65 123 0
621100
; (semicolon ends the raw data)
proc means; (The means procedures is initiated)
run; (This last command executes the statistical

analysis included in the Means procedure)
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Format

One format survives from FORTRAN programming that is still functional in defining data. This
is the F format. Measurements require a decimal point to indicate their value. Suppose one
wishes to read a set of 5 numbers such as 24356, each one as a measurement. This would
require an F or Floating point format. If the data started in column 1, the conventional format is
(5F1.0). The 1 after the F indicates how many columns are occupied by each variable. The 5 in
front of the F tells how many variables there are. The 1.0 indicates how accurately the data are
measured. Here, there are no places to right of the decimal point and the data are read as single
digit measures. SAS dispenses with F and 0 and simply uses a number and a decimal point to
indicate the degree of measurement. For example (2.)

When data are not spaced SAS uses the @ symbol to indicate the column in which the data
should be initially read. SAS uses (N1-N10 or more) to indicate the number of variables (N can
be any name). Their input statement reads ten values of input data as [Input @ 7 (N1-N10) (2.)].

SAS uses the $ to indicate that a name should be read. If for example a name was associated
with each line of raw scores the input command might be [Input NAME $ @7 (N1-N10) (2.)].

Delwiche and Slaughter (1998) provided a complete explication for SAS users in their primer
while Carey and Carey (1996) provides useful tips.

Using the CD-ROM

The (CD-ROM) programs do not require data in a tightly specified format. All programs use
free format data that only requires at least one space between each data entry on a given line. A
configuration file is used to convey information about the subjects and objects for each analysis.
The first line in this file is the title line. The second line is one in which the parameters are
displayed separated by spaces. The third line of the configuration file indicates the file that
contains the data (all data values are separated by spaces). The fourth line of this initial file
indicates the name of the output file (where the results will be stored).

When a user wants to run a program, for example AVEMAT, which averages individual
similarity estimates, avemat.exe is called. The MS-DOS screen then asks for the configuration
file. The user types the name of the file, for example, avemat.cfg. The configuration file then
provides the title, parameters and the data input and output file names (for example avemat.dat
and avemat.out). The program gets data from the avematdat and puts the results in avemat.out.

The avemat folder on the cd contains information about the program AVEMAT. It contains;

avemat_readme.txt (describes the required format of the configuration file,
avemat.cfg and the specifications for the data/input file.)

avemat.exe executable code for Windows based PC's,
avemat.cfg a configuration file,
avemat.dat a data or input file,
avemat.out an output file
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Upon executing, avemat.exe interactively prompts for the name of the configuration file. The
name is limited to 64 characters. It looks as follows:

You type in the name of the configuration file (for example avemat.cfg).

The configuration file, avemat.cfg, for AVEMAT has the following format:

First line: title line
Second line: 3 values separated by white space (blanks or tabs)

first value: number of subjects (integer value)
second value: number of variables (integer value)
third value: maximum similarity (real value, but does not require a

decimal point)
Third line: name of the input/data file (maximum of 64 characters).
Fourth line: name of the output file (maximum of 64 characters).

avemat.cfg: Sample avemat configuration file

Specifications for the input data file: (avemat.dat)

First line(s) The pairwise keys, each member of the pair and each pair delimited by white
space [tabs, blanks, end of lines (eolns)].

Subsequent line(s): Pairwise proximity data (usually similarities) for each subject, values delim
ited by white space (tabs, blanks, coins). Each subject's data may spread over
more than one line BUT each persons's data must begin on a new line. Char
acters on the line after the last value for each subject are ignored and can be used
for identification purposes, if desired.

Avemat Sample Data
5 4 7
avematdata
avemat.output
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Sample avemat data file [5 subjects, 4 objects (6 pairs)]

The same data file with a different form -- pairs are specified with single digits (over two lines) -
- blanks are replaced by tabs — id information is eliminated ~ two lines for each subject's re-
sponses

1
2
6
2
6
3
4
4
6
3
5
3

2
3
2
2
2
2
2
2
4
3
3
2

1 3 1
2 4 3
4
5
4
7
4
4
5
6
6
5

4
4

Output file created with above data file: (avematout).

Readme General

On the CDROM is a general readme file which is also reported here. It is useful to read the file
to avoid mistakes. The computer programs accompanying this book implement many of the
techniques described in the text. They are adapted from the programs in the first edition of Scal-
ing Methods to run on a personal computer. These programs do not need data in a fixed format, i.
e., they all use "list directed" I/O also called variable format data. Each program (with a .exe
suffix) uses a small configuration (or runtime control) file (with a .cfg suffix) which provides
necessary information to the program. Each program has an accompanying "readme" file (with

01 02 01 03 01 04 02 03 02 04 03 04
5 2 4 2 2 5 DS
6 2 4 3 2 7 HA
4 2 4 4 2 4 DB
6 4 5 3 3 6 BB
5 3 6 3 2 5 AF

Avemat Sample Output Data

Variables = 4 Subjects = 5

7.00 5.20 2.60 4.60
5.20 7.00 3.00 2.20
2.60 3.00 7.00 5.40
4.60 2.20 5.40 7.00
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a .txt suffix) that describes information specific to that program and sample data (.dat suffix) and
report files (.out suffix). This document describes characteristics that apply to all of the pro-
grams. You should read this entire file before using any of the programs.

