
ESPL Manual

Ensign Software Programming Language

Ensign 10

Copyright © 2014 Ensign Software, Inc.
Last Update: 31 January 2014

1

Table of Contents

Introduction..11
ESPL Language Features...11
Documentation Format..12

ESPL Programming Window..13
Projects..14

Suggestions for Designing an ESPL Program...14
Creating a new Project..14
Opening an Existing Project..15

Editing your ESPL Program..15
Designing Forms...15
Tool Palette and Components...16
Object Inspector..17
Adding some Programming Code...18
Running a Program...19
Saving the project..19
Adding more Features...20
Changing Component Properties..20
Writing Code - Events and Event Handlers...22

Code completion..23
Debugging scripts..24

ESPL Programming..25
Variable Types...25
Colors..26
Constants...27
Playback..27

Program Structure...27
Variable, Function, and Procedure Names...28
Assign Statements...28
Strings..28
Comments...28
Variables..29
Indexes..29
Arrays..29
Case statements ...30
Function and Procedure declaration ..30

Calling a subroutine...31
Passing parameters...31

Accessing objects..32
Calling DLL functions ..33

Supported Types ...34
Include Libraries ...34

Secure Library Files...35
Declaring Forms in ESPL..35

2

Андрей
forex-warez.com

Event Redirection..37
ESPL Statements..38

Abs...38
Account..38
ActiveChild
ActiveChart..39
AddLine..39
AddNote...41
AddOverlay..42
AddStudy
AddStudyOnStudy...43
Alert
GetAlert..46
AlertEvent..47
Align...49
And..50
Application...50
Arc
Chord
Ellipse
Pie..51
ArcCos
ArcSin
ArcTan
Cos
CoTan
Sin
Tan...53
Arrays..54
AutoESPL..56
AutoRefresh...57
Ave
ExpAve
Sum...57
Average
ExpAverage
Summation...58
Bar
ChartBar..59
BarBegin
BarEnd
BarLeft
BarRight
BarBeginLeft..61
Beep..62
Begin...End..62
Bullet..63

3

Buttons...64
CallBack...66
Chart ...67
ChartLoad..67
ChartRefresh...68
ChartReplace ..69
ChartSave..70
Chat
ChatRoom..70
ChDir
MkDir
RmDir...71
ChildCount...71
Child...72
Choose..72
Chr
Ord...74
Clipboard...74
AssignFile
Append
Reset
Rewrite
CloseFile
ReadLn
WriteFile
WritelnFile
EOF
DeleteFile
FileExists
DirectoryExists
RenameFile...76
ColorBars...79
ConvertPrice
FormatPrice...80
Copy..81
CopyFile...81
CreateProcess...82
Date
DateStr...82
DateToLong
LongToDate
LongToTime
TimeToLong
TimeToString
DwordToTDate
TDateToDword..83
DateToStr..84

4

Андрей
forex-warez.com

Андрей
forex-warez.com

DateToString...84
DayOfWeek...84
Dec
Inc..85
DecodeDate...85
DecodeTime..86
Delete..86
DeleteBar...87
DeleteData...87
DimArray..88
Div..88
dlgColor
dlgColor2...89
dlgFont...89
dlgOpen
dlgSave..90
dlgPrint
dlgPrinterSetup..91
Download...91
DownloadData...92
DrawPhase..93
Drawing..94
Email..94
EmailForm...94
EmailFormTab...96
EncodeDate...96
EncodeTime..97
Encrypt
Decrypt
Hash..97
Exp
Ln
Log2
Log10...98
ExtractFileDrive
ExtractFileExt
ExtractFileName
ExtractFilePath..98
Filter...99
Find
FindMarket...101
FindClose
FindFirst
FindNext..102
FindStudy
FindStudyName...103
FindWindow...105

5

Finished...106
Flash..107
FloatToStr
StrToFloat..107
FloodFill...108
For...108
ForceDirectories..109
Format...109
FormatDateTime..111
Formation...112
Frac
Round
Trunc..114
FTPdownload
FTPupload...114
Function...115
Get...116
GetBar...116
GetCell
SetCell
SelectedCell
RowColor...117
GetData...118
GetLevels...119
GetStudy
SetStudy..120
GetToken
SetToken...129
GetUser
SetUser or Plot..130
GetVariable
SetVariable..134
GV Global Variables..138
Highest
Lowest...139
Holiday...140
HTTP...140
IF..Then..Else..141
Import...141
ImageToFile...142
Index1
Index2
Index3
Index4
Index5
Index6..143

6

IndexToX
XToIndex...143
Initialize..144
InputBox
InputQuery...144
Insert ...145
InsertBar..145
IntToHex
IntToStr
StrToInt
StrToPrice..146
IsNumeric...147
IsSelected..147
IT..147
KeyDown...148
LeftStr
RightStr
ReverseString..149
Length..150
LineTo
MoveTo
MoveToLineTo...150
Layout
LayoutName
LayoutOpen...151
LowerCase
UpperCase
UpCase..152
Manager...152
Max
Min...153
Menu Commands..154
Merge...155
MessageDlg
MessageDlgPos..156
Mod..157
Mouse..157
NewsFind
NewsStory
NewsText
NewsTitle
NewsSymbol..158
Now..159
Output..160
Pause...161
Pi..161
Play..161

7

Андрей
forex-warez.com

Pos...162
Power...162
Pred
Succ...163
PriceToY
YToPrice..163
Pt1X, Pt2X, Pt3X, Pt1Y, Pt2Y, Pt3Y...164
PtX1, PtX2, PtX3, PtX4, PtX5, PtX6
PtY1, PtY2, PtY3, PtY4, PtY5, PtY6...165
Quote...165
Random
Randomize..166
Rectangle
RoundRect...166
Register...167
Regression..168
Remove...169
Repeat…Until..170
ResetTrades..170
SaveToAscii...171
Scheduler...172
Screen...173
sCustom...174
Select...174
Section...175
SendKeys..176
SetArray...177
SetBar..177
SetBrush
SetPen...178
SetData..180
SetDateTime..180
SetMyFocus...181
SetLength..181
SetLine...181
SetStudyLine...182
ShellExecute..183
Show..184
ShowMessage
ShowMessagePos...185
sList...186
sLog
sStudyLog
sLineLog
sSoundLog..186
sPath..187
Speak...187

8

Spreadsheet..187
Sqr
Sqrt..188
Std
StdDev...189
Str..190
String Lists...191
StringToDate
StrToDate..194
System...195
Template..196
TCP Connections..196
TextAdd
TextBox
TextCaption
TextClear...197
TextOut..198
TextWidth...199
TFont...199
TForm..200
Time...201
Timer..201
TimeStr..202
Top100...202
Trade...203
TradeReport..204
Trim
TrimLeft
TrimRight...205
UDP Connections..205
Put
Update...206
Val..207
Var...207
VarToStr..208
vArray..208
VarType...209
Volatility...209
WWW...210
While…Do..210
Window..211
 WinExec..211
WinExist...212
Write
Writeln..212

ESPL Sample Programs...214
Plotting Study Lines on a Chart...214

9

ToolBar and ToolButton ...215
TStringGrid Example...216
Study Rising Falling Flag...217
Creating ESPL DLLs...219

Appendix...222
USES Clause Libraries..222
StrUtils Library Statements..222
Additional ESPL Statements...222
SysUtils Library Statements..223
Study Constants..224
Data Point Constants...224
Bar Constants..225
Feed Constants...225
Markers..226
Image List..227

10

ESPL Manual

Introduction
The Ensign Software Programming Language (ESPL) allows traders to create custom chart
studies, lines, reports, and tools. It can also be used to develop trading systems, alerts,
custom forms, and scans. The language contains hundreds of programming statements,
functions, events, methods, and properties. This manual documents each programming
statement and provides many examples.

The language is nearly identical to Delphi Pascal programming. Users who are familiar with
Delphi will easily adapt to the ESPL language. The language includes hundreds of
customized commands that provide unparalleled power and control over nearly every aspect
of Ensign.

Note: This new ESPL language for Ensign 10 is not backwards compatible with old ESPL
programs written for Ensign Windows. Modifications to old ESPL programs written for Ensign
Windows will be necessary in order to run with this new version of ESPL for Ensign 10.

ESPL Language Features

• begin .. end blocks
• procedure and function declarations
• if .. then .. else
• for .. to .. do .. step
• while .. do
• repeat .. until
• try .. except and try .. finally blocks
• case statements
• array constructors (x:=[1, 2, 3];)
• ^ , * , / , and , + , - , or , <> , >=, <= , = , > , < , div , mod , xor , shl , shr operators
• access to object properties and methods (ObjectName.SubObject.Property)
• Integrated Development Environment (IDE)
• Debugging tools: breakpoints, single step, variable watch window

11

Documentation Format
The following conventions are used throughout the documentation to define syntax.

Convention Description

Boldface Programming functions and statements.

() Parentheses enclose parameters that are necessary for each function or
statement. Commonly required parameters include numbers, price
values, colors, types, bar index locations, etc.

Italics Parameters and Variables. The functionality of each parameter is
documented so that you will know what the parameter specifies and is
used for. Parameter values must match the indicated variable type (ex.
integer, real, string). For example, an integer value should not be
entered as a parameter if a string value is expected.

[] Optional parameters are enclosed in square brackets. Optional
parameters provide additional functionality to programming statements,
but can be omitted if not necessary.

{ } Curly brackets enclose comments. Comments help document
programming code and are ignored when a program runs.

Courier Example ESPL programs are shown using the Courier New Font
type. If desired, sample programs can be entered and run in the Ensign
ESPL Editor window.

Each documented function and statement uses the following format.

Heading Description

SYNTAX Shows the required syntax for the function or statement

DESCRIPTION Describes what the function or statement does.

PARAMETERS Describes parameters, variables, and type names that are necessary for
a function or statement.

EXAMPLE Shows an example program using the function or statement.

NOTE Calls attention to important information regarding the use of the function
or statement.

12

Андрей
forex-warez.com

ESPL Programming Window
ESPL applications are programmed and developed using the ESPL programming
window which is an Integrated Development Environment. The ESPL programming window
is used to create and design forms and to program applications that accomplish your
customized needs. To view the ESPL programming window click the ESPL button on the
Main toolbar.

The ESPL programming window has an Object Inspector on the left, a Code Editor window in
the middle, and a Tool Palette on the right. A Toolbar and several Menu items are displayed
at the top of the window. Keyboard shortcuts are available for most of the menu items.

The Object Inspector is used to view and edit the Properties and Events for objects and
forms. The Code Editor window is used to type and view your programming code. The Tool
Palette allows you to select and utilize many different useful components for your forms.

13

Projects
A Project is a collection of ESPL programming files that can be compiled and run to perform
your customized programming tasks. The ESPL programming language can be used to
create projects that will plot custom chart studies, plot unique chart lines, create complex
reports, scan symbols, and test your private trading systems.

Suggestions for Designing an ESPL Program
A programmer will often design a new program mentally, or on paper, before actually writing
any programming code. The first step in developing an ESPL program is to decide what the
program should do and what the user should see when the program runs.

Will the program utilize a form?
Will the form need menus, buttons, edit boxes, or other components?
Will the program plot some lines on a chart?
Will the program access some chart data?
Will the program need to display some calculation results?

Answering these types of questions can help you decide if an additional form is necessary in
your project. If a form is required, then you will need to select and decide where to place the
components that you would like to use (example: buttons, edit boxes, labels, combo boxes,
option buttons, etc.). After you design the form and interface for the program it will be easier
to start writing code, and you can decide what Events the components on the form should
recognize. For example, what should happen when the user clicks a particular button.

Creating a new Project
To create a new project, select File | New Project from the menu, or click the New Project
button on the toolbar. When a new project is started, a ProjectFile is created that keeps track
of all the other files and settings for the project. This file must have a file extension of .ssproj.
You cannot view or edit the ProjectFile in the ESPL programming window. However, when
you initially save your project you will be asked to name the ProjectFile. You should name the
ProjectFile to be the logical name of your application (like MyStudies.ssproj, or
MyScan.ssproj, or TradingSystem5.ssproj, etc.). We suggest that you create a new folder
and save the ProjectFile and its associated files in that folder.

Example: \Ensign10\ESPL\MyScan\

Additional files associated with the project are script files (called Units), and Form files. Unit
files have a file extension of .psc. Forms are comprised of 1 Unit file and 1 Form file. Form
files are automatically created and saved when its associated Unit file is saved. Form files
have a file extension of .sfm.

When you begin a new project, ESPL will create by-default a main unit (Unit1) and a form unit
(Unit2). These two files comprise the initial project. If you run the new ESPL application right
away (by clicking the green run button or pressing the F9 function key), a blank form window

14

will appear on your computer screen. If you don't need a form in your program, then you can
remove Unit2 and its associated Form from the default project.

Main Unit
Each project has a main unit (initially named Unit1). The designated main unit is the script file
that will be executed when you press F9 or click the Run button. If necessary, you can
change which unit is the designated main unit by selecting Project | Select Main Unit from
the menu, and then selecting a unit from the list of included script files.

Creating/adding units/forms to the project
You can create or add existing units/forms to the project by choosing the "File | New unit",
"File | New Form" and "File | Open (add to project)" menu options. If you are creating a new
one, you will be prompted with the same dialog as above, to choose the language of the new
unit. If you're adding an existing unit, then the IDE will detect the script language based on the
file extension.

Opening an Existing Project
To Open and display an existing project in the ESPL programming window, select File | Open
Project from the menu (or click the Open Project button on the toolbar), then browse to the
project file on your hard disk and select it.

Editing your ESPL Program
Use the Code Editor window to edit and program your ESPL programs. Features of the Code
Editor window include:

• code completion (pressing Ctrl+Space)
• syntax highlight
• line numbering
• clipboard operations
• automatic indentation

Designing Forms
A Form can be designed and used for many purposes. Forms are often used as the user
interface to run and control a program. A Form can be used to collect input, open and read
files, print reports, and to display lists and images. Forms can be designed with custom
labels, edit boxes, menus, buttons, and check boxes. When designing a Form, remember that
there are two files that control a Form (the Unit file and its associated Form file). Switch the
Code Editor window view between the Unit programming code and the Form designer view by
pressing the F12 key or by clicking the Code and Design tabs at the
bottom of the Code Editor window.

15

In the following simple example, a button and an edit box have been placed on a form.

Form Designer Features:
• Multi-selection of components
• Full use of all Clipboard operations
• Alignment palette (menu "Edit | Align")
• Bring to front / Send to back
• Tab order dialog
• Size dialog
• Locking/unlocking controls
• Grid and Snap to Grid

You can customize the Form Designer view settings by selecting Tools | Designer Options
from the menu. The look and feel of the ESPL Programming window can be customized with
your favorite colors, grid options, and hint settings.

Tool Palette and Components
The Tool Palette is used to create the user interface and
functionality of a Form. The Tool Palette contains a collection of
useful Components (also called tools or objects) that can be
placed on a Form. Components can be used to display information
or allow the user to perform an action. For example a Label is
used to display text, an Edit box allows the user to input some
data, a Button can be used to initiate actions. Any combination
of components can be placed on a form. When your program is
running a user can interact with the components on the form.

To place a component on a Form, first select (click) the component
on the Tool Palette that you want to use, then click the mouse on
the Form. The component will be located at the position where the
mouse was clicked, with a default width and height. Components
can be moved and resized on a Form by dragging the component

16

with the mouse, or by changing the appropriate properties in the Object Inspector (like Height,
Width, Top, and Left). Components can also be moved and resized by using the following
keyboard keys:

CTRL+Up Arrow: Move the component upwards on the form.
CTRL+Down Arrow: Move the component downwards on the form.
CTRL+Left Arrow: Move the component to the left on the form.
CTRL+Right Arrow: Move the component to the right on the form.

SHIFT+Up Arrow: Decrease the height of the component.
SHIFT+Down Arrow: Increase the height of the component.
SHIFT+Left Arrow: Decrease the width of the component.
SHIFT+Right Arrow: Increase the width of the component.

To remove a component from a form, first click on it and then press the Delete key on the
keyboard.

Each component has specific Properties and Events that allow you to control your program at
design time and at run time. Several components are available for use on the tool palette.
They are grouped according to the function they perform (Standard, Additional, Win32, and
Dialogs). Each group displays icons representing the components you can use to design
your application interface. For example, the Standard group includes controls such as the edit
box, label, button, and listbox.

Each time you start a new project you begin with an empty form window. The
default form name is Form2 (in Unit2). This form can be renamed, resized and
moved. It has a caption and the three standard minimize, maximize and close
buttons (at the top right corner of the form).

When a form is the active window and you press the F12 key, the Code Editor window will
be displayed that contains the code for the form. Press F12 again to revert back to the form
view (or click the Design tab at the bottom). As you add components to a form and design the
user interface of your application, ESPL automatically generates some underlying code for
the form and its components. The Properties (settings) and Events of each component can
be changed by using the Object Inspector window. It is your task, as the programmer, to
decide what happens when a user clicks a button or changes the text in an Edit box, etc.

Object Inspector
Each form and its components have Properties and Events. Properties such as color, size,
position, caption can be modified and customized to your exact needs. Events can also be
enabled or monitored, such as a mouse click, key press, or component activation. The Object
Inspector (left side of the ESPL Window) displays the properties and events (note the two
tabs at the top of the Object Inspector) for the selected component and allows you to change
the property value or select the response to an event.

17

Андрей
forex-warez.com

For example, each form has a Caption property (the text that
appears on the form's title bar). To change the Caption of
Form2 first activate the form by clicking on it. Find the Caption
property in the Object Inspector and see that it has a current
value of 'Form2'. Change the Caption text by simply typing
some new text (like MyForm). When you press ENTER the
Caption of the form will change to MyForm.

Use the Object Inspector to change any of the Properties for
the form or a component. For example, the screen position of
a form can be specified by editing the Left and Top property
values.

Adding some Programming Code
The Code Editor window is used to enter your programming code. For example, instead of
using the Object Inspector to change the Caption of a form, you could add some
programming code to change the caption.

To add programming code that changes the Caption of the form when the program runs, do
the following. First, double-click the mouse on Form2 to display the Code Editor window that
contains the programming code for the form. Note: You can also double-click the OnCreate
Event for Form2 in the Object Inspector.

The form has a collection of events such as a mouse click, key press, or component
activation for which you can specify some additional behavior. In this example, the Event is
called OnCreate. This event occurs when the form is created (when the program runs).

Add the code on line 8. The code will be executed when the program runs and the form is
first created. The code changes the form caption to display 'Hello Friend!' plus the date and
time.

18

Running a Program
To see the results of your programming, compile and run the program (which is comprised of
all the files in the project). To run the program click the green Run button on the toolbar, or
choose Run (from the Run menu), or press the F9 key on the keyboard. The ESPL compiler
will build the project and run the program (application). If the compiler ever detects an error in
the programming code it will display an Error window. In the case of an error, you would click
OK and the Code Editor would place the cursor on the line of code containing the error.
If the program compiles with no errors, then the program will run and you will see a blank form
on the screen. Every time you run this program the form caption will display Hello Friend!
along with the date and time that the program was run.

There is not much you can do with the form window in this simple example. You can move it,
resize it, or click the X button to close it.

Saving the project
After you have started a new programming project, you will want to save the project to the
hard disk. This will allow you to reopen and run the programming code later (after shutting
down and rerunning the Ensign program). Periodically save your project, even during
development, so that you always have a backup copy.
To save a project and all of its associated files select File | Save All from the menu, or click
the Save All button on the toolbar. By default, ESPL projects are saved to the
\Ensign10\ESPL folder. We suggest that you create a new folder (inside the ESPL folder) for
each separate project. This will help you to stay organized and avoid mixing files from
different projects. When you save a project for the first time you will be asked to name and
save each of the Unit files, and also to name and save the Project file (this should be the
name of your program). For example,

save Unit2 as Unit2.psc (the form will autosave as Unit2.sfm)
save Unit1 as Main.psc
save Project1 as Hello.dpr

Note: In the Code Editor window, the Unit1 tab will be changed to Main.

19

Adding more Features
Lets build on the previous example and add some components to the form. First, click on the
form and then move the mouse to the Tool palette and select the 'Standard' group. We will
add three standard Windows components and write some example code to see how the
components work together.

Add these three components:

• TLabel : use this component when you want to add some text to a form that the user
can't edit.

• TEdit : standard Windows edit control. Edit controls are used to retrieve text that users
type.

• TButton : use this component to put a standard push button on a form.

For example, select the TLabel entry in the Tool pallette, then click the mouse on the form. A
label should appear on the form. Next, select the TEdit tool, then click on the form again.
Then, select the TButton tool, then click on the form. If necessary, you can drag the
components around on the form to locate them as shown below.

Changing Component Properties
After you place components on a form, you can set their properties with the Object Inspector.
The properties are different for each type of component, some properties apply to most
components. Altering a component property, changes the way a component behaves and
appears in an application.

All the components have a property called Name. The Name property specifies the name of
the component as referenced in the programming code. When you first place a component on
a form, ESPL will provide a default name for the component, such as Label1, Edit1, Button1.
A good programmer will usually change the names to be more descriptive and meaningful.
For example, a form might have 3 buttons. Instead of using the default names of Button1,

20

Button2, and Button3, you might change the names to be btnStart, btnPause, and btnExit
(assuming that these were actions that the buttons would perform). Give the components a
meaningful name before writing further code that refers to them. This is done by changing the
value of the Name property in the Object Inspector.

To change a component property you must first activate the component. When you click on a
component (to activate it) small square handles appear at each corner and in the middle of
each side. Another way to select a component is to click its name in the drop down list that
appears at the top of the Object Inspector. The list shows all the components on the active
form along with their type and name.

When a component is selected, its properties (and events) are displayed in the Object
Inspector. To change the component property click on a property name in the Object
Inspector; then either type a new value or select from the drop-down list.

For example, change the Caption property for Button1 (I'll refer to components by their
names) to 'Hello...' (of course without the single quotation marks)

Components have different kinds of properties; some can store a Boolean value (True or
False), like Enabled. To change a Boolean property double click the property value to toggle
between the states. Some properties can hold a number (ie. Width or Left), a string (ie.
Caption or Text) or even a set of "simple valued" properties. When a property has an
associated editor, to set complex values, an ellipsis button appears near the property name.
For example if you click the ellipsis of the Font property a Font property dialog box will
appear.

Now, change the Caption (the static text the label displays on the form) of Label1 to 'Your
name please:'. Change the Text property (text displayed in the edit box - this text will be
changeable at run time) of Edit1 to your name.

21

Writing Code - Events and Event Handlers
To really enable components to do something meaningful you have to write some action-
specific code for each component you want to react on user input. Remember: components
are building block of any ESPL form, the code behind each component ensures a component
will react on an action.

Each component, beside its properties, has a set of events. Windows as event-led
environment requires the programmer to decide how a program will (if it will) react on user
actions. You need to understand that Windows is a message-based operating system.
System messages are handled by a message handler that translates the message to ESPL
event handlers. For instance, when a user clicks a button on a form, Windows sends a
message to the application and the application reacts to this new event. If the OnClick event
for a button is specified it gets executed.

The code to respond to events is contained in event procedures (event handlers). All
components have a set of events that they can react on. For example, all clickable
components have an OnClick event that gets fired if a user clicks a component with a mouse.
All such components have an event for getting and loosing the focus, too. However if you do
not specify the code for OnEnter and OnExit (OnEnter - got focus; OnExit - lost focus) the
event will be ignored by your application.

To see a list of events a component can react on, select a
component and in the Object Inspector activate the Events tab. To
really create an event handling procedure, decide on what event
you want your component to react, and double click the event
name.

For example, select the Button1 component, and double click the OnClick event name. ESPL
will bring the Code Editor to the top of the screen and the skeleton code for the OnClick event
will be created.

Note: For the moment there is no need to understand what all the words in the above code
stand for. Just follow along, we'll explain all that later.

22

As you will understand more clearly through this course, a procedure must have a unique
name within the form. The above procedure, ESPL component event-driven procedure, is
named for you. The name consists of: the name of the component name "Button1", and the
event name "Click". For any component there is a set of events that you could create event
handlers for. Just creating an event handler does not guarantee your application will do
something on the event - you must write some event handling code in the body of the
procedure.

We'll now write some code for the OnClick event handler of Button1. Alter the above
procedure body to:

Code completion
When you reach to the second line and write "Edit1."
wait a little. ESPL will display a list box with all the
properties of the edit box you can pick. In general, it
lists valid elements that you can select from and add
to your code.

Now, hit F9 to compile and run your project. When the program starts, click the Button1
('Hello...'). A message box will pop up saying 'Hello your name, Ensign welcomes you!'.
Change the text in the Edit box and hit the Button again...

23

What follows is a simple explanation of the code that runs this application. Let's see.

• The first line under the begin keyword, s := 'Hello ' + Edit1.Text + ' Ensign welcomes
you!'; sets a value for the variable s. This assignment involves reading a value of the
Text property for the Edit component. The Text property of an Edit component holds
the text string that is displayed in the edit box. That text is of the TCaption type,
actually the string type.

• The last statement, before the end keyword, ShowMessage(s);, is the one that calls
the message dialog and sends it the value of variable s - this results in a pop up box
your see above.

That's it. Again, not too smart, not too hard but serves the purpose. By now you should know
how to place components on a form, set their properties and even do a small ESPL
application.

Here are some exercises for you:

1. Play with the Color property of the Form object
2. Use the Font property Editor to alter the font of the TLabel component
3. Find out about the PasswordChar property of the TEdit component to create a simple

password dialog form
4. Try adding code for the OnCreate event of a form to make a form appear centered on

a screen. Also, become familiar with the Position property of the TForm object.

Debugging scripts
Use the IDE to run and debug scripts. The main features of the debugger are:

• Breakpoints
• Watches
• Step over/Trace into
• Run to cursor/Run until return
• Pause/Reset

The image shows the options under the menu item "Run". The
shortcuts keys or the menu/toolbar buttons can be used to
perform running/debugging actions, like run, pause, step over,
trace into, etc.. You can also toggle a breakpoint on/off by
clicking on the left gutter in the code editor. A watch can be
added to inspect variable values.

24

ESPL Programming

Variable Types
Program statements and functions often require parameters. The parameter values can be
Variables, Colors, or Predefined ESPL Constant values depending on the statement.

Integer A signed 32-bit integer in the range of -2147483648 to 2147483647,
used for loops and counters.

Real A double precision floating point variable, used for holding market Price
values and decimal values.

Boolean A boolean variable can have the values of either 0 (False) or 1 (True),
used for True or False tests.

String A dynamically allocated string up to two gigabytes in length, used for
holding Text or Ascii characters.

Currency Used for currency values. Will not have rounding problems.

Variant A powerful variable type that can hold any value of any type.

TDateTime Used for Date and Time functions.

TStringList Used to access properties and methods of String Lists.

TArray Used to access properties and methods of Arrays.

TFont Used to access Font properties.

TForm Used to access Form properties and methods.

THandle Used to access the Handle of objects.

TScreen Used to access Screen properties and methods.

25

Colors
Colors are represented by numeric values. ESPL has defined the following color Constants
which can be used any place that a color is required as a parameter. Color constants always
start with the letters ' cl '. The colors listed in the 2nd column below will match the color theme
on your computer. Include Graphics in the uses clause of the unit. Example:

uses Graphics;
begin
 SetPen(clWhite, 1, eDot);
end;

26

Андрей
forex-warez.com

Constants
Several ESPL commands use predefined ESPL Constants as parameters. The Constants
represent numeric values. Using Contant names is easier than programming with numbers.
A few examples are shown below. By design, the Constant names start with a lower case 'e'.

eClear eDate eTime eHigh eLast
eLow eArrow eSymbol eRSI eSto
eNet eVolume eDot eOpen eAve

Example: writeln(GetVariable(eSymbol));

There are many ESPL constants. They are documented with their specific ESPL commands.

Playback
ESPL programs can be tested with a live simulated data source during or after market hours.
For example, if the markets are closed and your charts are not moving, and your ESPL
program requires real-time chart data to trigger an event or a signal, then use the Playback
feature Selecting Set-Up | Playback from the menu. Start a Playback session and do your
testing and development using the playback feed.

Program Structure
The structure of an ESPL program is made of two major blocks, 1) Procedure and Function
declarations, and 2) Main block of programming code. Both are optional, but at least one
should be present in the program. There is no need for the main block to be inside begin..end.
It could be a single statement. Statements should be terminated with the ‘ ; ‘ character.
Begin..end blocks are allowed to group statements.

Example 1
procedure DoSomething;
begin
 CallSomethingElse;
end;

begin
 DoSomething;
end;

Example 3
function MyFunction;
begin
 result:='Sell the Market';
end;

Example 2
begin
 CallSomething;
end;

Example 4
CallSomething;

27

Variable, Function, and Procedure Names
Variable names, Function names, and Procedure names should begin with a character (a..z
or A..Z), or ' _ ' , and can be followed by alphanumeric characters or the ' _ ' character.
They cannot contain any other characters or spaces.

Valid Names

VarName2
_MyProcedureName
MYFUNCTION99B3
_____MYname___

Invalid Names

2Var
My Name
Var-Name
This,is,not,valid

Assign Statements
Assign statements are accomplished by using :=

MyInteger := 2; {Assigns 2 to MyInteger}
MyString := 'Buy ' + '500 shares.'; {Assigns text to MyString}

Strings
Strings (a sequence of characters) are declared using a single quote ' character. Double
quotes " are not used. You can also use #nn to declare a character inside a string. There is
no need to use the ' + ' operator to add a character to a string.

StringA := 'This is some text';
StringB := 'This text is ' + 'concatenated';
StringC := 'A string ending with CR and LF characters'#13#10;
StringD := 'Some text with ' #40#41 ' characters in the middle';

Comments
Comments can be used anywhere in an ESPL program. You can use // characters,
or (* *) blocks, or { } blocks. Using // characters will finish at the end of line.

writeln('Hello World'); // This is a line ending comment

//This is a comment before ShowMessage
ShowMessage('SELL now');

(* This is another comment *)
ShowMessage('Your trade has been filled');

{ This is another valid comment } ShowMessage('BUY the Market');

28

Variables
There is no need to declare variable types in an ESPL program. Variables are implicitly
declared. However, you can optionally declare variables and their variable type using the var
statement. When var is absent the variable is auto-defined upon first detection in the script.
The following three examples all work fine.

Example 1
procedure MyMessage;
begin
 S:='Place Order Now'; ShowMessage(S);
end;

Example 2
var A;
begin A:=0; A:=A+1; end;

Example 3
var S: string;
begin S:='Price Target has been Reached!'; ShowMessage(S); end;

Variables have an unknown initialize value. Therefore, assign a value of zero to a variable
named Sum before using it in a FOR loop like this:

Sum := 0;
for I := 1 to 10 do Sum := Sum + I;

Indexes
Strings, arrays and array properties can be indexed using "[" and "]" characters. For example,
if Str is a string variable, then the expression Str[3] will return the third character in the
string denoted by Str, and Str[N + 1] would return the character immediately after the one
indexed by N.

MyChar := MyStr[2];
MyStr[1] := 'A';
MyArray[1,2] := 1530;
Lines.Strings[2] := 'Some text';

Arrays
ESPL supports array constructors and variant arrays. To construct an array, use "[" and "]"
characters. You can construct a multi-index array by nesting array constructors. You can then
access the arrays using indexes. If the array is a multi-index array, separate the indexes
using the "," character. If a variable is a variant array, ESPL will automatically support
indexing with that variable. A variable is a variant array if it was assigned using an array
constructor. Arrays in ESPL are all 0-base indexed.

29

NewArray := [2,4,6,8];
Num := NewArray[1]; {Num receives "4"}
MultiArray:=[['green','red','blue'],['apple','orange','lemon']];
Str := MultiArray[0,2]; {Str receives 'blue'}
MultiArray[1,1] := 'new orange';

Case statements
The Case statement provides a readable alternative to complex nested if conditionals. If the
selectorExpression matches one of the caseList items, then the respective statement (or
block of statements) is executed. The selectorExpression is any expression of any type.
Each value represented by a caseList item must be unique.

Statements can be a semicolon delimited sequence of statements. A Case statement can
have an optional final else clause. If none of the caseList items have the same value as the
selectorExpression then the statements in the else clause (if there is one) are executed.

SYNTAX:
case selectorExpression of
 caseList1: statement1;
 caseList2: statement2;
 …
 caseListn: statementn;
else
 elsestatements;
end;

Example:
case MyValue of
 1,2,3,4,5: Caption := 'Low';
 6,7,8,9: Caption := 'High';
 else Caption := 'Out of range';
end;

Function and Procedure declaration
Procedures and Functions, referred to collectively as routines, are self-contained statement
blocks that can be called from different locations in a program. A function is a routine that
returns a value when it executes. A procedure is a routine that does not return a value.
Function calls, because they return a value, can be used as expressions in assignments and
operations: Example: N := MyFunction(X);

Declaration of functions and procedures are similar to Delphi, with the difference that you
don't specify variable types. To return function values, use a result variable. Parameters by
reference can also be used.

30

procedure UpcaseMessage(Msg);
begin
 ShowMessage(Uppercase(Msg));
end;

function TodayAsString;
begin
 Result := DateToStr(Date);
end;

function Max(A,B);
begin
 if A>B then Result := A else Result := B;
end;

procedure SwapValues(var A, B); Var Temp;
begin
 Temp := A; A := B; B := Temp;
end;

Calling a subroutine
If the script has one or more functions or procedures declared, they can be called by their
name.

procedure DisplayHelloWorld;
begin
 ShowMessage('Hello world!');
end;

procedure DisplayByeWorld;
begin
 ShowMessage('Bye world!');
end;

begin
 DisplayHelloWorld;
 DisplayByWorld;
end;

Passing parameters
Values of variables can be used in functions and procedures by passing them as parameters.
The parameters are Variant types. ESPL doesn't need parameter types.

function Double(Num);
begin

31

 Result := Num*2;
end;

Accessing objects
One powerful feature of ESPL is access to registered objects such as buttons and menus.
You can make reference to objects in script, change its properties, call its methods, and so
on.

btnQuote.Caption := 'New caption';
btnQuote.Click;

Component objects can be placed on forms at design time. They can also be created
programmatically at run time. Example:

uses
 Classes, Graphics, Controls, Forms, Dialogs, Unit2;

var
 MainForm: TForm2;
 btn: TButton;
begin
 MainForm := TForm2.Create(Application);
 MainForm.Show;

 btn := TButton.Create(Application);
 btn.parent := MainForm;
 btn.top := 10;
 btn.width := 100;
 btn.Caption := 'Help';
end;

32

Calling DLL functions
ESPL allows importing and calling of external DLL functions, by inserting special directives on
declaration of script routines, indicating library name and, optionally, the calling convention,
beyond the function signature. External libraries are loaded on demand, before function
calls, if not loaded yet. See Creating ESPL DLLs example.

SYNTAX:
Function functionName(arguments): resultType; [callingConvention];
external 'libName.dll' [name ExternalFunctionName];

EXAMPLE:
function MyFunction(arg: integer): integer; external 'CustomLib.dll';

The example above imports a function called MyFunction from CustomLib.dll. Default calling
convention, if not specified, is register. ESPL also allows you to declare a different calling
convention (stdcall, register, pascal, cdecl or safecall) and to use a different name for DLL
function, like the following declaration:

function MessageBox(hwnd: pointer; text, caption: ansistring;
msgtype: integer): integer; stdcall; external 'User32.dll' name
'MessageBoxA';

that imports the 'MessageBoxA' function from User32.dll (Windows API library), named
'MessageBox' to be used in script. The Declaration above can be used with functions and
procedures (routines without a result value).

msgtype integer
MB_OK 0
MB_OKCANCEL 1
MB_ABORTRETRYIGNORE 2
MB_YESNOCANCEL 3
MB_YESNO 4
MB_RETRYCANCEL 5
MB_ICONHAND 16
MB_ICONQUESTION 32
MB_ICONEXCLAMATION 48
MB_ICONASTERISK 64
MB_ICONWARNING 48
MB_ICONERROR 16
MB_ICONINFORMATION 64

33

Supported Types
ESPL supports following data Types on arguments and result of external functions:

Integer
Boolean
Char
Extended
String
Pointer
PChar
Object
Class
WideChar

PWideChar
AnsiString
Currency
Variant
Interface
WideString
Int64
Longint
Cardinal
Longword

Single
Byte
Shortint
Word
Smallint
Double
Real
DateTime
Comp

Others types (records, arrays, etc.) are not supported. Arguments of the above types can be
passed by reference, by adding var in the param declaration of the function.

Include Libraries
ESPL allows you to include multiple files (or libraries of code). Use the uses statement to
specify the files to include in the current program file. For example,

{This is the first program file named Script1}
uses Script2;
begin
 Script2GlobalVar := 'Hello world!';
 ShowScript2Var;
end;

{This is the second program file named Script2}
var Script2GlobalVar: string;
procedure ShowScript2Var;
begin
 ShowMessage(Script2GlobalVar);
end;

When you execute the first script, it "uses" Script2, and is able to read and write global
variables and call procedures from Script2. Script1 must know where to find Script2 via its
identifier in the uses clause, for example:

uses Classes, Forms, Script2;
Commonly used libraries: Buttons, Classes, ComCtrls, Controls, Dialogs, ExtCtrls, Forms,
Graphics, ImgList, IniFiles, Menus, StdCtrls.

34

Libraries are typically added automatically to a unit's uses statement as components are
added to forms. For example, adding a TButton object to a form will automatically add
Buttons to the uses statement.

Secure Library Files

When units are saved, two files are written. The files with the .psc are the ASCII source files
for the script that is displayed in the editor. A non ASCII library file with a .lib extension is also
saved. It is sufficient to distribute the .lib library file instead of the .psc source file to other
users. Follow this process for distributing library files for security and secrecy when you do
not want the source code to be displayed or changed.

1. Click the Save All button on the editor form. The library files are created.
2. Use menu File | Remove from Project to remove the 2nd, 3rd, or other units. Keep the

main unit as that unit needs to remain. In the previous example, the Script2 unit could
be removed from the project, but kept in the uses statement.

3. The main unit has a uses statement with references to the units removed from the
project. In the previous example, the Script2.lib file would be distributed.

4. Distribute in a package the project file with its .ssproj extension. Distribute the .lib file
for each unit removed from the project. Distribute any .sfm form files.

Declaring Forms in ESPL
A powerful feature in ESPL is the ability to declare forms and use .sfm files to load form
resources. With this feature you can declare a form to use it in a similar way as Delphi. For
example,

//Main script
uses
 Classes, Forms, MyFormUnit;
var
 MyForm: TMyForm;
begin
 {Create instances of the forms}
 MyForm := TMyForm.Create(Application);
 {Initialize all forms calling its Init method}
 MyForm.Init;
 {Set a form variable. Each instance has its own variables}
 MyForm.MyFormGlobalVar := 'my instance';
 {Call a form "method". You declare the methods}
 MyForm.ChangeButtonCaption('Another click');
 {Accessing form properties and components}
 MyForm.Edit1.Text := 'Default text';
 MyForm.Show;
end;

35

//My form script
{$FORM TMyForm, myform.dfm}
var MyFormGlobalVar: string;
procedure Button1Click(Sender: TObject);
begin
 ShowMessage('The text typed in Edit1 is ' + Edit1.Text + #13#10 +
'And the value of global var is ' + MyFormGlobalVar);
end;

procedure Init;
begin
 MyFormGlobalVar := 'null';
 Button1.OnClick := 'Button1Click';
end;

procedure ChangeButtonCaption(ANewCaption: string);
begin
 Button1.Caption := ANewCaption;
end;

The sample scripts above show how to declare forms, create instances, and use their
"methods" and variables. The second script is treated as a regular Library, so it follows the
same concept of registering and using. The $FORM directive is the main piece of code in the
form script. This directive tells the compiler that the current script should be treated as a form
class that can be instantiated, and all its variables and procedures should be treated as form
methods and properties. The directive should be in the format {$FORM FormClass,
FormFileName}, where FormClass is the name of the form class (used to create instances,
take the main script example above) and FormFileName is the name of a .sfm form which
should be loaded when the form is instantiated.

The .sfm file is a regular Delphi file format, in text format. You cannot have event handlers
defines in the sfm file, otherwise an error will raise when loading the sfm.

36

Event Redirection
This example shows how ESPL can be notified when the Ensign program is closing so that
information can be saved before the program closes.

Redirect the OnCloseQuery event for the main Ensign form to an ESPL procedure which
performs the clean-up tasks such as saving information. The main Ensign form is referenced
with the component named frmMain. This example will print a message in the Output
window when Ensign closes.

uses
 Forms;

procedure ShutDown;
begin
 writeln('Exiting');
end;

begin
 if ESPL = 3 then
 frmMain.OnCloseQuery := 'ShutDown';
end;

Cick ESPL button 3 to establish the redirection of the OnCloseQuery event. Then
when Ensign exits, the OnCloseQuery event fires and executes the ESPL ShutDown
procedure which displays ‘Exiting’ in the Output window. Ensign continues its exiting
processes and closes down.

The following Forms events can be redirected: (requires Forms in the Uses clause)

• OnClose
• OnCloseQuery
• OnHelp
• OnException
• OnGetHandle
• OnIdle
• OnSettingChange

The following Classes events can be redirected: (requires Classes in the Uses clause)

• OnNotify All events in any object that are of TNotifyEvent type are supported.
(Button: OnClick, OnMouseEnter, OnMouseDown,
Combo: OnChange, OnEnter, OnExit, etc.)

37

ESPL Statements
The ESPL Statements are listed in alphabetical order. A small code example is included with each statement.

Abs

SYNTAX: Abs(numeric expression);

DESCRIPTION: The Abs function returns the absolute value of a numeric expression. The absolute value is the unsigned
(non-negative) value of its parameter. For example, Abs(-50) and Abs(50) are both equal to 50. The numeric expression
can be an integer-type or real-type expression.

EXAMPLE:

var {Start of variable declarations}
 x,y: real; {x and y are declared as Real variable type}
begin {Start of Main programming code}
 x := Abs(-10.3); {x is assigned value of the Abs function = 10.3}
 y := Abs(10-30); {y is assigned value of the Abs function = 20}
 writeln(x,' ',y); {x and y are printed in the output window}
end; {End of Program}

Account

SYNTAX: Account(Number: integer): integer;

DESCRIPTION: The Account function allows you to open and retrieve Trading Account information from the Account
files in Ensign. This can be useful to retrieve account balances, market value, average trade value, total number of trades,
winning and losing trades, account names, account numbers, account phone numbers, etc. The Account function opens
the specified account Number window. Ensign will display the trading account window. The values in the account
window can then be retrieved by using the GetVariable function. The Account function will return the Window handle
number. See the GetVariable documentation for details on retrieving account information from the active account
window.

PARAMETERS:

Number: Enter the Trading Account number to open. Example, the number 3 would open trading account 3.