SYSTEM REQUIREMENTS

These software programs are stand-alone programs. This means that you can use any one of them
independently of the others. It also means that you don't need any additional software for them to
run. The only software that you need is a text editor, like Notepad or Edit that come with Micro-
soft Windows.

The computer programs were designed for an Intel Pentium-class PC running Microsoft Win-
dows95 or later. The computer should have at least 32Meg of main memory and at least 3Meg of
free space on the hard disk drive. A printer would be useful if you want to print a report or graph
and the programs will work with any printer installed in Microsoft Windows.

PREPARING TO RUN THE PROGRAMS

a. Creating Text Files

In order to use your own data with a program you must create two input files: a configuration file
and a data file. Each of these should be created with a pure text editor like Notepad or Edit.
Word processors, like Microsoft Word or WordPerfect, often include hidden characters that will
keep the programs from running correctly, if at all.

When you create a file, you should be certain that the file name does not have a "suffix" (extra
characters at the end of the file name) added automatically by the editor. For example, Notepad
may add ".txt" without telling you. To complicate matters, Microsoft Windows can hide the file
name suffix when you look at the files in a folder. To make sure that you can see the full file
name, select View from the window's menu, select Folder Options, select View, and then make
sure that "Hide file extensions for known file types" has NOT been selected. If a check mark is in
that box, you can clear it by clicking on it. An important note about Notepad: be sure to press the
Enter key after you have typed the last line in the file. Otherwise, the last line will not be proc-
essed correctly.

b. Configuration Files

Each program will use a "control" file called a configuration file to execute. The configuration
file is a small file that contains:

(1) A title for the report produced.
(2) Information such as the number of subjects and the number of variables needed by

that particular program.
(3) The name of the data file that contains the raw or input data.
(4) The name of the output file that will contain the report.

The "readme" file for each program will describe exactly how the information should appear in a
configuration file for that program.
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All file names (configuration, input and output) may be up to 64 characters long. An example for
a configuration file for PEROVER could be named peroverl .cfg and contain the following lines:

Data for the Spring Semester 2002
16 30
Perover.dat
Perover.out

The name of the configuration file is one of your choosing. It is good practice to provide con-
figuration files with a consistent extension such as ".cfg" as in the example above. In this case,
the configuration file would need to be in the same folder as the executable program you are cur-
rently running.

In the above sample configuration file, the input file named Perover.dat is also expected to be in
the same folder as perover.exe and the report file Perover.out will be placed in that same folder.
If there is no file named perover.cfg or no file named Perover.dat in the expected folder, there
will be an "Input file does not exist" error message along with the name of the missing file.

A report file named Perover.out will be created and placed in the same folder as perover.exe. The
report file will be overwritten every time you run the program without changing the report file
name. However, before overwriting an existing file, each program will check to see if the report
file exists and, if it does, ask you if you want to replace (overwrite) it. If you want to save the old
report, give the old report file a new name or change the name of the new report file in the pro-
gram's configuration file. If you want to use a configuration file or input file in some other folder
or create a report file in some other folder you may do so by using full file names.

c. Data Files

Data files use a "free form" format. This means that the data items are separated by "white
space" (spaces, tabs or new lines). The data items do not have to be in specific columns. A con-
sequence of this approach means that the programs do not handle missing data items - there must
be a value for every data item. One data set may take more than a single line but each new data
set must begin on a new line. The content and order of the data items is described in the
"readme" file for each program. It is good practice to provide data files with a consistent exten-
sion such as .dat.

RUNNING THE PROGRAMS

While it is possible to run the programs from the CD-ROM or a floppy diskette, the programs
will be easier to use and will run faster if they are copied to a folder or subdirectory on the hard
disk drive and run from there. This will also help if the output is large since floppy diskettes have
limited space and reports cannot be written to CD-ROMs.

Once the program has been copied to the hard disk drive, you can start the program from "My
Computer" or Windows Explorer. For those whose experience with microcomputers predates

204
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Microsoft Windows, the programs may also be run from an MS-DOS prompt. If you are using
"My Computer" or Windows Explorer, double click on the executable program name (the file
name will end with .exe, for example perover.exe).

A small (MS-DOS) window will open and you will be asked for the name of the configuration
file. If the configuration file is not in the same folder as the executable program, type the full file
name. After typing in the configuration file name, press Enter. If the report file already exists, the
program will ask you if you want to replace it. (The tricir program also prompts for additional
information which is described in the "readme" file for that program.) If the program executes
correctly, a message will appear telling you that the program is finished. If the program encoun-
ters an error, an error message will be displayed. Remember or write down the error message so
that you can fix the problem (see probable causes of errors in section 5). Press the Enter key and
the window will disappear. The report from the program will be located in the folder you speci-
fied in the configuration file. You may now view the report or print it. It is good practice to use a
consistent extension such as .out for report files.