EXAMPLE: The following example will open and retrieve account information from accounts 1 through 3. Notice how
account information can be read directly from the cells in the trading account window, using the GetCell command.

var {Start of Variable declarations}
 i,j: integer; {Declare i and j as integers}
begin {Start of Main programming code}
 for i := 1 to 3 do {Loop from 1 to 3}
 begin {start of loop block of code}
 Account(i); {Open the Account Window}
 writeln(GetVariable(eName)); {Print Account Name}
 writeln('Balance ',GetVariable(eProfit)); {Print Account Balance}
 writeln('Trade Count ',GetVariable(eTrades)); {Number of Trades}
 writeln('Profit Trades ',GetVariable(eWinTrades)); {Print Winning Trades}

38

 writeln('Loss Trades ',GetVariable(eLossTrades)); {Print Losing Trades}
 for j := 1 to GetVariable(eGrid) do writeln(GetCell(j,1));
 writeln(''); {Print a blank line}
 mnuCloseWindow.click; {Close Account Window}
 Application.ProcessMessages;
 end; {End of loop block of code}
end; {End of program}

ActiveChild
ActiveChart

SYNTAX: ActiveChild;

ActiveChart;

DESCRIPTION: Ensign allows multiple windows to be opened from the main application toolbar. All of the Chart
windows, Quote windows, Alert windows, News windows, etc., are child windows to the Ensign application. The
ActiveChild function is used to determine which child window currently is active and has the focus. A pointer value is
returned from the function which can be used to identify the active child window. The pointer is a property of a TForm
variable type. The following example program declares a TForm variable, and then finds the ActiveChild window. The
window is then minimized.

ActiveChart is similar to ActiveChild. When a stack has focus, ActiveChild will return the stack whereas ActiveChart
will look inside of the stack and return the chart on the surface of the stack. ActiveChart returns the chart that has the focus
or which most recently had the focus.

EXAMPLE:

var {Start of variable declarations}
 Form1: TForm; {Form1 declared as TForm variable type}
begin {Start of Main programming code}
 FindWindow(eChart); {Find an Open Chart Window}
 SetMyFocus; {Set the Focus so it is the Active window}
 Form1 := ActiveChild; {Form1 is assigned ActiveChild window}
 Form1.WindowState := wsMinimized; {WindowState is Minimized}
end;

AddLine

SYNTAX: AddLine(Name, Tab, Index1: integer, Price1: real, [Index2: integer, Price2: real, Index3: integer,

Price3: real, Location: constant]): integer;

DESCRIPTION: The AddLine command is used to draw a Line or Draw Tool on a chart. The line settings from the
specified Tab are used when the tool is drawn. Index and Price parameters specify the location of the tool on the chart.
Some tools require up to 3 chart points. If desired, the Location parameter can be used to draw the tool in a study sub-
window. The default location is on the chart. The AddLine command returns the Object ID (handle) of the Draw Tool.
The Object ID is used to identify the tool and can be used by the SetLine, GetStudy, SetStudy, and Remove commands
to perform further operations on the tool. The AddLine command returns a zero value if an error occurs, or the line object
was unable to draw on the chart. Use the GetStudy, SetStudy, and SetLine commands to get and set the colors, styles,
tokens, and percentage levels (after the Line or Draw Tool is already on the chart).

PARAMETERS:

39

Name: Specifies the line object to draw. The following are predefined type names that can be used to identify the
line type.

 eAlan 2 – draws an Alan Square on the chart
 eAndrews 3 - draws an Andrew's Pitchfork tool on the chart
 eArrow 1 - draws a Marker on the chart (Note: there are dozens of possible Markers)
 eCircle 2 - draws a Circle on the Chart
 eCycle 2 - draws a Cycle tool on the chart
 eESPLTool 3 - draws an ESPL programmed Draw tool on the chart
 eFibCycle 2 - draws a Fibonacci Cycles tool on the chart
 eFibRuler 1 – draws a Fibonacci Ruler tool on the chart
 eFibonacci 2 - draws Fibonacci lines on the chart
 eGann 2 - draws Gann lines on the chart
 eGannSquare 2 - draws a Gann Square on the chart
 eGartley 3 – draws a Gartley Butterfly on the chart
 eLevel 1 - draws the Daily Price Levels tool on the chart
 eLine 2 - draws a Line on the chart
 eLinear 2 - draws a Linear Regression line on the chart
 eParallel 3 - draws the Parallel lines tool on the chart
 ePyraPoint 1 - draws a PyraPoint tool on the chart
 eRetrace 2 - draws Fibonacci Retracement lines on the chart
 eSpeed 2 - draws Speed Lines on the chart
 eSupport 3 - draws the Support and Resistance tool on the chart
 eWave 3 - draws Elliott Wave lines on the chart

 Note: 1= requires 1 chart location point, 2= requires two points, 3= requires three points. For example,

the eArrow, ePyraPoint, and eLevel objects use only Index1 and Price1 since there is only one chart
point to indicate. The eLinear object uses only Index1 and Index2 since Price is not considered. In this
case enter Price1 and Price2 with zero values.

Tab: Specifies the Tab setting to use from the Draw Tools properties window. Enter a number from 0 to 14.

For example, an entry of 0 will draw the tool using all the colors, styles, and marker settings from the
'Default' tab.

Index1: Specifies the chart bar index position for the starting point of the line object.
Index2: Specifies the chart bar index position for the ending point (2nd point) of the line object. :
Index3: Specifies the chart bar index position for the ending point (3rd point) of the line object. :
 For example, if a chart contains 1000 bars, a line can be drawn from bar index 950 to 1000.

Price1: Specifies the chart price for the starting point of the line object.
Price2: Specifies the chart price for the ending point (2nd point) of the line object. :
Price3: Specifies the chart price for the ending point (3rd point) of the line object. :

Location: 0 or eChart - Draws the line object directly on the Chart (default).
 1-9 - Draws the line object in the specified study sub-window 1 through 9.
 eVolume - Draws the line object in study sub-window 9 (the Volume window).

EXAMPLE: The following program adds 4 draw tools to an IBM daily chart. The first tool is a simple Line which requires
2 chart points (using Tab setting 1). The second tool is a Fibonacci Levels draw tool which requires 2 chart points (using
Tab setting 5). The third item is an Andrew's Pitchfork tool which requires 3 chart points (using Tab setting 1). The
fourth tool is an Arrow Marker which requires 1 chart point (using Tab setting 1).

var

40

 Bar1,Bar2,Bar3:integer;
 Price1,Price2,Price3:real;
begin
 Chart('IBM.D');
 Bar1:=BarEnd-75; Bar2:=BarEnd-50; Bar3:=BarEnd-25;
 Price1:=Last(BarEnd-75);
 Price2:=Last(BarEnd-50);
 Price3:=Last(BarEnd-25);
 AddLine(eLine,1,Bar1,Price1,BarEnd,Last(BarEnd));
 AddLine(eLinear,1,Bar1,0,BarEnd,0);
 AddLine(eFibonacci,5,Bar1,Price1,Bar2,Price2);
 AddLine(eAndrews,1,Bar1,Price1,Bar2,Price2,Bar3,Price3);
 AddLine(eParallel,1,Bar1,Price1,Bar2,Price2,Bar3,Price3);
 AddLine(eArrow,1,Bar3,High(Bar3));
end;

AddNote

SYNTAX: AddNote(NoteText: string, Tab, Index: integer, Price: real [, Location: constant]): integer;

DESCRIPTION: The AddNote function is used to place a Note or Text on a chart. The note can have a variety of frames,
colors, markers, shadows, and circles. The note can be Pinned to the chart, or float over the chart (not pinned). The note
will use the settings from the specified Tab selection. The Index and Price parameters specify the note location on the
chart. If desired, use the Location parameter to place the note in a study sub-window. A note can also be placed on the
right edge of a chart in the Scale and Price Arrow area. AddNote returns the Object ID number for the note, or returns a
zero value if adding the Note was unsuccessful. Use the GetStudy and SetStudy commands to get or change the Note
settings after the note has been placed on the chart.

PARAMETERS:

NoteText: Specifies the note that is placed on the chart (example, 'Buy Here').

Tab: Specifies the Tab setting to use from the Note properties window. Enter a number from 0 to 14. For

example, an entry of 0 will draw the Note using all the colors, styles, and marker settings from the
'Default' tab.

Index: Specifies the bar index where the note will be positioned horizontally on the chart. Example, an entry of

100 will position the note on the 100th bar of the chart.

If the note is placed in the price Scale (on the right edge of the chart), then the Index parameter should
represent the horizontal pixel count from the left edge of the Scale panel. The vertical Scale grid line is
at pixel 16.

A negative value will set the horizontal pixel position. -10 would start the note at the 10th pixel.

Price: Specifies the price level on the chart where the note will be positioned.

A negative value will set the vertical pixel position. -5 would locate the note 5 pixels down from the top
of the chart.

Location: 0 or eChart - Draws the Note directly on the Chart (default).

41

Андрей
forex-warez.com

 1-9 - Draws the Note in the specified study sub-window 1 through 9.
 eVolume - Draws the Note in study sub-window 9 (the Volume window).
 14 or eScale - Places the Note in the Price Scale (right edge of the chart).

EXAMPLE: The following program opens an IBM daily chart, and then adds a Note to the chart.

begin
 Chart('IBM.D');
 AddNote('Sell Here',1,BarEnd-20,High(BarEnd-20));
end;

EXAMPLE: The following will add the security name to the chart as a note. The example uses the tab 4 properties.

begin
 if ESPL = 9 then begin
 FindWindow(eChart); // Find the chart with focus
 sSymbol := GetVariable(eSymbol); // Get the chart's symbol
 Find(eIQFeed, sSymbol); // Get the symbol's quote record
 sName := GetData(eName); // Read the security name
 {Go set tab 4 to have Pinned unchecked. Set the colors and font size}
 AddNote(sName, 4, -10, -10, 0); // Locate the note at x,y = (10,10)
 end;
end;

AddOverlay

SYNTAX: AddOverlay(Chart: string, Tab, [Overlay, Host, Offset, Shift, Location, Type, Scale, Alignment,

Grid: real]): integer;

DESCRIPTION: The AddOverlay function overlays a chart on another chart. This is a great way to view two or more
charts within the same chart window. The settings from the specified Tab are used when the overlay is drawn. Optional
multipliers, offsets, locations and other settings can also be specified. The AddOverlay function returns the Object ID
number (handle) for the overlay. The function returns a zero value if adding the overlay was unsuccessful. Use the
GetStudy, SetStudy, and SetLine commands to change the settings, colors and line styles of the overlay after it has been
drawn. Since there may be multiple Chart windows open at the same time, it is important to first identify the Chart that the
overlay should be placed on. A global ESPL variable named Window is used to specify which chart to place the overlay
on. The Window variable can be manually assigned a window pointer value (if you have been keeping track of the window
handles), or you can use the FindWindow or Chart functions to set the Window variable.

PARAMETERS:

Chart: Specifies the chart symbol to overlay on the host chart.

Tab: Specifies the Tab setting to use from the Overlays properties window. Enter a number from 0 to 14. For

example, an entry of 0 will draw the Overlay using all the colors, styles, and marker settings from the
'Default' tab.

Overlay: Is an optional multiplier for the overlay data. This can be used to shift (multiply) all of the overlay chart

prices to a different price scale. The default is 1.

42

Host: Is an optional multiplier for the host data. This can be used to shift (multiply) all of the host chart prices
to a different price scale. The default is 1.

Offset: Specifies an optional vertical price adjustment in the overlay data. The default is 0.

Shift: Specifies an optional left or right shift of the overlay data. The default is 0.

Location: 0 or eChart - Draws the Overlay directly on the Chart (default).
 1-9 - Draws the Overlay in the specified study sub-window 1 through 9.
 eVolume - Draws the Overlay in study sub-window 9 (the Volume window).

Type: Specifies the Chart Type for the overlay chart. The following Chart Types can be used. The default is 0.
 0 = Plot the overlay chart using the same Chart Type as the host chart.
 1 = Plot the overlay chart as a Bar Chart.
 2 = Plot the overlay chart as a Line Chart.
 3 = Plot the overlay chart as a Japanese Candlestick chart.
 4 = Plot the overlay chart using Close Ticks Only.
 5 = Plot a Spread Chart. The spread chart equals the (host - overlay).
 6 = Plot a Ratio Chart. The ratio chart equals the (100* host / overlay).

Scale: Specifies which price scale to use for the overlay chart. The following Scale options are available

choices. The default is 1. Double-click the mouse on the chart scale numbers to switch the view of the
scale prices.

 0 = Use the host chart's price scale (the overlay chart data will be scaled using the host's range).
 1 = Scale the overlay data using its own price range. The overlay price scale numbers will not be visible.
 2 = Scale the overlay data using its own price range. The chart will display the overlay's scale numbers.
 3 = Don't plot the overlay. The overlay data is not visible but the data is still available for calculations.

Alignment: Specifies an optional Alignment adjustment of the overlay bars. Shifting the Overlay prevents the overlay

bars from drawing exactly on top of the chart bars. 0=Align to left side, 1=Align to center, 2=Align to
right side.

Grid: Specifies and draws grid lines in the study sub-window. The Grid parameter is ignored if the study is not

drawn in a study sub-window.

EXAMPLE: The following example opens an IBM daily chart. A Microsoft daily chart is then overlaid on the IBM chart
(using Tab setting 1). The Microsoft chart is drawn using its own price scale, and is plotted as a Line chart with no price
offsets nor multipliers. The price scale for the Microsoft chart is hidden. NOTE: Double-click the mouse on the IBM price
scale numbers, on the chart, to switch the view to the Microsoft price scale numbers.

begin
 Chart('IBM.D'); {Open IBM daily chart}
 AddOverlay('MSFT',1,1,1,0,0,eChart,2,1,0); {Add MSFT overlay Line chart}
end;

AddStudy
AddStudyOnStudy

SYNTAX: AddStudy(Study [, Tab, Parameter1, Parameter2, Parameter3, Offset, Shift, Location, DataPoint,

Alignment, Grid: real]): integer;
 AddStudyOnStudy(Study [, Tab, Parameter1, Parameter2, Parameter3, Offset, Shift, Location,

OnStudy, Value, Alignment, Grid: real]): integer;

The following syntax is used for adding the 'Color Band' Study.

43

AddStudy(eBnd [, Tab, 0, 0, 0, 0, ESPL, Location, Position, Study: real, CloseOnly: boolean]): integer;

DESCRIPTION:
AddStudy adds a Study to a chart and sets the study parameters. If the parameters are omitted then the settings from the
specified Tab are used when the study is drawn. Use the GetStudy and SetStudy commands to get and set the study
parameters, colors, and line styles after the study has been applied to a chart. Since there may be multiple Chart windows
open at the same time, it is important to first identify the Chart that the study will be placed on. A global ESPL variable
named Window is used to specify which chart to place the study on. The Window variable can be manually assigned a
window pointer value (if you have been keeping track of the window handles), or you can use the FindWindow or Chart
functions to set the Window variable.

AddStudyOnStudy adds a technical study to a chart based on another study's values. For example, a Moving Average of a
Relative Strength Index can be added to a chart. This assumes that the Relative Strength Index study is already present on
the chart. The settings from the specified Tab are used when the study is drawn.

Both the AddStudy and AddStudyOnStudy commands return the Object ID number (handle) of the added study. The
object number can be used by the GetStudy, SetStudy, ChartRefresh and Remove functions to perform further
operations on the study. The functions both return a zero value if adding the study was unsuccessful.

PARAMETERS:

Study: Use one of the following predefined ESPL constants to specify which study to add to the chart.

See Appendix – Study Constants.

Tab: Specifies the Tab setting to use from the Study's properties window. Enter a number from 0 to 14. For

example, an entry of 0 will draw the Study using all the colors, styles, and marker settings from the
'Default' tab.

Parameter1: Usually specifies the number of bars to use in the study calculation.
Parameter2: Usually specifies the optional moving average value of the study.
Parameter3: Specifies a 3rd study parameter for some studies. :

Offset: Specifies an optional vertical price offset for the study. It is also used to specify the ESPL variable value

when running ESPL Studies. Example: AddStudy(eESPL,1,5,1,1,100,0,eChart) will run
an ESPL Study with the ESPL variable value set to 100. NOTE: Typical ESPL values would be in the
range of 100-109.

Shift: Specifies the number of bars to optionally shift a study left or right on the chart. Example, a value of 5

would shift the study line forward 5 bars. A value of -5 would shift the study line backwards 5 bars.

Location: 0 or eChart - Draws the Study directly on the Chart (default).
 1-9 - Draws the Study in the specified study sub-window 1 through 9.
 eVolume - Draws the Study in study sub-window 9 (the Volume window).

DataPoint: This parameter is used by the AddStudy command. The DataPoint parameter specifies the Data Point

to use for the study. Example: 0=Close, 1=High, 2=Low, etc. View the 'Data Point' panel in a study's
Properties window for a list of available Data Points. The position of the Data Point in the list determines
what number to use (starting with 0). The Data Points are different for some studies. The following
example shows the Data Point values for the RSI study (see the Properties window for the RSI study).
See Appendix – Data Points

44

 NOTE: A DataPoint value of 2 would specify that an RSI study be added to the chart, using the Low
price of each bar as the input values for the RSI study. The values to use for the DataPoint parameter
should be from 0 to 34 based on the position of the Data Point for each study.

Alignment: Specifies an optional Spread Alignment adjustment. Shifting the lines prevents the Spread histogram

from drawing exactly on top of the chart bars.
 0 = Align to left side, 1 = Align to center, 2 = Align to right side.

Grid: Specifies and draws grid lines in the study sub-window. The Grid parameter is ignored if the study is not

drawn in a study sub-window.

OnStudy: This parameter is used by the AddStudyOnStudy command. The OnStudy parameter specifies the
Object ID (handle) number of the original study to which the new study is calculated from. The default
OnStudy value is the object number of the last study added to the chart. NOTE: This is a case in which
you should store the object numbers of studies, so that subsequent studies can be performed on them.
You can also use the FindStudy command to determine a previous studies object number.

Value: The Value parameter is used by the AddStudyOnStudy command and can be entered as a 0,1, 2, or 3.

When adding a study on another study, it may be necessary to specify which value (of the original study)
to use as input for the new study. The Value specifies which of four possible study values to use for the
AddStudyOnStudy function. For example, 0=Study value, 1=Study Average value, 2= Spread between
the two, etc.. The Bollinger Band study draws 3 lines and an optional Spread line. Any of the 4 lines can
be used as input for a new study. The possible Value parameters from the Bollinger Band study would
be 0=Upper Band, 1=Middle Average line, 2=Lower Band, 3=Spread. The default is 0.

 EXAMPLE: The following example code adds a Bollinger Band study to a presumed chart, then adds a

Stochastic study using the Lower Bollinger Band values as input for the Stochastics study. The Stochastic
study parameters are set to 9, 3, and 5. This will generate a 9 period slow Stochastic study of the Lower
Bollinger Band.

 H := AddStudy(eBol); {Add Bollinger Band study}
 AddStudyOnStudy(eSto,1,9,3,5,0,0,0,H,2); {Add Stochastic on Lower Band}

Used by the Color Band Study Only:

Position: The Position parameter specifies the Marker position for the Color Band study.

Enter a number from 0-14.

Study: The Study parameter specifies the Color Bar study to apply to the Color Band study. Enter a number

from 1-24 based on the position in the list. Or, select Study 0 to run an ESPL program on the Color Band
study. This allows you to apply the Color Band Markers based on ESPL logic.

CloseOnly: This parameter can place a check mark in the 'Close Only' check box. Enter a value of 'False' to

uncheck the box. Enter a value of 'True' to place a check mark in the box.
Example:AddStudy(eBnd, 1, 0, 0, 0, 0, 61, 0, 7, 0, True);

 NOTE: See the Color Band ESPL program example in the GetStudy documentation.

EXAMPLE: The following code tries to locate a currently displayed IBM chart. If it can't find an open IBM chart, then it
opens an IBM daily chart. After finding or opening the IBM chart, the program removes all studies from the chart, then
adds a Momentum study, an RSI study, and a Stochastics study (based on the RSI study).

var {Start of variable declarations}
 Handle:integer; {Handle declared as an integer variable}
begin {Start of Main programming code}
 if FindWindow(eChart,'IBM.D')=0 then Chart('IBM.D');

45

 Remove(eStudy); {Remove all studies from the chart}
 AddStudy(eMOM,1); {Add Momentum study to the chart}
 Handle := AddStudy(eRSI,1,7,1,0,0,2,2,0,1,3); {Add RSI}
 AddStudyOnStudy(eSto,1,9,3,3,0,0,1,Handle,0,1,33288);
end; {End of program}

Alert
GetAlert

SYNTAX: Alert (There are 8 variations of the Alert command, see below)
 GetAlert(Symbol: string, Field: integer): real;

1) Alert(Visible: boolean [, Message: string, PanelColor: integer, FontColor: integer, Beep: boolean, FontSize: integer]);
2) Alert(Visible: boolean [, Message: string, PanelColor: integer, FontColor: integer, FileName: string,

FontSize: integer]);
3) Alert(eSet; Price: real [, Field: integer]);
4) Alert(eClear);
5) Alert(eHigh);
6) Alert(eLow);
7) Alert(Symbol: string, Feed: integer, Price: real, Field: integer);
8) Alert(eReset);

DESCRIPTION: The GetAlert function returns the price of a specific alert field. If no alert price is present for the
specified field, then zero will be returned. The Alert statement is used to set and remove alerts on Charts and Quote
Symbols. Alert variations 1 and 2 (above) display or remove an Alert panel on the top row of a chart. A message can be
printed in the Alert panel. A Beep or sound file can also be played when the Alert panel is displayed. The Alert panel is
often used when an alert condition has been met in the ESPL program. The Alert panel can be displayed on the chart, along
with a sound. The color of the panel and the text in the panel can be customized. Any .WAV file can be played as the
alert sound.

 Alert(True, 'Sell Alert', clRed, clWhite, 'C:\WINDOWS\MEDIA\CHIMES.WAV');

Alert variations 3 through 6 are used to set and clear price alerts from a Chart. Some examples are shown below.
 Alert(eSet, 9800); Sets a price alert on a chart at 9800. The price can be above or below the current price.
 Alert(eSet, 75000, 7); Sets a Daily Volume alert for the chart symbol.
 Alert(eClear); Removes all Alerts for this chart symbol
 Alert(eHigh); Removes just the High price alert from a chart.
 Alert(eLow); Removes just the Low price alert from a chart.

Alert variation 7 is used to set or remove an alert on a specified Symbol. The Symbol and Market Group must be specified.
The Alert will be added to or removed from the Ensign Alerts list. The Field parameter specifies the type of alert that is
being set.
 Alert('IBM', FindFeed('IBM'), 12200, eHigh); Sets a High alert for IBM at $122 dollars.
 Alert('F', FindFeed('F'), 2800, 2); Sets a Bid high alert for Ford at $28 dollars.
 Alert('XOM', FindFeed('XOM'), 5000, 6); Sets a Tick Volume alert for XOM at 5000 shares.
 Alert('GE', FindFeed('GE'), 0, eNone); Removes all Alerts for GE

Alert variation 8 is used to completely clear and delete all price alerts. The Alerts list will be cleared of all alerts.
 Alert(eReset);

PARAMETERS:

Visible: Enter as True to display the Alert panel. Enter as False to hide the Alert panel.

46

Message: Message is the text that will be displayed in the Alert panel (example: 'Sell Alert').
PanelColor: PanelColor specifies the color of the Alert panel (example: clRed).
FontColor: FontColor specifies the color of the Alert panel text message (example: clWhite).
Beep: Enter as True to sound a beep. Enter as False for no beep or sound.

FileName: FileName specifies the sound file to play. The FileName parameter should include the complete path

and filename of the sound file that you want to play. The file should be a .WAV, .MID, or .RMI file
type. If a Filename is not provided, then the Alert statement will attempt to play
'C:\WINDOWS\MEDIA\CHORD.WAV' as a default sound. If the FileName cannot be located on the
hard disk, then a Beep will sound.

FontSize: FontSize specifies the size of the text in the Alert panel. The default FontSize is 9. Acceptable FontSizes

range from 8 to 16.

Price: Price is the alert value. Note: When setting an alert on a chart, if the specified alert price is above the

current Last price then a High alert will be set. If the specified alert price is below the current Last price
then a Low alert will be set.

Symbol: Specifies the Symbol to set or get the alert.

Market: Market is number that represents a Symbol's Market Group. The Market Group for a Symbol can be

retrieved using the FindMarket function.

Field: 0 or eHigh = Sets a High alert for the Last price
 1 or eLow = Sets a Low alert for the Last price
 2 = Sets a High alert for the Bid price
 3 = Sets a Low alert for the Bid price
 4 = Sets a High alert for the Ask price
 5 = Sets a Low alert for the Ask price
 6 or eTickVolume = Sets a Tick Volume alert
 7 or eVolume = Sets a Daily Volume alert
 8 or eNone = Removes an alert from the Alert List

EXAMPLE: The following example opens an IBM daily chart. All the price alerts are removed from the chart, then an
Alert Panel is displayed on the chart, and the CHIMES.WAV file is played. The Alert panel is removed from the chart
after 10 seconds. Next, a new price alert is added to the chart, equal to the High price of the last bar on the chart (BarEnd).
Lastly, a High price alert is set at $58.00 for the MSFT symbol. The GetAlert function is used to retrieve and print an
alert field.

begin
 Chart('IBM.D'); {Open an IBM daily chart}
 Alert(eClear); {Remove all price Alerts from the chart}
 Alert(True, 'Place Sell Order Now', clRed, clWhite,

'C:\WINDOWS\MEDIA\CHIMES.WAV');
 Pause(10); {Pause the ESPL program for 10 seconds}
 Alert(False); {False removes the Alert panel from the chart}
 Alert(eSet,High(BarEnd)); {Set a new price Alert on the Chart}
 Alert('MSFT', FindMarket('MSFT'), 5800, eHigh);
 writeln(GetAlert('MSFT',eHigh));
end;

AlertEvent

SYNTAX: AlertEvent(Event: constant [, ESPL: integer, Symbol: string]);

47

DESCRIPTION: The AlertEvent statement is used to enable or disable the monitoring of specific events. If the event
occurs, a call is made to the ESPL program with the ESPL variable set to a specified value. Since the event is identified by
the ESPL value, this allows an ESPL program to perform specific tasks whenever the event occurs. For example, an event
can be enabled for when the market price crosses an alarmed trend line. Mouse movement over a chart is another event that
can be enabled with the AlertEvent command. Information about the event is passed to the global IT string variable.

PARAMETERS:

Event : The Event parameter can be one of the following predefined event constants. This parameter is used to

enable Ensign to monitor the specific event. If the event occurs, then a call is made to the ESPL program.

eAlerts Enables an event for Alert Objects placed on a chart to test study conditions.
eClear Disables all Alert events.
eLine Enables an event for alarmed trend lines. The event is triggered whenever the price crosses the line.
eNews Enables an event for News story Alerts. The event is triggered when a news alert occurs.
eQuote Enables an event for Alerts set for prices, bids, asks, tick volumes, and volume levels.

eSave Enables an event for when a Chart saves its data file prior to the chart closing or changing.
This event can be triggered from many locations in the program. The content of the IT global variable
can be checked to differentiate why the chart file is being saved. The IT text will have the word Save
followed by one of these words: Roll, Build, Rebuild, Objects, Load, Open, Close, Template, Property,
Timer, Time, Refresh, Update, ESPL 1, ESPL 2, ESPL 3. Example test script:

begin
 if ESPL=0 then AlertEvent(eSave,600);
 if ESPL=600 then writeln(IT);
end;

This test script writes the IT variable content in the Output window. For example, the script posted this
when the EUR A0-FX.5 minute chart was closed: 10:55:59 – Save Close : EUR A0-FX.5

eLoad Enables an event for when a Chart opens or changes and its data file has been loaded.

eTrade Enables a Trade event for Symbols in the Ensign Alerts list. An AlertEvent will trigger with every Trade

(change in the Last price). The event can be enabled for a single symbol, or for all symbols in the Alerts
list. A symbol must be entered in the Alerts list before an eTrade event can be enabled for that symbol.
Any value from 0 to 255 can be entered as the ESPL value. Examples:

 AlertEvent(eTrade,70,'IBM'); // Enables a Trade event for all IBM trades, ESPL=70
 AlertEvent(eTrade,0,'IBM'); // Removes the Trade event from IBM
 AlertEvent(eTrade,85); // Enables a Trade event for all symbols, ESPL=85
 AlertEvent(eTrade,0); // Clears Trade events for all symbols

eTick Enables a Trade event for a Symbol. This is just like eTrade except the symbol does not have to be in the

Alerts list. Any value from 0 to 255 can be entered as the ESPL value. Examples:
 AlertEvent(eTick, 70,'IBM'); // Enables an event for all IBM trades, ESPL=70
 AlertEvent(eTick ,0,'IBM'); // Removes the event from IBM
 AlertEvent(eTick ,0); // Removes all symbols from this event list

eMouse Enables an event for mouse movement over charts. Two global variables (PtX and PtY) are updated with

the mouse X Y coordinates as the mouse moves over any chart. The global Window variable is also set
to the chart which the mouse passes over. This allows you to read the position of the mouse on a chart
and then determine the chart values. The chart filename is also passed to the IT variable.

ESPL: The ESPL value is used to identify an event. If the event occurs, the ESPL program is called with ESPL
set equal to the value specified when the event was enabled. Example, AlertEvent(eNews, 77) will

48

cause ESPL to equal 77 whenever an Ensign News alert occurs. This allows the ESPL program to test
for a ESPL value of 77 and respond to News alerts with the desired programming. NOTE: Assigning
ESPL a value of zero will disable a specific event (example: AlertEvent(eNews, 0)). All alert events are
disabled when editing is done on a script, or when a new ESPL script is loaded into the script editor.
When using the AlertEvent statement, you can set the ESPL parameter value to any number of your
choosing.

Symbol: The Symbol parameter is used by the eTrade event. Individual symbols in the Alerts list can be enabled to

trigger an AlertEvent when the symbols trade. For example, AlertEvent(eTrade,90,'IBM'); will cause
the program to call ESPL=90 for every IBM trade that occurs. The IT variable will contain the Symbol
that traded.

EXAMPLE: The following program enables an Event for tracking mouse movement over charts. The program sets ESPL
equal to 66 whenever the mouse event occurs. Click ESPL button 2 to enable the mouse event. Click ESPL button 3 to
turn-off the event. When enabled, the 'ShowPrices' procedure (ESPL=66) is called when the mouse is moved over a chart.
The chart name and the bar values of the High, Low, and Last are printed in a TextBox for the current mouse position.

procedure ShowPrices; var
{Start of variable declarations}
 i,SC,Mkt: integer;
 rLast, rHigh, rLow: real;
begin {Start of ShowPrices procedure
programming}
 i := XtoIndex(PtX); {Convert Mouse X coordinate to Bar Index}
 rHigh := High(i);
 rLast := Last(i);
rLow := Low(i);
 SC := GetVariable(eScaleFactor); {Get the Scale Factor for the chart}
 Mkt:= GetVariable(eMarket); {Get the Market Group for the chart symbol}
 if FindWindow(eText)=0 then TextBox('',1,1,50,110); {Create Text Box}
 TextClear; {Clear the Text Box}
 TextAdd(IT,False); {Print Chart name in Text Box}
 TextAdd('Last '+FormatPrice(rLast,SC),False);
 TextAdd('High '+FormatPrice(rHigh,SC),False);
 TextAdd('Low '+FormatPrice(rLow,SC),False);
end; {End of Showprices procedure}

begin {Start of Main Programming Code}
 if ESPL=2 then AlertEvent(eMouse,66); {Enable Mouse Event with ESPL=66}
 if ESPL=3 then AlertEvent(eMouse,0); {Turn-off the Mouse Event}
 if ESPL=66 then ShowPrices; {Call ShowPrices if 66 occurs}
end; {End of program}

Align

SYNTAX: Align(Value: variant [, Width: integer, Alignment: integer]): string;

DESCRIPTION: The Align function is used to format the alignment of a number or string. The function is passed a value
which is then returned as a formatted string. The string can be aligned-left, aligned-right, or aligned-center. The width of
the string can also be specified. The Align function is particularly useful for outputting numbers in a report or in columns.

PARAMETERS:

Value: The Value can be any number or string (example: 23.56). NOTE: Real variable types will be converted

to show two decimal places. Boolean variable types will be converted to the words 'True' or 'False'.

49

Width: Enter a number to specify the width of the returned string. The default width is 10.

Alignment: Specifies the alignment. Enter one of the following predefined constants: eCenter, eLeft, or eRight
 The default alignment is eRight.

EXAMPLE: The following example displays a chart and then adds a Stochastics study to the chart. The Stochastic values
for the last 10 bars are then retrieved, Aligned, and printed in the output window. The alignment of the Stochastic numbers
with a width of 6 makes the report more readable.

var
 S1, X : integer; {S1 and X declared as integer variables}
begin {Start of Main programming code}
 Chart('IBM.D'); {Open an IBM daily chart}
 S1 := AddStudy(eSto); {Add the Stochastic study to the chart}
 writeln('Stochastic Values'); {Print text to the output window}
 for X := BarEnd-10 to BarEnd do {Loop through the last 10 bars}
 begin {Start of the 'for' loop Statements}
 write('Date= ',Bar(eDate,X)); {Print the Date of each bar}
 write(' %K=', Align(GetStudy(S1, 2, X), 6));
 writeln(' %D=', Align(GetStudy(S1, 3, X), 6));
 end; {End of the 'for' loop Statements}
end; {End of program}

And

SYNTAX: And

DESCRIPTION: And is a logical operator that is often used with Boolean (True and False) conditions like the if …then
statement.

EXAMPLE: The following example determines if two conditions are True. If both conditions are True, then it will Beep.

var {Start of variable declarations}
 X, Y : integer; {X and Y are declared as integers}
begin {Start of Main programming code}
 X := 5; {X is assigned the value of 5}
 Y := 7 {Y is assigned the value of 7}
 if (X<Y) and (X=5) then Beep; {If both conditions are True then Beep}
end; {End of program}

Application

SYNTAX: Application

DESCRIPTION: The Application program statement is used to read or set various Properties of the Ensign program.
The statement can be used to retrieve the Ensign program file name, Handle, Help file name, and to control Hints. The
ProcessMessages method is used to interrupt an ESPL program, so that Windows can respond to other system or program
events. This may be necessary if an ESPL program is very lengthy and is keeping Windows from processing other events in
its multi-tasking environment (hogging the CPU).

PROPERTIES: Properties can be read or set by appending the Property name after the Application statement.

50

ExeName: The Ensign file name and path information.
HelpFile: The name of the Help file that Ensign uses.
Handle: The Handle identifies Ensign. The program Handle for Ensign.
HintColor: The HintColor used by the Hint help boxes in Ensign.
HintHidePause: The time (in milliseconds) before hiding a Hint when the mouse still points to an item.
HintPause: The time before a Hint box appears when the mouse points to a control or menu item.
HintShortPause: The time to wait before bringing up a Hint if a hint has already been shown.
ShowHint: Specifies whether Hints are enabled or disabled. Set ShowHint to True or False.
Title: The text that appears with the Ensign icon in the Windows task bar.

METHOD: A method is a function that occurs when the method is invoked. ProcessMessages is the only available method
for the Application statement.

ProcessMessages: Use ProcessMessages to permit Windows to process other events at the time ProcessMessages is

called. The ProcessMessages method cycles the Windows message loop until it is empty and then returns
control to the ESPL program. In lengthy ESPL programs, calling ProcessMessages periodically will
allow Windows to respond to other system messages such as processing the data-feed or updating charts.
Note: Do not use ProcessMessages if you are using the eSignal data-feed. The command does not
work with the eSignal version of Ensign.

EXAMPLE: This program demonstrates the various Properties and the Method of the Application statement. After
retrieving and setting various properties, a lengthy print loop is started. The Application.ProcessMessages statement
allows Windows to process other system messages between each print, so that the computer will not be locked-up until the
program completes.

var {Start of variable declarations}
 j: integer; {j declared as an integer variable}
 ProgramName: string; {ProgramName declared as a string}
 HelpFile: string; {HelpFile declared as a string}
 ProgramHandle: THandle; {ProgramHandle declared as a THandle}
begin {Start of Main programming code}
 Output(eClear);
 ProgramName:= Application.ExeName; {Retrieve the Ensign filename/path}
 HelpFile:= Application.Helpfile; {Retrieve the HelpFile name}
 ProgramHandle:= Application.Handle; {Retrieve the Ensign Handle}
 Application.HintColor:= clLtGreen; {Set the Hint box colors to Green}
 Application.HintHidePause:= 5000;
 Application.HintPause:= 1000;
 Application.ShowHint:= True; {Enables Hints in Ensign}
 Application.Title:= 'My Ensign'; {Change the Ensign Icon text}
 for j:=1 to 1500 do begin {Start a lengthy 'for' loop}
 writeln('Loop Count = ',j); {Print the value of the loop counter}
 Application.ProcessMessages;
 end; {End of 'for' loop statements}
end; {End of program}

Arc
Chord
Ellipse
Pie

SYNTAX: Arc(x1, y1, x2, y2, x3, y3, x4, y4: integer);

Chord(x1, y1, x2, y2, x3, y3, x4, y4: integer);

51

Ellipse(x1, y1, x2, y2: integer);
Pie(x1, y1, x2, y2, x3, y3, x4, y4: integer);

DESCRIPTION: The four drawing statements above are based on the ability to calculate and draw an Ellipse on a chart.
The Arc statement draws a specified portion of an Ellipse. The Chord statement is the same as the Arc statement except
the ends of the Arc are connected with a straight line. The Pie statement draws a specified pie piece of an Ellipse, with
lines drawn from the center of the Ellipse to connect each end, thus forming a Pie shape. NOTE: A Circle can be drawn
with the Ellipse statement. The drawings on the chart are not permanent and remembered. The ESPL program must
redraw the shapes whenever necessary. The drawings will disappear when the chart is refreshed, moved, redrawn, etc.

The Ellipse statement draws an Ellipse on a Chart. The shape and placement of the Ellipse on the chart are determined by
screen pixel coordinates. Screen pixel coordinates start in the top left corner of the chart window (0, 0). X-coordinates
specify horizontal pixels moving to the right. Y-coordinates specify vertical pixels moving down. The Ellipse is
calculated by specifying a rectangle boundary (x1, y1, x2, y2). The top-left point of the bounding rectangle is at pixel
coordinates (x1, y1) and the bottom-right point is at (x2, y2). An Ellipse is calculated to fit within the rectangle boundary.
NOTE: If the rectangle points form a square, then the Ellipse statement will draw a perfect Circle.

The Arc statement draws an arc line on a Chart. The Arc is a specified portion of an Ellipse. The shape and placement of
the Arc on the chart are determined by screen pixel coordinates. The Arc is calculated by first specifying a rectangle
boundary (x1, y1, x2, y2), similar to the Ellipse statement. The Arc statement only displays the portion of the Ellipse
specified by the (x3, y3, x4, y4) coordinates. An imaginary line is calculated from the center point of the Ellipse to the
(x3, y3) point. The Arc will start drawing from the intersection of this line, and then draw counterclockwise until it
reaches the intersection of the (x4, y4) point from the center point.

The Chord statement is exactly the same as the Arc statement, except the end points of the Arc are connected by a
straight line. For example, a Chord could be drawn that appears similar to a half-moon shape.

The Pie statement is also the same as the Arc statement, except the end points of the Arc are connected by two lines that
extend from the exact center point of the Ellipse, thus forming a Pie shape.

All of the statements will draw on the chart that is currently referenced by the global ESPL Window variable as set by the
FindWindow or Chart functions.

EXAMPLE: The following program draws an Arc, a Rectangle, two Ellipses, a Pie, and a Chord. Different line and color
affects are created by changing the Brush and Pen properties. A Rectangle box is drawn using the same screen coordinates
as the example Arc that is drawn. The Rectangle illustrates how each of the drawing functions are contained within a
bounding rectangle. Click ESPL RUN button 11 and then drag the mouse on the chart to 3 random points on the chart. The
shapes will draw at the X,Y locations specified in the programming code.

uses
 Graphics;
procedure DrawShapes
 SetPen(clBlue, 2, eSolid); {Pen color=Blue, 2 pixel width, Style=Solid}
 Arc(50,10,250,110,50,60,250,10); {Draw an Arc (blue, solid line)}

 SetPen(clWhite, 1, eDot); {Pen color=White, 1 pixel width, Style=Dotted}
 SetBrush(clWhite, eClear); {Brush fill color=White, fill Style=Clear}
 Rectangle(50,10,250,110); {Draw Rectangle (white, dotted lines)}

 SetPen(clYellow, 2, eSolid); {Pen color=Yellow, 2 pixel width, Style=Solid}
 Ellipse(50,110,250,210); {Draw an Ellipse (yellow, solid line)}
 SetPen(clWhite, 1, eDot); {Pen color=White, 1 pixel width, Style=Dotted}
 Ellipse(100,110,200,210); {Draw an Ellipse, (a white, dotted Circle)}

 SetBrush(clRed, eHorizontal); {Brush fill color=Red, fill style=Hor. lines}
 Pie(200,10,400,110,400,110,400,10);{Draw a Pie (Horizontal red line fill)}

52

 SetPen(clRed, 3, eDot); {Pen color=Red, 3 pixel width, Style=Dotted}
 SetBrush(clWhite, eVertical);{Brush fill color=White,fill style=Vert lines}
 Chord(300,100,600,200,500,100,400,200); {Draw a Chord Vertical filling}
end;

{**********Main Programming Code**********}
begin
 if ESPL=11 then DrawShapes;
end;

ArcCos
ArcSin
ArcTan
Cos
CoTan
Sin
Tan

SYNTAX: ArcCos (X: real): real;

ArcSin (X: real): real;
ArcTan(X: real): real;
Cos(X: real): real;
CoTan(X: real): real;
Sin(X: real): real;
Tan(X: real): real;

DESCRIPTION: These functions can be used to calculate various trigonometric values.

ArcCos The return value is in the range [0..Pi], in radians. X must be between -1 and 1.
ArcCos returns the inverse cosine of X.

ArcSin X must be between -1 and 1. The return value will be in the range [-Pi/2..Pi/2], in radians.
ArcSin returns the inverse sine of X.

ArcTan ArcTan returns the arctangent of X. X is a real expression that represents an angle in radians.
Cos Cos returns the cosine of the angle X. X is a real expression that represents an angle in radians.
CoTan Cotan returns the cotangent of X. The cotangent is calculated using the formula 1 / Tan(X). Note: Do

not call Cotan with X = 0.
Sin Sin returns the sine of the angle X in radians.
Tan Tan returns the tangent of X. Tan(X) = Sin(X) / Cos(X).