PRINTING REPORTS

The report files created by these programs are simple text files with no more than 80 characters
per line. So that columns and graphs line up correctly, they should be printed in a nonpropor-
tional font such as Courier or Mishikawa. If the output of one program is, after editing, going to
be used as input for another program, it must be saved as a simple text file.

ERROR MESSAGES

Message: Unexpected end of input reading file <file name>
Cause: The program was expecting more data than was found in the file.
Possible solution(s):

(1) Check the file named in the configuration file to make sure that it contains all of the
data.

(2) Make sure that there are "white spaces" between all of the data items.
(3) If you created the file named in the error message with Notepad, be sure that you

pressed the Enter key after the last value in the file.
(4) If the file named in the error message is the configuration file, make sure that the

items in the file are on the correct lines and in the correct order as described in the
program's "readme" file.

(5) If the file named in the error message is the data file, make sure that the value for the
number of subjects (in the configuration file) agrees with the number of data sets
in the data file. Also, make sure that each data set has the correct number of
values.

Message: Input file does not exist. Name: <file name>
Cause: The program cannot find the file called <file name>.
Possible solution(s):

(1) If the file named in the error message is the configuration file, make sure that you
typed it correctly when the program started executing.
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(2) If you are sure that you typed the configuration file name correctly, make sure that
Microsoft Windows has not automatically added a suffix to the file name.

(3) If the file named in the error message is the data file, make sure that the data file name
in the configuration file matches the data file name on disk and that Microsoft
Windows has not automatically added a suffix to the file name.

Message: Error while reading input file. Name: <file name>
Cause: The program has tried to read a value that doesn't match the type of value it is expecting.
For example, the program is expecting to read digits but the next characters in the file are not
digits.
Possible solution(s):

(1) Make sure that numeric values are really numeric. For example, make sure that an 'O'
hasn't been substituted for a '0' (zero) or an 1' for a T (one).

(2) Make sure that the correct number of values of each type is in the file and that the
values are in the order described by the program's "readme" file.

(3) Make sure that you used a pure text editor instead of a word processor that could put
hidden characters in the file.

Message: The number of <variable name> given is greater than the maximum number of
<variables> this program can handle.
Cause: The value, read from the configuration file for the variable named in the error message,
exceeds the maximum value allowed.
Possible solution(s):
Make sure that the value of <variables> in the configuration file is correct.

TROUBLESHOOTING

Problem: In the report file, *** appear in some places where numeric values should be.
Cause: The computed values are too large to fit in the number of columns allotted for that value.
Solution: Care has been taken to allow enough space for all output values. However, if this
problem occurs, check the Scaling Methods website for a different version of the program. If one
is not found, contact the authors.

FULL FILE NAMES

You may use full file names (up to 64 characters) for the configuration, input and report files. If
you use the full file name of a configuration or input file, then that file does not have to be in the
same folder as the executable program you are running. Using the full file name for a report file
means that the file can be created in any folder, not just the current folder.

A full file name contains the disk drive, any folder names, and the file name separated by back-
slashes CY). For example, if you wanted a configuration file called "perover.cfg" on the C: drive
in a folder called \MyData\Spring02, the full configuration file name would be:

C :\MyData\Spring02\perover.cfg
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The data and the reports are identified in the configuration file by the names of the files on the
hard disk drive. These names are also limited to 64 characters each. For example, if you have
data file called "Perover.out" in a folder on the C: drive called \MyData\Spring02, the full name
of the data file would be:

C :\MyData\Spring02\Perover.out

This file name contains 30 characters so it would be valid for these computer programs. If you
wanted to save the report in a file called "Trial Report" on the C: drive in a folder called \My
reports, the full file name would be:

C:\My reports\Trial Report

This report file name has 26 characters so it is also a valid file name for these programs.

WHAT IS INCLUDED ON THE CD-RON FOR EACH PROGRAM

The CD-ROM contains the following files for each program:
<program name>_readme.txt -- brief program description with requirements for the configu-

ration and data files, maximum values allowed, etc.
<program name>.exe -- executable code for Windows based PC's
<program name>.cfg — example configuration file
<program name>.dat — example data/input file
<program name>.out -- report file created using the data given
Some programs have other .cfg, .dat and .out files as well.
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Using the Internet

Bell Labs Netlib

Bell Telephone Laboratory was a formidable bastion for Clustering and Scaling. Starting with
Shepard's original ideas, the group of Joe Kruskal, Douglas Carroll, Mike Wish, J.J. Chang,
Sandra Pruszansky, Steve Johnson and others completed an historic litany of non-metric and
metric programs for analyzing group and individual judgments and choices. The group of
programs, mostly written in FORTRAN, is available on the net. The reader can go to:

to view the entire set of programs which, after giving proper credit, are essentially in the public
domain.

The most useful programs are listed below

kyst2a.f (Kruskal's MDS program)
kyst2a.manual.txt
mdpref.f (Carroll and Chang's Preference Vector Program) is on the CD-ROM
prefmap.f (Carroll and Chang's Point Mapping Program)
sindscal.f (Carroll and Pruzanski's Individual Differences Scaling Program)is on CD-
ROM
hiclus.f (Johnson's Non-Metric Clustering Program) is on the CD-ROM

It is a relatively easy matter to utilize this rich resource if one has access to a FORTRAN
compiler such as the F77 compiler at the University of Hawaii's computer center. The authors of
this text were particularly interested in Carroll's individual differences scaling methods refined
by Sandra Pruzansky as SINDSCAL (Simplified Individual Differences Scaling). Obtaining and
using the program was completed in the following steps.

1. Using the web brouser the program (sindscal.f) was located on the list.
2. It was double clicked by mouse and stored in a local home computer on Microsoft's

WordPad.
3. Using WS-ftp the program was moved to the authors UNIX file at the University.
4. Two read and write file specifications needed by UNIX were added to the program and

it compiled.
5. Using a data file the program was run and the output saved.

Many of the Bell labs programs have been compiled and are also available free from:

http://www.newmdsx.com/team.htm
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PC-MDS

Scott Smith, in the Dept of Marketing at Brigham Young University, has taken many of the
Bell-Labs programs as well as the old BMD (BioMedical) programs and packaged them for
distribution. Among their programs are CLUSTER, the Howard Harris large group clustering
of subjects using K-means and CaseS Thurstone's paired comparison methodology.

PC-MDS charges for this service, (http://marketing.byu.edu/htmlpages/pcmds/pcmds.htm).

ViSta

Forrest Young (1996) at the University of North Carolina has developed ViSta a statistical
analysis set of programs that includes many scaling methods. ViSta can be downloaded free
and is an exceptional visual experience:

www.forrest@visualstats.org
The Three-Node Company

The Three Mode Company offers a series of programs designed to analyze three way data.
Three way data can be scores of subjects on several variables at different times. TRILIN for
triple linear data can perform parallel factor analysis (PARAFAC) which is another way of
handling individual differences. For more information access:

http://www.fsw.leidenuniv.nl/~kroonenb/document/programs.htm

ProGAMMA

ProGamma (now Science Plus Group) has a software catalog that offers a program on Mokken
Scaling, MSP 5 for Windows. This program is user friendly and is applicable to building
unidimensional scales of test items under item response theory as well as doing Guttman
Scaling. Its cost is non-trival.

http://www.scienceplus.nL

Scaling Methods and Terms

The Internet is a valuable resourse for learning and understanding the terms and methods
associated with Scaling.

There are a number of search engines that are available but one of the best is Google.com.
Suppose for example that you wish to find the angle, Q where the Cos Q = .81. If you write
Scientific Calculator in the search space of www.google.com., you will receive over 60,000
entries in 0.28 seconds, five of which in the first 30 are on-screen calculators you can use. The
best we found were:

www.forrest@visualstats.org

http://www.fsw.leidenuniv.nl/~kroonenb/document/programs.htm

http://www.scienceplus.nL
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Scientific Calculator:
www.scientificcalculator.com, and

CoCalc PRN Scientific Calculator:
www.cohort.com.

Fisher's exact test:
www.matforsk.no/ola/flsher.htm.

Factor Analysis Glossary:

www.siu.edu/~epsel/pohlmann/factglos/.

In addition, many statistics, math and educational psychology departments of universities
display lectures and demonstrations of topics that can be accessed. Much information about
topics such as Singular Value Decomposition (SVD) and Multidimensional Scaling (MDS) can
be found through search engines such as Google on the World Wide Web.

Distributions

The interested reader can download a free program PQRS which details a wide number of
distributions. If for example you wished to determine the normal value for any proportion you
can simply click on the interactive graph.

www.eco.rug.nl/medewerk/knypstra/pqrs.html
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Table A

Balanced Orders for Paired Comparisons
For the Numbers from Five to Seventeen

N = 5
1-2
5-3
4-1
3-2
4-5
1-3
2-4
5-1
3-4
2=1

N = 7
1-2
7-3
6-4
5-1
3-2
4-7
5-6
1-3
2-4
7-5
6-1
4-3
5-2
6-7
1-4
3-5
2-6
7-1
4-5
3-6
2=1

N = 9
1-2
9-3
8-4
7-5
6-1
3-2
4-9
5-8
6-7
1-3
2-4
9-5

9 cont.
8-6
7-1
4-3
5-2
6-9
7-8
1-4
3-5
2-6
9-7
8-1
5-4
6-3
7-2
8-9
1-5
4-6
3-7
2-8
9-1
5-6
4-7
3-8
2-9

N = l l
1-2
11-3
10-4
9-5
8-6
7-1
3-2
4-11
5-10
6-9
7-8
1-3
2-4
11-5
10-6
9-7
8-1
4-3
5-2
6-11
7-10