EXAMPLE: The following program calculates and prints the Tangent of 2.5

var {Start of variable declarations}
 Value: real; {Value is declared as a Real variable type}
begin {Start of Main programming code}
 Value:= Tan(2.5); {Value is assigned the Tangent of 2.5}
 writeln(Value); {Value is printed to the output window}
end; {End of program}

53

Arrays

DESCRIPTION: Use Arrays to store and manipulate groups of numbers. An Array is an ordered collection of numbers,
with each number referenced by its position in the Array. When an Array is created, the elements are all set to zero values.
You can fill the Array elements with any number and manipulate the data as needed. The size of the Array will be the
greater of 2100 or the number of bars on the currently displayed chart.

Arrays must be declared and created at the start of the program, and then freed at the end of the program. Failing to free an
Array variable after using the program will cause a memory leak (the computer memory is not released). Several Properties
and Functions can be used with an Array to add , delete, and retrieve numbers at specified positions in the array, rearrange
the array elements, sort the array elements in ascending or descending order, and calculate math functions on the array data.
NOTE: If you don't want to declare, create, and free your own Array, Ensign provides one predefined array named
vArray. This Array is a global ESPL array that is automatically declared, created, and freed by Ensign (see the
documentation for vArray). If you need to use multiple arrays, then you will have to create and use your own arrays.

Declaring and Creating an Array
Before an Array can be used it must be declared as an TArray variable type, and then created by using the Create
command. Append the Create command after the TArray statement to create the array (example: TArray.Create).
The following program declares an array named TestArray. TestArray is then created, filled with random numbers, sorted,
printed, and then freed at the end. This is a good example of using an Array to hold and manipulate a group of numbers.

var {Start of variable declarations}
 TestArray: TArray; {TestArray is declared as a TArray}
 X: integer; {X is declared as an integer}
begin {Start of Main programming code}
 TestArray:=TArray.Create; {TestArray is Created}
 for X:=1 to 10 do TestArray.Values[X]:=Random(100); {TestArray filled}
 TestArray.Sort(10,10,True); {TestArray is sorted}
 for X:=1 to 10 do writeln(TestArray.Values[X]); {TestArray is printed}
 TestArray.Free; {TestArray is freed}
end; {End of program}

PROPERTIES, FUNCTIONS, AND METHODS: The following list of commands can be used to control arrays. The
command is appended to the Array name to obtain the desired action (example, TestArray.Values[5]).

Values References a specified position in the Array. Used to set and retrieve values from the Array.
Average Returns the simple moving average of a range of Array elements.
ExpAverage Returns an exponential smoothed average for a range of Array elements.
Highest Returns the highest number and its Position in a range of Array elements.
Lowest Returns the lowest number and its Position in a range of elements.
Regression Returns the linear regression line value for a range of elements.
StdDev Returns the standard deviation for a range of elements.
Summation Returns the sum of the values for a range of elements.

Create Creates and initializes an Array.
Delete Deletes a specified element from the Array.
Exchange Swaps the position of two elements in the Array.
Free Destroys an Array and frees its associated computer memory.
IndexOf Returns the Position of a specified number of the array.
Insert Inserts a number at a specified Position.
Plot Opens a chart and plots the Array values on the chart.
Sort Sorts the array elements in ascending or descending order.

SYNTAX: The following syntax is used with each Array command.

54

Андрей
forex-warez.com

Values: ArrayName.Values[Position: Integer]: real;
 The Values property is used to store and retrieve a number from the specified position in the Array.

Square brackets and a position number are used to specify the Position in the array. Use the Values
command to read or modify the number at the specified position. Position specifies the position of the
number in the Array, where 0 is the position of the first number, 1 is the position of the second number,
and so on.

 Example: TestArray.Values[5] references the 6th element in TestArray.

For the following seven functions, the default for Position is 2100. The default for Count is Position. Parentheses are used
to enclose the Position and Count values.

Average: ArrayName.Average([Position: integer, Count: integer]): real;
 Average returns a simple moving average value for Count number of elements ending at the specified

Position. Example: TestArray.Average(19,20) returns the average of the first 20 array values.
Remember that the count starts at zero, so 19 is the 20th position in the array.

ExpAverage: ArrayName.ExpAverage([Position: integer, Period: integer [, Start: integer]): real;
 The ExpAverage function returns the exponential smoothed average from Start through Position. If Start

is omitted, then the default for Start is Position - Period + 1.
 The exponential smoothing factor = 2 / (Period + 1).
 ExpAverage is initialized with ArrayValue[Start].
 ExpAverage = ArrayValue * factor + (1-factor) *previous ExpAverage.
 Example: TestArray.ExpAverage(50,10)returns a 10 period ave ending at position 50.

Highest: ArrayName.Highest(Position, Count, var ArrayIndex, Rank: integer): real;
 Highest returns the highest number from Count number of elements ending at the specified Position.
 ArrayIndex is an integer value that is returned from this command. It contains the array position where

the highest number occurred. If two array elements contain the same high value, ArrayIndex will return
the position of the first occurrence (closest to position 0). Rank can be entered as a value from 1 to 5. The
Rank specifies that the return value be the 1st, 2nd, 3rd, 4th, or 5th highest value in the specified array
elements.

 Example: TestArray.Highest(20,10,X,2) returns the 2nd highest value in elements 11 to 20.

Lowest: ArrayName.Lowest(Position, Count, var ArrayIndex, Rank: integer): real;
 Lowest returns the lowest number from Count number of elements ending at the specified Position.
 ArrayIndex is an integer value that is returned from this command. It contains the array position where

the lowest number occurred. If two array elements contain the same low value, ArrayIndex will return
the position of the first occurrence (closest to position 0). Rank can be entered as a value from 1 to 5. The
Rank specifies that the return vale be the 1st, 2nd, 3rd, 4th, or 5th lowest value in the specified array
elements.

 Example: TestArray.Lowest(20,10,X,1) returns the lowest value in elements 11 to 20.

Regression: ArrayName.Regression(Position, Count: integer, var Slope: real, var StdError: real): real;
 A simple linear regression line is determined using Count number of elements ending at Position.

Regression returns the value of the linear regression line at Position. The slope of the linear regression
line is returned in the Slope variable, and the Standard Error of Estimate is returned in the StdError
variable. These variables should be declared before calling this command.

 Example: TestArray.Regression(20,10,S,SE) returns the linear regression value from
elements 11 through 20. The slope is returned in S, and the standard error in returned in SE.

StdDev: ArrayName.StdDev([Position, Count: integer, Flag: boolean]): real;
 StdDev returns a standard deviation for Count number of elements ending at Position. When Flag is

True, it uses the formula for a specific population, and when False, it uses the formula for a sample
population. The default is for a specific population. Example: TestArray.StdDev(20, 10,
True) returns the Standard Deviation of array elements 11 through 20.

55

Summation: ArrayName.Summation([Position, Count: integer]): real;
 Summation returns the sum of Count number of elements ending at Position.
 Example: TestArray.Summation(20, 21) returns the sum of all the elements from 0 to 20.

Create: ArrayName := TArray.Create; Call TArray.Create to create an array of real. The size of the

array is fixed and cannot be redimensioned. All elements are initialized to a value of zero. Trying to use
an array before it is created will cause an Access Violation error. The ArrayName should be declared
before creating it.

 var {Start of variable declarations}
 TestArray: TArray; {TestArray is declared as a TArray}
 begin {Start of Main programming code}
 TestArray:=TArray.Create; {TestArray is Created}

Delete: ArrayName.Delete(Position: Integer);
 Delete removes a specified number from the array. Subsequent elements in the array are moved up to fill

in the number deleted at position Index.
 Example: TestArray.Delete(5); {Deletes array element at Position 5}

Exchange: ArrayName.Exchange(Position1, Position2: Integer);
 Call Exchange to exchange the position of two numbers in the array. The numbers are specified by their

position values. The following example exchanges the array values in Position 5 and Position 6.
 Example: TestArray.Exchange(5, 6);

IndexOf: ArrayName.IndexOf(Number: real): Integer;
 Call IndexOf to locate the first occurrence of Number in the Array. IndexOf returns the Position of the

number in the array. Example, if Number is located in the Position 5 of the array, then a 5 will be
returned. If Number is not found in the array, then a -1 is returned. If Number appears in the array
multiple times, then only the position of the first occurrence is returned.

 Example: TestArray.IndexOf(750); {Locate the Position index of the number 750}

Insert: ArrayName.Insert(Position: Integer; Number: real);
 Use Insert to insert Number into the array at the specified Position index. If Position equals 0, then

Number is inserted at the beginning of the array. Subsequent array elements are moved down in the array
to make room for the inserted number.

 Example: TestArray.Insert(5, 750); {Inserts the number 750 at array position 5}

Plot: ArrayName.Plot(FileName: string, Count: integer);
 Call Plot to open a Chart and Plot the array data on the Chart. The date for the data set will be today's

date. The index is stored in the Time field for each data point. Count is the number of data points, with
the first data point beginning at position 1. When the Chart is closed the data set will be saved to
FileName.

 Example: ArrayName.Plot('C:\ENSIGN\HIST\ARRAY.D', 100); {Plots 100 array elements}

Sort: ArrayName.Sort([Position: Integer, Count: integer, Ascending: boolean]);
 Call Sort to sort the numbers in an array. Sort will sort Count number of elements ending at Position.

The default for Count is Position. Ascending will sort the array into ascending order when True, and
descending order when False. The default is ascending order.

 Example: TestArray.Sort(10,10,True); {TestArray is sorted}

AutoESPL

SYNTAX: AutoESPL: integer;

56

DESCRIPTION: AutoESPL is a global variable that can be read or set the ESPL variable value that is used for the ESPL
Project Autorun feature. This value is shown on the Setup | System | ESPL & DYO form in the spinner labeled ESPL
variable value.

EXAMPLE:

begin
 writeln(AutoESPL);
 AutoESPL := 5;
end;

AutoRefresh

SYNTAX: AutoRefresh: boolean;

DESCRIPTION: AutoRefresh is a global variable that can be set to a value of True or False. Use the AutoRefresh
variable to programmatically enable or disable the 'Auto Refresh On Chart Open for:' check box on the Setup | Charts
property form. If True, charts will automatically request a refresh of data when a chart opens. This is a global setting.

EXAMPLE:

procedure OpenAChart;
begin
 AutoRefresh := True;
 writeln(AutoRefresh);
 Chart('IBM.D');
end;

begin
 if ESPL=1 then OpenAChart;
end;

Ave
ExpAve
Sum
 SYNTAX: Ave(n1: variant [, n2: variant ….. n100: variant]): real;

ExpAve(alpha: variant, n1: variant [, n2: variant ….. n99: variant]): real;
Sum(n1: variant [, n2: variant ….. n100: variant]): variant;

DESCRIPTION: The Ave function returns the simple average of the parameters. Ave = Sum/Count. The ExpAve
function returns the exponential smoothed average of the parameters. The exponential smoothing factor is passed as the 1st
parameter. ExpAve is initialized with n1. ExpAve = n * factor + (1-factor) *previous ExpAve. The exponential smoothing
factor equals Alpha when alpha is between 0 and 1, otherwise the exponential smoothing factor is equal to 2 / (Alpha + 1).
The Sum function returns the sum of the parameters.

PARAMETERS: The parameter list may contain up to 100 numeric entries.

EXAMPLE:

begin

57

 writeln(Ave(5,7,9,11,3)); {Prints 7 = (5 + 7 + 9 + 11 + 3) / 5 }
 writeln(ExpAve(0.2,8,6)); {Prints 7.60 = (6 * 0.2) + (0.8 * 8)}
 writeln(Sum(5,3,9,-1)); {Prints 16 = 5 + 3 + 9 + -1}
end;

Average
ExpAverage
Summation

SYNTAX: Average(Type: integer, Index: integer, Period: integer [, Dataset: integer]): real;
 ExpAverage(Type: integer, Index: integer, Period: integer [, Start: integer, Dataset: integer]): real;
 Summation(Type: integer, Index: integer, Period: integer [, Dataset: integer]): real;

DESCRIPTION: The Average, ExpAverage, and Summation commands are used to perform math calculations on chart
data. Since there may be multiple Chart windows open at the same time, it is important to first identify the Chart that the
functions will apply to. A global ESPL variable named Window is used to specify which chart to use. The Window
variable can be manually assigned a window pointer value (if you have been keeping track of the window handles), or you
can use the FindWindow or Chart functions to set the Window variable.

The Average function is used to calculate a simple average of several Chart data points. The function returns the simple
average of Period number of chart data points which end at Index. Average = Summation/Period.

The Summation function returns the sum of Period number of Chart data points which end at Index.

The ExpAverage function returns the exponential smoothed average from Start through Index.
The exponential smoothing factor = 2 / (Period + 1).
ExpAverage is initialized with Price[Start].
ExpAverage = Price * factor + (1-factor) *previous ExpAverage.

PARAMETERS:

Type: Type is one of the following predefined constants:
 eArray eClose eHigh eLast eLow eMidPoint

eMid3 eMid4 eNet eOpen eOpenInterest ePercent
eRange eTrueHigh eTrueLow eTrueRange eVolume
1 2 3 4

 Refer to the Bar function for a complete description of these constants.

Index: Index is the Chart bar array position (a number between 1 and the number of bars in the chart file). Both

the Host chart and optional Overlay charts use the same indexing.

Period: Period is the number of data points to use in the calculation. The chart data points from (Index - Period +

1) through and including (Index) will be used in the calculation.

Start: Start is only used with the ExpAverage command. The default for Start is (Index - Period + 1).

DataSet: DataSet is used if the chart contains another study or an overlay chart. In this case, the functions can be

applied to another study, or to the overlay chart's data. The default is to use the host chart's data. To
access the overlay chart's data pass the overlay's object number as the Dataset parameter, or pass a
number 1, 2, 3, etc. (meaning the 1st, 2nd, or 3rd overlay). NOTE: The object number for studies and
overlays can be obtained with the FindStudy command.

58

EXAMPLE:

begin
 Chart('IBM.D');
 writeln(Average(eLow, BarEnd, 10)); {Print Average of the last 10 Lows}
 writeln(Summation(eHigh, BarEnd, 20)); {Print Sum of the last 20 Highs}
 writeln(ExpAverage(eVolume, BarEnd, 20));{Print Ave Volumes last 20 bars}
end;

Bar
ChartBar

SYNTAX: Bar(Type, Index: integer [, Dummy, Dataset: integer]): variant;
 Bar(eIndex, Date [, Time, Dataset: integer, NearestMatch: boolean, Seconds :integer]): integer;

 ChartBar(ChartName: string, Type, Index [, Dummy, Dataset: integer]): variant;
 ChartBar(Window, Type, Index [, Dummy, Dataset: integer]): variant;

 ChartBar(ChartName: string, eIndex, Date [, Time, Dataset: integer, NearestMatch: boolean]): integer;
 ChartBar(Window: integer, eIndex, Date [, Time, Dataset: integer, NearestMatch: boolean]): integer;

DESCRIPTION: Bar and ChartBar are used to retrieve price values from the referenced Bars of a Chart. Since there may
be multiple Chart windows open at the same time, it is important to first identify the Chart that the functions will apply to.
A global ESPL variable named Window is used to specify which chart to use. The Window variable can be manually
assigned a window pointer value (if you have been keeping track of the window handles), or you can use the FindWindow
or Chart functions to set the Window variable.

Bar(eIndex, Date, Time) is used to find the bar Index position for a given date and time. The function returns a zero if the
bar is not found. If the time is omitted then the index for the last bar of the day will be returned. For Tick charts,
Bar(eIndex, Date, Time) returns the first occurrence for duplicate time stamps.

ChartBar functions are identical to the Bar functions, except that a Chart must be identified in the 1st parameter.
ChartBar uses either the name of the Chart or a Window handle number to know which chart data-set to use. ChartBar
allows you to access chart data from any open chart window. Use FindWindow to get a Window handle number.

PARAMETERS:

Type: Type is one of the following predefined constants:

eArray Returns the vArray[Index] value
eClose Returns the bar's Close price
eColor Returns the bar's color value, unless it is one of the following set by a ColorBar study:
 0 = Normal
 1 = Bullish color
 2 = Bearish color
 3 = ESPL color
 4 = Volume color
 5 = OpenInt color
 6 = Grid color
 254 = background color (hidden).
eColorValue Returns the bar's color value. eColor could return 1 for Bullish color, whereas eColorValue will return

the color value.

eDate Returns the bar's date value in the format of yyymmdd. 100 represents the year 2000.

59

 For years 2000+ yyy= 100 + last 2 year digits (example 106 = 2006, 1061225)
 For years 1999 and prior the year will be returned as 97, 98, 99 (example: 991225);
eDateTime Returns the bar's Date and Time value as a TDateTime variable.
eDay Returns the Calendar Day of the bar
eHigh Returns the bar's High price
eIndex Returns the bar Position index for a given date and time
eLast Returns the bar's Close price (last price)
eLow Returns the bar's Low price
 eMidPoint Returns the bar's (High + Low) / 2
eMid3 Returns the bar's (High + Low + Last) / 3
eMid4 Returns the bar's (Open + High + Low + Last) / 4
eMonth Returns the bar's Calendar Month
eNet Returns the bar's Net change (Last - PriorLast)
eOpen Returns the bar's Open price
eOpenInterest Returns the bar's Open Interest value
ePercent Returns percent value Close is, in the High/Low range (100*(Last-Low)/(High-Low))
eRange Returns the High Low range of the bar (High – Low)
eRawTime Returns the bar's raw time stamp. For intra-day bars this is seconds from 1970.
eSecond Returns the bar's Seconds time stamp value. Example, 15 equals 15 seconds.
eTickCount Returns the Tick Count for the bar. Useful with Constant Tick bars.
eTime Returns the bar's Time value in the format of HHMM
eTrueHigh Returns the higher of either the High price or previous bar's Close
eTrueLow Returns the lesser of either the Low price or previous bar's Close
eTrueRange Returns the True High - True Low range
eVolume Returns the bar's Volume
eYear Returns the bar's Calendar Year. 100 is used to represent the year 2000.
1 Returns indexed values from the 1st User Study Array
2 Returns indexed values from the 2nd User Study Array
3 Returns indexed values from the 3rd User Study Array
4 Returns indexed values from the 4th User Study Array

eAskVol Returns the Ask Volume
eBidVol Returns the Bid Volume
eAskRatio Returns the Ask Ratio
eBidRatio Returns the Bid Ratio
eBuyPress Returns the Buy Pressure
eSellPress Returns the Sell Pressure
eBuyRatio Returns the Buy Ratio
eSellRatio Returns the Sell Ratio

Note: Buy Pressure and Sell Pressure are similar to Ask Volume and Bid Volume. However, the Pressure values are
derived from bar prices using proprietary formulas.

Index: Index is the bar array subscript between 1 and the number of bars on the chart. If Index is less than or

equal to zero, the function will use index as an offset from the last bar on the chart. If Index is out of
range, the function will return zero. Both a host chart and its optional overlay chart use the same
indexing.

Date: Date is the bar's date as a integer in the format of yyymmdd.

Example: 1001231 represents December 31, 2000
 98= 1998, 99= 1999, 100= 2000, 101= 2001, 102= 2002

Time: Time is the bar's time stamp as a long integer in the format of hhmm, example: 830
 For daily, weekly, and monthly charts, the Time value should be zero, or omitted.

Seconds: Seconds is the bar's Seconds time stamp as a long integer. Example: 15 equals 15-seconds.

60

 For daily, weekly, and monthly charts, the Seconds value should be zero, or omitted.

Dummy: A Dummy parameter that is not used. Enter a zero value. Used only as a place holder.

DataSet: DataSet is used if the chart contains an overlay chart. In this case, two chart datasets can be accessed.

The default is to use the host chart's data. To access the overlay chart's data pass the overlay's object
number as the Dataset parameter, or pass a number 1, 2, 3, etc. (meaning the 1st, 2nd, or 3rd overlay).
NOTE: The overlay object number can be obtained with the FindStudy command.

NearestMatch is an optional flag. Set the value to TRUE to locate and return the nearest or exact bar. Set the value to

FALSE (or omit the parameter) to only find the exact match. If the exact match is not found, then the
function will return a zero. This parameter allows you to find the nearest eIndex bar to the specified
Time and Date (even on a different chart) if the exact matching time and date are not found.

EXAMPLE:

var {Start of Variable declarations}
 WindowX:integer; {Declare WindowX as an integer variable}
begin {Start of Main programming code}
 Output(eClear);
 Chart('MSFT.D'); {Open a MSFT Daily chart}
 Chart('INDU.D'); {Open an INDU Daily chart}
 Chart('IBM.D'); {Open an IBM Daily chart}
 writeln(Bar(eIndex, 1000315)); {Print Index of bar March 15, 2000 date}
 writeln(Bar(eDate,BarEnd)); {Print the Date of the last IBM bar}
 writeln(Bar(eTrueRange, BarEnd)); {Print TrueRange of last IBM bar}
 writeln(ChartBar('INDU.D', eHigh, 500)); {Print High at Index 500}
 WindowX:=FindWindow(eChart, 'MSFT.D'); {Find MSFT chart}
 writeln(ChartBar(WindowX, eLow, BarEnd)); {Print Low of last MSFT bar}
end; {End of Program}

BarBegin
BarEnd
BarLeft
BarRight
BarBeginLeft

SYNTAX: BarBegin: integer;
 BarEnd: integer;
 BarLeft: integer;
 BarRight: integer;
 BarBeginLeft: integer;

DESCRIPTION: These five global chart variables contain Bar Index positions for a chart. They are frequently used in
User-defined Studies and User-defined Color Bar programs.

BarEnd: The Bar Index position for the last bar of the Chart.
BarLeft: The Bar Index position for the bar on the left edge of the Chart.
BarRight: The Bar Index position for the last Visible bar (useful if the chart has been shifted to the right).
BarBegin: Initially set to 2 (second bar of the chart data). On subsequent calls it is set to BarEnd.
BarBeginLeft: Initially set to BarLeft. On subsequent calls it is set to BarEnd.

61

NOTE: FOR loops are often used to loop through all the bars on a chart. Calculations or studies are performed on the chart
data. The first time a User-defined Study runs, Ensign will set BarBegin to 2, and BarEnd to the last bar index. These
variables can then be used in the FOR loop, to loop from the first bar to the last bar of the chart.

On a real-time chart, the ESPL programming code is called at the completion of every new bar (or every tick). Rather than
loop through every bar again, calculations for just the most recent bar are normally performed. For this reason, on all
subsequent calls to the programming code, Ensign will set BarBegin and BarBeginLeft to be the index of the last bar. In
other words, BarBegin and BarBeginLeft will equal BarEnd. Programming calculations should loop from BarBegin or
BarBeginLeft to BarEnd. BarLeft is the index position of the first visible bar on the chart. Use BarBeginLeft instead of
BarBegin when you only want to loop through the visible bars of the chart.

EXAMPLE: This program can be run by opening a chart, and then clicking ESPL button 100 on the Run ESPL panel.
This starts a User-defined study and sets the ESPL variable to 100. The ESPL program checks to see if ESPL = 100 and
then calls the 'PrintPrices' procedure if true. The 'PrintPrices' procedure outputs the Date, plus the High and Low prices of
each bar to the output window. At the completion of every new bar on the chart, the ESPL programming code will get
called again. On these subsequent calls to the program, BarBegin will equal BarEnd, so that only the new bar will get
added to the printed list (the loop will be from BarEnd to BarEnd…the last bar only). In this example, the program loops
through all the chart bars on the initial run; on all subsequent calls to the program (when a new bar completes on the chart)
just the last bar is printed.

procedure PrintPrices; {Declare a procedure named PrintPrices}
var
 LoopCount: integer; {Declare LoopCount as an integer}
begin
 for LoopCount := BarBegin to BarEnd do {Loop from BarBegin to BarEnd}
 begin {Start of Loop Programming code}
 writeln('Date=', Bar(eDate,LoopCount)); {Print the Date of each bar}
 writeln('High=', Bar(eHigh,LoopCount)); {Print the High of each bar}
 writeln('Low =', Bar(eLow,LoopCount)); {Print the Low of each bar}
 writeln(''); {Print a Blank line to separate days}
 end; {End of Loop Programming code}
end;

 {****Main Programming Code****}
begin {Program Execution Starts here}
 if ESPL=100 then PrintPrices;
end;

Beep

SYNTAX: Beep;

DESCRIPTION: The Beep statement is used to make a beep sound. The statement activates the Windows API
MessageBeep function.

EXAMPLE:

begin
 Beep;
end;

Begin...End

62

SYNTAX: Begin
 {multiple statements}

End;

DESCRIPTION: The Begin and End statements are used to group together and to block sections of programming code.
The main programming code for any program starts with the Begin statement and ends with the End statement. The
Begin statement does not require a semi-colon. Grouping several lines together in a Begin…End block forms a
compound statement. Compound statements are frequently used in If..Then…Else statements, For loops, and While
statements.

For example, if a program requires several things to happen in an If…Then…Else statement, then use a Begin…End
block to enclose all the necessary programming statements. Each statement in the Begin…End block should end with a
semi-colon.

EXAMPLE: The following example uses several blocks of code. When the program is run, it first tests to see if the time is
past 09:30 AM. If so, it then loads an IBM.60 chart and checks to see if the current price is higher than the closing price
of the previous hourly bar. Depending on the results, the program will beep and print an appropriate message. The chart is
then closed.

var
 s: string;
begin {Start of Main programming code}
 if TimeStr > '09:30' then {If time > 9:30 AM then proceed}
 begin {Start of 1st If…Then Block}
 Chart('IBM.60'); {Open an IBM 60-minute chart}
 if Last(BarEnd) > Last(BarEnd-1) then {If bar > previous bar then do}
 begin {Start of 2nd Block}
 beep; {Make a beep sound}
 writeln('IBM is Higher this hour'); {Print message}
 end {End of 2nd Block}
 else {else otherwise do 3rd Block code}
 begin {Start of 3rd Block}
 beep; {Make a beep sound}
 writeln('IBM is Lower this hour'); {Print message}
 end; {End of 3rd Block}
 mnuCloseWindow.click; {Close the Chart}
 end; {End of 1st If…Then Block}
end; {End of Program}

NOTE: Use Tabs to indent the Blocks of code. It makes the programming code much easier to read and follow. The Else
statement included in the If…Then…Else statement should not be preceded by a semi-colon. That is why the first End
statement in this example is not followed with a semi-colon.

Bullet

SYNTAX: Bullet(Index: integer, Position: integer [, Color: Integer]): integer;

DESCRIPTION: Bullet will add bullet markers to a chart similar to the Alert Draw Tool. Bullet returns the color of the
chart pixels before a bullet is drawn. The return value can be used to test for the presence of an existing bullet. Bullet
returns 0 when the pixels are the chart background color. A bullet will not be drawn when the Color parameter is omitted.
Use eNone as the Color parameter to erase a bullet. The Bullets are not permanent objects and will not remain on the chart
if the chart is moved or closed. The ESPL program must draw the bullets as needed.

PARAMETERS:

63

Index: Index is the bar array subscript between 1 and the number of bars on the chart.

Position: Position is one of these predefined constants for the location of the bullet:

 eHigh eLast eLow eMidPoint eOpen
 1 2 3 4 5 6 7 8

 1, 2, 3 and 4 are the 1st, 2nd, 3rd, and 4th Top rows where bullets are placed.
 5, 6, 7, and 8 are the 1st, 2nd, 3rd, and 4th Bottom rows where bullets are placed.

Color: Color may be one of the following numbers for the bar color. These values will use the colors that are

selected on the SetUp | Chart form:
 0 = Normal
 1 = Bullish color
 2 = Bearish color
 3 = Big Cross color
 4 = Volume color
 5 = OpenInt color
 6 = Grid color
 254 = background color (hidden) = eNone.

Setting a bullet’s color to eNone will remove a bullet.

 Color may be one of these predefined color constants or a hex BlueGreenRed number:

 Note: Because clBlack has a value of 0, using it would color the bar with the Normal color instead of

black. Uses the Window variable as set by the FindWindow or Chart function.

EXAMPLE: The following program will draw a Red bullet on the top row, if a bullet does not already exist there.

begin
 FindWindow(eChart);
 if Bullet(BarEnd,1)=0 then Bullet(BarEnd,1,clRed);
end;

Buttons

DESCRIPTION: Many of the program Buttons in Ensign can be accessed with the ESPL language. Button properties can
be read and set. Buttons can also be programmatically clicked (as if the button had been clicked with the mouse). Buttons
can also be disabled, resized, and filled with unique captions and hints. This allows ESPL programs to utilize the power and
features of Ensign buttons. To click a button, list the button name followed by the 'Click' command (example:
btnQuote.click will open a quote page).

PROPERTIES AND METHODS:

Click: Click simulates a mouse click, as if the user had clicked on the button.
 Example: btnNews.click; will open the News page

Caption: Caption specifies the text on the button. Not all buttons have captions. The example changes the 'ESPL'
to an 'X' on then ESPL button. Example: btnESPL.caption := 'X';

Checked: Checked can be used to set or read the up or down state of a button.
Example: btnHelp.Checked := True; will depress the button.

64

Cursor: Specifies the mouse image when the cursor passes over a button. The example will cause the mouse
cursor to change to an 'HourGlass' when moved over the Exit button. The available mouse cursors are
shown below.

 crDefault Uses the default Windows mouse cursor.
 crArrow Uses an Arrow cursor.
 crCross Uses a Cross cursor.
 crIBeam Uses an I-Beam cursor.
 crSize Uses an Arrow cursor.
 crDrag Uses the Drag cursor.
 crHourGlass Uses the HourGlass cursor.
 Example: btnESPL.cursor := crHourGlass;

Enabled: This allows you enable or disable a button. If a button is disabled, then it will not respond to any mouse

clicks or to the keyboard. Set Enabled equal to either False or True to disable or enable the button.
 Example: btnESPL.enabled := False; causes the button to be disabled.

ImageIndex: Change the button image. See the Image List in the Appendix for a list of index values.
Example: btnLive.ImageIndex := 148; sets the Live feed button on the main tool

bar to the Green ball image

Visible: This allows you to actually hide a button. True makes the button visible. False hides the button.
 Example: btnChart.visible := False; hides the Charts button.

Hint: Allows you to change the Hint text that appears when the mouse is over a button.
 Example: btnQuote.hint := 'Click here to Open a Quote Page';

ShowHint: Allows you to enable or disable hints for a button. When True, the button will display the Hint.
 Example: btnAlert.ShowHint := False; disables hints for the Alerts button.

To move or resize a button, use the following button properties.

Height: Height is the vertical size of the button in pixels.
Width: Width is the horizontal size of the button in pixels.
Top: The vertical coordinate of the top edge of the button.
Left: The horizontal coordinate of the left edge of the button.

 Example: btnQuote.height := 12; reduces the height of the Quote button to 12 pixels.

AVAILABLE TOOLBAR COMPONENT NAMES:

Main Ribbon Setup Ribbon Window Ribbon Help Ribbon
btnLayout btnFeeds btnCascade btnStaff

btnChart btnSystem btnTileHorz btnNewUser

btnStack btnCharts btnTileVert btnContactUs

btn1 through btn9 btnPackage btnClose btnRunRemote

btnQuote btnInternet btnFind btnJoinWebinar

btnOption btnTheme btnWindowColor btnHome

btnNews btnPrinter btnWindowFont btnDocs

btnAccount btnCustomSymbols btnPrint btnHelp

btnAlert btnOptimizeTrades btnImageTo btnVideo

65

btnOrderEntry btnChartScanner btnExit btnWhatsNew

btnSpreadSheet btnPlayback btnAboutEnsign btnDownloads

btnChatRooms btnClock btnUpgrade

btnDatabase btnSymbolProperty btnSymbols

btnESPL btnCrossRef btnHardwareReport

btnRunESPL btnHolidaySchedule btnReports

btnOutputWindow btnLog

Main Toolbar Labels Forms

btnLive lblEnsign frmMain

btnPin lblCaption frmRunESPL

btnMinimize

btnMaximize

btnExitEnsign

Run ESPL Form
btnESPL# Where # is the ESPL tag:

 0..9, 100..109,
200..209, 300..309,
400..403, 500..503

EXAMPLE: The following program clicks the Quote page button, prints the quote page, and then closes the window.

begin {Start of Main programming code}
 btnQuote.click; {Click Quotes button to open a quote page}
 btnPrint.click; {Click Print button to print the quote page}
 btnClose.Click; {Close all child windows}
 btnESPL1.Caption := 'Reset'; {Change this ESPL button's caption}
end; {End of program}

EXAMPLE: The following program will change the screen to show Layer 2, and show the RUN ESPL form.

begin
 btn2.click; {Display layer 2}
 frmRunESPL.Visible := true; {Display the Run ESPL form}
end;

CallBack
SYNTAX: CallBack(Index: integer);

DESCRIPTION: The CallBack statement is only used with a User study. When a User study executes, it sets BarBegin
and BarEnd prior to making the call. Normally a study would be designed to iterate through all bars between these two
indexes using a FOR loop. If the calculation time it too long, one might consider calculating for 1 bar, and then issue a
CallBack statement and pass as the parameter the Index where the calculation should resume. Index will be used to set

66

the value for BarBegin. CallBack posts a windows message to the Ensign program to execute the ESPL user study script
again. The ESPL script will terminate so other processes can run, such as processing the data feed. Then the windows
message will rerun the ESPL script for the user study.

PARAMETERS:

Index: Specifies the value that BarBegin will be set to prior to executing the User study's script.

EXAMPLE: Open a chart, and click button 100 on the Run ESPL panel to add ESPL User study 100.

begin {Start of Main programming code}
 if ESPL = 100 then begin {process calls from the ESPL study}
 if BarBegin < BarEnd then begin {repeat while there are more bars to calculate}
 writeln(BarBegin); {show some action}

CallBack(BarBegin + 1); {post windows message to execute again}
 end; {end of BarBegin < BarEnd block}
 end; {end of ESPL = 100 block}
end; {End of program}

Chart

SYNTAX: Chart(FileName: string [, Feed: constant]): integer;

DESCRIPTION: The Chart function is used to open and display a chart. The function returns the chart's child window
position, and internally sets the global ESPL Window variable equal to the chart child window. NOTE: You can manually
set the ESPL Window variable to point to a child window, but the ordering of windows can change when any window gets
focus, or new windows are opened. You shouldn't try to remember a Window number for a specific chart, in order to
identify that chart later in your code. Instead, use the FindWindow command. The Feed for the chart symbol can be
optionally specified.

PARAMETERS:

FileName: Specifies the Chart file to open and display. Examples: 'IBM.D', 'AAPL.1', 'INDU.W', etc.

Feed: Feed is one of these predefined constants. The default is the value assigned to the FEED global variable.
eFXCM eIB eSignal eIQFeed eNinja eOpenECry
eTraderBytes eTransAct eGlobal eDBFX eATCBrokers eCustom

EXAMPLE: The following example opens an IBM daily chart and prints the last 10 Dates and Closing prices of the chart.

var {Start of Variable declarations}
 a: integer; {Declares 'a' as an integer variable}
begin {Start of Main programming code}
 Chart('IBM.D'); {Open the IBM daily chart}
 for a := BarEnd-9 to BarEnd do writeln(Bar(eDate,a),' ',Last(a));
 mnuCloseWindow.click; {Close the chart window}
end; {End of program}

ChartLoad

SYNTAX: ChartLoad(FileName: string [, Feed: constant]): boolean;

67

DESCRIPTION: ChartLoad is used to open a chart (without painting the bars and studies in the chart window). Use
ChartLoad when you need to load several charts in a row, and perform calculations on the chart data. ChartLoad is very
fast because the chart bars are not painted in the chart window (except the first chart requested). The chart data and chart
studies are loaded into memory and can be accessed the same as with any chart. If several charts need to tested, then
ChartLoad should be used instead of the Chart command. ChartLoad allows you to access all of the chart and study
data without actually painting the data to the screen. If no charts are open, then ChartLoad will open an initial chart
window. Once a chart window is open, subsequent calls to ChartLoad will load the new chart into the existing window.
This increases the speed for loading several charts in a row. ChartLoad returns a True value if the chart file was able to
load properly. The Feed for the chart symbol can be optionally specified.

PARAMETERS:

FileName: FileName is the chart file that will be loaded. If necessary, FileName may include the path to the file.

However, if no path is provided Ensign will determine the path based on the file extension.

Feed: Feed is one of these predefined constants. The default is the value assigned to the FEED global variable.

eFXCM eIB eSignal eIQFeed eNinja eOpenECry
eTraderBytes eTransAct eGlobal eDBFX eATCBrokers eCustom

EXAMPLE: The following example scans through all the symbols in the NASDAQ stock market group. If a symbol's
current price is between 55 and 60 dollars, then a chart file is loaded. Each chart is then tested to see if the current price is
Higher than the close price of 10 bars ago. All symbols which meet these requirements are printed to the output window.

begin {Start of Main programming code}
 Find(eSignal); {Locate the eSignal quote symbols}
 repeat {begin Repeat…Until loop}
 if GetData(eLast) <= 60 then {test each symbol to see if Last <= 60}
 if GetData(eLast) >= 55 then begin {test each symbol to see if Last >= 55}
 ChartLoad(GetData(eSymbol)+ '.D'); {Load chart for the current symbol}
 if Last(BarEnd) > Last(BarEnd-10) then writeln(GetData(eSymbol));
 end; {end of If…then block}
 until not Find(eNext); {Get next symbol, loop back to repeat}
 mnuCloseWindow.click; {Close the chart window}
end; {End of program}

ChartRefresh

SYNTAX: ChartRefresh([True, Window, Recalc: integer, RecalcESPL: boolean]): boolean;
 CharRefresh(False): boolean;

DESCRIPTION: The ChartRefresh function is used to control the recalculation and refreshing of chart lines and tools.
The ChartRefresh(True) command causes a chart to redraw or refresh itself. The Window parameter can be used to
refresh a specific study sub-window panel (rather than the whole chart). All the lines and tools on the chart will be
refreshed (redrawn). The ChartRefresh(False) command disables chart refreshing. This may be desired if multiple lines
are being drawn on a chart (causing a noticeable blink for each item). The refresh should be disabled until all the lines are
drawn. Then the refresh can be enabled again with the ChartRefresh(True) command. Enter any value in the 3rd
parameter (Recalc) to cause all studies on the chart to recalculate and repaint (except ESPL studies). Enter True in the 4th
parameter (Recalc ESPL) to recalculate and repaint all studies on the chart, including ESPL studies. Be careful when using
this 4th parameter that you don't design your programming code so that it goes into a endless loop. The 4th parameter
should only be used when you are manually clicking a button to cause a Recalc of all studies.

NOTE: ChartRefresh() without a parameter defaults to ChartRefresh(True). The ChartRefresh command could be
used when using the AddLine command to add many lines to a chart. The chart refresh should be disabled first, then the

68

Андрей
forex-warez.com

lines should be drawn, then the refresh should be turned on again. ChartRefresh(True) enables the chart refresh and forces
the chart and its lines to redraw. ChartRefresh(True) should be used after using the SetBar(eColor…) function. NOTE:
Try not to create a circular loop where ChartRefresh causes the chart to recalculate, which causes ChartRefresh to
execute again, and the process repeats endlessly. It would be inappropriate to use ChartRefresh in an ESPL Color Bar
study for this reason.

PARAMETERS:

Window: The Window parameter is used to refresh a specific study sub-window panel. For example,

ChartRefresh(True,2) will refresh study sub-window 2. Only the indicated sub-window will be
refreshed. The study is not recalculated, but is redrawn using current values. The following can be used:

 0= Refresh the main Chart window
 1= Refresh study sub-window 1
 2= Refresh study sub-window 2
 3= Refresh study sub-window 3
 4= Refresh study sub-window 4
 5= Refresh study sub-window 5
 6= Refresh study sub-window 6
 7= Refresh study sub-window 7
 8= Refresh study sub-window 8
 9= Refresh the Volume sub-window

Recalc: If any parameter is entered in this position, then all Chart studies will recalculate and repaint (except

ESPL studies).

Recalc ESPL: If a True a value is entered in this 4th parameter position, then all Chart studies will be recalculated,

including any ESPL studies on the chart.

EXAMPLE: The following program opens an IBM daily chart and adds an RSI study using default settings (assumed to be
displayed in the 2nd study sub-window). A study parameter for the RSI is changed and the study is recalculated and
refreshed. A FOR loop is then used to recolor the bars on the chart using the SetBar command. The Random
command is used to generate a random color value for each bar. After the loop is finished, the ChartRefresh command is
used to force a chart redraw (allowing you to see the new bar colors).

var {Start of Variable declarations}
 i,ID: integer; {i and ID are declared as an Integer}
 Color: real; {Color is declared as a Real}
begin {Start of Main Programming code}
 Chart('IBM.D'); {Open an IBM daily chart}
 ID:= AddStudy(eRSI,0); {Add an RSI Study to the chart}
 SetStudy(ID,8,10); {Change the RSI 'Bar' Parameter to 10}
 ChartRefresh(True,2,True); {Recalc RSI study in the 2nd sub-window}
 for i:=BarLeft to BarEnd do begin {Loop through the visible bars}
 Color:= Random(10000000); {Generate a random color value}
 SetBar(eColor,i,Color); {Change the bar's color}
 end; {end of loop block}
 ChartRefresh(True); {Redraw and refresh the chart}
end; {End of program}

ChartReplace

SYNTAX: ChartReplace(FileName: string): boolean;

69

DESCRIPTION: ChartReplace is used to replace the currently opened chart, with a different chart. The new chart is
loaded into the previously opened chart window and displays the bars and studies. ChartReplace can be used to change the
symbol for all charts whose Symbol Color Box setting is the same.

PARAMETERS:

FileName: FileName is the chart file that will be loaded. If necessary, FileName may include the path to the file.

EXAMPLE: The following example opens an IBM daily chart, pauses for 10 seconds, replaces the chart with a MSFT
daily chart, pauses for 10 more seconds, and then closes the chart window.

begin {Start of Main programming code}
 Chart('IBM.D'); {Open an IBM daily chart}
 Pause(10); {Pause 10 seconds while you view chart}
 ChartReplace('MSFT.D'); {Replace the IBM chart window with MSFT}
 Pause(10); {Pause another 10 seconds}
 mnuCloseWindow.click; {Close the active window}
end; {End of program}

ChartSave

SYNTAX: ChartSave;

DESCRIPTION: ChartSave causes the active chart window to Save its current data contents (bar price data) to the
computer hard disk. Chart data is normally saved whenever a chart is loaded or closed, however, ChartSave causes the
chart data to be saved while the chart is still open. This may be desired if the chart file is being accessed by another
software program, and requires up-to-the-minute current data. If a chart properties file already exists, the chart properties
data will also be saved.

PARAMETERS: None.