11 cont.
8-9
1-4
3-5
2-6
11-7
10-8
9-1
5-4
6-3
7-2
8-11
9-10
1-5
4-6
3-7
2-8
11-9
10-1
6-5
7-4
8-3
9-2
10-11
1-6
5-7
4-8
3-9
2-10
11-1
6-7
5-8
4-9
3-10
2-11

N=13
1-2
13-3
12-4
11-5
10-6
9-7
8-1
3-2
4-13
5-12
6-11

13 cont
7-10
8-9
1-3
2-4
13-5
12-6
11-7
10-8
9-1
4-3
5-2
6-13
7-12
8-11
9-10
1-4
3-5
2-6
13-7
12-8
11-9
10-1
5-4
6-3
7-2
8-13
9-12
10-11
1-5
4-6
3-7
2-8
13-9
12-10
11-1
6-5
7-4
8-3
9-2
10-13
11-12
1-6
5-7
4-8
3-9
2-10
13-11

13 cont.
12-1
7-6
8-5
9-4
10-3
11-2
12-13
1-7
6-8
5-9
4-10
3-11
2-12
13-1
7-8
6-9
5-10
4-11
3-12
2-13

N=15
1-2
15-3
14-4
13-5
12-6
11-7
10-8
9-1
3-2
4-15
5-14
6-13
7-12
8-11
9-10
1-3
2-4
15-5
14-6
13-7
12-8
11-9
10-1
4-3
5-2
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15 cont.
6-15
7-14
8-13
9-12
10-11
1-4
3-5
2-6
15-7
14-8
13-9
12-10
11-1
5-4
6-3
7-2
8-15
9-14
10-13
11-12
1-5
4-6
3-7
2-8
15-9
14-10
13-11
12-1
6-5
7-4
8-3
9-2
10-15
11-14
12-13
1-6
5-7
4-8
3-9
2-10
15-11
14-12
13-1
7-6
8-5

15 cont.
9-4
10-3
11-2
12-15
13-14
1-7
6-8
5-9
4-10
3-11
2-12
15-13
14-1
8-7
9-6
10-5
11-4
12-3
13-2
14-15
1-8
7-9
6-10
5-11
4-12
3-13
2-14
15-1
8-9
7-10
6-11
5-12
4-13
3-14
2-15

N=17
1-2
17-3
16-4
15-5
14-6
13-7
12-8
11-9

17 cont.
10-1
3-2
4-17
5-16
6-15
7-14
8-13
9-12
10-11
1-3
2-4
17-5
16-6
15-7
14-8
13-9
12-10
11-1
4-3
5-2
6-17
7-16
8-15
9-14
10-13
11-12
1-4
3-5
2-6
17-7
16-8
15-9
14-10
13-11
12-1
5-4
6-3
7-2
8-17
9-16
10-15
11-14
12-13
1-5
4-6

17 cont.
3-7
2-8
17-9
16-10
15-11
14-12
13-1
6-5
7-4
8-3
9-2
10-17
11-16
12-15
13-14
1-6
5-7
4-8
3-9
2-10
17-11
16-12
15-13
14-1
7-6
8-5
9-4
10-3
11-2
12-17
13-16
14-15
1-7
6-8
5-9
4-10
3-11
2-12
17-13
16-14
15-1
8-7
9-6
10-5
11-4

17 cont.
12-3
13-2
14-17
15-16
1-8
7-9
6-10
5-11
4-12
3-13
2-14
17-15
16-1
9-8
10-7
11-6
12-5
13-4
14-3
15-2
16-17
1-9
8-10
7-11
6-12
5-13
4-14
3-15
2-16
17-1
9-10
8-11
7-12
6-13
5-14
4-15
3-16
2-17

For even numbers of pairs, the next higher odd set is used by striking all pairs containing
the nonexistent odd object.

TABLES
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Table B
Selected Balanced Incomplete Block Designs

PLANS

Plan

Plan

Plan

13.1

Block
(1)
(2)
(3)
(4)
(5)
(6)
(7)

13.3

Block
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)

13.5

Block
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)

t = 7,

Reps.
I
7
1
2
3
4
5
6

t = l l

I
1
7
9
11
10
8
2
6
3
5
4

t=13,

1
13
1
2
3
4
5
6
7
8
9
10
11
12

k3,r = 3,

II
1
2
3
4
5
6
7

,k5,r=5

Reps.
11
2
1
8
9
11
7
6
3
4
10
5

k=4,r =

Reps.
11
1
2
3
4
5
6
7
8
9
10
11
12
13

b=7,L =

III
3
4
5
6
7
1
2

,b=l l ,L

III
3
6
1
7
5
2
4
11
10
9
8

4,b=13,

111
3
4
5
6
7
8
9
10
11
12
13
1
2

1,E

= 2,

IV
4
10
6
1
8
3
11
5
9
2
7

L =

IV
9
10
11
12
13
1
2
3
4
5
6
7
8

= .78, Type II

E = .88, Type I

V
5
3
2
4
1

11
10
9
8
7
6

l,E=81,Type I
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Plan 13.9 t = 16, k = 6, r = 6, b = 16, L = 2, E =.89, Type I

Block
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)

I
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

II
2
7
1
8
12
10
14
16
15
11
4
3
6
13
9
5

Reps
III
3
8
13
1
14
15
2
12
11
6
16
10
9
5
4
7

IV
4
9
7
11
1
13
16
2
5
12
3
15
14
10
6
8

V
5
10
11
14
16
1
15
4
13
2
9
8
3
7
12
6

VI
6
1
12
15
9
16
3
13
2
14
10
5
8
4
7
11

Plan 13.13 t = 21, k = 5, r = 5, b = 21, L =1, E =84, Type I

Block
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)

I
21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

II
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Reps.
III
4
5
6
7
8
9
10
11
12
13
14
is
16
17
18
19
20
21
1
2
3

IV
14
15
16
17
18
19
20
21
1
2
3
4
5
6
7
8
9
10
11
12
13

V
16
17
18
19
20
21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
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Plan 13.14 t = 31, k = 6, r = 6, b = 31, L = 1, E = .86, Type I

Block
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
01)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)

I
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

II
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Reps.
Ill
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2

IV
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27,
28
29
30
31
1
2
3
4
5
6
7

IV
12
13
14
15
16
17
18
19
20
21
22
23
24
25,
26
27
28
29
30
31
1
2
3
4
5
6
7
8
9
10
11

VI
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Designs taken from Cochran & Cox, (1957) Design of Experiments, with
permission from the publisher. John Wiley & Sons, Inc. t = treatments; k =
number in each block; r = number of times each object appears in the
design; b = number of blocks, L = number of times each object is paired, E
= efficiency factor; and Type = type of analysis of variance.
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Table C

Percentage Points of the Studentized Range for Infinite Degrees of Freedom
k

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

22

24

26

28

30

32

34

36

38

40

50

60

70

80

90

100

.80

1.812

2.424

2.784

3.037

3.232

3.389

3.520

3.632

3.730

3.817

3.895

3.966

4.030

4.089

4.144

4.195

4.242

4.287

4.329

4.405

4.475

4.537

4.595

4.648

4.697

4.743

4.786

4.286

4.864

5.026

5.155

5.262

5.353

5.433

5.503

.90

2.326

2.902

3.240

3.478

3.661

3.808

3.931

4.037

4.129

4.211

4.285

4.351

4.412

4.468

4.519

4.568

4.612

4.654

4.694

4.767

4.832

4.892

4.947

4.997

5.044

5.087

5.128

5.166

5.202

5.357

5.480

5.582

5.669

5.745

5.812

.95

2.772

3.314

3.633

3.858

4.030

4.170

4.286

4.387

4.474

4.552

4.622

4.685

4.743

4.796

4.845

4.891

4.934

4.974

5.012

5.081

5.144

5.201

5.253

5.301

5.346

5.388

5.427

5.463

5.498

5.646

5.764

5.863

5.947

6.020

6.085

.99

3.643

4.120

4.403

4.603

4.757

4.882

4.987

5.078

5.157

5.227

5.290

5.348

5.400

8.448

5.493

5.535

5.574

5.611

5.645

5.709

5.766

5.818

5.866

5.911

5.952

5.990

6.026

6.060

6.092

6.228

6.338

6.429

6.507

6.575

6.636

.999

4.654

5.063

5.309

5.484

5.619

5.730

5.823

5.903

5.973

6.036

6.092

6.144

6.191

6.234

6.274

6.312

6.347

6.380

6.411

6.469

6.520

6.568

6.611

6.651

6.689

6.723

6.756

6.787

6.816

6.941

7.041

7.124

7.196

7.259

7.314

From Harter et. al. (1959) Probability Integrals of the Range. Reprinted with permission.
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Table D
Selected Range Values in the Two Way Classification

Objects: 3-15
345 67 8 9 10 11 12 13 14 15

Judges p
.01 0 0 0 0 12 14 16 18 20 22 24 26 28

2 .05 0 0 8 10 12 14 15 17 19 21 23 25 26

.01 0 9 12 14 16 19 22 24 27 29 32 35 37
3 .05 6 8 10 13 15 17 20 22 25 27 30 32 25

.01 811 14 17 20 23 26 29 32 35 38 41 45
4 .05 7 10 12 15 18 21 23 26 29 32 35 38 41

.01 9 12 16 19 23 26 29 33 37 40 44 47 51
5 .05 8 11 14 17 20 23 26 30 34 37 40 43 47

.01 10 14 17 21 25 29 33 37 41 45 49 53 57
6 .05 9 12 15 19 22 26 29 33 37 41 43 48 52

.01 11 15 19 23 27 31 36 40 44 49 53 58 62
7 .05 9 13 16 20 24 28 32 36 40 44 48 52 56

.01 12 16 20 25 29 34 38 43 47 52 57 62 67
8 .05 10 14 17 21 25 30 34 38 42 47 51 56 60

.01 12 17 22 26 31 36 41 46 51 56 61 66 71
9 .05 10 14 18 23 27 31 36 40 45 50 54 59 64