EXAMPLE: The following example assumes that an IBM 5-minute chart is already open on the screen. The program
finds the chart, and causes the chart to Save its data.

begin {Start of Main programming code}
 FindWindow(eChart, 'IBM.5'); {Find the IBM 5-minute chart}
 SetMyFocus; {Set the focus to that chart window}
 ChartSave; {Save the Chart data while chart is still open}
end; {End of program}

Chat
ChatRoom
SYNTAX: Chat(Text: string, [Icon:integer]): boolean;

ChatRoom(Room: integer);

DESCRIPTION: The Chat function is used to print text into the Chat window. The function can optionally be used to
change the Icon that appears next to your Chat Nickname. The function will return a True value if the text was posted
successfully, otherwise a False value will be returned. It is not necessary to use the FindWindow command before
posting text to the Chat room window.

The ChatRoom command is used to change to a different Chat room. Enter a Room number from 1 through 74. The

70

Chat rooms can be seen by clicking the drop-down list box on the right side of the Chat window. Each room has a name
and number.

PARAMETERS:

Text: Enter the chat text that will appear in the room
Icon: Enter a value between 0 and 62. These values correspond to the 'My Icon' list in the Chat setup screen.

This allows you to change the Icon that appears next to your Chat Nickname.
Room: Enter a chat room number from 0 to 99.

EXAMPLE: The following example can open a Chat window, switch to the 'New Users' room, and print some text into the
room, while changing the Chat Icon next to the Nickname.

begin
 btnChat.click; {Open Chat Screen}
 Pause(2); {Wait until it opens}
 ChatRoom(1); {Change to the New Users room}
 Pause(2); {Wait until it changes}
 Chat('I have taken profits.', 18); {Post a message, change icon}
end;

ChDir
MkDir
RmDir

SYNTAX: ChDir(Path: string): boolean;
 MkDir(Path: string): boolean;
 RmDir(Path: string): boolean;

DESCRIPTION: The ChDir function changes the current directory to the specified Path. If Path includes a drive letter,
then the current drive is also changed. The MkDir function creates a new sub-directory with the specified Path. The last
item in the Path cannot be an existing file name. The RmDir function deletes the sub-directory specified in Path. If the
path does not exist, is non-empty, or is the currently logged directory, the function will fail. These functions return True
when successful, and False when an error occurs.

PARAMETERS:

Path: Specifies the directory Path on the hard disk. Example: 'C:\ENSIGN10\ESPL\'

EXAMPLE: The following program changes the current directory. A new directory is created. The directory is then
deleted.

begin
 ChDir('C:\ENSIGN10\ESPL');
 MkDir('C:\ENSIGN10\TEMP');
 RmDir('C:\ENSIGN10\TEMP');
end;

ChildCount

SYNTAX: ChildCount: integer;

71

DESCRIPTION: The ChildCount function is used to retrieve a count for the number of child windows that are open. All
of the Chart windows, Quote windows, Alert windows, News windows, etc., are child windows within the main Ensign
application. The ChildCount function is normally used to determine the number of child windows that are open. This
number can be used in loops to access information from each child window.

EXAMPLE: The following program uses a FOR loop to access information for each child window that is open. The form
name for each child window is printed. The mouse cursor for chart windows is changed to a CROSS. After running this
program the mouse cursor will change to a CROSS when moving over the chart windows. The Child function and a
variable of type TForm are used to access and set the child window information.

var {Start of Variable declarations}
 ChildForm: TForm; {ChildForm is declared as a TForm variable}
 j: integer; {J is declared as an Integer variable}
begin {Start of Main Programming code}
 for j := 0 to pred(ChildCount) do {Loop through all child windows}
 begin {block start}
 ChildForm := Child(i); {ChildForm is assigned to a child window}
 writeln(ChildForm.Name); {Print the form name of the child window}
 if pos('Chart',ChildForm.Name) > 0 then begin
 ChildForm.Cursor:= crCross; {Change the form's cursor style}
 Window := j + 1; {Window needs to be 1 more than the index}
 SetMyFocus; {Make the Window selection the chart active}
 Remove(eStudy); {Remove all studies from the active chart}
 end; {end of block}
 end; {end of block}
end; {End of program}

Child
SYNTAX: Child(index: integer): TForm;

DESCRIPTION: The Child array holds the child windows that are open. All of the Chart windows, Quote windows,
Alert windows, News windows, etc., are child windows within the main Ensign application. ChildCount is the number of
members in the array. See the ChildCount example.

Choose

SYNTAX: Choose(Title: string, Selection1: string [, Selection2: string, .. SelectionN: string]): integer;
 Choose(Title: string, List.Text: TStringList): integer;
 Choose(Title: string, Top, Left, Height: integer, Selection1: string [,…SelectionN:string]): integer;
 Choose(Title: string, Top, Left, Height: integer, Selections.Text: StringList): integer;

DESCRIPTION: The Choose function is used to open a small window containing a list of custom selections. The
window contains the list of selections, plus a Cancel button, and a Close button. The user makes a selection from the list
and then clicks the Close button. A selection can also be made be double-clicking on an entry. Or, the user can click the
Cancel button. The Choose command returns the list position number, for the item that was chosen. The command
returns a 0 if the user clicks the Cancel button, or clicks the Close button without making a selection. The predefined
global string variable named IT is assigned the contents of the selected item from the choose list. The IT variable can
then be used to print or use the selected string item.

The screen location of the list box can be optionally specified by including the Top, Left, and Height parameters (before the
Selection entries). The Top, Left, and Height parameters specify how many screen pixels to use for each item. The Top

72

coordinate is the 2nd parameter and specifies the top of the selection box (counting down from the top of the screen). The
Left coordinate is the 3rd parameter and specifies the left edge of the box. The Height of the box is the 4th parameter.

The Choose function can be used to present a list of items to choose from. The user can choose a particular item from the
list, and then the ESPL program can proceed based on the selection. Example: The Choose command could be used to
display a listing of the programs contained in the ESPL script file. The user could choose which program to run from the
list, and the ESPL variable could be assigned the result. The corresponding ESPL program could then be run.

PARAMETERS:

Title: The Title parameter is the text that will appear as the Heading of the Choose window.
Selection1: Enter the text that will used in the selection list.
Selection2..N: Enter as many other text items, separated by commas, to complete the list of selection items.
List.Text: A StringList can also be used to populate the list of selection items. Prepare a StringList to contain the

list of selection items, and then use the .TEXT property command to assign the list into the Choose
window.

Top,Left,Height: The Top, Left, and Height parameters specify the optional screen location of the list box. See the
following:

Choose('Caption String','First String'); {Opens in default position}
Choose('Caption String',100,'First String'); {Top is 100 pixels down}
Choose('Caption String',100,50,'First String'); {100 down and 50 left}
Choose('Caption String',100,50,400,'First String'); {100 down, 50 left, 400 height}

EXAMPLE 2: The following program displays a list of five stock symbols. A daily chart is opened for the selected
symbol.

var i: integer;
begin
 i := Choose('Select a Daily Chart','MSFT','IBM','INTC','YHOO','CSCO');
 if i = 0 then
 ShowMessage('You clicked Cancel, or failed to make a selection.')
 else
 Chart(IT + '.D');{Open Chart. IT contains the Symbol that was selected.}
end;

EXAMPLE2: This program displays a list of 3 programs that can be run from the ESPL script file. The global StringList
variable 'sList' is used to prepare the selection list. This is a good example of using the Choose function to run
programs.

procedure Program1;
begin
 writeln('Program 1 was run');
end;

procedure Program2;
begin
 writeln('Program 2 was run');
end;

procedure Program3;
begin
 writeln('Program 3 was run');
end;

begin {Start of Main Programming Code}

73

 sList.clear; {Clear the sList StringList}
 sList.CommaText:= 'Program1,Program2,Program3'; {Create list selections}
 ESPL := Choose('Make a Selection',sList.Text);{Display list, assign ESPL }
 if ESPL = 1 then Program1; {If ESPL=1 then run Program1}
 if ESPL = 2 then Program2; {If ESPL=2 then run Program2}
 if ESPL = 3 then Program3; {If ESPL=3 then run Program3}
end; {End of program}

Chr
Ord

SYNTAX: Chr(Number: integer): char;
 Ord(Character: char): integer;

DESCRIPTION:

The Chr function returns the alphabet Character equal to the ordinal value of the Number parameter.

The Ord function returns the ordinal value (number) of the Character parameter.

NOTE: Individual text and alphabet characters have an ordinal value. These values are used by computers to represent the
characters numerically in bytes. For example, the ordinal values of the Capital letters A through Z are 65 through 90.
Example, Ord('A') equals 65. Ord('B') equals 66, and so forth… Chr(65) equals 'A', Chr(90) equals 'Z'. Using these
two functions allows you to determine the ordinal value of any Character, or to determine the Character that represents an
ordinal number.

PARAMETERS:

Number: Number is a decimal value from 0 through 255. This value (ordinal value) represents a character to the

computer. The values from 0-31 are Control characters (like the ESC key = 27). The values from 32-64
represent the space character=32, plus numbers (0-9) and other misc. characters. The values from 65-90
are the capitalized alphabet letters (A-Z). The values from 91-96 are various punctuation characters. The
values from 97-122 are the small alphabet letters (a-z). The values from 123-255 are various punctuation
characters and draw characters.

Character: Character can be any alphabet letter (either capitalized or not), plus all the other characters generally

available on a computer keyboard.

EXAMPLE: The following example counts from 65 to 90 and prints the alphabet Character represented by the count value.
The small alphabet Characters are also printed by adding 32 to the value of Count (resulting in 97-122). Lastly, a loop
examines each character in the word 'HELLO' and prints the ordinal value of the character.

var {Start of Variable Declarations}
 Count: integer; {Declare Count as an integer}
begin {Start of Main programming code}
 for Count:=65 to 90 do writeln(Chr(Count),' ',Chr(Count + 32));
 for Count:=1 to 5 do writeln(Ord(Copy('HELLO',Count,1)));
end; {End of program}

Clipboard

SYNTAX: Clipboard(Text :string);

74

DESCRIPTION: The Clipboard command is used to copy Text to the Windows clipboard. The Text can then be pasted
into another application or window. Some customers use the Clipboard command to enable the computer to talk to them.
There are programs that automatically SAY whatever is copied to the clipboard. For example, news alert titles can be
copied to the clipboard. The computer would read and say the news title line.

PARAMETERS:

Text: The Text parameter is a string value that is copied to the Windows clipboard.

EXAMPLE: The following example copies the price of a symbol to the clipboard. Each time the price changes on a chart,
the computer will say the price. Click the Run ESPL button, and then click ESPL button 100 to apply the study to the active
chart. The program below also allows news story title alerts to be read. Click button 1 on the Run ESPL panel to activate
the news reader. Click button 2 to stop the news reader. Set news alerts in Ensign to trigger the title lines to be read. You
can download free talking software from Internet web sites.

procedure SayChartPrice; {Copy chart price to the clipboard }
var
 s:string;
 Price:integer;
begin
 SetUser(eName,'SayPrice');
 SetUser(eClose,False);
 Price:=Last(BarEnd);
 if (Price mod 100) = 0 then s:=IntToStr(Price) else s:=IntToStr(Price mod 100);
 Clipboard(s);
end;

begin
 if ESPL=1 then AlertEvent(eNews,69); // Turn on News Title Alert Event
 if ESPL=2 then AlertEvent(eNews,0); // Turn off the News Alert Event
 if ESPL=69 then Clipboard(IT); // Copy News title to Clipboard
 if ESPL=100 then SayChartPrice; // Run the SayChartPrices procedure
end;

75

AssignFile
Append
Reset
Rewrite
CloseFile
ReadLn
WriteFile
WritelnFile
EOF
DeleteFile
FileExists
DirectoryExists
RenameFile

SYNTAX: AssignFile(FileHandle: Textfile, FileName: string);

Append(FileHandle);
Reset(FileHandle);
Rewrite(FileHandle);
Closefile(FileHandle);

 ReadLn(FileHandle): string;
 WriteFile(FileHandle, Expression);
 WritelnFile(FileHandle, Expression);
 EOF(FileHandle): boolean;

 DeleteFile(FileName: string): boolean;
 FileExists(FileName: string): boolean;

DirectoryExists(DirectoryName: string): boolean;
 RenameFile (OldName, NewName: string): boolean;

DESCRIPTION: Use the following File commands to open, close, delete, read, rename, and write data to an ASCII text
file. Only one file can be open at a time.

AssignFile: AssignFile is used to open the specified text file. A FileHandle is created for use of the file. The variable
used for the FileHandle should be previously declared as type: TextFile. After the FileHandle is created,
then use the Append, Reset, or Rewrite command to set the file mode for input or output.

Append: This command can be executed after Assignfile obtains a FileHandle.
Specifies that the File represented by the FileHandle is in Output mode.

 Written text will be appended to the end of the file.

Reset: This command can be executed after Assignfile obtains a FileHandle.
Specifies that the File represented by the FileHandle is in Read-only mode. The file can only be read.

Rewrite: This command can be executed after Assignfile obtains a FileHandle.
Specifies that the File represented by the FileHandle is in Output mode.

76

 If a previous file existed with the same name, it is overwritten.

CloseFile: CloseFile closes the File represented by the FileHandle.

Readln: Readln is used to read one line of text from the File represented by the FileHandle. Use multiple
Readln calls to read successive lines from the file. Readln reads one line of text and then points itself to
the next line of text in the file. The EOF command will return a True value when the end of the file has
been reached. A While loop is often used to loop through the whole file, reading each line. See the
example below.

WriteFile: WriteFile writes the Expression to the File represented by the FileHandle. A line feed is not included
with the text. Successive calls using the WriteFile command will continue to write data to the same line
of text in the file. Use the WritelnFile command to complete a line of written text with a line feed. The
Expression can be Numeric, String, or Boolean. Use the Str, Format, and Align functions to format a
numeric expression with decimal places.

WritelnFile: This command is exactly the same as WriteFile, except that the written Expression is concluded with a

line feed. This causes the next WriteFile or WritelnFile statement to write on the next line in the file.
Use WritelnFile(FileHandle, ' '); to print a blank line in the text file.

EOF: EOF returns a True value if the file pointer of the currently open text file is at the end of file. This
function is used when reading each line of a file. When the last line is read, then the EOF function will
return True.

DeleteFile: This function erases the specified FileName from the disk. If the file cannot be deleted or does not exist,

the function returns a False value. The function returns a True value if the file was successfully deleted.

FileExists: FileExists is used to verify if a specified file already exists on the computer. The path and FileName are

specified as parameters. The function returns a True value if the specified file exists, and False
otherwise.

DirectoryExists: DirectoryExists is used to verify if a specified directory already exists on the computer. The path and
DirectoryName are specified as parameters. The function returns a True value if the specified directory
exists, and False otherwise.

RenameFile: RenameFile is used to rename a file on the computer hard disk. The function changes the name of the
OldName file to be the NewName. Enter the complete path and file name if necessary. The function
returns a True value if the file was successfully renamed, otherwise it returns a False value.

77

PARAMETERS:

FileName: FileName specifies the file to open, delete, or verify if it exists. Include the path of the file on the hard

disk. If necessary, use the sPath global ESPL variable that points to the \ENSIGN10 folder.

FileHandle: FileHandle is a variable of type TextFile used to access an opened file. See the example below where 'f'
is declared as the filehandle. Make sure that you declare this variable before using with other commands.

OldName: The file name and location of the file to be renamed.
NewName: Rename the OldName file to be this NewName.

EXAMPLE: The following example demonstrates all of the file commands documented above with some simple tasks.

var {Start of Variable Declarations}
 i: integer; {Declare i as an integer}
 f: TextFile; {Declare a File Handle}
begin {Start of Main programming code}
 AssignFile(f,sPath + 'TEST.TXT'); {Open a new file named TEST.TXT}
 Rewrite(f); {Output mode, overwrites previous file}
 for i := 1 to 9 do writefile(f,i); {Write the numbers 1-9 in a row}
 writelnfile(f,''); {Write a blank line}
 writelnfile(f,'Nine Numbers'); {Write the text 'Nine Numbers'}
 CloseFile(f); {Close the file}

 {Check to see if TEST.TXT exists, and then Rename it to be TEST.TMP }

 if FileExists(sPath + 'TEST.TXT') then
 RenameFile(sPath + 'TEST.TXT', sPath + 'TEST.TMP');
 Output(eClear); {Clear output window}
 AssignFile(f, sPath + 'TEST.TMP'); {Open TEST.TMP}
 Reset(f); {Set file mode to Read-only}
 writeln('Contents of TEST.TMP'); {Print to the output window}
 while not EOF(f) do writeln(ReadLn(f)); {Read, then Print each row of file}
 CloseFile(f); {Close the file}
 DeleteFile(sPath + 'TEST.TMP'); {Delete the file named TEST.TMP}
end; {End of program}

EXAMPLE: This ESPL program demonstrates the usage of the these FILE commands: Append, AssignFile, Closefile,
EOF, FileExists, Readln, Reset, Rewrite, WriteFile, WriteLnFile

uses
 Classes, SysUtils; {Make sure that SysUtils is in the Uses list}
var
 FileHandle: File; {Define a File Handle variable}
 MyString: string;
begin
 MyString:='This is the Text that will be written to the file';

 {Test to see if a File exists}
 if FileExists('C:\Ensign10\Test.txt') then writeln('Yes');

 {Associate the name of an external file with the File handle variable}
 AssignFile(FileHandle, 'C:\Ensign10\Test.txt');

 {Open the File for Writing, owerwrite the prior file if it existed}
 Rewrite(FileHandle);

78

 {Write the string to the file with a line feed}
 WriteLnFile(FileHandle, MyString);

 {Write five strings in a row without a line feed}
 WriteFile(FileHandle,'1 ');
 WriteFile(FileHandle,'2 ');
 WriteFile(FileHandle,'3 ');
 WriteFile(FileHandle,'4 ');
 WriteFile(FileHandle,'5 ');

 {Write some strings to the file with a line feed}
 WriteLnFile(FileHandle,'- A B C D E ');
 WritelnFile(FileHandle,'Numbers and Letters');

 {Now Open the File, with the file pointer at beginning of File}
 Reset(FileHandle);

 {Read and print lines from the File until the End of File}
 while not EOF(FileHandle) do
 begin
 MyString:=Readln(FileHandle);
 writeln(MyString);
 end;

 {Now Open the File, with the file pointer at the end of the File}
 Append(FileHandle);

 {Append a string to the end of the file with a line feed}
 WritelnFile(FileHandle,'This is the last line of the File!!!');

 {Close the File}
 CloseFile(FileHandle);
end;

The following will appear in the Text.txt file after running this program:
 This is the Text that will be written to the file
 1 2 3 4 5 - A B C D E
 Numbers and Letters
 This is the last line of the File!!!

ColorBars

SYNTAX: ColorBars(Name: integer): boolean;

DESCRIPTION: The ColorBars function applies the Named ColorBar study to the active chart. The function returns a
True value if the study was successfully applied to the chart, otherwise False.

PARAMETER:

Name: The Name parameter may be one of the following ColorBar predefined constants:

 eBar eCandlestick eCloseVsOpen eDay eDunnigan eFullMoons
 eGap eGapOpen eHour eIsland eKeyReversal eMajorTrend
 eMinorTrend eMinute eMonth eMoonPhases eNet eNone
 eNormal eOuter10 eOuter25 eOutside eSmallTrend eTrend

79

 eTurningPoint eVolumeSize eWeekly eWeek

NOTE: ColorBars(eNone) is used to prevent Layouts from clearing bar coloring applied by ESPL programs.

EXAMPLE: The following example opens an IBM daily chart and applies the 'eTrend' ColorBar study to the chart. It
then pauses for 5 seconds and sets the bar colors back to normal. See the Ensign ColorBar documentation for details on
each ColorBar study.

begin {Start of Main Programming code}
 Chart('IBM.D'); {Open an IBM daily chart}
 ColorBars(eTrend); {Apply 'eTrend' ColorBar study to chart}
 Pause(5); {Pause for 5 seconds}
 ColorBars(eNormal); {Reset the bar colors back to normal}
end; {End of program}

ConvertPrice
FormatPrice

SYNTAX: ConvertPrice(Price: real [, Scale: integer]): real;
 FormatPrice(Price: real [, Scale: integer]): string;

DESCRIPTION:

ConvertPrice: The ConvertPrice function converts a quote price from its Calculation format (decimal) to its Display

format (points). For bond futures, the Calculation format is 125.25 (decimal), and the Display format is
12508 (points). For stocks, the Calculation format is 12525 (pennies), and the Display format is 125.25
(dollars).

FormatPrice: The FormatPrice function converts a Display format quote price into a string. The string is formatted in

the same manner that prices are shown on quote pages. The returned string is typically 9 characters in
length. A bond future display format of 12508 will be returned as a string ' 125-08'. A stock display
format of 125.25 will return a string with fractions of ' 125 1/4'.

PARAMETERS:

Price: Price is the quote value to be converted or formatted.

Scale: Scale is a scaling factor used to convert and format a price between decimal and points. The default is the

scale factor from the currently decoded database record. Scale can be obtained for a chart price by using
the following command: GetVariable(eScaleFactor); Scale can be one of the following values:

 5 Convert 100,000ths
 4 Convert 10,000ths Currencies
 3 Convert 1,000ths Meats
 2 Convert 100ths S&P and stocks
 1 Convert 10ths Gold
 0 No conversion, Integer Cocoa.
 -1 Convert 8ths Grains.
 -2 Convert 16ths
 -3 Convert 32nds Bond futures
 -4 Convert 64ths Bond futures options
 -5 Convert 128ths
 -6 Convert half 32nds TY, FV
 -7 Convert quarter 32nds TU

80

EXAMPLE: The following example retrieves an IBM quote price (assuming a value of 104 7/16). The price is then
printed to the output window in a Calculation price format and as a String formatted price. Next, a price of 94.25 is
converted into 32nds and printed as an actual value, Display value, and String value.

var {Start of Variable Declarations}
 price: real; {Declares Price as a Real variable}
begin {Start of Main Programming code}
 Find(eSignal,'IBM'); {Finds and decodes the IBM quote record}
 price := GetData(eLast); {Assigns Price the Last price}
 writeln(price,' ',FormatPrice(price)); {Outputs 104.44 104 7/16}
 price := 94.25; {Assign a new value of 94.25 to Price}
 writeln(price); {Prints 94.25}
 writeln(ConvertPrice(price,-3)); {Converts into 32nds, prints 9408.00}
 writeln(FormatPrice(price,-3)); {Converts to String}
end; {End of program}

Copy

SYNTAX: Copy(Text: string, Start: integer, Count: integer): string;

DESCRIPTION: The Copy function is used to copy and return a subset of text from an original text string. You must
specify the Start character, and the Count of characters to copy and return from the start point. The returned subset string
value can be printed or assigned to a string variable.

PARAMETERS:

Text: The Text parameter is the original string that will be copied from.
Start: Specifies which character in the Text to start copying from.
Count: Specifies how many characters to copy from the starting character.

EXAMPLE: The following example copies and returns the characters 'IBM' from the original text string 'Buy IBM
Today'. In this example, the copy command starts at the 5th character and copies 3 characters.

var {Start of Variable Declarations}
 NewString, OriginalString: string; {Declares two variables as strings}
begin {Start of Main Programming code}
 OriginalString := 'Buy IBM Today'; {Assigns original text contents}
 NewString := Copy(OriginalString, 5, 3); {Copies 3 characters}
 writeln(OriginalString); {Prints the original text}
 writeln(NewString); {Prints the copied text}
end; {End of program}

CopyFile

SYNTAX: CopyFile(SourceFile, TargetFile: string, Preserve: boolean);

DESCRIPTION: The CopyFile command is used to copy a file on the computer. The SourceFile will be copied to the
TargetFile destination. Specify the path and filename for each entry. The Preserve parameter is used to indicate whether
an existing file should be overwritten or not. If Preserve is False, and the TargetFile already exists, then the TargetFile
will be overwritten. If Preserve is True, and the TargetFile already exists, then the CopyFile command will fail
and return a False value.

81

PARAMETERS:

SourceFile: Specifies the path and filename for the file to copy (example: 'C:\ENSIGN\CUSTOM.QUO');
TargetFile: Specifies the path and filename for the file to copy to (example: sPath + 'HIST\INDU.D');
Preserve: Enter a True value to preserve existing files. Enter False to allow an existing file to be overwritten.

EXAMPLE: The following program will copy the CUSTOM.QUO file to a floppy disk in the A: drive.

begin
 CopyFile(sPath + 'CUSTOM.QUO', 'A:\CUSTOM.QUO', False);
end;

CreateProcess
SYNTAX: CreateProcess(Program: string, [Wait: boolean]): integer;

DESCRIPTION: The CreateProcess function is used to RUN another windows program. This allows you to start a
completely different application using the ESPL programming language. For example, the ESPL language could be used to
start a Spreadsheet program, Word Processor, Analysis program, etc. If the function succeeds, the return value will be a
number greater than 31. If the function fails, the return value will be one of the following error values:

0 - The system is out of memory or resources.
2 - The specified file was not found.

PARAMETERS:

Program: The Program parameter is a text string containing the path and FileName of the program to run. If the

parameter does not include a directory path, Windows searches for the executable file in this sequence:
1. The directory from which the application loaded.
2. The current directory.
3. The Windows system directory.
4. The Windows directory.
5. The directories listed in the PATH environment variable.

Wait: Waits until the other program closes before continuing, or just carries on leaving the newly started program to
its own devices. Default is False, do not wait.

EXAMPLE: The following program runs the eSignal Turbo Data Manager program.

begin
 CreateProcess('C:\Program Files (x86)\eSignal\winros.exe', false);
end;

Date
DateStr

SYNTAX: Date: TDateTime;

 DateStr: string;

DESCRIPTION: The Date function returns the current date. The TDateTime variable type is used to return the date.
Note: You can subtract two TDateTime values to find the number of days between the two dates. The DateStr function
returns the current date as a string variable in the format mm-dd-yy.

82

EXAMPLE: The following example prints the current date (assuming a date of May 22, 2000). The example also
illustrates how the Date function can handle addition and subtraction calculations.

begin {Start of Main Programming code}
 writeln('The Date today is ',DateStr); {The date prints as 05-22-00}
 writeln(Date-1); {Prints 5/21/2000}
 writeln(Date); {Prints 5/22/2000}
 writeln(Date+1); {Prints 5/23/2000}
end; {End of program}

DateToLong
LongToDate
LongToTime
TimeToLong
TimeToString
DwordToTDate
TDateToDword

SYNTAX: DateToLong(Date: TDateTime): integer;
 LongToDate(Number: integer): TDateTime;
 LongToTime(Number: integer): TDateTime;
 TimeToLong(Date: TDateTime): integer;
 TimeToString(Date: TDateTime): string;
 DwordToTDate(Number: integer): TDateTime;
 TDateToDword(Date: TDateTime): integer;

DESCRIPTION: The DateToLong function converts a TDateTime date into an integer number. The integer format is
the format used by Ensign to store dates in the chart files.

The following numbers represent the years.

99 = 1999
100 = 2000
101 = 2001
102 = 2002
103 = 2003
104 = 2004 ... etc.

LongToDate converts a chart bar date to a TDateTime date.
LongToTime converts a chart bar time to a TDateTime time.
TimeToLong converts a TDateTime time into a chart bar time.
TimeToString converts a TDateTime time into string, which can be concatenated with other strings.

DwordToTDate converts a double word value into a TDateTime date and time. The double word value represents the

number of seconds since 1970. The double word variable is used for all Intraday chart time frames.
Example: 1083283202 equals 4/30/2004 12:00:02 AM

TDateToDword converts a TDateTime into a double word value. The double word value represents the number of
seconds since 1970. The double word variable is used for all Intraday chart time frames.

Example: 4/30/2004 7:30:00 AM equals 1083310200

83

Андрей
forex-warez.com

EXAMPLE: The following examples assumes a date of July 22, 2002. The integer date of 3 different years is printed. A
bar chart date value of 1020722 is converted to a TDateTime date. A bar chart time value of 1515 is converted into a
TDateTime time. The current time is converted to a chart bar time.

begin
 writeln('Last year ',DateToLong(Date-366)); {Prints 1010722}
 writeln('Today is ',DateToLong(Date)); {Prints 1020722}
 writeln('Next year ',DateToLong(Date+365)); {Prints 1030722}
 writeln(LongToDate(1020722)); {Prints 07/22/2002}
 writeln(LongToTime(1515)); {Prints 3:15:00 PM}
 writeln(TimeToString(LongToTime(1515))); {Prints 3:15:00 PM}
 writeln(TimeToLong(Now)); {Prints 1515}
end;

DateToStr

SYNTAX: DateToStr(Date: TDateTime): string;

DESCRIPTION: The DateToStr function converts a TDateTime date into a string. The string representation of a date
value can be used for print and display purposes.

EXAMPLE: The following example assumes a current date of July 22, 2002. The example prints the date of 7 days ago.

begin
 writeln('Last week the Date was ', DateToStr(Date-7));
 {Date prints as 7/15/2002}
end;

DateToString

SYNTAX: DateToString(Date: integer): string;

DESCRIPTION: The DateToString function converts an integer date into a string. Example, the integer date of
1021126 is returned as a string value of '11-26-02'. NOTE: The date returned from the Bar(eDate,index) function is an
integer number.

EXAMPLE: The following example opens an IBM daily chart and prints the date of the first bar of the chart (in both the
integer and string formats). The example assumes that the first date of the chart is May 26, 1993.

var {Start of Variable Declarations}
 iDate: integer; {Declares iDate as an integer}
 sDate: string; {Declares sDate as a string}
begin {Start of Main Programming code}
 Chart('IBM.D'); {Opens an IBM daily chart}
 iDate:= Bar(eDate,1); {Retrieves the date of the 1st bar}
 sDate:= DateToString(iDate); {Converts the integer date into a string}
 writeln(iDate,' ,sDate); {Prints 930526 05-26-93}
end; {End of program}

DayOfWeek

84

SYNTAX: DayOfWeek([Date: TDateTime]): integer;

DESCRIPTION: The DayOfWeek function returns the day of the week of the specified date. The returned value is a
number between 1 and 7 (where Sunday=1, Monday=2, Tuesday=3, Wednesday=4, Thursday=5, Friday=6, and
Saturday=7). If the Date is omitted, then the current date is used.

EXAMPLE: The following example assumes a date of May 22, 2000 (which is a Monday).

begin
 writeln(DayOfWeek(Date)); {Prints a 2 (Monday)}
 writeln(DayOfWeek(Date+1)); {Prints a 3 (Tuesday)}
end;

Dec
Inc

SYNTAX: Dec(Number: integer);
 Inc(Number: integer);

DESCRIPTION: The Dec statement decrements the value of Number by one. The Inc statement is used to increment
the value of Number by one. These statement can be used to increment or decrement variables that might be used as
counters or pointers.

EXAMPLE: The following example sets a variable equal to 10, and then uses the Dec and Inc statements to change the
value of Count. The Dec and Inc statements are quicker and more efficient than using the following statements
(Count:=Count-1; or Count:=Count+1;).

var {Start of Variable Declarations}
 Count: integer; {Declares Count as an integer variable}
begin {Start of Main Programming code}
 Count := 10; {Set Count equal to 10}
 dec(Count); {Count now equals 9}
 writeln(Count); {Prints 9 }
 inc(Count); {Count now equals 10 again}
 writeln(Count); {Prints 10}
end; {End of program

DecodeDate

SYNTAX: DecodeDate(Date: TDateTime, var Year, var Month, var Day: integer);

DESCRIPTION: The DecodeDate statement is passed a Date, and then returns the Year, Month, and Day in separate
variables. This allows a date to be quickly broken down into its separate parts. If the supplied Date value is less than or
equal to zero, then the returned Year, Month, and Day values are all set to zero. The Year will contain a number between
1900 and 2099, etc. Month will contain a value between 1 and 12. Valid Day values are 1 through 28, 29, 30, or 31
(depending on the Month).

PARAMETERS:

Date: This value is passed to the DecodeDate statement. A TDateTime variable type is expected. This date

value is then broken down into the Year, Month, and Day values.

85

Year: This variable receives back the value of the Year.
Month: This variable receives back the value of the Month.
Day: This variable receives back the value of the Day.

EXAMPLE: The following example is passed the current Date. The Year, Month, and Day are returned. The values are
then printed.

var {Start of Variable Declarations}
 Yr, Mth, Dy: integer; {Declares 3 variables as integers}
begin {Start of Main Programming code}
 DecodeDate(Date, Yr, Mth, Dy); {Decodes the current Date}
 writeln(Date,' ',Yr,' ',Mth,' ',Dy); {Prints each value}
end; {End of program}

DecodeTime

SYNTAX: DecodeTime(Time: TDateTime, var Hour, var Minute, var Second, var MilliSec: integer);

DESCRIPTION: DecodeTime is passed a Time value, and then returns the Hour, Minute, Second, and Milli-Second
values corresponding to the specified Time. Pass Now as the Time parameter to break down the current time into its
many parts.

PARAMETERS:

Time: This value is passed to the DecodeTime statement. A TDateTime variable type is expected. This time

value is then broken down into the Hour, Minute, Second, and MilliSec values.
Hour: This variable receives the value of the hour (in 24 hour format, example 3:00 pm= 15)
Minute: This variable receives the value of the minute.
Second: This variable receives the value of the seconds.
MilliSec: This variable receives the value of the 1000th of a second.

EXAMPLE: This example prints the current time, and then decodes it into its individual parts.

var {Start of Variable Declarations}
 Hr, Min, Sec, Mil: integer; {Declares 4 variables as integers}
begin {Start of Main Programming code}
 writeln(Time); {Prints the current time}
 DecodeTime(Now, Hr, Min, Sec, Mil); {Decodes the current time}
 writeln(Hr,' ',Min,' ',Sec,' ',Mil); {Prints the individual time values}
end; {End of program}

Delete

SYNTAX: Delete(var Text: string, Start: integer, Count: integer);

DESCRIPTION: The Delete function is used to delete characters from a given Text string. The Text is passed to the
function. The returned Text value does not include the deleted characters starting at the Start character, and ending at the
Start plus Count character.

PARAMETERS:

Text: The Text parameter is the Text string that will be deleted from, and then returned.

86

Start: Specifies the starting character position in Text to start deleting.
Count: Specifies how many characters to delete, from the starting character.

EXAMPLE: The following example deletes 5 characters from the supplied text, starting at the 10th character position. The
characters 'very ' are deleted from the text.

var {Start of Variable Declarations}
 Text: string; {Text is declared as a string}
begin {Start of Main Programming code}
 Text:= 'This is a very big Move.'; {Text is assigned a value}
 writeln(Text); {Print original value of Text}
 Delete(Text, 10, 5); {5 characters are deleted from Text}
 writeln(Text); {Print new value of Text}
end; {End of program}

DeleteBar

SYNTAX: DeleteBar(Index: integer): boolean;

DESCRIPTION: The DeleteBar function is used to delete a bar from a chart. Use ChartRefresh(True) to cause a chart
to redraw, and reflect the change, after a bar has been deleted.

PARAMETERS:

Index: Index is the chart bar position (between 1 and the number of bars on the chart). If Index is less than or

equal to zero, the function will use Index as an offset from the last bar on the chart (BarEnd). If Index
is out of range, the function will return a False value, otherwise it will return True.

EXAMPLE: The following example opens an IBM daily chart and then deletes the 100th bar of the chart and the 5th bar
from the end of the chart.

begin {Start of Main Programming code}
 Chart('IBM.D'); {Opens a daily IBM chart}
 DeleteBar(100); {Deletes the 100th bar of the chart data}
 DeleteBar(-5); {Deletes the 5th bar from the end of the chart}
 ChartRefresh(True); {Redraws the chart, without the deleted bars}
end; {End of program}

DeleteData

SYNTAX: DeleteData([Feed: integer]): boolean;

DESCRIPTION: The DeleteData function is used to delete a symbol from the Ensign quote pages. You must use the
Find command before using the DeleteData function. The Find command will find the quote record and set a pointer to
the quote record. Once the record is found, then it can be deleted. The DeleteData function will return a True value if
the delete operation is successful, otherwise it will return a False value. When a quote record is deleted, the next record in
the market group will become the active record, and the pointer will point to that record.

PARAMETERS:

Feed: Feed is one of these predefined constants. The default is the value assigned to the FEED global variable.

87

eFXCM eIB eSignal eIQFeed eNinja eOpenECry
eTraderBytes eTransAct eGlobal eDBFX eATCBrokers eCustom

EXAMPLE: The following example finds the IBM symbol in the Stock Market Group, and then deletes the quote record.

begin
 if Find(eSignal,'IBM') then DeleteData(eSignal);
end;

DimArray

SYNTAX: DimArray(UpperLimit: integer);

DESCRIPTION: The DimArray statement is used to initialize the vArray global array, and to set the upper boundary for
the array. vArray is a single dimension variant array with a lower boundary of zero. A variant array can hold values of any
variable type. DimArray redimensions vArray and sets the UpperLimit boundary. vArray must be dimensioned before
it is used. New elements added to the array by redimensioning will be initialized to a value of zero. Previous elements will
not be initialized to zero. See the documentation on vArray for details on array usage.

PARAMETER:

UpperLimit: UpperLimit specifies the maximum capacity of the array.
 vArray will have a range of 0 to UpperLimit.

EXAMPLE: The following example dimensions vArray will an UpperLimit of 10. The array is filled with random
numbers and then printed.

var {Start of Variable Declarations}
 n: integer; {Declares n as an integer}
begin {Start of Main Programming code}
 DimArray(10); {Dimensions vArray}
 for n := 0 to 10 do SetArray(n, Random(100)); {Assigns random numbers}
 for n := 0 to 10 do writeln(vArray(n)); {Prints the elements}
end; {End of program}

Div

SYNTAX: (Number1 Div Number2) :integer

DESCRIPTION: The Div statement is a math operation used to perform Integer Division. Number1 is divided by
Number2. The result is truncated and does not include a remainder. The answer is always an integer value (no decimals).

EXAMPLE:

var
 A,B: integer;
begin
 A := 80.75 Div 19.88 ; {Assigns A the result of 80.75 divided by 19.88}
 B := 5 Div 2 ; {Assigns B the result of 5 divided by 2}
 writeln(A,' ',B); {Prints the values of A and B (A=4 and B=2)}
end;

88

dlgColor
dlgColor2

SYNTAX: dlgColor(color: integer): integer;

dlgColor2.Execute(frmMain.Handle): boolean;

DESCRIPTION: The dlgColor command is used to open Ensign's hexagon Color dialog window. Colors can be designed
and selected from the color window. After selecting a color and closing the color window, a color value is returned. The
default color selected on the dialog window is the color parameter passed to the function.

The dlgColor2 is the Microsoft Window color dialog component. Use its Execute method to display the form, and its
Color property to return the color selected.

EXAMPLE: The following example opens the Color dialog window with Red as the default. After selecting a color and
closing the color window, the color value returned is assigned to a variable named NewColor. An IBM daily chart is then
opened, and the chart bars are changed to the new color. Accessing the dlgColor2 dialog is also demonstrated.

uses
 graphics, dialogs, forms, classes, controls; {include these libraries}

var {Start of Variable Declarations}
 i,NewColor: integer; {Declares two variables as integers}

begin {Start of Main Programming code}
 NewColor := dlgColor(clRed); {Assign the color selected to NewColor}
 Chart('IBM.D'); {Opens an IBM daily chart}
 for i:= 1 to BarEnd do SetBar(eColor,i,NewColor); {Change bar colors}
 ChartRefresh(True); {Redraw chart with new colors}
 if dlgColor2.Execute(frmMain.handle) then {open the standard color dialog form}
 btnLayout.Font.Color := dlgColor2.Color; {read the dialog's selection}
end; {End of program}

dlgFont

SYNTAX: dlgFont.Execute: boolean;

DESCRIPTION: The dlgFont.Execute command is used to open a Microsoft Windows Font selection window. This
window is used to select a Font, Font Color, Font Size, and Font Style. After making Font selections and closing the dialog
box, a font value will be returned in the 'Font' property. The new font can then be used to change the font of the Form in
the program. Use the dlgFont.Font property to assign the font selections to a form. The function returns True if the OK
button is clicked. The function returns False if the Cancel button is clicked.

EXAMPLE: The following example opens an IBM daily chart, then opens the Windows Font selection window. Font
selections can be made from the font window. After closing the Font selection window, the selected font is applied to the
chart (the active form).

var {Start of Variable declarations}
 Form1: TForm; {Form1 is declared as a TForm variable}
begin {Start of Main programming code}
 Chart('IBM.D'); {Open an IBM daily chart}
 Form1 := Screen.ActiveForm ; {Assign pointer from the Chart to Form1}
 dlgFont.Execute ; {Open the Font selection window}
 Form1.Font := dlgFont.Font ; {Assign Font selections to the Chart}

89

end;

dlgOpen
dlgSave

SYNTAX: dlgOpen: boolean;
 dlgSave: boolean;

DESCRIPTION: The dlgOpen.Execute command displays a Microsoft Windows dialog box for selecting and opening
files. This box can be used if your ESPL program requires you to select and open a file from the hard disk. When the
dialog box is displayed, browse for and select a file and then click the Open button. The selected file name is stored in the
FileName property. Both functions return True if the OK button is clicked. The functions returns False if the Cancel
button is clicked.

The dlgSave.Execute command displays a similar dialog box, which is used to Save files. The sub-directory and filename
can be selected for the save destination.

PROPERTIES: Properties can be read and set by appending the Property name after the dlgOpen statement.

DefaultExt: Specifies a file extension that is appended automatically to the selected filename, unless the file already

has an extension.
FileName: Contains the name of the file that is selected from the Open dialog box.
Filter: Determines the File mask available in the Dialog. Only files of the specified type will be displayed in the

Dialog.
Example: dlgOpen.Filter := 'Text Files | *.TXT' ; will only list .TXT files.
Separate the description and file type with a '|' character.

InitialDir: A string that specifies the Initial Directory to Open a File from. Example: dlgOpen.InitialDir :=
'C:\ENSIGN';

 Make sure that you clear the FileName variable before calling the .Execute command, otherwise the
FileName will override the InitialDir.

Title: Specifies a Title Caption in the Open dialog box. Example: dlgOpen.Title := 'Select a File';

EXAMPLE: The following example displays an Open File dialog box. The dialog box allows you to browse any sub-
directory for a particular file. The file is then loaded into a String list and then printed to the output window. A Save File
dialog box is then opened, and the String List is saved to the selected file destination.

begin {Start of Main programming code}
 Output(eClear); {Clear the output window}
 dlgOpen.Title := 'Ensign Open File'; {Specifies a Title for the Dialog Box}
 dlgOpen.FileName := ''; {Clear the FileName}
 dlgOpen.InitialDir := 'C:\ENSIGN'; {Specifies the Directory to start in}
 dlgOpen.Execute; {Displays the Open File Dialog box}
 writeln(dlgOpen.FileName); {Prints FileName in the output window}
 writeln(); {Print blank line in the output window}
 sList.LoadFromFile(dlgOpen.Filename); {Load Text file into a list}
 writeln(sList.Text); {Print the file to the output window}

 dlgSave.Title := 'Ensign Save File'; {Specifies a Title Save File Box}
 dlgOpen.FileName := ''; {Clear the FileName}
 dlgSave.InitialDir := 'C:\'; {Specifies the Save default directory}
 dlgSave.Execute; {Opens the Save File Dialog box}
 writeln(dlgSave.FileName); {Prints FileName in the output window}
 sList.SaveToFile(dlgSave.FileName); {Saves List to the selected destination}
end; {End of program}

90

dlgPrint
dlgPrinterSetup

SYNTAX: dlgPrint.Execute: boolean;
 dlgPrinterSetup.Execute;

DESCRIPTION: The dlgPrint.Execute command displays a Microsoft Windows dialog box for Printer selection and
number of copies. The function returns True if the OK button is clicked, or False if the Cancel button is clicked. The
dlgPrinterSetup.Execute command displays a Printer control box. Both of these dialog boxes can be used if your ESPL
program requires some Printer control.

PROPERTIES: The Copies property can be set by appending it to the dlgPrint statement.

Copies: Specifies the number of Print copies to make. See the example.

EXAMPLE: The following example opens a Print dialog box, then returns the number of copies. The program then opens
a PrinterSetup dialog box.

begin
 dlgPrint.Execute;
 writeln(dlgPrint.Copies);
 dlgPrinterSetup.Execute;
end;

Download

SYNTAX: Download(ChartSymbol: string, [FileName: string, Quantity: integer, BidAsk: boolean]);

DESCRIPTION: The Download statement is used to download chart data directly into an ASCII text file rather than into
an Ensign chart file. The ChartSymbol specifies the chart data to download (example: 'IBM.D'). The FileName specifies
the path and name of the ASCII text file where the data will be saved. The Quantity parameter specifies the amount of
chart data to download. The BidAsk parameter allows you to optionally include the Bid and Ask prices when downloading
Tick data. The ASCII chart data file can be loaded into spread sheets or other programs for analysis.

If you are an eSignal data-feed user, the downloaded data is saved in a comma delimited file containing the following price
fields.

Daily Charts: Date, Open, High, Low, Last, Volume
Intra-day Charts: Date, TimeStamp, Open, High, Low, Last, Volume
Tick Charts: Date, TimeStamp, Tick, TickVolume
Tick Charts with Bid/Ask: Date, TimeStamp, Bid Price, Bid Size, Ask Price, Ask Size

The Date format in the file is: mm/dd/yy
The Intra-day TimeStamp format is: HH:MM
The Tick chart TimeStamp format is: HH:MM:SS

If you use the Ensign Internet version then downloaded data is saved as follows, and is delimited by | characters.

Tick Charts: DATE | TRADE | TRADE_SIZE | VOLUME |

91

2006-08-22 17:28:00 | 1301.75 | 1 | 2054 |
2006-08-22 17:28:00 | 1301.75 | 1 | 2053 |

Daily Chart: CLOSE | DATE | HIGH | LOW | OPEN | OPENINTEREST | VOLUME |

1302.00|2006-08-22 00:00:00|1305.75|1297.25|1301.50|0|771246|

Intraday Charts: DATE | OPEN | HIGH | LOW | CLOSE | BID | ASK | VOLUME | INTERVAL_VOLUME |
2006-08-21 00:00:00|1304.25|1304.50|1304.25|1304.50|1304.25|1304.50|8241|112|

PARAMETERS

ChartSymbol: The ChartSymbol parameter specifies the chart to download (example: 'IBM.D'). If the chart time frame

is missing then .0 tick data will be the default.

FileName: The FileName parameter specifies the path and file where the chart data will save. If the FileName is

omitted, the default FileName will be the C:\ENSIGN folder, and the ChartSymbol with a file extension
of .TXT (example: C:\ENSIGN\IBM.TXT).

Quantity: The Quantity parameter specifies the amount of chart data to download. The Quantity parameter can

have a value of 0 to 6. These numbers will correspond to the chart Refresh pop-up menu selections for
different Time Frames. For example, a Daily chart would download the following amounts of data.

0= 1 day
1= 2 days
2= 1 week
3= 1 month
4= 6 months
5= 2 years
6= Maximum

BidAskNote: This is only available for eSignal data-feed users. False (the default) to only include the actual Trade

ticks. Set the value to to include Bid and Ask prices in the download of Tick by Tick chart data. True
Set this parameter to :

EXAMPLE: The following program uses the Download command to download data for an IBM 5-minute chart. The
Finished command is used to detect the completion of the download. The ASCII chart data is saved to the
C:\ENSIGN\IBM.TXT file, and then printed in the output window.

begin
 Output(eClear);
 Download('IBM.5', sPath + 'IBM.TXT', 3, False);
 if Finished(60) then Output(eLoad,'IBM.TXT');
end;

DownloadData

SYNTAX: DownloadData(List: integer, [Flag: boolean]);

DESCRIPTION: The DownloadData command is used to 'Download Charts' using the Internet Services window. The
Internet Services window displays a list of symbols that can be downloaded, with various Time Frames. NOTE: The
Internet Services window must be open before executing the DownloadData command. Use the btnInternet.click

92

command to open the Internet Services window beforehand. Set the Flag parameter equal to True to download Intra-day
charts.

PARAMETERS:

List: Specifies the Chart symbol Tab list for which to download chart data. Enter a number from 1 to 9.

Flag: Enter True to download Intra-day charts. Enter False (or leave blank) to download Daily, Weekly,

Monthly entries from the list.

EXAMPLE: The following program opens the Internet Services window, and then downloads chart data for Tab list 1.
Click ESPL button 5 to run the program. Make sure that the computer has an active Internet connection. NOTE: The
symbol list must be entered manually before using this command.

begin
 if ESPL=5 then begin
 btnInternet.click; // Open the Internet Services window
 DownloadData(1,True); // Download Intra-day Charts from Tab List 1
 end;
end;

DrawPhase

SYNTAX: DrawPhase: boolean;

DESCRIPTION: The DrawPhase global variable can be used to determine if an ESPL Draw Tool is currently selected
(and being applied or adjusted on the chart). The value of DrawPhase will be False if the tool is in an active selected
state. The value will be True if the tool is no longer in an active selected state.

EXAMPLE: The following program draws a triangle connecting three marked points on the chart, using a User-Defined
draw tool (ESPL=500). The three points are labeled with their prices, and a red center line divides the middle. The
DrawPhase variable is used to prevent the tool from performing the TextOut commands until the three points have been
selected and the tool is no longer in an active selected state.

uses
 Graphics;

procedure DrawTriangle; {DrawTriangle procedure declared}
begin
 SetPen(clBlue,1,eSolid);
 if DrawPhase then begin {Print TextOut if DrawPhase is True}
 TextOut(Pt1X+10,Pt1Y,FormatPrice(YtoPrice(Pt1Y)));
 TextOut(Pt2X+10,Pt2Y,FormatPrice(YtoPrice(Pt2Y)));
 TextOut(Pt3X+10,Pt3Y,FormatPrice(YtoPrice(Pt3Y)));
 end;
 MoveToLineTo(Pt1X, Pt1Y, Pt2X,Pt2Y); {Connect the three points}
 MoveToLineTo(Pt2X, Pt2Y, Pt3X,Pt3Y);
 MoveToLineTo(Pt3X, Pt3Y, Pt1X,Pt1Y);
 SetPen(clRed,1,eSolid);
 MoveToLineTo(Pt1X,Pt1Y,(Pt2X+Pt3X)/2,(Pt2Y+Pt3Y)/2); {Draw Center Line}
end;

begin {Start of Main Programming code}
 if ESPL=500 then DrawTriangle; {Call the DrawTriangle procedure}
end; {End of program}

93

Drawing
SYNTAX: Drawing: boolean;

DESCRIPTION: The Drawing global variable can be used to determine if a Draw Tool is currently selected or being
drawn manually. The value of Drawing will be True once a draw tool is create or selected, and False when the tool is
finished and the construction boxes have been removed.

Email

SYNTAX: Email(Subject, SenderAddress, User ID, Password, FileAttachment, RecipientAddress

[, RecipientAddress2,…etc.] : string);

DESCRIPTION: Use the Email command to send e-mails with the ESPL language. This allows some users to e-mail their
pager with a message. The main content of the e-mail should be loaded into the sList global string list before using the
Email command. The following program loads the sList string list with a message and then sends an e-mail.
WARNING: If the e-mail addresses are not entered properly (with actual addresses), the Ensign program can potentially
abort when the e-mail attempts to send.

PARAMETERS:
Subject: Specifies the text that will be included in an E-mail's subject line.
SenderAddress: Specifies the Sender's E-mail address.
User ID: Specifies the E-mail account name for authentication. If blank, then no authentication will be attempted.
Password: Specifies the E-mail account password. If blank, then no authentication will be attempted.
FileAttachment: Specify an optional file attachment. The file will be attached to the e-mail.
RecipientAddress: Specifies the Recipient E-mail address that will receive the e-mail. Multiple recipient addresses can be

entered (one after another).

EXAMPLE: The following program clears the sList global string list, then adds some text into sList (this is used as the e-
mail contents). The e-mail is then sent with a subject line of 'Hello'. No file attachment is specified.

begin
 sList.Clear;
 sList.Add('This is the contents of the e-mail. Have a nice day.');
 Email('Hello','Me@MyAddress.com','Me@MyAddress.com',
 'mypassword','','You@YourAddress.com');
end;

EmailForm

SYNTAX: EmailForm(Box1, Box2, Box3, Box4: boolean, [OtherAddress, Subject, FileAttachment: string, User ID,
Password:string, TabIndex: integer]);

DESCRIPTION: Use the EmailForm command to e-mail Charts and other screen Images utilizing the Internet Services
E-mail window. The EmailForm command can be used to send e-mails and file attachments to clients and other traders.
The Message Text of the e-mail should be loaded into the sList global string list before using the EmailForm command.
The Internet Services E-mail form should be set-up manually by clicking on the Internet Services button and selecting the
'E-mail' tab before using this ESPL command. Example: To e-mail a chart, make sure that the desired chart has the 'Focus'

94

and then use the mnuEmailImage.Click; command to activate the e-mail feature. Then use the EmailForm command
to send the e-mail.

PARAMETERS:

Box1: Enter True or False. True places a check mark in the 'Ensign Support' box. False unchecks the box.
Box2: Enter True or False. True places a check mark in the 'Ensign Software' box. False unchecks the box.
Box3: Enter True or False. True places a check mark in the 'Other' box. False unchecks the box.
Box4: Enter True or False. True places a check mark in the 'List' box. False unchecks the box.
OtherAddress: This address is used when Box3 is checked. The address shows on the form by the Other checkbox.
Subject: Specifies an optional change to the text that will be included in an E-mail's subject line.
FileAttachment: Specifies an optional change to the attachment file name. The file will be attached to the e-mail.
User ID: Specifies an optional change to the E-mail account name for authentication.
Password: Specifies an optional change to the E-mail account password for authentication.
TabIndex: Specifies the E-mail TAB on the Email Form to select. Example, enter 1 to select the 1st TAB on the list.

When the TabIndex is not provided then the form opens using the last TAB selected.

NOTE: The Subject and FileAttachment entries are automatically entered for you in the Internet Services E-mail
window. The active window will be attached as a file attachment. However, you can optionally change them if necessary.
Enter an empty string ' ' as the parameter entry if you don't want to change the default OtherAddress, Subject,
FileAttachment, User ID, or Password values that will load with the Internet Services E-mail window. When Use ID and
Password are blank, then no authentication will be attempted.

EXAMPLE: The following program clears the sList global string list, then adds some text into sList (this is used as the e-
mail Message Text). An IBM Daily chart is opened and then e-mailed to 'Ensign Software'. The program assumes that the
Internet Services E-mail window has been previously set-up with the proper e-mail settings.

95

begin
 sList.Clear;
 sList.Add('Here is an image of my IBM Daily Chart.');
 Chart('IBM.D'); {this form has focus, and will be the image taken}
 ImageToFile('Ensign.png'); {save image to the Setup | Images harddisk path}
 EmailForm(False,True,False,False,'','Subject: My Chart',
 'C:\Ensign10\Images\Ensign.png','myUserID','myPassword');
 btnInternet.Click; {close the Internet form opened by EmailForm}
end;

EmailFormTab

SYNTAX: EmailFormTab(TabIndex: integer);

DESCRIPTION: Use the EmailFormTab command to set the Tab on the Email Form. Example, enter 1 to select the 1st
Tab on the Email form.

PARAMETERS:

TabIndex: Enter a number for the Tab to select on the Email Form.

EXAMPLE: The following program selects Tab 8.

begin
 EmailFormTab(8);
end;

EncodeDate

SYNTAX: EncodeDate(Year, Month, Day: integer): TDateTime;

DESCRIPTION: The EncodeDate function returns a TDateTime variable type from the values specified in the Year,
Month, and Day parameters. The Year must be between 1 and 9999. The Month must be between 1 and 12. Valid Day
values are 1 through 28, 29, 30, or 31, depending on the calendar month. Possible Day values for February are 1 through
28, or 1 through 29, depending on whether the specified Year is a leap year. If the provided values are not within the
appropriate range, an error will occur. The result equals 1 plus the number of days between 12/30/1899 and the given date.

PARAMETERS:

Year: This variable specifies the Year.
Month: This variable specifies the Month.
Day: This variable specifies the Day of the Month.

EXAMPLE: The following example generates a TDateTime for the provided Year, Month, and Day. The date is then
printed in the output window.

var {Start of Variable declarations}
 NewDate: TDateTime; {NewDate is declared as a TDateTime}
begin {Start of Main Programming code}
 NewDate := EncodeDate(2002, 12, 25)); {Encodes the Date of 12/25/2002 }
 writeln(NewDate); {Print the date}
end; {End of program}

96

EncodeTime

SYNTAX: EncodeTime(Hour, Minute, Second, MilliSec: integer): TDateTime;

DESCRIPTION: EncodeTime creates a TDateTime variable from the provided Hour, Minute, Second, and MilliSec
parameters. If the specified parameters are not within the appropriate range an error will occur.

The value returned by EncodeTime is a number between 0 and 1, and indicates the fractional part of a day represented
by the specified time. The value 0 equals midnight, 0.5 equals noon, 0.75 equals 06:00 PM, etc.

PARAMETERS:

Hour: This variable specifies the value of the hour (in 24 hour format, example 03:00 PM = 15).
Minute: This variable specifies the minute (0 through 59).
Second: This variable specifies the second. (0 through 59).
MilliSec: This variable specifies the millisecond (1000th of a second).

EXAMPLE: This example encodes a time and then prints the time.

var {Start of Variable Declarations}
 xTime: TDateTime; {Declares xTime as a TDateTime variable}
begin {Start of Main Programming code}
 xTime := EncodeTime(15, 30, 0, 0); {Encodes the time of 03:30:00 PM}
 writeln(xTime); {Prints the Time}
end; {End of program}

Encrypt
Decrypt
Hash
SYNTAX: Encrypt(StringToEncrypt, Key: string): string;
 Decrypt(StringToDecrypt, Key: string): string;
 Hash(StringToHash: string): string;

DESCRIPTION:

Encrypt Pass a string to encrypt, and an encryption key. Function returns an encrypted string.
Decrypt Pass a string to decrypt, and an encryption key. Function returns the decrypted string.
Hash Pass a string to hash. Function returns a 32 character unique hash string.

EXAMPLE: The example encrypts and decrypts a string, and prints a hash string. These routines can be used to
implement security for parameter files.

var
 s: string;
begin
 s := 'This is an example string'; {some string to encrypt}
 s := Encrypt(s, 'MySecretKey'); {encrypt it with a key}
 writeln(s); {encrypted string looks like gibberish}
 s := Decrypt(s, 'MySecretKey'); {decrypt string using same key}
 writeln(s); {string is back to original text}

97

 writeln(Hash(s)); {generate a hash code for a string}
end;

Exp
Ln
Log2
Log10

SYNTAX: Exp(x : real): real;
 Ln(x : real): real;
 Log2(x : real): real;
 Log10(x : real): real;

DESCRIPTION:

Exp calculates the Exponential of (x). The return value is e raised to the power of (x), where e is the base of

the natural logarithms. The value of e is 2.7182818.
Ln calculates the Natural Logarithm of (x). Example: Ln(10) equals 2.30.
Log2 calculates the Log (base 2) of (x). Example: Log2 (8) equals 3.
Log10 calculates the Log (base 10) of (x). Example: Log10 (100) equals 2.

EXAMPLE: The following example calculates and prints the Exp, Ln, Log2, and Log10 for various numbers.

var {Start of Variable declarations}
 r1,r2,r3,r4: real; {Variables declared as Real}
begin {Start of Main Programming code}
 OutPut(eClear); {Clear the output window}
 r1 := Exp(1); {calculate the Exp of 1 }
 r2 := Ln(10); {calculate the Ln of 10}
 r3 := Log2(8); {calculate the Log2 of 8 }
 r4 := Log10(100); {calculate the Log10 of 100}
 writeln(r1,' ',r2); {print r1 and r2 }
 writeln(r3,' ',r4); {print r3 and r4 }
end; {End of program}

ExtractFileDrive
ExtractFileExt
ExtractFileName
ExtractFilePath

SYNTAX: ExtractFileDrive(const FileName: string): string;
 ExtractFileExt(const FileName: string): string;
 ExtractFileName(const FileName: string): string;
 ExtractFilePath(const FileName: string): string;

DESCRIPTION:

ExtractFileDrive returns the Drive portion from FileName.
ExtractFileExt returns the Extension portion from FileName.

98

ExtractFileName returns the FileName portion from FileName.
ExtractFilePath returns the Path portion from FileName.

EXAMPLE: The following example illustrates how to parse a filename and path into its separate parts. The Application
command is used to determine the path and filename for the Ensign program. Normally Application.ExeName will
return a value of C:\ENSIGN\ENSIGN.EXE.

var {Start of Variable declarations}
 drive, ext, name, path: string; {Variables declared as Strings}
begin {Start of Main Programming code}
 drive:= ExtractFileDrive(Application.ExeName); {Extract Drive}
 ext := ExtractFileExt(Application.ExeName); {Extract Extension}
 name := ExtractFileName(Application.ExeName); {Extract FileName}
 path := ExtractFilePath(Application.ExeName); {Extract Path}
 writeln(Application.ExeName); {prints C:\ENSIGN\ENSIGN.EXE }
 writeln(drive); {prints C: }
 writeln(ext); {prints .EXE }
 writeln(name); {prints ENSIGN.EXE }
 writeln(path); {prints C:\ENSIGN\ }
end; {End of program}

Filter

SYNTAX: Filter(Field: integer, Min, Max: real [[, FieldN: integer, MinN, MaxN: real],…]): boolean;

DESCRIPTION: The Filter function is used to scan and filter quote prices based on the selected criteria. The prices are
tested to see if they fall within a Min and Max value. For the currently decoded database record, Filter returns True
when all the Field values are >= the Min value and <= the Max value. Multiple fields can be tested by repeating the
parameters. If any test is False, then Filter returns a False value.

PARAMETERS:

Field: The Field parameter should be one of the following quote field specifiers.

eAsk

eAskSize

eAveVol IQFeed only

eBeta

eBid

eBidSize

eEstEPS

eEPSPercent

eExpiration

eDailyHigh if (High>0) and (Last>=High) and (High>Low) then Result:=0 else Result:=1;

eDailyLow if (Low>0) and (Last<=Low) and (High>Low) then Result:=0 else Result:=1;

eDividend

eDividendPercent if Last=0 then Result:=0 else Result:=100*Dividend/Last;

eDown

99

eDownNetOpen

eDownPercentOpen

eEarnings

eEPS

eEPSPercent if Last=0 then Result:=0 else Result:=100*Earnest/Last;

eHigh

eInstitution IQFeed only

eInterest

eLast

eLow

eNet

eNetPercent if (Last=0) or (Net=0) then Result:=0 else Result:=100*Net/(Last-Net);

eOpen

eOpenNet if (Last=0) or (YesterdayClose=0) then Result:=0 else Result:=Open-YesterdayClose;

ePercent if (Last=0) or (High=Low) then Result:=0 else Result:=100*(Last-Low)/(High-Low);

ePERatio

eSharesOut

eTickTime

eTickVolume

eTotal

eUnchanged

eUp

eUpNetOpen if (Last=0) or (Open=0) or (Last<Open) then Result:=0 else Result:=Last - Open;

eUpPercentOpen if (Last=0) or (Open=0) or (Last<Open) then Result:=0 else Result:=100*(Last-Open)/Open;

eVolume

eYearlyHigh if (H52>0) and (Last>=H52) then Result:=0 else Result:=1;

eYearlyHighDate if (L52>0) and (Last<=L52) then Result:=0 else Result:=1;

eYearlyLow

eYearlyLowDate

eYesterday

eYield

Min: Enter a minimum value.

Max: Enter a maximum value.

NOTE: For eDailyHigh, eDailyLow, eYearlyHigh, and eYearlyLow, enter the Min and Max parameters as zeros. This
will generate a True value when the Close is on the Daily or Yearly High or Low. For eExpiration the Min and Max
values must be of a TDateTime type. It will find symbols that have expiration dates between the Min and Max dates
(see example2 below).

100

EXAMPLE 1: The following example scans all the symbols in the Nasdaq market group. Any symbol that has a Last price
between $15 and $16 dollars, and a Volume between 50,000 and 9,999,999 shares will be reported in the output window.

begin {Start of Main Programming code}
 if Find(eSignal) then {Find the eSignal feed group}
 repeat {Define a Repeat loop}
 if Filter(eLast,1500,1600,eVolume,50000,99999999) then
 writeln(Align(GetData(eSymbol),8,eLeft),Round(GetData(eLast,true)));
 until not Find(eNext); {Repeat Loop until done}
 writeln('Done'); {Print 'Done' in output window}
end; {End of program}

EXAMPLE 2: The following example reports all Stock Options that start with the letters N - Q which have expired in the
past 60 days.

begin {Start of Main Programming code}
 if Find(eSignal) then {Find eSignal feed group}
 repeat {Define a Repeat loop}
 if Filter(eExpiration, Now-60, Now) then writeln(GetData(eSymbol));
 until not Find(eNext); {Repeat loop until done}
end; {End of program}

Find
FindMarket

SYNTAX: Find(Feed: integer [, Symbol: string]): boolean;

Find(Symbol: string, [Feed: integer]): boolean;
 Find(eNext): boolean;
 Find(ePrior): boolean;
 Find(eChart): boolean;
 FindFeed(Symbol: string): integer;
 FindMarket(Symbol: string): integer;

DESCRIPTION:

Find: The Find function is used to locate a symbol in the quote pages. If the symbol is found, then the function

returns a True value. The function returns a False value if the symbol is not found. The Feed is
specified so that Ensign will know which market to find the symbol in. If a symbol is not specified, then
Find(Feed) will return the first symbol in the market group. This is useful before performing a loop
through all the symbols in the market group. After finding a symbol, use the GetData function to
retrieve and process values from the found symbol.

The format of Find(Symbol) can be used to find the symbol and the optional Feed can be specified by
the FEED variable. If FEED = 0 or the 2nd parameter is a zero, then the feed will be looked up.

Find(eNext): Use this command to Find the next symbol record in the market group. The symbol's data is decoded for

use by the GetData function. Find(eNext) is often used in a loop to process or test data for all symbols
in a market group. A False value will be returned when the last symbol in the market group is reached.

Find(ePrior): Use this command to back-up and Find the previous symbol record in the feed group. A False value will

be returned when the first symbol in the market group is reached.

101

Find(eChart): This command will Find the symbol record for the current active chart. This allows access to the current
quote prices while performing a user-defined study on a chart. See the TextOut command for an
example.

FindFeed: This command is used to find a symbol. The function returns a Zero value if the symbol is not found. The

function returns an integer value which identifies the feed group. All feed groups are searched until the
symbol is found.

FindMarket: Use the command to return the Market Group for the symbol, such as: eFuture.

NOTE: All uses of the Find function decode the symbol's data for use by the GetData function. For example, to retrieve
the Bid price for a stock you would first Find the symbol, and then use GetData(eBid) to retrieve the price information.

PARAMETERS:

Feed: Feed is one of these predefined constants. The default is the value assigned to the FEED global variable.

eFXCM eIB eSignal eIQFeed eNinja eOpenECry
eTraderBytes eTransAct eGlobal eDBFX eATCBrokers eCustom

EXAMPLE: The following example clears the output window, and then locates the first symbol in the Nasdaq stock market
group. A loop is then used to print all Symbols whose volume is greater than 5 million shares. The example, then Finds
the IBM stock symbol in the eStock market group and prints its Bid price. The FindMarket function is then used to
retrieve and print the Market Group for the OEX index symbol.

begin
 Output(eClear);
 if Find(eSignal) then
 repeat
 if GetData(eVolume) > 5000000 then writeln(GetData(eSymbol));
 until not Find(eNext);
 if Find(eSignal,'IBM') then writeln('IBM Bid= ',GetData(eBid));
 writeln('OEX Market= ',FindMarket('OEX'));
end;

FindClose
FindFirst
FindNext

SYNTAX: FindClose;
 FindFirst(Path: string): string;
 FindNext: string;

DESCRIPTION:

FindFirst: This command is used to find a File on the computer's hard disk. The specified Path (which includes the

filename) is searched. Wildcard characters can be used in the Path filename. The function will return
the filename for the first file it finds that matches the Path filename. A null string value is returned if no
file is found.

FindNext: This command returns the name of the next file that matches the Path filename, otherwise, it returns a

null string. The FindFirst command must be used before using FindNext. After using the FindFirst
command, you can then use FindNext multiple times to find subsequent files matching the Path
filename criteria.

102

FindClose: This command must be used after using the FindFirst command. The FindFirst command allocates

computer memory which is used by FindNext, and must be released by calling FindClose. Failure to call
FindClose results in a memory leak (the computer memory that is used will not be released for other
uses).

PARAMETERS:

Path: The Path parameter is used to specify the Directory and FileName to search. For example,
 'C:\ENSIGN\HIST*.*' specifies all files in the C:\ENSIGN\HIST directory.

 Wildcard Characters:

* An asterisk after a string will match any number of occurrences of that string followed by any
characters. For example, to find all files that start with the letter 'B' you could use
'C:\ENSIGN\HIST\B*.*'

 ? A question mark matches any single character in that character position. For example, IB? would

match IBM

EXAMPLE: The following example is used to print all the 5-minute intraday chart filenames that start with the letter 'S'.
Intraday chart files are located in the \ENSIGN\TICK sub-directory. The FindFirst command is used to find the first
file. A While loop is then used to loop through and FindNext the rest of the matching files. FindClose is used to release
the computer memory when the program is done.

var
 Symbol: string;
begin
 Symbol := FindFirst('C:\ENSIGN\TICK\S*.5');
 while length(Symbol)>0 do
 begin
 writeln(Symbol);
 Symbol:=FindNext;
 end;
 FindClose;
end;

FindStudy
FindStudyName

SYNTAX: FindStudy(Study: integer [, Instance: integer]): integer;
 FindStudyName(Study: integer [, Name: string]): integer;

DESCRIPTION: The FindStudy command is used to find a study on a chart. The study values can then be retrieved by
using the GetStudy command. The FindStudy command returns the study's object number.

FindStudyName searches the chart object list for the actual short name listed on the list.

Example: FindStudyName(eSto, ‘STO 9,5’); will find a Stochastics study listed as ‘STO 9,5’ in the list.

Example: For DYO studies, include ‘DYO:’ before the short name in the list. FindStudyName(eDYO, ‘DYO:Test One’);
would find a DYO study listed as ‘Test One’ in the objects list.

Example: FindStudyName(eESPL, 'ESPL 100'); would find an ESPL study which passes 100 as the ESPL value. Do
not use FindStudy(eESPL, 100); because the 2nd parameter is the instance, and not the ESPL value.

103

If the study is found, these functions will return the object number. A Zero value is returned if the study is not found. The
study object number can then be used by the GetStudy, SetStudy, and Remove functions. Use the FindWindow or
Chart command before using FindStudy, so that FindStudy will know which chart to find the study on.

PARAMETERS:

Study: The Study parameter should be one of the following predefined study specifiers:
 eACC eADX eArn eAsh eASI eATR

 eAve eBal eDon eDvg eERG eESPL
 eBol eCHI eCCI eCyc eDYO eHlo

eHull eKel eMOM eMRg eOsc eOvr
ePAF ePVI ePVP ePDA ePar ePAT
eReg eROC eRSI eSMI eSto eTex
eTnd eTrl eTrx eUlt eUni eVlt
eWlm e3PB

NOTE: See AddStudy for details.

 eGrid - is used to get the handle for the Study Grid line object

 eAlan eAndrews eArrow eCircle eCycle eFibCycle

eFibonacci eFibRuler eGann eGannCycle eGannSquare eLabel
 eLevel eLine eLinear eNote eParallel ePyrapoint

eRetrace eScale eSpeed eSupport eESPLTool eWave3
eWave5

 NOTE: The Study parameter for a chart overlay is eOvr. Overlays can be accessed with the Formation,

Bar, ChartBar, Summation, Average, ExpAverage, Highest, Lowest, StdDev, Last, Open, High, Low,
Volume and OpenInt functions.

Instance: The Instance parameter is used if a chart contains multiple copies of the same study. For example, the

RSI study could be applied three times on the same chart with different RSI settings. The Instance
parameter is used to select the first (1), second (2), or third (3), etc. occurrence of the study object. A
value of zero will also default to the first instance of the named study. The default is the 1st occurrence.

When the object is a Grid, the Instance parameter is the sub-window for the Grid object. Example,
FindStudy(eGrid,3) will return the handle for the Grid object in sub-window #3. GetStudy(handle,950)
can be used to return the sub-window number for a study for use in finding the sub-window's grid.

EXAMPLE: The following example assumes that an IBM daily chart is already open. It also assumes that the Relative
Strength Index (RSI) study is displayed on the chart. The example finds the IBM chart window, locates the RSI study, and
then prints the last ten RSI values.

var {Start of Variable declarations}
 StudyHandle,i: integer; {Variables declared as Integers}
 Value: real; {Value declared as a Real}
begin {Start of Main programming code}
 FindWindow(eChart,'IBM.D'); {Find the IBM chart}
 StudyHandle := FindStudy(eRSI); {Find the RSI study}
 if StudyHandle > 0 then {if found then continue}
 for i := BarEnd-9 to BarEnd do {Loop through last 10 bars}
 begin {Start of Loop code}
 Value := GetStudy(StudyHandle,1,i); {Retrieve the RSI value}
 writeln(Value); {Print the RSI value}
 end; {End of Loop code}

104

end; {End of program}

var {Start of Variable declarations}
 StudyHandle,SubWin: integer; {Variables declared as Integers}
begin {Start of Main programming code}
 FindWindow(eChart); {Find a chart}
 StudyHandle := FindStudy(eRSI); {Find the RSI study}
 SubWin := GetStudy(StudyHandle,950); {Which sub-window the RSI uses}
 StudyHandle := FindStudy(eGrid,SubWin); {Handle for the sub-window grid object}
end; {End of program}

FindWindow

SYNTAX: FindWindow(Type: integer [, Name: variant, Page: string]): integer;
 FindWindow(eChart [, ChartName: string, Instance: integer]): integer;

DESCRIPTION: The FindWindow command is used to find an open window on the screen. The function returns the
Window number for use by other functions which require a Window number. FindWindow returns a Zero value if the
window is not found. The global Window variable is set to the window number.

PARAMETERS:

Type: The Type parameter should be one of the following predefined window constants:

 eAccount - Find the main Trading Account window
 eChart - Find a Chart window
 eNews - Find a News window

eOptimizer - Find an Optimizer window
eOrderEntry - Find an Order Entry window

 eQuote - Find a Quote window
eScanner - Find a Chart Scanner window

 eScript - Find the ESPL Script Editor window
eSpreadsheet - Find the Spreadsheet window

 eText - Find a TextBox window
 eTrade - Find a specific Trading Account window

eStack - Find a Stack window

Name: For eQuote the Name is either the Market Group to find, or 'eCustom' plus a custom Page name.
 For eText the Name is the Window Caption for the TextBox window.

For eSpreadsheet the Name is the text to match in the form's drop-down combo box.
 When Name is omitted, the first window found for the specified Type will be reported.
 Name is ignored when the Type is eAccount, eNews, eScript, and eTrade.

Page: Page is the name of a custom quote page. Page is only included when the Type is eQuote. Page should

match the text in the Quote Page drop-down combo box next to the Custom button. For example, to
locate a custom quote page window named 'Dow30' you would use the following command:
FindWindow(eQuote, eCustom, 'Dow30').

ChartName: When the Type is eChart, ChartName identifies a specific chart to find (and its Time Frame).
 Example: FindWindow(eChart,'IBM.D');

Instance: If there are multiple charts opened of the same symbol, then an Instance parameter may be entered. For

example, an Instance value of 3 would attempt to find the 3rd 'IBM.D' chart window that is open.
 Example: FindWindow(eChart,'IBM.D', 3);

105

EXAMPLE: The following example assumes that an IBM daily chart and a Quote page (displaying the Nasdaq market
group) are already displayed on the screen. The program finds the IBM window and Flashes the window caption twice.
The program then finds the Nasdaq quote window and Flashes the window caption twice.

begin
 if FindWindow(eChart,'IBM.D') then begin
 Flash; Pause(1); Flash; Pause(1);
 end;
 if FindWindow(eQuote,eNasdaq) then begin
 Flash; Pause(1); Flash;
 end;
end;

Finished

SYNTAX: Finished(Seconds: integer): boolean;

DESCRIPTION: The Finished command is used to determine if the chart download is finished. The function pauses the
ESPL program until the chart has been downloaded. The Finished function returns a True value when the chart has been
downloaded. The ESPL program can then proceed to the next programming tasks, using complete chart data.

The function has a parameter specifying the number of Seconds to wait before proceeding (in case the chart fails to
download within the specified time). The Finished function will return a False value if the time elapses before the chart
has been downloaded.

eSignal Version: The Finished function can also be used after using the Manager(eOnLine) command. This causes the
ESPL program to pause until the Turbo Data Manager program accepts and activates the Ensign symbols list. The Finished
function will return a True value when the Data Manager has completed the OnLine initialization tasks. A False value
will be returned if the specified Seconds elapse before the Data Manager is finished with the OnLine command.

The Finished function can also be used with the HTTP command. It will cause the program to wait until the HTTP
request has been received.

PARAMETERS:

Seconds: The Seconds parameter specifies the number of seconds to wait before proceeding to the next ESPL

command. The ESPL program will pause on this command until either the task completes or the time
elapses.

EXAMPLE: The following example requests an IBM daily chart. The chart data will be downloaded from the eSignal
internet chart servers. The Finished command will wait up to 60 seconds before proceeding. The program will print a
message indicating if the chart was downloaded successfully, or not. The Data Manager is then given the OnLine
command. The program waits up to 60 seconds for the Data Manager to complete the OnLine tasks.

begin
 Chart('IBM.D'); {Open the IBM daily chart}
 if Finished(60) = True then {Wait for the chart download}
 writeln('IBM Chart downloaded.')
 else
 writeln('IBM Chart failed to download.');
 Feed := eSignal;
 Manager(eOnLine); {Put the Data Manager OnLine}
 if Finished(60) = True then {Wait until Initialized}

106

Андрей
forex-warez.com

 writeln('Data Manager is On-Line.')
 else
 writeln('Data Manager is not responding.');
end;

Also see Global Variable: RefreshBusy: boolean;

This variable will be True if there are charts being refreshed. It will be false if the chart refresh is finished for all charts that
are open. Test the value of the this variable if you want to wait for the refresh to complete before continuing with further
items.

Flash

SYNTAX: Flash;

DESCRIPTION: The Flash command is used to Flash the caption bar for a specified window. The caption bar will
change from the Active state to an Inactive state each time the Flash command is used. Multiple calls to the Flash command
will imitate a Flashing window. This can be useful to attract attention to the window if an alert condition has been reached.
The window that Flashes is specified by the Window variable as set by the FindWindow or Chart functions.

EXAMPLE: The following program is run by clicking ESPL button 1. An IBM daily chart is opened and a Timer is
started that causes the chart window to blink every second. The ESPL value is set to 10 by the Timer. This allows the
program to know who called the program, and call the BlinkWindow procedure.

procedure BlinkWindow;
begin
 FindWindow(eChart,'IBM.D'); {Find the IBM chart}
 Flash; {Flash the chart caption}
end;

{********* Main Program *********}
begin
 if ESPL=1 then begin
 Timer(eStart,1,10); {Start the 1 second Timer}
 Chart('IBM.D'); {Open an IBM daily chart}
 end;
 if ESPL=10 then BlinkWindow; {Call BlinkWindow every second}
end;

FloatToStr
StrToFloat

SYNTAX: FloatToStr(Value: real): string;
 StrToFloat(Text: string): real;

DESCRIPTION: FloatToStr converts the floating-point Value to its string representation. The conversion uses general
number format with 15 significant digits. StrToFloat converts a text number into a floating-point number. The string must
consist of an optional sign (+ or -), a string of digits with an optional decimal point, and an optional 'E' or 'e' followed by a
signed integer. Any leading or trailing blanks in the string are ignored. Thousand separators and currency symbols are not
allowed in the string. If the string doesn't contain a valid value, an error will occur.

107

EXAMPLE: The following example converts a floating-point number into a string. The example then converts a string text
number into a floating-point value. The values are then printed.

var {Start of Variable declarations}
 Value1, Value2: real; {Variables declared as Real}
 Text1, Text2: string; {Variables declared as Strings}
begin {Start of Main programming code}
 Value1 := 523.76; {Assigns a number to Value1}
 Text1 := '450.87'; {Assigns some text to Text1}
 Text2 := FloatToStr(Value1); {Converts Value1 to a String}
 Value2 := StrToFloat(Text1); {Converts Text1 to a Real number}
 writeln(Text2,' ',Value2); {Prints the values}
end; {End of program}

FloodFill

SYNTAX: FloodFill(X, Y: integer, Color: integer, FillStyle: integer);

DESCRIPTION: FloodFill is used to paint an enclosed area of the chart with the current brush pattern and color as
specified by the SetBrush command.

PARAMETERS: FloodFill begins painting at the X,Y coordinate position and continues in all directions until a boundary
is encountered. The FillStyle parameter determines the method in which the area is painted. If FillStyle is 1, the area fills
until a border of the color specified by the Color parameter is encountered. If FillStyle is 0, the area fills as long as the
color specified by the Color parameter is encountered (FillStyle=0 should be used to paint an area that has a multicolored
border. A global ESPL variable named Window is used to specify which chart to paint. The Window variable can be
manually assigned a window pointer value (if you have been keeping track of the window handles), or you can use the
FindWindow or Chart functions to set the Window variable.

EXAMPLE: The following example opens an IBM daily chart, draws a rectangle with a blue border, then fills the rectangle
with white vertical lines.

uses
 Graphics;
begin {Start of Main programming code}
 Chart('IBM.D'); {Open an IBM daily chart}
 SetPen(clBlue, 2, eSolid); {Pen color=Blue, 2 pixel width, Style=Solid}
 Rectangle(50,10,250,110); {Draw a blank rectangle with a blue border}
 SetBrush(clWhite, eVertical); {Brush fill White, fill=Vertical lines}
 FloodFill(51,11,clBlack,0); {Fills rectangle with white vertical lines}
end; {End of program}

For

SYNTAX: For Count := Start to | downto End do command;

or For Count := Start to | downto End do
begin
 {multiple command statements}
end;

108

DESCRIPTION: A For loop is used to execute a command (or block of commands) several times. The For loop's Start
and End variables specify how many times to loop through the commands. Loops are used to scan through lists, to count
items, and to increment values.

PARAMETERS:

Count: Count is a numeric variable used to count the loops as they occur.
Start: Start is the initial value assigned to Count.
End: End specifies the ending loop value (or where it will count to).
to: The 'to' keyword specifies that the counting will increment +1 with each loop. The loop counts higher.
downto: The 'downto' keyword specifies that the counting will decrement -1 with each loop. The loop counts

down.

EXAMPLE: The 1st example loop counts from 1 to 100 and prints the value of the counter. The 2nd loop counts from 200
downto 100 and performs a series of sample calculations using multiple commands.

var {Start of Variable declarations}
 x,y,z: integer; {x,y, and z are declared as Integers}
begin {Start of Main programming code}
 for x :=1 to 100 do writeln(x); {Count to 100, print the counter}
 for x :=200 downto 100 do begin {Count from 200 downto 100}
 y:= Sqr(x); {y equals the Square of x }
 writeln(x,' Squared = ',y); {Prints x and y }
 z:= y - x; {z equals x Squared minus x}
 writeln(y,' - ',x,' = ',z); {Prints y and z }
 end; {End of Loop command block}
end; {End of program}

ForceDirectories
SYNTAX: ForceDirectories(DirectoryPath: string);

DESCRIPTION: The ForceDirectories function creates all a new directory as specified in DirectoryPath, which must be a
fully-qualified path name. If the directories given do not yet exist, ForceDirectories attempts to create them.

PARAMETER:

DirectoryPath: The DirectoryPath is a fully-qualified path name.

EXAMPLE: The following example uses the ForceDirectories function to create a series of folders. If none of the
directories exist, they will be created, staring with the parent, 'mike, then onto the next and so forth.

begin
 ForceDirectories('c:\Ensign10\Backup\MyData');
end;

Format

SYNTAX: Format(FormatString: string, [Value1: real [, Value2, … Value7:real]]): string;

DESCRIPTION: The Format function formats one or more numbers into a string representation. Formatting is controlled
by the FormatString. Up to seven values may be formatted at the same time.

109

PARAMETERS:

Value1 through Value7: The numeric values of Value1 can be any real number.

FormatString: Format Specifiers are used to format the Value parameter. Each FormatString contains text characters

and Format Specifiers. Text characters are copied verbatim to the resulting string. :
 Format Specifiers have the following form: % [-] [width] [.prec] Type

The Format Specifier always begins with a %. The following characters may optionally follow the %, in this order:

 A left Justification indicator, [-]
 A Width specifier, [width]
 A decimal point Precision specifier, [.prec]
 A numeric conversion Type character

The default Justification is right-justified, resulting in added blanks in front of the value. If the format specifier contains a
left-justification indicator (a '-' dash character preceding the width specifier), the result is left-justified by adding blanks
after the value.

The Width specifier sets the minimum field width for a conversion. If the resulting string is shorter than the minimum
field width, it is padded with blanks to increase the field width.

The Precision specifier indicates how many decimal places to include in the resulting string.