.01 13 18 23 28 33 38 43 49 54 59 65 70 75
10 .05 11 15 19 24 28 33 38 43 47 52 57 62 67

.01 14 19 24 29 35 40 46 51 57 62 68 74 78
11 .05 11 15 20 25 30 35 40 45 50 55 60 65 71

.01 14 20 25 31 36 42 48 54 59 65 71 77 83
12 .05 12 16 21 26 31 36 41 47 52 58 63 68 74

.01 15 21 26 32 38 44 50 56 62 68 74 80 87
13 .05 12 17 22 27 32 38 43 49 54 60 65 71 77

.01 16 21 27 33 39 45 52 58 64 71 77 84 90
14 .05 13 17 23 28 34 39 45 50 56 62 68 74 80

.01 16 22 28 34 41 47 54 60 67 73 80 87 94
15 .05 13 18 24 29 35 40 46 52 58 64 70 76 83
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Table E
Cumulative Probability Distributions for Circular Triads Upper and Lower 10% Tails

Across 5-15 Objects

CT p
K = 5a
0 0.117188
1 0.234375
2 0.468750
3 0.703125
4 0.976562
5 1

K = 6
0 0.021973
1 0.051270
2 0.119629

6 0.772949
7 0.919434
8 1

K = 7
0 0.002403
1 0.006409
2 0.016823
3 0.032845
4 0.068893
5 0.111992

11 0.852943
12 0.964294
13 0.998741
14 1

K = 8
0 0.000150
1 0.000451
2 0.001302
3 0.002804
4 0.006359
5 0.011219
6 0.022554
7 0.036973
8 0.062775
9 0.093817
10 0.152757

17 0.858642
18 0.949214
19 0.987967
20 1

CT
K = 9

4
5
6
7
8
9
10
11
12
13
14
15
16

25
26
27
28
29
30

K=10

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

35
36
37
38
39
40

P

0.000312
0.000603
0.001253
0.002283
0.004176
0.006953
0.012213
0.018673
0.030023
0.045212
0.067463
0.095354
0.137733

0.882270
0.945247
0.980161
0.997580
0.999953

1

0.000458
0.000758
0.001313
0.002097
0.003436
0.005256
0.008310
0.012131
0.018354
0.026093
0.037960
0.052003
0.073128
0.096711
0.130882

0.888642
0.940942
0.972469
0.992072
0.998629

1

CT
K= 11

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

47
48
49
50
51
52
53
54
55

K=12

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

P

0.000539
0.000827
0.001275
0.001889
0.002846
0.004110
0.005997
0.008478
0.012052
0.016589
0.023082
0.031004
0.041931
0.055270
0.072952
0.093552
0.120783

0.879692
0.925622
0.958095
0.981092
0.992945
0.998444
0.999890
0.999999

1

0.000530
0.000756
0.001093
0.001539
0.002183
0.003006
0.004206
0.005698
0.007799
0.010418
0.014012
0.018372
0.024359
0.031372
0.040744
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Table E (continued)

CT p CT p CT p
K = 12 (cont.) K = 13 (cont.) K = 15

43 0.051835 85 0.994243
44 0.066124 86 0.997904 76 0.000686
45 0.082403 87 0.999416 77 0.000873
46 0.103535 88 0.999918 78 0.001112

89 °-999996 79 0.001406
62 0.892734 9<> 0.999999 go 0.001778
63 0.928160 91 l 81 0.002232
64 0.957391 82 0.002803
65 0.976516 83 0.003495
66 0.989375 57 0 000650 84 0.004356
67 0.996038 5g 0.000859 85 0.005395
68 0.999061 59 0.001121 86 0.006677
69 0.999874 6Q 0.001467 87 0.008207
70 l 61 0.001897 88 0.010088

62 0.002460 89 0.012311
K=13 63 0.003150 90 0.015013

64 0.004050 91 0.018194
41 0.000582 65 0.005141 92 0022026
42 0.000801 66 0.006542 93 o;o26481
43 0.001087 67 0.008232 Q4 0011821
44 0.001478 68 0.010382 qt. 0017071
45 0.001977 69 0.012936 nndoo
46 0.002656 70 0.016164 ™ f̂2

47 0.003511 71 0.019959 *' nn*«S
48 0.004653 72 0.024684 98 °'̂_
49 0.006081 73 0.030201 " 0.074406
50 0007957 74 0.036993 10° 0.087266
52 0010265 75 0.044800 101 0.101642
52 0̂ 013277 76 0.054337
53 0016916 77 0.065172 124 0.890410
54 0021585 78 0.078191 125 0.915958
55 0027196 79 0.092853 126 0.937877
56 0034255 80 0.110238 127 0.955623
57 0042577 "• 128 0.969851
58 0052989 10° 0.887220 129 0.980443
59 0065036 101 0.916113 130 0.988202

60 oS HI J3™ '31 °'"335961 °-096719 ! : 4 3 !» »-99̂
62 0.117057 10c 0985089 133 0.998495

!o6 oS "4 0.999440
79 0.871163 107 0996283 135 0.999833
80 0.907402 108 0.998552 136 0.999966
81 0.936236 109 0̂ 999553 137 0.999996
82 0.959543 no 0.999911 *38 0.999999
83 0.975984 111 0.999990 139 0.999999
84 0.987417 112 1 140 1
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This chart illustrates the flow of analysis from tasks through auxiliary files on the CD-ROM to the analysis by programs like SAS and SPSS. The
four major scaling tasks are presented at the top of the chart. In the middle of the chart software programs, shown in bold uppercase type, will be

found on the CD-ROM. MDS includes individual differences scaling. PC is principal components analysis including factor analysis.