The Type character may be one of the following characters (e, f, g, n, or m):

e: Scientific. Value is converted to a string of the form "-d.ddd...E+ddd". The resulting string starts with a minus sign if

the number is negative, and one digit always precedes the decimal point. The total number of digits in the resulting
string (including the one before the decimal point) is given by the precision specifier in the format string -- a default
precision of 15 is assumed if no precision specifier is present. The "E" exponent character in the resulting string is
always followed by a plus or minus sign and at least three digits.

f: Fixed. Value is converted to a string of the form "-ddd.ddd...". The resulting string starts with a minus sign if the

number is negative. The number of digits after the decimal point is given by the precision specifier in the format string
-- a default of 2 decimal digits is assumed if no precision specifier is present.

g: General. Value is converted to the shortest possible decimal string using fixed or scientific format. The number of

significant digits in the resulting string is given by the precision specifier in the format string -- a default precision of 15
is assumed if no precision specifier is present. Trailing zeros are removed from the resulting string, and a decimal point
appears only if necessary. The resulting string uses fixed point format if the number of digits to the left of the decimal
point in the value is less than or equal to the specified precision, and if the value is greater than or equal to 0.00001.
Otherwise the resulting string uses scientific format.

n: Number. Value is converted to a string of the form "-d,ddd,ddd.ddd...". The "n" format corresponds to the "f" format,

except that the resulting string contains thousand separators.

m: Money. Value is converted to a string that represents a currency amount. The conversion is controlled by the

CurrencyString, CurrencyFormat, NegCurrFormat, ThousandSeparator, DecimalSeparator, and CurrencyDecimals
global variables, all of which are initialized from the Currency Format in the International section of the Windows
Control Panel. If the format string contains a precision specifier, it overrides the value given by the CurrencyDecimals
global variable.

EXAMPLE: The first line below formats 6.6667 into a string equal to 6.67. The second line formats the numbers 8 and
6.6668 into the string '8 Units, Price= $6.67' . NOTE: Each % starts a new Format Specifier (to be used for the next
number in the parameter list).

110

begin {Start of Main programming code}
 writeln(Format('%4.2f', [6.6667])); {formats 6.6667 and prints 6.67}
 writeln(Format('%1.0f Units, P= %6.2m',[8.0,6.6668])); {8 Units, P= $6.67}
end; {End of program}

FormatDateTime

SYNTAX: FormatDateTime(Format: string; DateTime: TDateTime): string;

DESCRIPTION: The FormatDateTime function is used to format the DateTime value using the specified Format. The
following format specifiers can be used:

c Displays the date using the format given by the ShortDateFormat global variable, followed by the time using the

format given by the LongTimeFormat global variable. The time is not displayed if the fractional part of the
DateTime value is zero.

d Displays the day as a number without a leading zero (1-31).
dd Displays the day as a number with a leading zero (01-31).
ddd Displays the day as an abbreviation (Sun-Sat) using the strings given by the ShortDayNames global variable.
dddd Displays the day as a full name (Sunday-Saturday) using the strings given by the LongDayNames global variable.
ddddd Displays the date using the format given by the ShortDateFormat global variable.
dddddd Displays the date using the format given by the LongDateFormat global variable.
m Displays the month as a number without a leading zero (1-12). If the m specifier immediately follows an h or hh

specifier, the minute rather than the month is displayed.
mm Displays the month as a number with a leading zero (01-12). If the mm specifier immediately follows an h or hh

specifier, the minute rather than the month is displayed.
mmm Displays the month as an abbreviation (Jan-Dec) using the strings given by the ShortMonthNames global variable.
mmmm Displays the month as a full name (January-December) using the strings given by the LongMonthNames global

variable.
yy Displays the year as a two-digit number (00-99).
yyyy Displays the year as a four-digit number (0000-9999).
h Displays the hour without a leading zero (0-23).
hh Displays the hour with a leading zero (00-23).
n Displays the minute without a leading zero (0-59).
nn Displays the minute with a leading zero (00-59).
s Displays the second without a leading zero (0-59).
ss Displays the second with a leading zero (00-59).
t Displays the time using the format given by the ShortTimeFormat global variable.
tt Displays the time using the format given by the LongTimeFormat global variable.
am/pm Uses the 12-hour clock for the preceding h or hh specifier, and displays 'am' for any hour before noon, and 'pm' for

any hour after noon. The am/pm specifier can use lower, upper, or mixed case.
a/p Uses the 12-hour clock for the preceding h or hh specifier, and displays 'a' for any hour before noon, and 'p' for any

hour after noon. The a/p specifier can use lower, upper, or mixed case, and the result is displayed accordingly.
ampm Uses the 12-hour clock for the preceding h or hh specifier, and displays the contents of the TimeAMString global

variable for any hour before noon, and the contents of the TimePMString global variable for any hour after noon.
/ Displays the date separator character given by the DateSeparator global variable.
: Displays the time separator character given by the TimeSeparator global variable.
'xx' Characters enclosed in single quotes are displayed as-is, and do not affect formatting.

EXAMPLE: The following example show 4 different ways to format the Date and Time values using the Now command
(assuming the date is 12-25-2000 at noon).

begin {Start of Main Programming code}
 writeln(FormatDateTime('c',Now)); {Prints 12/25/2000 12:00:00 PM }

111

 writeln(FormatDateTime('d',Now)); {Prints 25 }
 writeln(FormatDateTime('ddd',Now)); {Prints Mon }
 writeln(FormatDateTime('yyyy',Now)); {Prints 2000 }
end; {End of program}

Formation
SYNTAX: Formation(Type: integer, Index: integer [, Count: integer, Dataset: integer]): integer;

DESCRIPTION: The Formation function determines if a particular chart bar formation exists at the indicated bar
location. The function can optionally find formations in chart overlay data by specifying the Dataset to use. The overlay's
object number can be used as the Dataset parameter, or the values 1, 2, 3 … may be used, indicating the 1st, 2nd, or 3rd …
overlay. The overlay object number can be obtained with the FindStudy function.

PARAMETERS:

Type: The Type parameter is used to identify the chart formation to search for. The parameter may be one of

the following predefined constants:

 eCandlestick eGap eGapOpen eHook eIsland eKeyReversal

eLedge eOutside ePivot ePivotClose ePivotRange eRangeSize
eTrend eTurningPoint eVolumeSize

Index: Index is the bar array subscript between 1 and the number of bars on the chart. If Index is less than or

equal to zero, the function will use index as an offset from the last bar on the chart. If Index is out of
range, the function will return zero. Both the host and the overlay use the same indexing.

Count: Count is only used by ePivotClose and ePivotRange. Count can be omitted for all others.

DataSet: The DataSet parameter is an optional object number for an overlay data set. The chart's bars are used by

default.

Chart Formation Descriptions

Candlestick: Candlestick returns 1 for a bullish candlestick bar, 2 for a bearish candlestick bar, and 0 otherwise.
 A bullish candlestick bar has a close above its open.
 A bearish candlestick bar has a close below its open.

Gap: Gap returns 1 for bullish gaps, 2 for bearish gaps, and 0 otherwise.
 A bullish gap has a low that is higher than the high of the previous bar.
 A bearish gap has a high that is lower than the low of the previous bar.

Gap Open: Gap Open returns 1 for bullish gaps, 2 for bearish gaps, and 0 otherwise.
 A bullish gap has an open that is higher than the high of the previous bar.
 A bearish gap has an open that is lower than the low of the previous bar.

Hook: Hook returns 1 for a bullish hook bar, 2 for a bearish hook bar, and 0 otherwise.
 A bullish hook bar is preceded by two negative nets, and followed by a positive net.
 A bearish hook bar is preceded by two positive nets, and followed by a negative net.

Island: Island returns 1 for bullish Islands, 2 for bearish Islands, and 0 otherwise.
 A bullish Island has a high that is lower than the low of the bar on either side.
 A bearish Island has a low that is higher than the high of the bar on either side.

112

KeyReversal: KeyReversal returns 1 for a bullish key reversal bar, 2 for a bearish key reversal bar, and 0 otherwise.
 A bullish key reversal bar meets these conditions:
 1. The bar's close is in the upper 20% of its range.
 2. The bar's close is above 60% of the previous bar's range.
 3. The previous bar's close is in the lower 40% of its range.
 4. The previous bar's low was lower than the low of the previous bar.
 A bearish key reversal bar is the inverse formation of the bullish key reversal bar.

Ledge: Ledge returns 1 when the bar's close is equal to the previous bar's close, and 0 otherwise.

Outside/Inside: Outside/Inside returns 1 for outside range bars, 2 for inside ranges bars, and 0 otherwise.
 Outside range bars have a higher high and a lower low than the previous bar.
 Inside range bars have a lower high and a higher low than the previous bar.

Pivot: Pivot returns 1 for a bullish pivot bar, 2 for a bearish pivot bar, and 0 otherwise.
 A bullish pivot bar has a close that is lower than the close of the bar on either side.
 A bearish pivot bar has a close that is higher than the close of the bar on either side.

PivotClose: PivotClose returns 1 for a bullish pivot bar, 2 for a bearish pivot bar, 4 for maybe bullish, and 5 for maybe

bearish. States 4 and 5 should be reevaluated after more bars have been received.
 Count is the number of bars to check on both sides of the pivot bar. Default is 2.
 A bullish pivot bar has a close that is lower than the close(s) of the bar(s) on either side.
 A bearish pivot bar has a close that is higher than the close(s) of the bar(s) on either side.
 Additional checks are made for equal closes so the pivot bar is the first in the group.

 Example: Formation(ePivotClose,index,2);

PivotRange: PivotRange returns 1 for a Low pivot bar, 2 for a High pivot bar, 3 for both Low and High, 4 for maybe

Low pivot, and 5 for maybe High pivot. States 4 and 5 should be reevaluated after more bars have been
received.

 Count is the number of bars to check on both sides of the pivot bar. Default is 2.
 A Low pivot bar has a low that is lower than the low(s) of the bar(s) on either side.
 A High pivot bar has a high that is higher than the high(s) of the bar(s) on either side.
 Additional checks are made for equal highs or lows so the pivot bar is the first in the group.
 Example: Formation(ePivotRange,index,4);

RangeSize: RangeSize returns 1 for large range bars, 2 for small range bars, and 0 otherwise.
 A large range bar has a range more than 1.618 times the average range.
 A small range bar has a range less than 0.382 times the average range.
 The average range is the simple average of the ranges of the previous 5 bars.

Trend: Trend returns 1 for bullish bars, 2 for bearish bars, and 0 otherwise.
 A bullish bar has a higher high and a higher low than the previous bar.
 A bearish bar has in a lower low and a lower high than the previous bar.
 If neither of the above conditions were met, then a bar is bullish if its net is positive and its close is above

its open, or a bar is bearish if its net is negative and its close is below its open. If none of the above
conditions are met, then a bar is bullish if it has a higher high than the previous bar, and its close is above
its midpoint, or a bar is bearish if it has a lower low then the previous bar, and its close is below its
midpoint.

TurningPoint: TurningPoint returns 1 for a bullish turning point bar, 2 for a bearish turning point bar, and 0 otherwise.
 A bullish turning point bar meets these conditions:
 1. Its low is lower than or equal to the low of the previous bar.
 2. Its low is lower than the low of the succeeding bar.
 A bearish turning point bar is the inverse formation of the bullish turning point bar.
 1. Its high is higher than or equal to the high of the previous bar.
 2. Its high is higher than the high of the succeeding bar.

113

 If a turning bar meets both the bearish and the bullish conditions simultaneously, then the trend of the
prior two bars, and the net is used to choose between bullish and bearish.

VolumeSize: VolumeSize returns 1 for large volume bars, 2 for small volume bars, and 0 otherwise.
 A large volume bar has a range more than 1.618 times the average volume.
 A small volume bar has a range less than 0.382 times the average volume.
 The average volume is the simple average of the volumes of the previous 5 bars.

EXAMPLE: The following example opens an IBM daily chart. A For loop is used to examine each bar and determine if
an Outside Range or Inside Range condition exists. The bars are colored based on the Formation results.

var {Start of Variable declarations}
 i:integer; {i is declared as an Integer }
begin {Start of Main programming code}
 Chart('IBM.D'); {Open an IBM daily chart}
 for i:= BarBegin to BarEnd do SetBar(eColor, i , Formation(eOutside, i));
 ChartRefresh(); {Refresh the chart to display colors}
end; {End of program}

Frac
Round
Trunc

SYNTAX: Frac(Number: real): real;
 Round(Number: real): integer;
 Trunc(Number: real): integer;

DESCRIPTION: The Round function rounds a Number to the nearest whole number. Round(10.5) returns 10.
Round(10.51) returns 11. The Trunc function truncates a Number (rounds down to the nearest whole number).
Trunc(10.51) returns 10. The Frac function returns the fractional part of a Number. Frac(10.51) returns 0.51.

EXAMPLE: The following example prints the results of Frac, Round, and Trunc with the value 10.51.

begin
 writeln(Frac(10.51)); {Prints 0.51}
 writeln(Round(10.51)); {Prints 11}
 writeln(Trunc(10.51)); {Prints 10}
end;

FTPdownload
FTPupload

SYNTAX:

FTPdownload(HostName, HostDirectory, HostFileName, LocalFileName, UserName, Password: string);
FTPupload(HostName, HostDirectory, HostFileName, LocalFileName, UserName, Password: string);

DESCRIPTION: FTPdownload and FTPupload are used to transfer files to and from an Internet Server Host computer.
This allows you to download and upload files from an Internet site. You can actually update your web site using the ESPL
language. The functions return a True value if the download or upload is successful, otherwise a False value. NOTE:
Your computer must have an active Internet connection in order for the functions to upload or download files.

114

PARAMETERS:

HostName: Enter the IP address of the Host Internet server computer. Example: '214.113.64.3'
HostDirectory: Enter the Directory Path on the Host Internet server where the HostFile is located.
HostFileName: Enter the FileName on the Host Internet server computer that will be uploaded or downloaded.
LocalFileName: Enter the Path and FileName for the file on your computer that will be uploaded or downloaded to.
UserName: Enter the required 'UserName' to log on to the Host Internet server computer.
Password: Enter the required 'Password' to log on to the Host Internet server computer.

EXAMPLE: The following program demonstrates how to upload and download a file from an Internet Server computer.
An HTML file named TEST.HTML is uploaded when ESPL button 1 is clicked. The file is downloaded when ESPL
button 2 is clicked.

begin
 if ESPL=1 then
 FTPupload('214.113.64.3','/www/ftp/','Test.html','C:\Test.html','MyName',
 'MyPassword');
 if ESPL=2 then
 FTPdownload('214.113.64.3','/www/ftp/','Test.html','C:\Test.html',
 'MyName','MyPassword');
end;

Function

SYNTAX: Function FunctionName(ParameterList);

DESCRIPTION: Use the Function keyword to create a function subroutine in the ESPL program. Functions are called
from within the ESPL program. When the programming code in the function has completed, program execution resumes on
the next line following the calling statement. A predefined variable named 'Result' is used to return a value to the calling
line.

PARAMETERS:

FunctionName: FunctionName is the name of the function, and must be a unique name.

ParameterList: The ParameterList for a function definition is not optional. At least one parameter must be used, even if it

amounts to being an dummy parameter. The ParameterList is a list of parameters that will be passed to
the function, using the following syntax:

 ParameterName: VariableType [; ParameterName: VariableType [...]]

 ParameterName is the name the parameter will be called in the function, and VariableType is the

variable type of the parameter. Note that multiple parameters are separated by a semi-colon in the
ParameterList for the function definition, but they are separated by a comma in the function call.

 If you precede a parameter with the keyword var, then any changes made to the parameter will be

reflected in the actual parameter, rather than just passing the value of the parameter.

EXAMPLE: The following example defines a simple Function named 'AddNumbers'. Two random numbers (between 1
and 1000) are passed to the function. The values are added together. The resulting integer sum is returned to the calling
line. The program is run by clicking button 1 (ESPL=1) from within the ESPL Script Editor window. The programming
code in the function is executed when called by the AddNumbers(Random(1000),Random(1000)) function call
statement. NOTE: Several functions can be created in the same ESPL program. However, make sure that a Function is

115

../../../Test.html
../../../Test.html','MyName

always higher up in the programming code, than the programming line that calls it. For example, a Function that starts on
line 30 can't be called by a reference on line 10. The Function must be higher in the code than any call to the function.

Function AddNumbers(Number1,Number2:integer);
var
 Sum: integer;
begin
 Sum := Number1 + Number2 ;
 write(Number1,' + ',Number2,' = ');
 Result := Sum;
end;

{**** Main Program****}
begin
 if ESPL = 1 then writeln(AddNumbers(Random(1000),Random(1000)));
end;

Get

SYNTAX: Get(Symbol: string[, Field: integer, Feed: integer]): real;

DESCRIPTION: Get returns the Field value for the specified symbol. The Feed for the vendor data feed may be provided
or set previously in the Feed global variable. If the symbol is not found, then Get will return zero. This function is more
efficient than using the two functions of Find and GetData. The default Field is eClose.

PARAMETERS:

Symbol: Specifies the symbol to search for, and return the Field value.
Field: The value from the quote record to return. See the Field selections under GetData.
Feed: The vendor data feed for the symbol. Ie eSignal, eIB, eFXCM, eDBFX, eTransAct, eTraderBytes.

EXAMPLE: The following example gets the Last price for 3 symbols, and then updates a Custom symbol.

var
 price: real;
begin
 Feed := eSignal;
 price:= Get('MSFT') + Get('DELL') + Get('APPL');
 Put('MYSTOCK',price,2);
end;

GetBar

SYNTAX: GetBar(Index: integer, var Date: integer, var Open: real, var High: real, var Low: real, var Close: real,

var Volume: integer, var OpenInterest: integer): boolean;

DESCRIPTION: GetBar is used to read a chart bar's values. Example, the date, open, high, low, close, volume, and open-
interest can be read. For Intra-day charts (like a 1-minute chart), the open-interest field will contain the bar time-stamp
(example: 1030 1031 1032 1033 1034 1035 etc.). The open-interest field for stock charts generally contains a zero
value. GetBar is a useful way to read all the values for a bar, using just one statement.

PARAMETERS:

116

Index: Index is the bar array subscript between 1 and the number of bars on the chart. If Index is less than or
equal to zero, the function will use index as an offset from the last bar on the chart. If Index is out of
range, the function will return false, otherwise true.

The Date, Open, High, Low, Close, Volume, and OpenInterest variables will contain the bar values after calling the
function.

EXAMPLE: The following example opens an IBM daily chart, then reads and prints the values for the last 10 bars on the
chart.

var {Start of Variable declarations}
 Open,High,Low,Close: real; {Declares variables as Real}
 i,Date,Volume,OpenI: integer; {Declares variables as Integers}
begin {Start of Main Programming code}
 Chart('IBM.D'); {Opens an IBM daily chart}
 for i:= BarEnd-10 to BarEnd do begin {FOR loop, counts last 10 bars}
 GetBar(i,Date,Open,High,Low,Close,Volume,OpenI); {Read bar values}
 writeln(Date,' ',Open,' ',High,' ',Low,' ',Close,' ',Volume); {Print}
 end; {End of loop code}
end; {End of program}

GetCell
SetCell
SelectedCell
RowColor

SYNTAX: GetCell(Column, Row: integer): string;

SetCell(Column, Row: integer, Text: string [, Color,Marker: integer]): boolean;
SelectedCell(var Column, var Row: integer, var Text: string, var Value: real, var Feed: integer,

var Symbol: string, var Title: string): boolean;
RowColor(Row,Color: integer);

DESCRIPTION:

GetCell GetCell can read any cell from a Quote, Account, Spread Sheet or Trade table. If the command fails, a

null string is returned.

SetCell: SetCell is the reverse of the GetCell function. Any string can be written to any cell. Using SetCell, a

quote table can be filled with custom titles, values and markers. The cell will be colored using the Color
parameter if it is provided. SetCell returns False if an error occurs, True otherwise.

SelectedCell: SelectedCell returns the Column, Row and Text for the cell the user clicked on. The Text from the cell is

returned as a value in the Value parameter (useful if it is a number). The Feed, Symbol, and column
Title for the cell are also returned. SelectedCell returns a False a value if an error occurs, True otherwise.

RowColor: RowColor is used to set the color of a row of cells. This statement is supported for the Portfolio,
Spreadsheet, Optimizer and Scanner grids.

PARAMETERS:

Column: Column specifies the column. Column zero is the left-most column.
Row: Row specifies the row. Row zero is the top title row.

117

Text: Text specifies the text to save into a cell (when using the SetCell function).
 Text contains the retrieved cell text (when using the SelectedCell function).
Color: Specifies a Color. The cell will be colored with this color when using SetCell.

The row will be colored with this color when using RowColor.
Marker: Specifies a Marker. If the Text string is empty, the marker will be centered in the cell. Otherwise the

marker will be shown on the left side of the text. To set a Marker without changing the cell color, pass -1
as the Color parameter. See Appendix: Markers

EXAMPLE #1: The following example opens a Custom Quote page. The top left cell is set to 'Custom' and is colored red.
The Symbols in the left column are printed (until a blank row in encountered).

var
 i: integer;
 Symbol: string;
begin
 Quote(eCustom);
 SetCell(0,0,'Custom',clRed);
 i:=1;
 while GetCell(1,i) <> '' do begin
 Symbol:= GetCell(1,i);
 writeln('Row ',i,' =',Symbol);
 inc(i);
 end;
end;

EXAMPLE #2: The following example is used to set an Alert for a selected symbol. Click the mouse on a quote page row,
and then Click the Run button. The SelectedCell function is used to retrieve values from the selected cell. An Alert is set
at the symbol's High price.

var {Start of Variable declarations}
 row,col,feed: integer; {Variables declared as Integers}
 value: real; {Variable declared as a Real}
 text,symbol,title: string; {Variables declared as Strings}
begin {Start of Main Programming code}
 FindWindow(eQuote); {Locates the open Quote page}
 SelectedCell(col,row,text,value,feed,symbol,title); {Read Cell data}
 Alert(symbol,market,value,true); {Set high alert}
end; {End of program}

GetData

SYNTAX: GetData(Field: integer [, Format: boolean]): variant;

DESCRIPTION: Returns the specified Field price value for the last retrieved quote record. Use the Find and
FindMarket functions to locate a symbol in the quote pages. After finding a symbol, use the GetData function to
retrieve and process values for the symbol.

PARAMETERS:

Field: Field can be one of the following predefined constants:
 eAsk eAskSize eBeta eBid eBidSize eClose

eDividend eDown eEarnings eEPS eEstEPS eExchange
eExpiration eFormT eFlag eHigh eInterest eIssuer
eLast eLow eMarket eMarketID eMarketName eName

118

eNet eOpen eScaleFactor ePERatio eSettled eSharesOut
eStrike eSymbol eTickTime eTickVolume eTotal eUnchanged

 eUp eVolume eYearlyHigh eYearlyHighDate eYearlyLow
eYearlyLowDate eYesterday eYield

 For DTN data-feed users, the following fields are also available: eAveVolume and eInstitution

 eFlag returns a byte (bit 1 will equal 1 if a chart is open, bit 2 will equal 1 if a price alert is set).
 To test the value of bit 1 use the following code: if (GetData(eFlag) and 1)=1 then
 To test the value of bit 2 use the following code: if (GetData(eFlag) and 2)=1 then

 eMarketName and eSymbol return strings.
 eMarketID returns a market group character for use in creating custom quote page files. Append a symbol to the

eMarketID and save to a file. Example: FileSymbolEntry:= GetVariable(eMarketID) + GetVariable(eName);

Format: The Format parameter is used to specify a format for the returned value. The value of Format should

be either True or False. The default value of Format is False.

 For Open, High, Low, Last, Net, Bid and Ask the default price format is a Display value (example: 10516

for bonds). Set Format to True to return a Calculation value (105.50 instead of 10516 for bonds).

 If Format is True, eTickTime is calculated in number of seconds since midnight.
 If Format is False, eTickTime returns a TickTime string showing hours, minutes and seconds.

 If Format is True, eExpiration, eYearlyHighDate and eYearlyLowDate return the number of days since

01-01-1970. If Format is False, then return a Date in the format of 'mm-dd-yy'.

EXAMPLE: The following example finds the IBM symbol in the quote pages, retrieves the symbol name and values for
the Bid and Ask prices, and then prints them.

begin {Start of Main Programming code}
 if Find(eStock,'IBM') then {Find and retrieve the IBM record}
 begin
 writeln(GetData(eSymbol),' Bid Price= ', GetData(eBid)); {Print Bid price}
 writeln(GetData(eSymbol),' Ask Price= ', GetData(eAsk)); {Print Ask price}
 end;
end; {End of program}

GetLevels

SYNTAX: GetLevels(DayFlag: byte; var Open, var High, var Low, var Close: real): boolean;

DESCRIPTION: The GetLevels function is used to retrieve the Open, High, Low, Close prices for any of the past 3 days.
The function can also retrieve the Bar Index positions for the Open, High, Low, Close prices for any of the past 3 days. The
prices are the same as the Daily Price Levels draw tool. However, the Daily Price Levels tool does not need to be applied
on the chart to retrieve the prices or index positions. The function returns a True value if it succeeds, otherwise a False
value is returned.

PARAMETERS:

DayFlag: The DayFlag value should be a value between -3 and 3 as shown below.
 -3 Returns the Bar Indexes for the O,H,L,C for 2 days ago
 -2 Returns the Bar Indexes for the O,H,L,C for yesterday
 -1 Returns the Bar Indexes for the O,H,L,C for today

119

 1 Returns the O,H,L,C price values for today
 2 Returns the O,H,L,C price values for yesterday
 3 Returns the O,H,L,C price values for 2 days ago

Open, High
Low, Close: These Variable parameters need to be declared before using this function. The return values will be

placed in these Variables. See example below.

EXAMPLE: The following program opens an IBM 5-minute chart, and then retrieves the Prices and Bar Index Positions
for yesterday's Open, High, Low, Close values.

var
 oPrice,hPrice,lPrice,cPrice:real;
 oIndex,hIndex,lIndex,cIndex:integer;
begin
 Chart('IBM.5');
 GetLevels(2, oPrice, hPrice, lPrice, cPrice);
 GetLevels(-2, oIndex, hIndex, lIndex, cIndex);
 writeln('Yesterdays High was ', hPrice);
 writeln('The bar index for yesterdays Open is ', oIndex);
end;

GetStudy
SetStudy

SYNTAX: GetStudy(Study: integer, Select: integer [, Index: integer]): variant;
 SetStudy(Study: integer, Select: integer, Value: real [, Index: integer]): boolean;

DESCRIPTION:

GetStudy: GetStudy is used to retrieve chart Study and Draw Tool values, parameters, and settings. The Index

parameter is not necessary when retrieving study parameters (since they are not associated with a
particular bar).

SetStudy: SetStudy is the reverse of GetStudy. SetStudy is used to Set the Study or Draw Tool parameters and

settings, but cannot set the crossing flags.

PARAMETERS:

Study: Study is the study Object ID number (handle) returned by the FindStudy, AddStudy, or AddLine

functions. If the value of Study is set to Zero, then the GetStudy and SetStudy commands will
default to the calling chart study (without having to specifically identify the Object ID number). Use the
FindStudy command to find a Study or Draw Tool line on a chart, and then use the returned Handle as
the Study parameter when using the GetStudy or SetStudy commands.

Select: Select specifies which study or draw tool value to Get or Set. Select is a number from 0 through 955 and

numbers for each Study and Draw Tool are documented on the following pages. These constants may be
used as well for the Select parameter.

eParm1: Get or Set the 1st parameter value from the Properties window.
eParm2: Get or Set the 2nd parameter value from the Properties window.
eParm3: Get or Set the 3rd parameter value from the Properties window.
eOffset: Get or Set the Offset Up/Down value from the Properties window.
Eshift: Get or Set the Shift Left/Right value from the Properties window.

120

Example: SetStudy(handle,eParm1,value);

Index: Index is the bar array subscript between 1 and the number of bars on the chart.

Value: Value is used to set a study or line parameter value.

Select Most Studies Description
0 1st line value Study value, same as Select = 1

1, 2, 3 1st, 2nd, 3rd line value Study value

4, 5, 6 1st, 2nd, 3rd line slope Study value – prior study value

7 1st line >= 2nd line Flag: 1st line greater than or equal to 2nd

8 1st line <= 2nd line Flag: 1st line less than or equal to 2nd line

9 1st line X> 2nd line Flag: 1st line cross above 2nd line

10 1st line X< 2nd line Flag: 1st line cross below 2nd line

11 1st line X<> 2nd line Flag: 1st line crosses 2nd line

12 1st line and 2nd line rising Flag: both line slopes are positive

13 1st line and 2nd line falling Flag: both line slopes are negative

14, 15, 16 1st, 2nd, 3rd line rising Flag: study value => prior study value

17, 18, 19 1st, 2nd, 3rd line falling Flag: study value <= prior study value

20, 21, 22 1st, 2nd, 3rd turns up Flag: slope goes positive

23, 24, 25 1st, 2nd, 3rd turns down Flag: slope goes negative

26, 27, 28 1st, 2nd, 3rd changes direction Flag: line turns up or turns down

29, 30, 31 1st, 2nd, 3rd near #3 +/- #4 Flag: study >= #3 - #4 and #2 <= #3 + #4

32, 33, 34 1st, 2nd, 3rd between #3 & #4 Flag: study >= #3 and study <= #4

35, 36, 37 1st,2nd,3rd between #3 & (#3+#4) Flag: study >= #3 and study <= #3 + #4

38, 39, 40 1st, 2nd, 3rd as percent of scale 100* (Study – Scale low) / Scale Range

41,42,43,44,45 1st, 2nd, 3rd, 4th, 5th parameters

46 Object ID Each object is assigned a unique number

47, 48, 49 1st, 2nd, 3rd line color The color the study line segment was drawn with

Select Stop Studies Description
1, 2, 3 Stop, High stop, Low stop value Study value

4 Stop spread Close – Study Value

5 Stop slope Study value – prior study value

6 Stop as percent of scale 100* (Study – Scale low) / Scale Range

7, 8, 9 Stop hit, High and Low stop hit Flag: true when stop is touched

10 Position long Flag: Low stop is active

11 Position short Flag: High stop is active

12, 13, 14 1st, 2nd, 3rd parameters Parameters 1, 2, Offset U/D

121

Select DYO Study Description
1, .. 12 Row A – L value Study value

13 .. 24 Row A – L <> 0 Flag: study value not equal to zero

25 .. 36 Row A – L = 0 Flag: study value equal to zero, ie False

37 .. 48 Row A – L rising Flag: study value >= prior study value

49 .. 60 Row A – L falling Flag: study value <= prior study value

61 .. 72 Row A – L turns up Flag: slope goes positive

73 .. 84 Row A – L turns down Flag: slope goes negative

85 .. 96 Row A – L goes true Flag: study flag goes from False to True

97 .. 108 Row A – L goes false Flag: study flag goes from True to False

109 .. 120 Row A – L changes state Flag: study flag changes state

121 .. 132 Row A – L bars since true Index – prior index where flag was True

133 .. 144 Row A – L bars since false Index – prior index where flag was False

Array Index All Studies Description
200 .. 250 Properties Single precision values for edit fields

300 .. 315 Colors Line Colors

400 .. 424 Integers Integer values for combo box selections

501 .. 512 Word Index for DYO Variables

600 .. 800 Byte Byte values for combo box, and strings

901 .. 932 Flags Check box selections

915 Privatize Flag Set to True prevents display of property form

950 wIDX Location window selection, 0 .. 9

951 Object ID Each object is assigned a unique number

952 sShortName Study short name string

953 Scale High Study High Scale

954 Scale Low Study Low Scale

955 Scale Range Study Range = High Scale – Low Scale

956 Tab Which tab is selected, 0 through 14.

960 NoSave flag (SetStudy only) Use SetStudy(study,960,True) to block saving

Select Commodiy Channel Index Description
0 .. 49 See documentation for Most Studies

50 Woodie CCI Trend Up Boolean flag

51 Woodie CCI Trend Down Boolean flag

52 Woodie CCI Pre-Trend Boolean flag

53 Woodie CCI Trigger Bar Boolean flag

122

Андрей
forex-warez.com

Select Pesavento Patterns Description
0,1 Last swing price Could be a swing high or a swing low price

2 Swing High price

3 Swing Low price

4 Direction flag True= Up, False = Down

5 .. 12 1st through 8th swing prices

13 .. 20 1st through 8th swing indexes

21 Swing bar value 0 – nothing, 1 – High swing, 2 – Low swing bar

22 Flag for a swing high bar

23 Flag for a swing low bar

24 Trend line value

25 Trend line slope

26 Trend line rising flag

27 Trend line falling flag

28 Trend line changed direction flag

29 Object ID Each object is assigned a unique number

Select Most Draw Tools Description
0,1 Line Value

2 Line Slope

3 Line Rising

4 Line Falling

5 Close >= Line

6 Close <= Line

7 Close >= Line and Low < Line

8 Close <= Line and High > Line

9 Close X> Line Bar's last crosses above line

10 Close X< Line Bar's last crosses below line

11 Close X<> Line Bar's last crosses the line in either direction

12 Close X<> Line and bar on line Bar's last crosses line and High > line, Low < line

13 High X> Line

14 High X< Line

15 Low X> Line

16 Low X< Line

17 High X> Line or Low X< Line

18 Point A price

19 Point B price

20 Point C price

123

21 Point A index

22 Point B index

23 Point C index

24 Bar count after point A

25 Bar count after point B

26 Bar count after point C

27 Upper standard deviation channel

28 Lower standard deviation channel

29 wID Object ID

30 Note text For lines, right side label text

31 Left Label text For lines, left side label text

Select Pyrapoint
201 Degrees

Select Cycles
204 Period

Select Draw Line
206 Slope

Select Andrews Pitchfork
209 Fork Variations

124

PROPERTY FORM for MOST STUDIES:

Example: Handle:= FindStudy(eSto); {Find the Stochastics study. Handle identifies the study}
 SetStudy(Handle, 200, 14); {Set the identified Stochastics study 'Bars' parameter to 14}
 SetStudy(Handle, eParm2, 9); {Set the identified Stochastics study '%K' parameter to 9}
 SetStudy(Handle, eParm3, 3); {Set the identified Stochastics study '%D' parameter to 3}

EXAMPLE: The following program opens an IBM daily chart and applies a Relative Strength Index study from Tab 4.
The SetStudy command is used to change the Line Color and the Line Style. The GetStudy command is used to get and
print the RSI study values for the last 10 bars on the chart.

uses Graphics;

begin {Start of Main Programming code}
 Chart('IBM.D'); {Open an IBM daily chart}
 Handle:= AddStudy(eRSI,4); {Add Tab 4 RSI study to the chart}
 SetStudy(Handle,301,clAqua); {Set Line Color to Aqua}
 SetStudy(Handle,601,7); {Set Line Style to Dotted}
 ChartRefresh(True,GetStudy(Handle,950),Handle); {Redraw the Changes}
 for I := 1 to 10 do begin {Loop through the last 10 bars}
 Value := GetStudy(Handle,1,BarEnd-i+1); {Get the RSI value for bar}
 writeln(i,' ',Value); {Print the value}
 end;
end; {End of program}

125

EXAMPLE: The following extreme example shows changing every field. This is not necessary as shown in the previous
example. This example is shown for the sake of documentation.

uses Graphics;

var Handle: integer;

procedure ChangeProperties;
begin
 FindWindow(eChart);
 Handle := FindStudy(eAve);
 if Handle=0 then Handle := AddStudy(eAve,0);

 SetStudy(Handle,200,15); // Set 1st parameter to 15 (can also use eParm1)
 SetStudy(Handle,201,5); // Set 2nd parameter to 5 (can also use eParm2)
 SetStudy(Handle,202,3); // Set 3rd parameter to 3 (can also use eParm3)
 SetStudy(Handle,203,0); // Set Offset to 0 (can also use eOffset)
 SetStudy(Handle,404,5); // Set Shift to 5 bars (can also use eShift)

 SetStudy(Handle,402,0); // Set 1st Average Calculation to Simple
 SetStudy(Handle,630,1); // Set 2nd Average Calculation to Exponential
 SetStudy(Handle,631,2); // Set 3rd Average Calculation to Weighted
 SetStudy(Handle,408,1); // Set 1st data point to High
 SetStudy(Handle,406,0); // Set 1st StudyOnStudy data point to 1st item
 SetStudy(Handle,420,2); // Set 2nd data point to LOW
 SetStudy(Handle,626,1); // Set 2nd StudyOnStudy data point to 2nd item

 SetStudy(Handle,619,1); // Set Study Mode to Rising...Falling
 SetStudy(Handle,950,1); // Set plot Location to Sub Window 1
 SetStudy(Handle,624,3); // Set Study Scale to Data Set
 SetStudy(Handle,628,2); // Set 1st Color Band Position to Above High 1
 SetStudy(Handle,629,3); // Set 2nd Color Band Position to Below Low 1
 SetStudy(Handle,407,2); // Set Spread plot alignment to Right
 SetStudy(Handle,632,6); // Set Grid Lines to Tab 6
 SetStudy(Handle,952,'Hello'); // Set Name of study to 'Hello'
 SetStudy(Handle,907,True); // Set Show to True for 1st study line
 SetStudy(Handle,908,True); // Set Show to True for 2nd study line
 SetStudy(Handle,909,False); // Set Show to False for Spread or 3rd study line
 SetStudy(Handle,910,False); // Set Show to False for Donchian Channel 3rd line

 SetStudy(Handle,205,80); // Set 1st line Upper Zone value to 80
 SetStudy(Handle,206,20); // Set 1st line Lower Zone value to 20
 SetStudy(Handle,207,90); // Set 2nd line Upper Zone value to 90
 SetStudy(Handle,208,10); // Set 2nd line Lower Zone value to 10
 SetStudy(Handle,209,75); // Set Spread Upper Zone value to 75
 SetStudy(Handle,210,25); // Set Spread Lower Zone value to 25
 SetStudy(Handle,403,3); // Set Spread amplitude multiplier to 3

 SetStudy(Handle,300,clRed); // Set 1st Upper Color to Red
 SetStudy(Handle,301,clBlue); // Set 1st Line Color to Blue
 SetStudy(Handle,302,clYellow); // Set 1st Lower Color to Yellow
 SetStudy(Handle,303,clLime); // Set 2nd Upper Color to Lime Green
 SetStudy(Handle,304,clOrange); // Set 2nd Line Color to Orange
 SetStudy(Handle,305,clLtBlue); // Set 2nd Lower Color to Light Blue
 SetStudy(Handle,306,clPurple); // Set Spread Upper Color to Purple
 SetStudy(Handle,307,clBlack); // Set Spread Line Color to Black
 SetStudy(Handle,308,clLtRed); // Set Spread Lower Color to Light Red

126

 SetStudy(Handle,600,0); // Set 1st Upper Style to None
 SetStudy(Handle,601,1); // Set 1st Line Style to 1 Pixel thickness
 SetStudy(Handle,602,2); // Set 1st Lower Style to 2 Pixels
 SetStudy(Handle,603,3); // Set 2nd Upper Style to 3 Pixels
 SetStudy(Handle,604,4); // Set 2nd Line Style to 4 Pixels
 SetStudy(Handle,605,5); // Set 2nd Lower Style to 5 Pixels
 SetStudy(Handle,606,6); // Set Spread Upper Style to Dashed line
 SetStudy(Handle,607,7); // Set Spread Style to Dotted line
 SetStudy(Handle,608,10); // Set Spread Lower Style to Fuzzy line

 SetStudy(Handle,610,0); // Set 1st Upper Marker to None
 SetStudy(Handle,611,11); // Set 1st Line Marker to Thick Up Arrow
 SetStudy(Handle,612,12); // Set 1st Lower Marker to Thick Down Arrow
 SetStudy(Handle,613,13); // Set 2nd Upper Marker to Thick Left Arrow
 SetStudy(Handle,614,14); // Set 2nd Line Marker to Thick Right Arrow
 SetStudy(Handle,615,21); // Set 2nd Lower Marker to Big Circle
 SetStudy(Handle,616,35); // Set Spread Upper Marker to Hollow Square
 SetStudy(Handle,617,41); // Set Spread Marker to a Thick X
 SetStudy(Handle,618,56); // Set Spread Lower Marker to Thumbs Up

 SetStudy(Handle,410,clRed); // Set 1st Upper Marker Color to Red
 SetStudy(Handle,411,clBlue); // Set 1st Line Marker Color to Blue
 SetStudy(Handle,412,clYellow); // Set 1st Lower Marker Color to Yellow
 SetStudy(Handle,413,clLime); // Set 2nd Upper Marker Color to Lime
 SetStudy(Handle,414,clOrange); // Set 2nd Line Marker Color to Orange
 SetStudy(Handle,415,clLtBlue); // Set 2nd Lower Marker Color to Light Blue
 SetStudy(Handle,416,clLime); // Set Spread Upper Marker Color to Lime Green
 SetStudy(Handle,417,clLime); // Set Spread Line Marker Color to Lime Green
 SetStudy(Handle,418,clLime); // Set Spread Lower Marker Color to Lime Green

 SetStudy(Handle,620,100); // Set 1st Line Global Variable to variable 100
 SetStudy(Handle,621,101); // Set 2nd Line Global Variable to variable 101
 SetStudy(Handle,622,102); // Set 3rd Line Global Variable to variable 102
 SetStudy(Handle,623,103); // Set Spread Global Variable to variable 103

 SetStudy(Handle,901,True); // Set to True (checked) for Show Value check box
 SetStudy(Handle,902,True); // Set to True (checked) for this check box
 SetStudy(Handle,903,True); // Set to True (checked) for this check box
 SetStudy(Handle,904,True); // Set to True (checked) for this check box
 SetStudy(Handle,905,False); // Set to False (unchecked) for this check box
 SetStudy(Handle,906,False); // Set to False (unchecked) for this check box
 SetStudy(Handle,911,False); // Set to False (unchecked) for this check box
 SetStudy(Handle,912,False); // Set to False (unchecked) for this check box
 SetStudy(Handle,913,False); // Set to False (unchecked) for this check box
 SetStudy(Handle,914,False); // Set to False (unchecked) for this check box
 SetStudy(Handle,915,True); // Set to True prevents display of property from
 SetStudy(Handle,916,True); // Set to True (checked) for Plot Behind check box
 SetStudy(Handle,960,True); // Set to True to prevent object from saving

 ChartRefresh(True);
end;

begin
 if ESPL=1 then ChangeProperties;
end;

127

PROPERTY FORM for MOST DRAW TOOLS:

Example: Handle:= FindStudy(eFibonacci); {Find the Fibonacci Draw Tool on the chart}
 SetStudy(Handle, 301, clRed); {Set the Line Color to RED for the 2nd row}

EXAMPLE: The following program opens an IBM daily chart and adds an ESPL Color Band study from Tab 9. Click
ESPL button 1 to run the program. The ESPL variable value is set to 61. The 'UpdateColorBand' procedure marks the
direction of the Last price using the SetStudy command. The Color Band will draw the Bullish Color and Marker for Up
bars, and the Bearish Color and Marker for down bars. NOTE: Entering a 0 value for the Study handle (in the SetStudy
parameter) will automatically refer to the calling Color Band study.

procedure UpdateColorBand;
var i:integer;
begin
 for i:= BarBegin to BarEnd do
 if Last(i)>=Last(i-1) then SetStudy(0,0,1,i) else SetStudy(0,0,2,i);
end;

{**********Main Program Code**********}
begin
 if ESPL=1 then begin

128

 Chart('IBM.D'); AddStudy(eBnd,9,0,0,0,0,61,0,7,0,False);
 end;
 if ESPL=61 then UpdateColorBand; {runs the UpdateColorBand procedure}
end;

PROPERTY FORM FOR NOTES

GetToken
SetToken

SYNTAX: GetToken(Position: integer, Text: string [, Delimiter: string]): string;
 SetToken(Position: integer, var Text: string, Token: variant, Delimiter: string);

DESCRIPTION: Use GetToken to retrieve the text located between the Nth and N-1 Position delimiter. This could be
used to extract a price from a group of prices in a string (where each price is separated with a comma). Use SetToken to
insert text into a string at the Nth delimiter Position.

PARAMETERS:

Position: Position specifies the delimiter position to search for, starting at position 1.

129

Text: This is a string containing text characters that are separated by delimiter characters (like commas or
spaces).

Delimiter: Delimiter is the character (like a comma) that separates different sections of the Text. The default

delimiter is a Space character. This parameter is optional for GetToken, but required for SetToken.

NOTE: When using SetToken, if Token is not a string, it will be converted to a string. Integer numbers will be converted
using IntToStr(Token). Real numeric types will be converted to a string with two decimal places. Boolean types will be
converted to the text 'True' or 'False'.

EXAMPLE: The following example uses GetToken to extract prices from a string. The values in the string represent the
Date, Open, High, Low, Last, and Volume. SetToken is then used to replace the Volume text with a different value. The
original text, the extracted text, and the altered text are printed.

var {Start of Variable declarations}
 Text, D, O, H, L, C, V: string; {Variables declared as Strings}
begin {Start of Main Programming code}
 Text:='12-31-02,100,200,50,150,1000'; {Text prices assigned to Variable}
 D:= GetToken(1, Text, ','); {Extract Date}
 O:= GetToken(2, Text, ','); {Extract Open}
 H:= GetToken(3, Text, ','); {Extract High}
 L:= GetToken(4, Text, ','); {Extract Low}
 C:= GetToken(5, Text, ','); {Extract Close}
 V:= GetToken(6, Text, ','); {Extract Volume}
 writeln(Text); {Print original text}
 writeln(D,' ',O,' ',H,' ',L,' ',C,' ',V); {Print extracted text}
 SetToken(6,Text,'5000', ','); {Change Volume to 5000}
 writeln(Text); {Print altered text value}
end; {End of program}

GetUser
SetUser or Plot

SYNTAX: GetUser(Variable [, Index]): real;

SetUser(Variable, Value [, Index, Color, Style, Marker, MColor]): boolean;
SetUser(eWindow: constant, Location [, Scalelow, Scalehigh: real,

50%label, 25%label, 75%label: string]): boolean;

DESCRIPTION: The GetUser command is used to retrieve ESPL study values and parameters from a chart. The
SetUser command is used to Plot lines on a chart and to set ESPL study parameters. The SetUser(eWindow….)
command specifies the Location where the ESPL study will plot, sets the scale range, and specifies some optional grid line
labels. NOTE: The Plot function is identical to SetUser. Either command will perform the exact same functions.

When an ESPL study is run on a chart, several ESPL variables and arrays are made available for saving and retrieving
values. The GetUser and SetUser commands are used to retrieve and save values into these variables and arrays. Each
instance of an ESPL study will have its own copy of these variables and arrays. The variables and arrays provide a location
to store and retrieve values that can be used and plotted.

PARAMETERS:

Value: Value is the value that will be stored into the referenced variable or array.
Index: Index is the bar position between 1 and the number of bars on the chart.
Color: Color specifies the Color of the ESPL line at the specified Index. Enter a color (ex. clBlue).
Style: Style specifies the line Style at the specified Index. Enter a number from 0-9 based on drop-down list.

130

Marker: Marker specifies the Marker object at the specified Index. Enter a number from 0-177 based on drop-
down list.

MColor: MColor specifies the Marker Color at the specified Index. Enter a color (ex. clRed).
 Example: Plot(1, Low(Index), Index, clRed,7,40,clWhite);
 This is a powerful example. The plotted Line segment at each bar Index position can have its own color,

style, and marker. The above example code stores the LOW price of the indicated bar into ESPL array 1.
The color of the ESPL line is set to Red, with a dotted line style. The Marker is selected as a 'Star', and
the Marker Color is set to White.

Location: Location specifies which study sub-window to plot the ESPL study lines in.
 eESPL = Plot in the main Chart window and supply a user-defined range for the study.
 0 or eChart = Plot in the main Chart window and use the Chart high and low price range.
 1 = Plot in study sub-window 1 2 = Plot in study sub-window 2
 3 = Plot in study sub-window 3 4 = Plot in study sub-window 4
 5 = Plot in study sub-window 5 6 = Plot in study sub-window 6
 7 = Plot in study sub-window 7 8 = Plot in study sub-window 8
 9 = Plot in the Volume sub-window

ScaleLow: An optionally supplied low scale range for the plot.
ScaleHigh: An optionally supplied high scale range for the plot.

 The following default scale ranges are used for each Panel:
 0 default scale is the chart high and low
 1-4 and eESPL default scale is 0 through 100
 5-8 default scale is -200 through 200

25%Label
50%Label
75%Label: The 3 grid labels are optional strings that will label the study panel's scale. The 50%Label is typically

used for the name of the study.

Variable: Variable is one of the following numbers or constants, and indicates which ESPL study array, or study

variable is being set, plotted, or retrieved.

ESPL Study Arrays

1: Get or Set the values in the 1st ESPL study array dimensioned from 1 to BarEnd (last bar on chart)
 2: Get or Set the values in the 2nd ESPL study array dimensioned from 1 to BarEnd
 3: Get or Set the values in the 3rd ESPL study array dimensioned from 1 to BarEnd
 4: Get or Set the values in the SPREAD study array dimensioned from 1 to BarEnd
 5: Get or Set the values in the 5th ESPL study array dimensioned from 1 to BarEnd
 6: Get or Set the values in the MISCELLANEOUS ESPL study array dimensioned from 1 to 50
 Example: Plot(1, Low(Index), Index, clRed,7,22,clWhite);

An Array is a list of numbers. A number can be saved into or retrieved from any bar Index position in the Array. The
arrays can be used to store calculated study values for any bar on the chart. Study Lines are automatically drawn on the
chart for any values stored in the 1st, 2nd, 3rd, and SPREAD arrays. Use SetUser or Plot to save values into the study
arrays. The 5th ESPL array can be used to store and display values, but the values cannot be plotted on the chart. The
MISCELLANEOUS array can be used to store up to 50 miscellaneous program values or variables.

The SPREAD array can auto-calculate the difference between the 1st and 2nd ESPL study arrays, and plot as a histogram.
Or, the SPREAD array can be used to plot any price value, color, and marker (like arrays 1-3). This gives you a potential
fourth custom Line that can be plotted on the chart. The default mode for the SPREAD array is eSpread. This will cause

131

the SPREAD array to auto-enter the difference between Array 1 and Array 2. The value can be plotted as a histogram. If
you want to use the SPREAD array as a fourth custom line array, then the mode must be changed to eNormal.

eScaleMode: Set the 4th Array Spread Mode to be either eSpread or eNormal

Example: SetUser(eScaleMode, eNormal); {Enter any Value}
Example: SetUser(eScaleMode, eSpread); {Auto-enter Spread value}

eParm1: Get or Set the 1st parameter value from the Properties window
eParm2: Get or Set the 2nd parameter value from the Properties window
eParm3: Get or Set the 3rd parameter value from the Properties window
 Example: GetUser(eParm1);

eESPL: Get or Set the ESPL variable value (formerly the ESPL value)
eShift: Get or Set the Shift Left/Right value from the Properties window
eCenter: Get or Set the Spread Alignment (0=Left 1=Center 2=Right)
eName: Get or Set the Name of the ESPL study
 Example: SetUser(eName,'MyStudy');
ePercent: Get or Set the 'Plot Percent' checkbox (True=checked, False=unchecked)
eRepaint: Get or Set the 'Repaint' checkbox (True=checked, False=unchecked)
 NOTE: This is necessary for programs that draw lines, shapes, or text with the
 MoveToLineTo, LineTo, Arc, Chord, Ellipse, Pie, Rectangle, and TextOut
 commands. These items need to be repainted any time the chart changes.
eClose: Get or Set the 'Close Only' checkbox (True=checked, False=unchecked)
 Example: SetUser(eClose, True);

ePlot1: Get or Set the Show 1st Line checkbox (True=checked, False=unchecked)
ePlot2: Get or Set the Show 2nd Line checkbox (True=checked, False=unchecked)
ePlot3: Get or Set the Show 3rd Line checkbox (True=checked, False=unchecked)
ePlot4: Get or Set the Show Spread Line checkbox (True=checked, False=unchecked)
 NOTE: These checkboxes specify whether to Plot the array lines on the chart or not.

eShow1: Get or Set the 'Show 1st Array' checkbox (True=checked, False=unchecked)
eShow2: Get or Set the 'Show 2nd Array' checkbox (True=checked, False=unchecked)
eShow3: Get or Set the 'Show 3rd Array' checkbox (True=checked, False=unchecked)
eShow4: Get or Set the 'Show Spread' checkbox (True=checked, False=unchecked)
eShow5: Get or Set the 'Show 5th Array' checkbox (True=checked, False=unchecked)
eShow6: Get or Set the 'Calc. Sequence' box (True=checked, False=unchecked)
eShow7: True = 'Show 6th Array' 1st and 2nd values, False=Hide values
 NOTE: The Show checkboxes specify whether to display the array values in the Study window on the left

edge of the chart. The 5th array cannot be plotted, but the values can be displayed in the Study window.
The 1st and 2nd values of the 6th array can be shown using eShow7.

eAll: Get or Set all the ePlot and eShow boxes at the same time. (True=checked, False=unchecked)
 Example: SetUser(eAll, True); {Sets all ePlot and eShow items to True}

eScaleFactor: Get or Set the Display price format for values stored in the 1st, 2nd, 3rd, SPREAD, and 5th ESPL arrays.

The price format affects the Display of the array values in the Study window. The default Scalefactor is
the chart's scale. Example, eScaleFactor could be used to display decimal values in the Study window
of a Bond chart (which normally converts array values into 32nds).

 -1 Display array values in 8ths, with no decimal places
 -3 Display array values in 32nds, with no decimal places
 0 Display array values with no decimal places (555 displays as 555)
 1 Move decimal 1 place to the left (555 displays as 55.5)
 2 Move decimal 2 places to the left (555 displays as 5.55)

132

 3 Move decimal 3 places to the left (555 displays as .555)
 4 Move decimal 4 places to the left (555 displays as .0555)
 5 Move decimal 5 places to the left (555 displays as .00555)
 10 Leave decimal. Display no fractional portion (example: 45)
 11 Leave decimal. Display 10ths position (example: 45.5)
 12 Leave decimal. Display 100ths position (example: 45.56)
 13 Leave decimal. Display 1000ths position (example: 45.567)
 14 Leave decimal. Display 10,000ths (example: 45.5678)
 15 Leave decimal. Display 100,000ths (example: 45.56789)
 Example: SetUser(eScaleFactor, 2);

eString1: Get or Set a String text variable (with a maximum of 19 characters)
eString2: Get or Set a String text variable (with a maximum of 19 characters)
eString3: Get or Set a String text variable (with a maximum of 19 characters)
 Example: SetUser(eString1,'Buy IBM');
 NOTE: These 3 string variables can be used for miscellaneous string storage. The eString3 string shares

the same variable space as the eName value. Do not use eString3 if you use the eName value to
change the name of the study.

More than one chart can access ESPL programs at the same time. For example, two charts can run the same ESPL study.
Each occurrence of the ESPL study will have its own set of ESPL variables. Use the BarBegin, BarBeginLeft, or
BarEnd global variables in a For loop to assign values to ESPL study arrays. Use the MISCELLANEOUS ESPL array
to store values that must be remembered between execution passes. The Main programming code should test the ESPL
variable to determine which Procedure to call. The sub-routine procedure (see Connect Prices below) for the ESPL study
should store calculation values for all bars, starting from either BarBegin or BarBeginLeft, and ending with BarEnd. Since
an ESPL study is called from a specific chart, the Window variable is set to zero. This allows the ESPL program to operate
on the chart that contains the ESPL study object.

EXAMPLE: The following ESPL program demonstrates the power of an ESPL custom study. Run the study on a chart by
clicking ESPL Studies button 100 in the ESPL Run panel. The study will draw 4 lines on the chart, connecting the High,
Last, Open, and Low prices. The study will update as new bars are completed on the chart. Storing price values into the
ESPL study arrays causes lines to draw on the chart. The lines are connected, using the prices from each array value. In
this example, the SPREAD array is used to Plot the 'Open' price lines.

procedure ConnectPrices; {Declares the 'ConnectPrices' subroutine }
begin {Start of the sub-routine code}
 SetUser(eWindow,eChart); {Plot lines directly on the chart}
 SetUser(eClose,True); {Update lines only when bar completes}
 SetUser(eName,'MyLines'); {Name the study 'MyLines'}
 SetUser(eScaleMode, eNormal); {Change Spread Scale mode to eNormal}
 SetUser(ePlot1,True); {Plot the 4 arrays}
 SetUser(ePlot2,True);
 SetUser(ePlot3,True);
 SetUser(ePlot4,True);
 SetUser(eShow1,True); {Show the values for the 4 arrays}
 SetUser(eShow2,True);
 SetUser(eShow3,True);
 SetUser(eShow4,True);

 for i := BarBegin to BarEnd do begin {Loop through all the bars}
 Plot(1,High(i),i,clBlue,1,40,clWhite); {Plot blue line with White Stars}
 if Last(i)>=Last(i-1) then {Plot the Last line based on NET}
 Plot(2,Last(i),i,clLime,3,0) {Plot Last with thick Green line}
 else
 Plot(2,Last(i),i,clRed,3,0); {Plot Last with a thick Red line}
 Plot(3,Low(i),i,clAqua,7,0); {Plot Low with a dotted Aqua line}

133

 Plot(4,Open(i),i,clWhite,1,0); {Plot the Open with a White line}
 end; {End of Loop code}
end; {End of the sub-routine code}

{**********Main Program**********}
begin {Start of Main Programming code}
 if ESPL=100 then ConnectPrices; {Call the 'ConnectPrices' procedure}
end; {End of program}

NOTE: The program code above specified the Plot settings to be used for each bar. Default colors, line styles, and
markers will be used if the Plot command does not override them. For example, the following commands will use the
default settings from the ESPL Properties window, instead of specifying unique colors and settings for each bar.

 Plot(1,High(i),i); {Plot High with default 1st Line settings}
 Plot(2,Last(i),i); {Plot Last with default 2nd Line settings}
 Plot(3,Low(i),i); {Plot Low with default 3rd Line settings}
 Plot(4,Open(i),i); {Plot Open with default Spread Line settings}

GetVariable
SetVariable

SYNTAX: GetVariable(Field: integer): variant;
 SetVariable(Field: integer, Value: variant);

DESCRIPTION: GetVariable retrieves various chart variables. SetVariable can be used to change some of the chart
window variable values. GetVariable can also be used to retrieve Trading Account information from the active trading
account window.

PARAMETERS:

Field:Field is one of the following predefined constants:

eBarCount number of bars in the chart's data set. Could be used in a FOR loop.
eBarRight index of the last bar displayed, which may be less than BarCount.
eBarLeft index of the first bar displayed, which usually is greater than 1.
eBarEnd index of the last bar displayed, which may be less than BarCount.
 NOTE: The global BarLeft and BarEnd variables are automatically set for the active chart.

GetVariable could be used to read these values from a chart that is not the active chart.
eMaxBar maximum number of bars allowed for the chart (array max size)
eSaveBar get the Save/Resize value for the chart
eBarTime time stamp for the bar currently being built, (ex. 945 for 5-minute bar)
eBarMinutes number of minutes in the intra day bar. This number is negative for constant tick bars, -10 for ten ticks.
eStart Returns True with 1st tick which starts a new bar, False otherwise.
eBarSpace dot column spacing of the bars on a chart.
eScaleHigh the highest value of the chart scale.
eScaleLow the lowest value of the chart scale.
eScaleMode retrieves the ScaleMode. The result will be a 0, 1, 2, or 3.
eScaleInterval retrieves the price interval between grid lines.
eScaleMidPoint the (highest+lowest) / 2 value of the chart scale.
eScaleFactor controls decimal placement and price conversion. -3 is for 32nds.
eChartHigh the highest bar price for the bars to be displayed. Normally ScaleHigh>=ChartHigh
eChartLow the lowest bar price for the bars to be displayed. Normally ScaleLow<=ChartLow

134

eSlope Returns the 'Pts/Bar' Scale value from the charts Property window
eGrid Returns the Minimum Grid size value from the Symbol Properties
eTick Returns the 'Tick' value from the Symbol Properties
eMinTick Returns the minimum Tick size.
eMargin the number of pixels in the right hand margin of the chart.
eMarket market group code.
eMarketOpen day session market open time, such as 720.
eMarketClose day session market close time, such as 1400.
eMarketOpen2 evening session market open time, such as 1430.
eMarketClose2 evening session market close time, such as 630 .
eMarketTime time of the last tick in hhmm format, such as 1400.
eMarketMinutes time of the last tick in minutes since midnight, i.e. hour*60 + min.
eDaySession Returns True if the DaySession properties box is checked, otherwise False.
eLayer Returns the layer number the chart is on, {1..9}
eFirstObject object number for the first object on the chart.
eLastObject object number for the last object on the chart.
eObject Returns the position in the charts Objects list (starting at position 0).

If studies are removed from the chart, the position in the list can change.
eTemplate Returns the Name of the current Template applied to the Chart.
eWinTrades number of winning trades.
eLossTrades number of losing trades.
eTrades total number of trades.
eWinProfit profit from winning trades.
eLossProfit losses from losing trades.
eProfit net profit from all trades.
ePosition current position: 0 = out. Negative = short size. Positive = long size.
eLeverage returns a leverage value (dollars per point) = '$ / Tick' value divided by 'Tick' value
eCommission commission subtracted for a round trip trade.
eBuyStop the Buy Stop price that will initiate a long trade
eBuyLimit the Buy Limit price that will initiate a long trade
eSellStop the Sell Stop price that will initiate a short trade
eSellLimit the Sell Limit price that will initiate a short trade
eSymbol returns the chart name.
eSymbolGroup returns the Integer Color Value of the Symbol Group Color Box
eTimeGroup returns the Integer Color Value of the Time Group Color Box
eName returns the file name for the chart.
eChart returns the Chart Form number. This can be used to uniquely identify a chart, when more than one chart

of the same symbol is open.
eForm returns the TForm handle for the Chart. Can be assigned to a TForm variable to access form properties.
ePath returns the path where the chart file is stored.
eLocked returns the boolean Locked status.
eColor returns the current ColorBar state
eColorChart returns long integer value of Background color
eColorBars returns long integer value of Chart Bar color
eColorBarsUp returns long integer value of Bullish Bar color
eColorBarsDn returns long integer value of Bearish Bar color
eColorBars3rd returns long integer value of the 3rd Bar color
eColorBars4th returns long integer value of the 4th Bar color
eColorCross returns long integer value of Big Cross cursor color
eColorVolume returns long integer value of Volume bar color
eColorOpenInt returns long integer value of Open Interest color
eColorGrid returns long integer value of Chart Grids color
eColorFont returns long integer value of Chart Font color
eFontHeight returns the FontHeight, in pixels, for the current Chart Font
eFontName returns the name of the Chart Font
eFontSize returns the size of the Font

135

Андрей
forex-warez.com

eFontStyle returns True if font is Bold, False otherwise.
eStudySize1..eStudySize9 returns the size of the indicated Study sub-window 1 through 9 (a % of the Chart height).

Trading Account Predefined constants:
eName returns the Account name
eAccount returns the Account Number
ePhone returns the Account Telephone number
eProfit returns the Trading Account Balance
eMarket returns the Market Value of the account
eTrades returns the Total number of Trades
eAve returns the Average value of each trade
eWinTrades returns the number of Winning trades
eLossTrades returns the number of Losing trades
eGrid returns the Row number of the last entry in the Trade account. This value can be used in programming

loops that need to know the ending point in the account.

SetVariable Parameters
eBarRight selects the index for the last bar to be displayed and redraws the chart.
 This is a useful way to scroll the chart to a new position.
eBarCount the number of bars in the chart's data set.
eBarSpace the dot column spacing of the bars on a chart.
eSaveBar Set the Save/Resize bar parameter for the chart. Does not cause the chart to reinitialize.
 A resize event may just happen sooner if the value is lowered.
eMaxBar Set the Maximum Bars parameter for the chart. A change will cause the chart to reinitialize.
eScaleFactor controls decimal placement and price conversion. -3 is for 32nds.
eMargin the number of pixels in the right hand margin of the chart.
eMarketOpen day session market open time, such as 720.
eMarketClose day session market close time, such as 1400.
eMarketOpen2 evening session market open time, such as 1430.
eMarketClose2 evening session market close time, such as 630 .
eDaySession set to True to place a check mark in the DaySession properties box.
 set to False to uncheck the DaySession properties box.
 Example: SetVariable(eDaySession,True);
eLeverage change leverage used to convert points into dollars.
eCommission commission subtracted for a round trip trade.
eBuyStop the Buy Stop price that will initiate a long trade
eBuyLimit the Buy Limit price that will initiate a long trade
eSellStop the Sell Stop price that will initiate a short trade
eSellLimit the Sell Limit price that will initiate a short trade
eSymbol the chart name.
eSymbolGroup Sets the Color Value of the Symbol Group Color Box
 Example: SetVariable(eSymbolGroup,clRed); sets the Group color to red.
eTimeGroup Sets the Color Value of the Time Group Color Box
 Example: SetVariable(eTimeGroup,clBlue); sets the Group color to blue.
eName the file name for the chart.
ePath the path where the chart file is stored.
eLocked the Locked status.
eScaleHigh sets the Price for the Scale high for the chart
eScaleLow sets the Price for the Scale low for the chart
eScaleMode sets the ScaleMode. The parameter should be a 0, 1, 2, or 3:
 0=Automatic price scaling
 1=Data Set (use the highest high and lowest low of the complete set of chart bars)
 2=Use Range
 3=Use Interval
eScaleInterval sets the price interval between grid lines.
eSlope sets the Scale mode to 'Square Chart' and specifies a 'Pts/Bar' value (SetVariable(eSlope,1))

136

eColorChart sets chart Background color
eColorBars sets Chart Bar color
eColorBarsUp sets Bullish Bar color
eColorBarsDn sets Bearish Bar color
eColorBars3rd sets 3rd Bar color
eColorBars4th sets 4th Bar color
eColorCross sets Big Cross cursor color
eColorVolume sets Volume bar color
eColorOpenInt sets Open Interest color
eColorGrid sets Chart Grid Lines color
eColorFont sets Chart Font color
eFontName selects the Chart Font by name.
eFontSize set the size of the Font
eFontStyle if 2nd parameter is True, font will be Bold.
eStudySize sets the percentage of the chart the study panels use.
eStudySize1…eStudySize9 sets the size of Study sub-windows 1 through 9 (based on a % of the Chart height).

Example: SetVariable(eStudySize2,10);
will set Study sub-window 2 equal to 10 percent of the entire Chart's height.

EXAMPLE: The following example opens two daily charts. The program finds the IBM chart, retrieves some bar count
values, and then randomly Colors the bars using a FOR loop. The program then finds the MSFT chart and sets the chart
background color to Red.

var {Start of Variable declarations}
 i, Color, Start, Stop: integer; {Variables declared as Integers}
begin {Start of Main Programming code}
 Chart('IBM.D'); {Open an IBM daily chart}
 Chart('MSFT.D'); {Open a MSFT daily chart}
 FindWindow(eChart,'IBM.D'); {Find the IBM chart}
 Start:= GetVariable(eBarLeft); {Get bar index for left edge of chart}
 Stop := GetVariable(eBarEnd); {Get bar index for the last bar}
 for i:=Start to Stop do begin {Loop through the bars}
 Color:= Random(16777215); {Generate a Random color value}
 SetBar(eColor,i,Color); {Color the bar}
 end; {End of Loop code}
 ChartRefresh(); {Repaint chart to show color changes}
 FindWindow(eChart,'MSFT.D'); {Find the MSFT chart}
 SetVariable(eColorChart,clRed); {Set Chart background color to Red}
end;

High
Last
Low
Open
OpenInt
Volume

SYNTAX: High(Index: integer [, Dataset: integer]): real;
 Last(Index: integer [, Dataset: integer]): real;
 Low(Index: integer [, Dataset: integer]): real;
 Open(Index: integer [, Dataset: integer]): real;
 OpenInt(Index: integer [, Dataset: integer]): integer;

137

 Volume(Index: integer [, Dataset: integer]): integer;

DESCRIPTION: These functions are used to retrieve the specified value for the Index referenced chart bar. These
functions can also retrieve price values from chart overlay data by passing the overlay's object number as the last parameter,
or by passing a number 1, 2, 3 … for the 1st, 2nd, 3rd … overlay. The overlay object number is obtained with the
FindStudy function. The functions use the Window variable as set by the FindWindow or Chart function to know
which chart to retrieve the data from. If the script is called by a User-Defined study, the Window variable will be set to
zero, which defaults to the chart that contains the User-Defined study object.

PARAMETERS:

Index: Index is the bar array subscript between 1 and the number of bars on the chart. If Index is less than or

equal to zero, the function will use index as an offset from the last bar on the chart. If Index is out of
range, the function will return zero. Both the host and the overlay chart data use the same indexing.

DataSet: DataSet is an optional object number for an overlay data set.

EXAMPLE: The following example illustrates how to read bar values from a chart, and a chart overlay. An IBM daily
chart is opened, then a MSFT daily chart is overlaid on the IBM chart. The value of the Last price for each chart is then
retrieved from the last bar of each chart.

var {Start of Variable declarations}
 ObjectNumber: integer; {Declares ObjectNumber as an Integer}
begin {Start of Main Programming code}
 Chart('IBM.D'); {Opens an IBM daily chart}
 ObjectNumber := AddOverlay('MSFT.D'); {Overlays a MSFT chart}
 writeln(Last(BarEnd)); {Get the Last bar price from IBM}
 writeln(Last(BarEnd,ObjectNumber)); {Get the Last bar price from MSFT}
end; {End of program}

GV Global Variables
SYNTAX: SetGV(Index: integer, Value: real);

GV(Index: integer): real;

DESCRIPTION: Ensign has a predefined Global Variable (GV) Array that can be used by studies and ESPL programs. The
GV Array can hold up to 400 values (0 – 399). The SetGV command is used to place values into the array. The GV
command is used to retrieve values from the array. There is no need to dimension or free the array.

Values assigned into array elements 0 through 199 are global to Ensign. They are shared. Values assigned into array
elements 200 through 399 are owned and remembered by the specific chart that the ESPL program is run on. This allows
you to run the same ESPL program on multiple charts and not have a conflict with values in the 200 to 399 element ranges.

EXAMPLE: The following sample program stores some values in the Global Array, and then prints them.

begin
 SetGV(1,25);
 SetGV(2,50);
 SetGV(3,75);
 writeln(GV(1),' ',GV(2),' ',GV(3));
end;

138

Highest
Lowest

SYNTAX: Highest(Type, Index, Period, var BarIndex, Rank: integer , Dataset: integer): real;
 Lowest(Type, Index, Period, var BarIndex, Rank: integer , Dataset: integer): real;

DESCRIPTION: The Highest function returns the highest Type value and its BarIndex within a given range of chart
bars. The Lowest function returns the lowest Type value and its BarIndex within a given range of chart bars. The
Highest and Lowest functions can also operate on chart Study values or chart Overlay bars by passing the object
number for the study or overlay as the DataSet parameter. The Study and Overlay object numbers can be obtained with
the FindStudy function.

PARAMETERS:

Type: Type is one of the following predefined constants:
 eArray eClose eHigh eLast eLow eMidPoint

eMid3 eMid4 eNet eOpen eOpenInterest ePercent
eRange eTrueHigh eTrueLow eTrueRange eVolume
1 2 3 4

 Refer to the Bar function for a complete description of these constants.

Index: Index is the bar array subscript between 1 and the number of bars on the chart. Both the host and the

overlay use the same indexing.

Period: Period specifies the number of bars to include the range. The range will include bars from (Index -

Period + 1) through and including (Index).

BarIndex: BarIndex is a bar index value returned by the function. BarIndex indicates the exact bar where the

highest or lowest value occurred. If multiple bars have equally high or low values, then BarIndex will
report the first occurrence it finds (closest to index 1).

Rank: Rank is a value from 1 to 5, and causes the functions to report the 1st, 2nd, 3rd, 4th, or 5th highest or

lowest value in the range of bars.

DataSet: DataSet is used to optionally access data from either a chart Study or a chart Overlay. The host chart's

bar data set is used by entering the number 0 as the DataSet parameter. Chart Overlay DataSets can be
referenced by entering 1, 2, or 3, or the Object number for the overlay. Study data is accessed by using
the FindStudy command first, and then passing the Study object number as the DataSet parameter.
NOTE: The DataSet parameter is not optional.

EXAMPLE: The following example opens an IBM daily chart and applies the Relative Strength Index (RSI) study to the
chart. The program then finds and prints the 2nd highest High bar value for the last 10 bars, and also the BarIndex at
which the High occurred. The program then finds and prints lowest RSI study value for the last 20 bars.

var {Start of Variable declarations}
 BarIndex,StudyObject: integer; {Variables declared as Integers}
begin {Start of Main Programming code}
 Chart('IBM.D'); {Open an IBM daily chart}
 StudyObject := AddStudy(eRSI); {Apply RSI study to the chart}
 writeln('Chart High= ',Highest(eHigh,BarEnd,10,BarIndex,2,0)); {Find High bar}
 writeln('Bar Index at High= ',BarIndex); {Print message}
 writeln('RSI Low= ',Lowest(1,BarEnd,20,BarIndex,1,StudyObject)); {Find Low RSI}
end; {End of program}

139

Holiday

SYNTAX: Holiday(Market: integer, Symbol: string, Date: integer): boolean;

DESCRIPTION: The Holiday function is used to determine if a specified date is a holiday. This allows you to skip
calculations on holidays. This can also be useful if an ESPL program is run by the Scheduler. The program can be aborted
if it is a holiday. The Ensign Holiday screen will be used to determine if the date is a holiday or not. Select Set-Up |
Holiday Schedule from the Ensign main menu to view or edit the holidays.

The Holiday function requires three parameters. The format for the Date is a long integer bar date. Example
YYYMMDD where the year is counting up from 100. Example: 102=2002. 1021225 = Dec 25, 2002. The function
returns a True value if the date is a holiday for the specified Market group. The function returns a False value if the date
is not a holiday.

PARAMETERS:

Market: Market is one of the following predefined constants:
 eADSOption eCanadian eCash eCorporate eCustom eEHSOption
 eFOption eFund eFuture eGovernment eIMSOption eIndex
 eIndicator eLFuture eLiberty eLStock eMoney eMunicipal

eNasdaq eNQSOption eRUSOption eSpread eStatistic eStock
eVZSOption eZion

Symbol: Specifies the Symbol. For Stocks, the symbol can be an empty string. For Futures, the symbol will be

used to determine if the exchange (for that symbol) is open.
 Example: Holiday(eNasdaq,' ',DateToLong(Now));

Date: Use the DateToLong command to convert a TDateTime into a long date format.

Example: Enter a long integer bar date. 1030704 = July 4th, 2003

EXAMPLE: The following program will report if the current day is a holiday.

begin
 if Holiday(eFuture, 'SP H1', DateToLong(Now)) = True then
 writeln('Today is a Holiday')
 else
 writeln('Today is not a Holiday');
end;

HTTP
SYNTAX: HTTP(URL: string, FileName: string);

DESCRIPTION: The HTTP command is used to read and save the HTML source code from an Internet web page. An
active Internet connection is required if accessing web pages from the Internet. The HTML code from the specified URL
page will be saved to the specified FileName. The HTML code can then be loaded, edited, viewed, or used in other
programs.

PARAMETERS:

URL: Specifies the web page address to download. The HTML programming code from the specified web

page will be downloaded and saved to the FileName.

140

FileName: Specifies the FileName and path for the downloaded HTML source code. If no path is specified, then
the file will be stored in the Ensign program folder (example: C:\ENSIGN\).

EXAMPLE: The following program uses the HTTP command to download and save HTML source code from a web
page. The source code from the Ensign Software web site (menus frame) is downloaded and saved in a file named
TEST.TXT. The HTML code is then loaded into the output window.

begin
 HTTP('http://www.ensignsoftware.com/menu.htm','TEST.TXT');
 Finished(5); {give it some time to receive the http data}
 Output(eLoad,'TEST.TXT');
end;

IF..Then..Else

SYNTAX: IFConditionalExpression THEN
 {statement to do if conditional-expression is evaluated to TRUE}

[ELSE
 {statement to do if conditional-expression is evaluated to FALSE}] ;

DESCRIPTION: The IF THEN ELSE statement is used to choose code execution based upon a True or False condition.
The statement(s) following THEN will be executed if the ConditionalExpression is True. The statement(s) following
ELSE will be executed if the ConditionalExpression is False. The ELSE statement is optional. If the ELSE statement
is used, the statement just ahead of the ELSE keyword should not be terminated with a semicolon. A block of code can be
executed if desired by encasing the code with Begin and End statements. Each statement in the Begin…End block
should end with a semicolon.

PARAMETERS:

ConditionalExpression is a logical expression that can be evaluated to a Boolean value of True or False.

EXAMPLE: The following example is run by clicking the RUN button in the script editor. An Inputbox will open and ask
you to type the day of the week. A response will be printed, depending on the answer. An IF THEN ELSE statement is
used to determine the response.

var {Start of Variable Declarations}
 Text: string; {Text is declared as a string}
begin {Start of Main Programming code}
 Text := InputBox('Work Days','Enter the Day of the Week', ''); {Open Inputbox}
 if (Text='Saturday') or (Text='Sunday') then {If Then}
 writeln('Why are you working today ?') {Print if True}
 else {else}
 writeln(Text,' is a work day.'); {Print if False}
end; {End of program}

Import
SYNTAX: Import(ControlFile: string, [Convert, Merge, Close: boolean]);

DESCRIPTION: The Import command is used to open the Import ASCII Data form, populate the form's components,
and optionally Convert, Merge and Close the form.

141

PARAMETERS

ControlFile: Pass the string for the control file combo box. This file sets the form's properties.
Convert: Pass a True to Convert the file. Equivalent to clicking the Convert button. Default is True.
Merge: Pass a True to Merge the file. Equivalent to clicking the Merge button. Default is True.
Close: Pass a True to Close the Import form after the file has been imported. Default is True.

EXAMPLE: The following example opens the Import form, sets the form's 12 parameters, converts, merges and leaves the
Import form open when the import process is finished. The 'MyImport' control file would have been previously configured
with parameters which successfully convert the Source file data into the Target file.

begin {Start of Main Programming code}
 Import('MyImport',true,true,false);
end; {End of program}

ImageToFile
SYNTAX: ImageToFile(FileName: string, [left, top, width, height, form, x, y: integer]);

DESCRIPTION: The ImageToFile command is used to save any window to a .PNG graphics file. The .PNG files can
be used to e-mail chart images or to display chart images on web pages. The command will save any window that has the
focus. The .PNG file is saved to the file specified by the FileName parameter. The folder will be the path specified on
the Setup | System | Images form.

Two images can be merged as well. The first image is from the active form, and its size is the
rectangle(left,top,width,height) and the 2nd image is specified by Form. The overlay position is (x,y);

PARAMETERS

FileName: Specify the FileName for the .PNG file.
Left, top, width, height: An optional rectangle can be specified for the size of the image capture. The rectangle is relative

to the form's left and top location.
Form: Specify a 2nd image the 1st image will overlay. The final image size is the size of the 2nd form.
x, y: This is the coordinate on the 2nd image where the 1st image is placed.

EXAMPLE: The following example opens an IBM daily chart, and then saves the window image to a .PNG graphics file.

begin {Start of Main Programming code}
 Chart('IBM.D'); {Open an IBM daily chart}
 ImageToFile('IBM.PNG'); {Save the window to a .PNG file}
end; {End of program}

EXAMPLE: The following example finds a spreadsheet, and then saves a section of its image on a chart. The final image
is the composite of both.

begin {Start of Main Programming code}
 FindWindow(eChart,'ES #F.30'); {Find a specific chart}
 SetMyFocus; {Give the chart focus}
 f := ActiveChild; {Set a variable to this chart form}
 FindWindow(eSpread,'TEST'); {Find a specific spread sheet}
 SetMyFocus; {Make the spread sheet the active form}
 {A section of the Spreadsheet is overlaid on the chart at position (0,40)}
 ImageToFile('Spread.PNG',131,85,256,270,f,0,40);
end; {End of program}

142

Index1
Index2
Index3
Index4
Index5
Index6

SYNTAX: Index1 through Index6 : integer;

DESCRIPTION: The above Index variables are automatically set when the mouse is clicked on any chart. The variables
contain the bar Indexes for the 6 most recent mouse clicks. The most current mouse click is stored in Index1. The Index
values are all shifted down to the next variable as new mouse clicks are made. The variables are global variables and do not
need to be declared. User-Defined Studies and Draw Tools can use these variables to draw lines or make calculations.

EXAMPLE: The following program draws 5 lines on a chart. The lines connect the last 6 mouse clicks. First, use the
mouse to click on 6 chart points. Example, mark the high and low swings of a 5 wave Elliott wave series. Then click ESPL
button 0 in the Script editor to run the program and draw the lines on the chart. The Y coordinates are converted into 'Price'
values for the AddLine statement. NOTE: Refer to the documentation for the PtX1, PtY1 global variables.

begin
 FindWindow(eChart);
 AddLine(eLine,0,Index1,YtoPrice(PtY1),Index2,YtoPrice(PtY2));
 AddLine(eLine,0,Index2,YtoPrice(PtY2),Index3,YtoPrice(PtY3));
 AddLine(eLine,0,Index3,YtoPrice(PtY3),Index4,YtoPrice(PtY4));
 AddLine(eLine,0,Index4,YtoPrice(PtY4),Index5,YtoPrice(PtY5));
 AddLine(eLine,0,Index5,YtoPrice(PtY5),Index6,YtoPrice(PtY6));
end;

IndexToX
XToIndex

SYNTAX: IndexToX(Index: integer): integer;
 XToIndex(X-Coordinate: integer): integer;

DESCRIPTION: The IndexToX function is used to convert a bar Index position on a chart, to its X-Coordinate
horizontal pixel position in the chart window. The XToIndex function is used to convert an X-Coordinate pixel position
to the nearest bar Index position on a chart. Both of these commands are useful for translating horizontal screen position
values to and from pixel and index positions.

PARAMETERS:

Index: Index is the bar position on the chart.

X-Coordinate: The first column of screen pixels (dots) on the left edge of a chart has an X-Coordinate of zero. The

count increases to the right horizontally.

143

EXAMPLE: The following example opens an IBM daily chart. The bar Index position for the left edge of the chart is
printed using the XToIndex command. The X-Coordinate pixel for the last bar on the chart is printed using the
IndexToX command.

begin {Start of Main Programming code}
 Chart('IBM.D'); {Open an IBM daily chart}
 writeln(XToIndex(0)); {Print Index of bar on left edge of chart}
 writeln(IndexToX(BarEnd)); {Print horizontal position of last bar on chart}
end; {End of program}

Initialize
SYNTAX: Initialize: boolean;

DESCRIPTION: The Initialize global variable is used with user defined studies. The variable is True on the 1st call of the
study execution, and False for all subsequent executions. Use the flag to know when to initialize study properties.

InputBox
InputQuery

SYNTAX: InputBox(Caption, Prompt, Default: string): string;
 InputQuery(Caption, Prompt, var Default: string): boolean;

DESCRIPTION: The InputBox function opens an input window. Text can be entered into the window's edit box. The
text is returned to the program when the OK button is clicked. The Default string is returned to the program if the
Cancel button is clicked. The window Caption, and Prompt can be specified.

The InputQuery function is nearly identical to the InputBox function. Text entered into the edit box is returned in the
Default variable when the OK button is clicked. The function returns True if the OK button is clicked, and False if
the Cancel button is clicked.

PARAMETER:

Caption: The Caption parameter specifies the window caption for the dialog box.
Prompt: The Prompt parameter is the text that prompts the user to enter input in the edit box.
Default: The Default parameter is the string that appears in the edit box when the dialog box first appears.

EXAMPLE: The following example uses an InputQuery function and a Repeat…Until loop to open daily charts for
entered symbols. The loop repeats until the Cancel button is clicked (returning a False value in Test).

var {Start of Variable declarations}
 Text: string; {Text is declared as a String}
 Test: boolean; {Test is declared as a Boolean}
begin {Start of Main Programming code}
 Text := 'IBM'; {IBM set as default text value}
 repeat {Start of Repeat loop}
 Test:=InputQuery('Open Chart','Enter a Symbol',Text); {Input symbol}
 if Test then Chart(Text + '.D'); {Open chart}
 until Test=False; {Repeat loop until Test=False}
end; {End of program}

144

Insert

SYNTAX: Insert(Text2, Text1: string, Position: integer);

DESCRIPTION: The Insert command is used to insert Text2 into Text1 at the specified character Position.

EXAMPLE: This program inserts the word 'buy' into a sentence at the 22nd character. The new sentence is printed.

var {Start of Variable declarations}
 Text:string; {Text is declared as a String}
begin {Start of Main Programming code}
 Text:= 'I recommend that you IBM'; {Text is assigned a value}
 Insert('buy ', Text, 22); {'buy' is inserted into Text}
 writeln(Text); {Prints Text}
end; {End of program}

InsertBar

SYNTAX: InsertBar(Index: integer [, Last, High, Low, Open: real , Volume, Date, Time: integer]): boolean;

DESCRIPTION: The InsertBar function is used to insert a bar on a chart. Use ChartRefresh(True) to cause the chart
to redraw after the bar has been inserted. The bar prices, date, and time can be optionally specified. If they are not
specified then the new bar will default to the Date and Last price of the bar just previous to the inserted bar. The SetBar
command can also be used to adjust the bar data after being inserted.