	CONTENTS
	PREFACE
	What's New?
	Content and Organization
	Acknowledgements

	PART I: FOUNDATIONS
	1. SCALING DEFINED
	Relative Measurement

	2. TASKS
	Ordering
	Categorical Ratings
	Free Clustering
	Similarity Judgments

	3. MEASURES OF PROXIMITY
	Correlations
	Distances
	Scalar Products
	Association


	PART II: UNIDIMENSIONAL METHODS
	4. RANK SCALING
	Variance Stable Rank Sums
	Circular Triad Analysis

	5. ORDER ANALYSIS
	Guttman Scaling
	Mokken Scales
	Dominance Theory of Order
	Partial Correlations As A Measure of Transitivity

	6. COMPARATIVE JUDGMENT
	Attitudes are Normally Distributed
	Thurstone's Case V
	Case V Example
	Reliability
	Application: Seriousness of Crimes Then and Now
	Case V Program

	7. CATEGORICAL RATINGS
	Greens' Successive Categories
	Summated Ratings


	PART III: CLUSTERING
	Reverse Scoring for Negative Items
	8. GRAPHIC SIMILARITY ANALYSIS
	Graphing Ability and Achievement
	Graphing Letter Similarity
	Graphic Analysis of Word Similarity
	Elementary Linkage Analysis
	Linkage Analysis of Test Scores
	Discussion

	9. SUCCESSIVE COMBINING
	Ward's Minimum Variance Method
	Grouping Students on Reward Preference
	CD-ROM and SAS Clustering Example
	Discussion
	Johnson's Nonmetric Single and Complete Link Clustering
	Clustering the WISC Tests with HICLUS

	10. PARTITIONING
	K-Means Iterative Clustering
	Application: Visual or Auditory Preference for Reading Instruction
	Discussion

	11. HIERARCHICAL DIVISIVE
	Successive Splitting
	Dividing By Largest Variance
	Application: Grouping Ham Radios
	Number Of Clusters
	Graphing The Clusters


	PART IV: MULTIDIMENSIONAL METHODS
	12. FACTOR ANALYSIS
	Representation of the Correlation Matrix
	Trial and Error
	Test Score Assumptions
	Accountable Variance
	Principal Components Analysis (PCA)
	Factor Rotation
	Specific Problems Associated With Factor Analysis

	13. MAPPING INDIVIDUAL PREFERENCE
	Singular Value Decomposition
	Carroll and Chang's Multidimensional Vector Model
	MDPREF
	CD-ROM Example Using MDPREF
	Application: Occupational Ranking by Japanese
	Inclusion of the Ideal Point
	Ideal Point Projection

	14. MULTIDIMENSIONAL SCALING
	How Kruskal's Method Works
	SAS Analysis of Trevally Data
	Application: Word Similarity (SAS MDS Using PEROVER Data)

	15. INDIVIDUAL DIFFERENCES SCALING
	Output from INDMAT
	SINDSCAL
	CD-ROM Example of SINDSCAL With Learning Disability Data
	How SINDSCAL Works
	ALSCAL
	Example with Dessert Data Using SAS Market
	How ALSCAL Works
	Alternating Search Analogy
	Application: The Letter Wheel


	APPENDIX A: Using a Computer to Solve Problems
	SAS
	Format

	Using the CD-ROM
	Readme General
	System Requirements
	Preparing to Run Programs
	Running the Programs
	Printing Reports
	Error Messages
	Troubleshooting
	Full File Names
	What is included on the CD-Rom for each program

	Using the Internet
	Bell-Labs Netlib
	PC-MDS
	VISta
	The Three Mode Company
	ProGAMMA
	Scaling Methods and Terms


	APPENDIX B: Tables
	Table A: Balanced Orders for Paired Comparisons for the Numbers from Five to Seventeen
	Table B: Selected Balanced Incomplete Block Designs
	Table C: Percentage Points of the Studentized Range for Infinite Degrees of Freedom
	Table D: Selected Range Values in the Two-Way Classification
	Table E: Cumulative Probability Distribution for Circular Triads Upper and Lower 10% Tails Across 5--15 Objects

	REFERENCES
	AUTHOR INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	J
	K
	L
	M
	O
	P
	R
	S
	T
	V
	W
	Y
	Z

	SUBJECT INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	MAP OF SCALING METHODOLOGY