PARAMETERS:

Index: Index is the chart bar position (between 1 and the number of bars on the chart). If Index is less

than or equal to zero, the function will use Index as an offset from the last bar on the chart
(BarEnd). If Index is out of range, the function will return a False value, otherwise it will
return True.

Last, High, Low, Open: Specify prices for each bar price level.

Volume: Specify a volume amount for the new bar.

Date: Specify a date for the new bar.

Time: Specify an Intraday time for the new bar, or an Open Interest amount for a daily Futures chart.

EXAMPLE: The following example opens an IBM daily chart and then inserts a bar for every Calendar day (including
weekends). Click ESPL button 1 to run the program.

procedure CalendarDays;
var
 i,j,Difference:integer;
 BarDate1, BarDate2 : TDateTime;
begin
 Chart('IBM.D');
 if Finished(10)=True then // Wait until chart is drawn
 begin
 for i:= BarEnd downto 1 do
 begin
 BarDate1:= LongToDate(Bar(eDate,i)); // Get Current Bar Date
 BarDate2:= LongToDate(Bar(eDate,i-1)); // Get Previous Bar Date

145

 Difference := BarDate1 - BarDate2; // Difference between days
 if Difference > 1 then
 for j := Difference-1 downto 1 do
 InsertBar(i,Last(i-1),Last(i-1),Last(i-1),Last(i-1) ,1,
 DateToLong(BarDate2+j));
 end;
 ChartRefresh(True);
 end;
end;

begin
 if ESPL=1 then Calendardays;
end;

IntToHex
IntToStr
StrToInt
StrToPrice

SYNTAX: IntToHex(Number: integer, Digits: integer): string;
 IntToStr(Number: integer): string;
 StrToInt(Text: string): integer;
 StrToPrice(Text: string): real;

DESCRIPTION: The IntToStr function converts an integer number into a text string. The IntToHex function converts
an integer number into a hexadecimal (base 16) string value. The StrToInt function converts a string value to an integer
value. The StrToPrice function converts a string representation of a stock price to a Real number (for example,
StrToPrice('9 5/8') would report 9.625 as the resulting Real number).

PARAMETERS:

Number: Specifies an integer Number to convert.
Digits: Digits indicates the minimum number of hexadecimal digits to return in the string.
Text: Specifies the Text value to convert to an integer.

EXAMPLE:

var {Start of Variable declarations}
 High: integer; {High is declared as an Integer}
 Text1,Text2: string; {Variables declared as Strings}
begin {Start of Main Programming code}
 High:=17; {High assigned a value of 17}
 Text1:='The High value is ' + IntToStr(High); {High converted to a string}
 Text2:='The Hex value of High is ' + IntToHex(High,6); {Convert to hex}
 writeln(Text1); {Print Text1}
 writeln(Text2); {Print Text2}
 High:= StrToInt('20'); {Converts '20' to an integer value}
 writeln(StrToPrice('10 5/8'); {Prints 10.625 }
end; {End of program}

146

IsNumeric

SYNTAX: IsNumeric(Text: string, var Number: real): boolean;

DESCRIPTION: The IsNumeric function can be used to convert a Text string into a Number value. The function
returns a True value if the string is successfully converted to a Number, and returns False if the conversion failed (and the
value of Number will be zero). If the string contains characters that will not convert to numbers, then the conversion will
fail.

EXAMPLE: The following example attempts to convert two strings into numbers. The first attempt is successful. The
second attempt fails since Text2 cannot be converted into a numeric value.

var {Start of Variable declarations}
 Text1, Text2:string; {Variables declared as Strings}
 Number: real; {Number declared as a Real}
begin {Start of Main Programming code}
 Text1:= '543.78'; {Text1 assigned a value}
 Text2:= '2000 was an interesting year.'; {Text2 assigned a value}
 IsNumeric(Text1, Number); {Text1 converted to a Real number}
 writeln(Number); {Number is printed}
 IsNumeric(Text2, Number); {Text2 fails to convert}
 writeln(Number); {Printed value is a zero}
end; {End of program}

IsSelected

SYNTAX: IsSelected: integer;

DESCRIPTION: The IsSelected function is used to determine if an ESPL draw tool on a chart is currently selected and
active. The object number of the draw tool will be returned. The object number can be used by the GetStudy, SetStudy,
and Remove functions. IsSelected returns a zero value if an ESPL draw tool is not selected. A draw tool can be selected
by clicking the mouse on the draw tool Line. ESPL draw tools will be in a selected state while applying the tool to a chart.
You may have programming tasks that you do not want to perform while applying the tool to a chart. Use the IsSelected
command to determine when to perform your programming actions.

EXAMPLE:

procedure DrawMyTool;
begin
 if IsSelected = 0 then
 begin
 {draw your tool}
 end;
end;

begin
 if ESPL=11 then DrawMyTool;
end;

IT

147

DESCRIPTION: The IT variable returns text from a selection made from a Choose List box. The IT variable is also
used with the AlertEvent function, and reports which numeric event triggered the call to the ESPL engine.

EXAMPLE: The following example uses the Choose function to set an AlertEvent for three symbols. The IT variable
reports which symbol is selected from the Choose list. An AlertEvent is created for the selected symbol. The AlertEvent
will be triggered each time the symbol trades. The IT variable will equal AlertEvent value when the symbol trades
(example 61, 62, or 63). Click ESPL button 1 to display the Choose list. Click ESPL button 2 to clear all AlertEvents.
NOTE: A symbol must be placed in the Alert log before an AlertEvent can be set for the symbol. In this program a generic
Alert is set for the symbols, before the AlertEvents are set.

var {Start of Variable declarations}
 Selection: integer; {Selection is declared as an Integer}
begin {Start of Main Programming code}
 if ESPL=1 then begin {ESPL Button 1 displays the choose list}
 Selection := Choose('Select a Symbol','IBM','MSFT','DELL'); {Display list}
 Output(eClear); {Clear output window}
 writeln(Selection,' ',IT); {Print Selection value and IT value}
 Alert(IT, FindMarket(IT),0,0); {Set a generic Alert for the symbol}
 AlertEvent(eTrade,60+Selection,IT) ; {Set an AlertEvent for the symbol}
 end; {block end}
 if ESPL=2 then AlertEvent(eClear); {Button 2 clears all AlertEvents}
 if ESPL=61 then writeln(IT,' traded'); {Print IT AlertEvent triggers}
 if ESPL=62 then writeln(IT,' traded'); {Print IT AlertEvent triggers}
 if ESPL=63 then writeln(IT,' traded'); {Print IT AlertEvent triggers}
end;

KeyDown

SYNTAX: KeyDown(Code: integer): boolean;

DESCRIPTION: The KeyDown function is used to determine if a specified keyboard key has been pressed, or if a mouse
button is being held down. The function will return a True value if the specified keyboard key or mouse button is down
when the function is called (or has been pressed since the last call to KeyDown).

PARAMETERS:

Code: Code is the ASCII code (65 .. 90) for the letter keys 'A' through 'Z'.
 Other keys, including the mouse buttons, can be specified using the following table:

 1 Left Mouse button 91 LeftWindows Button
 2 Right Mouse button 92 RightWindows Button
 112 F1 48 & 96 0
 113 F2 49 & 97 1
 114 F3 50 & 98 2
 115 F4 51 & 99 3
 116 F5 52 & 100 4
 117 F6 53 & 101 5
 118 F7 54 & 102 6
 119 F8 55 & 103 7
 120 F9 56 & 104 8
 121 F10 57 & 105 9
 122 F11
 123 F12
 8 Backspace 106 *

148

 9 Tab 107 +
 13 Enter 109 -
 16 Shift 111 /
 17 Ctrl 186 ;
 18 Alt 187 =
 19 Break 188 ,
 20 Caps Lock 189 _
 32 Space Bar 190 .
 33 Page Up 191 ?
 34 Page Down 192 `
 35 End 219 [
 36 Home 220 \
 37 Left Arrow 221]
 38 Up Arrow
 39 Right Arrow
 40 Down Arrow 144 Num Lock
 44 SysRq 145 Scroll Lock
 46 Insert
 47 Delete
 96 Ins
 110 Del

NOTE: The ESC key cannot be tested. Pressing the ESC key will abort an ESPL program. The above codes do not
distinguish between shifted and un-shifted keys. The numbers 0-9 have two codes. The first code represents the number
keys on the top row of the keyboard. The second code represents the number keys on the 10-keypad.

EXAMPLE: The following program uses a Repeat…Until loop to increment and print a counter. The loop continues
until one of the SHIFT keys is pressed. The KeyDown function is used to determine when the SHIFT key is pressed.

begin {Start of Main Programming code}
 j:=0; {J is assigned the value of zero}
 repeat {Repeat loop}
 writeln(j); {Print the value of J}
 Pause(1); {Pause for 1 second}
 inc(j); {Increment J, J=J+1}
 until (KeyDown(16)); {Loop until SHIFT key has been pressed}
 writeln('A Shift Key was pressed'); {Print statement}
end; {End of program}

LeftStr
RightStr
ReverseString
SYNTAX: LeftStr(Text : string, Count : integer) : string;

RightStr(Text : string, Count : integer) : string;
ReverseString(Text : string) : string;

DESCRIPTION:

LeftStr: Returns the number of characters specified by Count (from the Left edge of the string).

RightStr: Returns the number of characters specified by Count (from the Right edge of the string).

ReverseString: Returns the Text string in reverse order.

149

EXAMPLE: The following simple program demonstrates some string handling.

begin
 writeln(LeftStr('This is a string', 7)); {Prints 'This is' }
 writeln(RightStr('This is a string', 7)); {Prints ' string' }
 writeln(ReverseString('abcdef'); {Prints 'fedcba' }
end;

Length

SYNTAX: Length(Text : string) : integer;

DESCRIPTION: The Length function is used to determine the length of a string. The function will return the number of
characters contained in Text.

EXAMPLE: The following simple program prints the Length of a sentence.

begin
 writeln(Length('This is a test.')); {Prints 15 (the length of the text)}
end;

LineTo
MoveTo
MoveToLineTo

SYNTAX: LineTo(X, Y: integer);
 MoveTo(X, Y: integer);
 MoveToLineTo(X1, Y1, X2, Y2: integer);

DESCRIPTION:

LineTo: draws a line on a chart from the current X,Y pen position to the new point specified by X and Y. The new

pen position is set to X and Y. The line is drawn using the current pen color.

MoveTo: moves the current pen position to the point specified by X and Y, but no line is drawn. Use the MoveTo

command to set the pen position prior to using the LineTo command.

MoveToLineTo draws a line on a chart between point X1,Y1 and point X2,Y2. MoveToLineTo is equivalent to using

the two functions MoveTo and LineTo. The pen position is moved to point X2,Y2. The line is drawn
using the current pen color.

PARAMETERS:

X and Y: X and Y specify vertical and horizontal pixel coordinates in the chart window. The top left corner of the

chart window will have an X,Y coordinate value of 0,0. The X coordinate specifies horizontal pixels
across the screen, starting from the left edge. The Y coordinate specifies vertical pixels down the screen.

EXAMPLE: The following example opens an IBM daily chart. The pen color is varied between Red, White, and Blue.
The MoveTo, LineTo, and MoveToLineTo statements are used to draw three lines in different locations on the chart.
NOTE: The lines that are drawn using these commands are not remembered by the chart since they are not line Objects.
Use the AddLine command to draw permanent chart lines.

150

Андрей
forex-warez.com

uses
 Graphics;
begin {Start of Main Programming code}
 Chart('IBM.D'); {Open an IBM daily chart}
 SetPen(clRed); {Set pen color to Red}
 MoveTo(0,10); {Move pen position, without drawing}
 LineTo(200,100); {Draw a line}
 SetPen(clWhite,1,eDot); {Set pen to white and dotted}
 MoveToLineTo(50,10,250,100); {Draw a line}
 SetPen(clBlue,1,eSolid); {Set pen to blue and solid}
 MoveToLineTo(100,10,300,100); {Draw a line}
end; {End of program}

Layout
LayoutName
LayoutOpen

SYNTAX: Layout(Name: string): boolean;

LayoutName : string;
LayoutOpen : boolean;

DESCRIPTION: The Layout command is used to open an Ensign layout. The Layout command allows you to display
layouts using the ESPL language. Layouts are created and saved by using the Layout button. For more information, consult
the help documentation for Layouts.

LayoutName is a global variable that contains the text name of the most recently opened Layout.
Example: writeln(LayoutName);

LayoutOpen is a global variable that is Tue when a layout has been opened.
Example: If LayoutOpen then begin ….. end;

PARAMETERS:

Name: Name should be the name of the Layout that will be opened. NOTE: Layout files have a file extension

of .TXT and are saved in the \Ensign10\ Layouts\Layout1..8 folders.

EXAMPLE: The following example uses a Timer command to open five different Layouts (based on the time). The
program assumes that the Layouts have already been created. Each Layout will remain open for two minutes. Click ESPL
button 1 to start the timer. Click ESPL button 2 to stop the timer. Every two minutes a different Layout will open.
NOTE: The ESPL variable equals 10 when the Timer calls the ESPL program.

begin {Start of Main Programming code}
 if ESPL=1 then Timer(eStart,60,1,10); {ESPL button 1 starts the Timer}
 if ESPL=2 then Timer(eStop); {ESPL button 2 stops the Timer }
 if ESPL=10 then begin {Run this code every 60 seconds}
 s := TimeStr; {TimeStr returns hh:mm format}
 case s[5] of {5th character is a minute digit}

'0': Layout('BANKING');
 '2': Layout('DOW30');
 '4': Layout('TECH');
 '6': Layout('RETAIL');
 '8': Layout('BIOTECH');
 end; {end case}

151

 end; {end block}
end; {End of program}

LowerCase
UpperCase
UpCase

SYNTAX: LowerCase(Text: string): string;

UpperCase(Text: string): string;
 UpCase(Text: string): string;

DESCRIPTION: The LowerCase function converts all letters contained in Text into lower case letters. The UpperCase
function converts all letters contained in Text into upper case letters. The UpCase function returns only the first letter of
Text as an upper case letter.

EXAMPLE: The following example prints and converts Text to UpperCase, then to LowerCase, and finally, returns the
1st letter using the UpCase command.

begin {Start of Main Programming code}
 Text:='The NYSE is in New York.'; {Text is assigned a value}
 writeln(Text); {Prints Text}
 writeln(UpperCase(Text)); {Print and Uppercase Text}
 writeln(LowerCase(Text)); {Print and Lowercase Text}
 writeln(UpCase(Text)); {Print and Upcase Text}
end; {End of program}

Manager

SYNTAX: Manager(eSave, FileName: string [,Feed: integer]): boolean;
 Manager(eLoad, FileName: string [,Feed: integer]): boolean;
 Manager(eAppend, FileName: string [,Feed: integer]): boolean;
 Manager(eSymbol, Symbol: string [,Feed: integer]): boolean;
 Manager(eClear [,Feed: integer]): boolean;
 Manager(ePrint [,Feed: integer]): boolean;
 Manager(eSet [,Feed: integer]): boolean;
 Manager(eOnLine [,Feed: integer]): boolean;
 Manager(eOffLine [,Feed: integer]): boolean;
 Manager(eRequest [,Feed: integer]): boolean;
 Manager(eReset, ListNumber: integer [,Feed: integer]): boolean;

DESCRIPTION: The Manager function allows you to manipulate the Manager symbol list. The Manager function will
return a True value if successful, otherwise it will return a False value. The Feed parameter selects which vendor feed to
work with, and when omitted the default is the feed set in the FEED global variable.

PARAMETERS:

Feed: Feed is one of these predefined constants. The default is the value assigned to the FEED global variable.
eFXCM eIB eSignal eIQFeed eNinja eOpenECry
eTraderBytes eTransAct eGlobal eDBFX eATCBrokers eCustom

Manager(eSave, FileName) Save the current symbol list to the specified FileName.

152

Manager(eLoad, FileName) Load the specified FileName as the current symbol list.

Manager(eAppend, FileName) Append the specified file contents to the end of the current symbol list.

Manager(eSymbol,Symbol) Add the specified symbol to the bottom of the current symbol list.

Manager(eClear) Erase the current symbol list.

Manager(ePrint) Print the symbol list to the output window.

Manager(eSet) Copy all text from the output window into the current symbol list.

Manager(eOnLine) Upload the current symbol list, and request a current update for each symbol.

Manager(eOffLine) All symbols will stop updating. Unloads all symbols from the Manager list.

Manager(eRequest) Request an update for all symbols in the current symbol list.

Manager(eReset,ListNumber) Unload the current symbol list and replace it with the specified symbol list. The
Manager window contains numbered Tabs which allow you to change symbol lists.
This function is equivalent to clicking a numbered Tab in the Manager window.
Specify the Tab number as the ListNumber parameter (a value from 1 to 6).

EXAMPLE: The following example illustrates several Manager commands. The current symbol list is taken off-line.
The symbol list is cleared. Two symbols are added to the symbol list. The new list is placed back on-line. Click ESPL
button 1 to run the program.

begin {Start of Main Programming code}
 if ESPL=1 then begin {if ESPL button 1 is clicked then ESPL=1}
 Feed := eSignal; {Set the default feed to eSignal}
 Manager(eOffLine); {Take the current symbol list off-line}
 Manager(eClear); {Clear the current symbol list}
 Manager(eSymbol,'IBM'); {Add IBM to the list}
 Manager(eSymbol,'MSFT'); {Add MSFT to the list}
 Manager(eOnLine); {Place the new list back on-line}
 end; {end of block}
end; {End of program}

Max
Min

SYNTAX: Max(Value1: variant [, Value2: variant ….. Value100: variant]): variant;
 Min(Value1: variant [, Value2: variant ….. Value100: variant]): variant;

DESCRIPTION: The Max function looks at the list of supplied Values and returns the item with the highest value. The
Min function looks at the list of supplied Values and returns the item with the lowest value. The list of Values may
contain up to 100 items of Numeric, String or Boolean type. The items in the list must all be of the same type. For
example, strings cannot be mixed with numbers in the list.

PARAMETERS:

Value: The Value parameters may be numbers, Strings, or Boolean (True or False) values.
 Strings are compared by ASCII sequence (alphabetical order).

153

 The Min Boolean value is False. The Max Boolean value is True.

EXAMPLE: The following program illustrates the Max and Min functions on Numbers, Strings, and Boolean values.

begin {Start of Main Programming code}
 writeln(Max(5,3,9,-1)); {Prints 9}
 writeln(Min(5,3,9,-1)); {Prints -1}
 writeln(Max('M','A','K')); {Prints M}
 writeln(Min('M','A','K')); {Prints A}
 writeln(Max(True,False)); {Prints True}
 writeln(Min(True,False)); {Prints False}
end; {End of program}

Menu Commands

DESCRIPTION: Many Ensign menus can be accessed with the ESPL programming language. Use the Click command
to run the menu item (as if the menu had been clicked with the mouse). Each menu has an assigned name. The names are
shown below. For example, use mnuCloseWindow.Click to close the window which has focus. Use
mnuCloseAll.Click to close all open windows. The caption for each menu item can be changed by using the
Caption property.

COMMANDS:

Click: Click is used to simulate a mouse click on a menu (as if the user had clicked the menu item).
Caption: Caption is used to read or set a menu's text caption.

Account Bars Charts Close
mnuTradeReport mnuBars mnuProperties mnuCloseAll

mnuCandles mnuSettings mnuCloseLayer

mnuSolid mnuDataPanel mnuCloseWindow

Alert mnuZebra mnuKeyboard

mnuLog mnuRockets mnuToolHotKeys

mnuList mnuLine mnuStudyHotKeys

mnuAlertEmail mnuColorBarHotKeys

mnuPopupMenu

mnuConvertEWTemplates

Database Docs Feeds Help
mnuDatabaseManager mnuUsersGuide mnuDataFeeds mnuWebSiteHelp

mnuMergeChartFiles mnuStudies mnuActivity mnuAdditionalHelp

mnuDelete1Date mnuTemplates mnuPackage mnuRecentArticles

mnuImportASCIIData mnuDYOdoc

mnuRolloverSymbols mnuDrawTools

mnuZeroVariables mnuSpreadDoc

154

mnuEraseNeuralNets mnuESPLdoc

mnuKnowledgebase

Image Internet Package Reports
mnuEnsignServer mnuDownload mnuBuild mnuMemory

mnuFile mnuData mnuServer mnuHardware

mnuEmailImage mnuEmail mnuExtract mnuDYOStudies

mnuFullScreenToFile mnuNewUser mnuPackageSettings

mnuClipboard

Main Printer Symbol System
mnuLayout mnuPrintNormal mnuIBGuide mnuSystem

mnuChart nnuPrintStretched mnuEsignalGuide mnuSecurity

mnuStack mnuPrintOriented mnuIQFeedGuide mnuScheduler

mnuQuote mnuTraderBytesGuide mnuImages

mnuOption Stack mnuBarChartGuide mnuESPL

mnuNews mnuStack1 mnuDTNGuide mnuMaintenance

mnuAccount mnuMDI mnuYahooGuide mnuButtons

mnuAlert

mnuOrderEntry

mnuSpreadSheet Theme Upgrade Video
mnuChatRooms mnuLuna mnuEnsignProgram mnuIntroduction

mnuDatabaseManager mnuObsidian mnuUsersGuideManual mnuVideoLibrary

mnuESPLEditor mnuSilver mnuStudiesManual mnuWebinarArchive

mnuSnapQuote mnuBlue mnuTemplatesManual mnuYouTubeVideos

mnuSaveLayout mnuOlive mnuDYOManual mnuDownloadedVideo

mnuPrint mnuGray mnuDrawToolsManual

mnuPrinterSetup mnuClassic mnuSpreadsheetManual

mnuResizeRibbon mnuXP mnuESPLManual

mnuExit mnuWindows7 mnuKnowledgeBaseManual

Merge

SYNTAX: Merge(SourceFile, TargetFile[, StartDate, EndDate]: string);

DESCRIPTION: The Merge command is used to merge two Chart data files together. The chart data from the
SourceFile will be merge with the chart data from the TargetFile. An optional StartDate and EndDate can be specified.
Chart data that is contained within the dates will be merged. The merge will be performed without any price or volume

155

adjustments. The merge process can be used to replace erroneous target bars with source bars, fill-in gaps of missing data,
create continuation charts, and to extend chart data to include more data.

PARAMETERS:

SourceFile: The SourceFile specifies the chart file to merge. If a file path is not specified, then defaults will be

supplied. Wildcard characters may be used to select a group of files, example: 'A:*.D' If using
wildcard characters, the TargetFile must be an empty string '' (the TargetFiles will be automatically
determined).

TargetFile: The TargetFile specifies the chart file to merge with. If a file path is not specified, then defaults will be

supplied. If the TargetFile is an empty string, then a path and filename will be automatically
determined.

StartDate: The StartDate specifies the starting date for the merge process. If no date is specified, then the entire

data file will be merged. The date should have a format of Month, Day, and Year (MM-DD-YY).

EndDate: The EndDate specifies the ending date for the merge process. The format for the date is MM-DD-YY.

EXAMPLE: The following program merges an IBM daily chart file from a diskette on the A: drive, into the IBM

daily chart file.

begin
 Merge('A:\IBM.D','IBM.D','06-01-02','06-30-02'); {Merges a range of bars}
end;

MessageDlg
MessageDlgPos

SYNTAX:

MessageDlg(Message: string, Icon: TMsgDlgType, Buttons: TMsgDlgButtons): Integer;
 MessageDlgPos(Message: string, Icon: TMsgDlgType, Buttons: TMsgDlgButtons, Top, Left: integer): Integer;

DESCRIPTION: The MessageDlg and MessageDlgPos functions are used to open a message box on the screen. A
Message is displayed in the box. Message boxes are often used to ask a question or to display a warning message. The
user closes the message box by clicking on a Button. Several Icons and Buttons are available for use in the message box.
Icons are used to display a small graphic indicating the type of question or warning that the message box contains. Buttons
are used to help answer a question or respond to a message. Multiple Buttons can be displayed in a message box. The
MessageDlgPos function can be used to specify the exact pixel location on the screen where the message box will appear
(using the Top and Left parameters). When a Button is clicked, the message box will close and the selected button will
be returned as a Result. The button Result can be used in an ESPL program to determine the next program action to
perform.

PARAMETERS:

Top: Specifies the number of pixels from the top of the screen. The top of the message box will align with this

pixel.

Left: Specifies the numbers of pixels from the left edge of the screen. The left edge of the message box will

align with this pixel.

Icon: The following Icons can be displayed in a message box. The icons reinforce the purpose of the message:
 mtConfirmation - An icon containing a Question Mark.
 mtError - An icon containing an 'X' inside a red circle.

156

 mtInformation - An icon containing the letter ' I '.
 mtWarning - An icon containing an Exclamation Mark inside a yellow yield sign.

Buttons: The following buttons can be displayed in a message box. Any combination of buttons can be used.
 mbAbort mbAll mbCancel mbIgnore mbNo

mbOK mbRetry mbYes

Result: When a button is clicked, the function will return one of the following results. Check the result to

determine which button was clicked.
 mrAbort mrAll mrCancel mrIgnore mrNo

mrOK mrRetry mrYes

EXAMPLE: The following program opens a message box and asks if you want to exit the Ensign program. If you click
YES, then a 2nd message box will open to warn you that the program is closing. Click OK to continue or CANCEL to
abort the process. NOTE: The 2nd message box will open at screen pixel position 100, 100.

begin
 if MessageDlg('Exit Ensign ?',mtConfirmation,mbYes,mbNo)=mrYes then
 if MessageDlgPos('Program Closing !',mtWarning,mbOK,mbCancel,100,100)=mrOK then

mnuExit.click;
end;

Mod

SYNTAX: (Number1 Mod Number2) :integer

DESCRIPTION: The Mod statement is a math operation used to perform Integer Division and return the Remainder as
the result. Number1 is divided by Number2. The result is the remainder of the division calculation. The answer is always
an integer value (no decimals).

EXAMPLE: The following example performs two integer division calculations. The remainder is returned as the result.

var {Start of Variable declarations}
 X,Y: integer; {X and Y are declared as Integers}
begin {Start of Main Programming code}
 X := 115 Mod 100; {X is assigned the remainder of 115/100 (remainder=15)}
 Y :=5 Mod 2; {Y is assigned the remainder of 5/2 (remainder=1) }
 writeln(X,' ',Y); {Prints the values of X and Y}
end; {End of program}

Mouse

SYNTAX: Mouse(var X, Y: integer): boolean;

DESCRIPTION: The Mouse function is used to determine the current X, Y coordinate position of the mouse on a chart.
The function is also used to determine if a mouse button is currently being clicked. When the mouse is over a selected chart
window, the Mouse function will return a True value if any mouse button is depressed when the function is called.
Otherwise, the function returns a False value. The X, Y coordinates of the mouse position are also returned. The
horizontal position (X) can be converted to a bar index using the XToIndex function. The vertical position (Y) can be
converted to a price using the YToPrice function. If necessary, use the FindWindow command to find the chart before
using the Mouse function.

157

PARAMETERS:
X: X is the horizontal screen pixel position of the mouse, with 0 being the left edge of the chart.
Y: Y is the vertical screen pixel position of the mouse, with 0 being the top edge of the chart.

EXAMPLE: The following program opens an IBM daily chart. The program reports the Last price of the selected bar,
whenever the mouse is clicked on the chart. Move the mouse to the left edge of the chart to stop the program.

var
 x,y,zLast: integer;
 Msg: string;
begin
 Chart('IBM.D');
 repeat
 if Mouse(x,y) then begin
 zLast := Bar(eClose,XtoIndex(X));
 Msg := 'Last = ' + FormatPrice(IntToStr(zLast)) + ' ';
 TextOut(100,20,Msg);
 end;
 Application.ProcessMessages;
 until (X>0) and (X<20);
end;

NewsFind
NewsStory
NewsText
NewsTitle
NewsSymbol

SYNTAX: NewsFind(Keyword: string): integer;
 NewsStory(Index: integer, var Story: string): boolean;
 NewsText(Keyword: string): boolean;
 NewsTitle(Index: integer): string;
 NewsSymbol(Symbol: string, Days, Count: integer): string;

DESCRIPTION:

NewsFind: This function is used to find a news story containing a specified Keyword. It is equivalent to clicking the

Find button in a news window. A news window is opened and all the stories containing the Keyword in
the news title will be listed. The function returns an Integer number representing the number of stories
found.

NewsStory: The NewsStory function is used to display a news story from the news title list. The titles are referenced
by sequential Index. The Index for the first story in the list would be a 1. The news title list can be
established by using the NewsFind function. The NewsStory function returns a True value if the
referenced story displays properly, or a False value if the story could not be found or decoded properly.
The text for the story is returned in the Story string variable. If desired, the Story text can be assigned
into a String List variable using the string list Text property.

NewsText: The NewsText function searches the currently displayed story and returns a True value if the search
Keyword is found in the story. A False value is returned if the Keyword is not found.

158

NewsTitle: The NewsTitle function returns a news title from the news title list. The news titles are referenced by
sequential Index. For example, NewsTitle(1); will retrieve the title text for the first news title in
the list.

NewsSymbol: The NewsSymbol function should only be used by ‘eSignal’ and 'Dtn IQFeed' data-feed users. If you
do not subscribe to one of these data-feeds then disregard this function. NewsSymbol allows you to
download news headlines based on a Stock Symbol. News headlines that have reference to the indicated
stock will be downloaded. The number of Days to download can be specified. The number of news
headlines (Count) to download can also be specified. The function returns TRUE if the request was
made, and FALSE if the Symbol parameter is missing.

PARAMETERS:

Keyword: The Keyword specifies the word to use in a news search. The search is not case sensitive.
Index: Index is used to reference the news titles in a news title list. The titles are referenced in order from 1 to

the end.
Story: The Story variable will contain the news story text after using the NewsStory function. The variable

needs to be declared as a string before using the NewsStory function.
Symbol: Specifies the Stock Symbol to retrieve news for.
Days: Specifies how many days of news to download. The default is 14 days.
Count: The maximum number of news headlines to download. The default is 100.

EXAMPLE: The following program searches for all news stories containing 'IBM' in the title. A FOR loop is used to
display each of these stories, and then print the titles of all stories that contain the word 'Stock'. The news window is then
closed. A list of the stories containing 'IBM' in the title and 'Stock' in the story text will be printed in the output window.

var {Start of Variable declarations}
 i,Count: integer; {Variables declared as Integers}
 Story: string; {Story is declared as a String}
begin {Start of Main Programming code}
 Output(eClear); {Clear the output window}
 Count:=NewsFind('IBM'); {Find stories with IBM in title}
 for i:=1 to Count do begin {Loop through the found stories}
 if NewsStory(i,Story)=True then {Open each story}
 if NewsText('Stock') then writeln(NewsTitle(i)); {Print titles}
 end; {block end}
 if NewsSymbol('IBM',10,100) then writeln('IBM headlines downloaded');
 mnuCloseWindow.click; {Close the news window}
end; {End of program}

Now

SYNTAX: Now: TDateTime;

DESCRIPTION: The Now function returns the current date and time.

EXAMPLE: The following program prints the current date and time (example: 7/23/2002 10:01:23 AM)

begin
 writeln('The current date and time is ',Now);
end;

159

Output

SYNTAX: Output(eClear): boolean;
 Output(eClipboard): boolean;
 OutPut(ePaste); boolean;
 Output(ePrint [, Orientation: boolean]): boolean;
 Output(eSave, FileName: string): boolean;
 Output(eLoad, FileName: string): boolean;
 Output(eAppend, FileName: string): boolean;
 Output(eSort [, Start: integer, Ascending: boolean]): boolean;

DESCRIPTION: The ESPL editor uses the output window for printing test and results from programs. The Writeln and
Write commands are often used to print text to the output window. The Output function is used to clear, print, save,
load, append, and sort the contents of the output window. The output window can be displayed with the
btnOutputWindow.click. It is automatically displayed by the Writeln and Write commands.

Output(eClear) erases the contents of the output window.
Output(eClipboard) copies the contents of the output window to the Windows Clipboard.
Output(ePaste) will paste the contents of the Windows Clipboard to the output window.
Output(ePrint, Orientation) prints the output window to the printer. The Orientation parameter should be a True or
False value. True will print in portrait mode. False will print in landscape mode (sideways). The default is portrait mode.

Output(eSave, FileName) saves the output window contents to the specified file. The file will be saved in the \ENSIGN10
sub-directory. This command allows you to save the contents of the output window to a file on the hard disk.

Output(eLoad, FileName) loads the specified file's text into the output window. The specified file must reside in the
\ENSIGN10 sub-directory. This is a convenient way to load and display an ASCII text file in the output window.

Output(eAppend, FileName) appends the contents of the output window to the specified file. The contents are appended to
the end of the file. The file must reside in the \ENSIGN10 sub-directory. This allows you to add text to an existing text
file.

Output(eSort, Start, Ascending) sorts the output window lines of text. The sort can be in ascending or descending order.
The sort process can sort from any character position in a line. The Start parameter specifies the character position to start
the sort on. The default is 1. The Ascending parameter should be a True or False value. True will sort in ascending
order. False will sort in descending order. The default is ascending. The lines of text in the output window will be
rearranged based upon the specified sort criteria.

EXAMPLE: The following program responds to 5 ESPL button clicks. Click ESPL button 1 to generate a list of 20
random alphabet letters and numbers in the output window. Click ESPL button 2 to sort the output window in ascending
order. Click ESPL button 3 to sort the output window in descending order, sorting from the 2nd character on each line.
Click ESPL button 4 to print the output window contents to the printer. Click ESPL button 5 to save the contents of the
output window to a file named 'Random.txt'. These ESPL buttons are on the Run ESPL form or on the toolbar on the ESPL
editor.

var {Start of Variable declarations}
 i: integer; {i is declared as an Integer}
begin {Start of Main Programming code}
 if ESPL=1 then begin {Run this if button 1 is clicked}
 Output(eClear); {Clear the output window}
 for i:= 1 to 20 do writeln(Chr(65+Random(26)),Random(10)); {Random print}
 end; {block end}
 if ESPL=2 then Output(eSort,1,True); {button 2 sorts ascending}
 if ESPL=3 then Output(eSort,2,False); {button 3 sorts descending}
 if ESPL=4 then Output(ePrint,True); {button 4 prints the window}

160

 if ESPL=5 then Output(eSave,'Random.txt'); {button 5 saves to a file}
end; {End of program}

Pause

SYNTAX: Pause(Seconds: real);

DESCRIPTION: The Pause command causes the ESPL program to pause for a specified number of Seconds. The
program will suspend execution of the script for the specified number of seconds. The Ensign program is still processing
data feeds during the script pause.

EXAMPLE: The following program opens a custom Quote page, pauses for 5.5 seconds, and then closes the Quote page.

begin
 Quote(eCustom);
 Pause(5.5);
 mnuCloseWindow.Click;
end;

Pi

SYNTAX: Pi ;

DESCRIPTION: Pi is a global math variable equal to 3.14159265358. It can be used in calculations where Pi is required.

EXAMPLE: The following program calculates the area of a circle that has a Radius of 10.

var {Start of Variable declarations}
 Area,Radius: real; {Variables declared as Reals}
begin {Start of Main Programming code}
 Radius := 10; {Radius assigned a value of 10}
 Area := Pi * Sqr(Radius); {Area = _ * r2 = 314.16}
 writeln('The Area= ',Area); {Print the Area to the output window}
end; {End of program}

Play

SYNTAX: Play(FileName: string);

DESCRIPTION: The Play command is used to play a sound file by using the Media Player to play the specified file. The
Media Player will not be visible.

PARAMETERS: The FileName specifies the sound file play. The FileName should be a .WAV, .MID, or .RMI file
type. If a FileName is not specified, then the CHORD.WAV file is played. If the file is not found, then a beep will be
played.

EXAMPLE: The following program opens an IBM daily chart. The TADA.WAV file is played if the current bar's High is
higher than the previous bar's high. Otherwise, the CHORD.WAV file is played.

begin
 Chart('IBM.D');

161

 if High(BarEnd) > High(BarEnd-1) then
 Play('C:\WINDOWS\MEDIA\TADA.WAV')
 else
 Play('C:\WINDOWS\MEDIA\CHORD.WAV');
end;

Pos

SYNTAX: Pos(Text1: string, Text2: string): integer;

DESCRIPTION: The Pos function is used to find a string within another string. The function searches for Text1 within
Text2. The function will return a number, representing the starting character position where Text1 was found in Text2.
For example, Pos('New','Happy New Year'); will return the number 7 since the word 'New' starts in the 7th
character position. The function will return a zero value if Text1 is not found in Text2.

PARAMETERS:

Text1: Any text string value.
Text2: Any text string value.

EXAMPLE: The following program starts a Timer by clicking on ESPL button 1. The Timer will Play a sound file at
the top of each hour. The Pos function is used to determine if the Time contains the numbers '00' (example: 03:00). Click
ESPL button 2 to stop the Timer. NOTE: The value of the ESPL variable is set to 10 when a Timer calls an ESPL
program.

begin {Start of Main Programming code}
 if ESPL=1 then Timer(eStart,60,10); {button 1 starts a 60-second Timer}
 if ESPL=2 then Timer(eStop); {button 2 stops the Timer}
 if ESPL=10 then {Run this code each Timer interval}
 if Pos('00',TimeStr)>0 then Play('C:\WINDOWS\MEDIA\TADA.WAV'); end;
{End of program}

Power

SYNTAX: Power(Number, Exponent: real): real;

DESCRIPTION: The Power function raises a Number to an Exponent power. For example, Power(2,3) raises the
number 2 to the 3rd power (i.e. 2 * 2 * 2 = 8). NOTE: The Sqr function can be used to square numbers.

PARAMETERS:

Number: Specifies a number to raise to a power.
Exponent: Specifies the power to raise a number by.

EXAMPLE: The following program uses a FOR loop to print the value of 5 raised to the powers of 0 through 9.

begin
 for i:= 0 to 9 do writeln('5^',i,'= ',Power(5,i));
end;

162

Pred
Succ

SYNTAX: Pred(Number): variant;
 Succ(Number): variant;

DESCRIPTION: The Pred function is used to return the value of Number-1. The Succ function is used to return the
value of Number+1. The value of Number is not changed in either case. The predecessor or successor of a Number can
be used in a variety of programming tasks. The Pred and Succ functions are more efficient and faster than simply
programming Number+1 or Number-1 in the programming code. Any valid Number can be used in the parameter.

EXAMPLE: The following program loads a custom quote page file named 'CUSTOM.QUO' into a String List. A FOR
loop is used to open a daily chart window for each symbol in the list. Each symbol is also printed in the output window.
The Pred function is used to help determine the last Index item for the String List. NOTE: The Index for String Lists
starts at zero, but the Count starts at 1. The Pred(sList.Count) statement references the last item in the string list
(since Count always equals 1 more than the last index). NOTE: Symbols that are saved in quote files include a leading
character that indicates the market group. The leading character must be stripped off to obtain just the Symbol.

var {Start of Variable declarations}
 i: integer; {i is declared as an Integer}
 Symbol: string; {Symbol is declared as a String}
begin {Start of Main Programming code}
 FindWindow(eScript); {Find the Script Editor Window}
 mnuMinimize.Click; {Minimize the Script Editor}
 Output(eClear); {Clear the output window}
 sList.LoadFromFile(sPath + 'QuoFile\Custom.dat'); {Load quote file into sList}
 for i:= 0 to pred(sList.Count) do begin {Loop through the Symbols}
 Symbol:= Copy(sList.Strings(i),2,8); {Strip 1st character to get Symbol}
 if Symbol > '' then begin {if a valid Symbol then proceed}
 writeln(Symbol); {Print the Symbol}
 Chart(Symbol + '.D'); {Open a daily chart for the Symbol}
 end; {end of block 2}
 end; {end of block 1}
 mnuTileVertical.Click; {Tile chart windows on the screen}
end; {End of program}

PriceToY
YToPrice

SYNTAX: PriceToY(Price: real): integer;
 YToPrice(Y-Coordinate: integer): real;

DESCRIPTION: The PriceToY function is used to convert a chart Price level, to its Y-Coordinate vertical pixel
position. The YToPrice function is used to convert a Y-Coordinate pixel position to the nearest Price level on a chart.
Both commands are useful for translating vertical screen position values to and from pixel and price values.

PARAMETERS:

Price: Price specifies the price value from a chart to convert into a Y-Coordinate screen pixel value.

Y-Coordinate: The top row of screen pixels (dots) has a Y-Coordinate value of zero. The count increases vertically

down the screen. Each pixel can be converted to the nearest price value.

163

EXAMPLE: The following program opens an IBM daily chart. A line is drawn between the first and last bars on the chart.
The PriceToY function is used to obtain screen pixel locations for use by the MoveToLineTo function. The IndexToX
function is used to obtain screen pixel locations for the horizontal position. The Price value at Y-pixel 200 is then printed.

var {Start of Variable declarations}
 Y1,Y2: integer; {Y1 and Y2 are declared as Integers}
begin {Start of Main Programming code}
 Chart('IBM.D'); {A daily chart is opened for IBM}
 Y1:= PriceToY(Last(BarLeft)); {Y-pixel found for 1st bar on chart}
 Y2:= PriceToY(Last(BarEnd)); {Y-pixel found for last bar on chart}
 MoveToLineTo(IndexToX(BarLeft),Y1,IndexToX(BarEnd),Y2); {Draw line}
 writeln(FormatPrice(YToPrice(200))); {Convert Y-pixel 200 to a price}
end; {End of program}

Pt1X, Pt2X, Pt3X, Pt1Y, Pt2Y, Pt3Y

SYNTAX: Pt1X: integer;
 Pt1Y: integer;
 Pt2X: integer;
 Pt2Y: integer;
 Pt3X: integer;
 Pt3Y: integer;

DESCRIPTION: The above X,Y screen coordinate variables are automatically set when an ESPL Draw Tool is placed on
a chart. ESPL Draw Tools are generally drawn on a chart with a series of 2 or 3 mouse clicks. The X,Y position of each
mouse click is saved in the above variables. NOTE: The X,Y coordinate system starts in the top-left corner of the chart at
pixel position 0,0. X-Coordinates increment horizontally across the screen. Y-Coordinates increment vertically down the
screen. For example, an X,Y coordinate of (100,200) is 100 pixels right and 200 pixels down from the top-left corner of
the chart. The values of each X and Y point can be used in ESPL programs.

EXAMPLE: The following ESPL Draw Tool is applied to a chart by clicking ESPL button 1 (ESPL=11) in the Draw Tools
panel. Three points are then selected on the chart with the mouse. A line will be drawn between the 3 points, creating a
triangle. The 3 points can be moved around the chart with the mouse to adjust the size and position of the triangle. The
location of the 3 selected points are automatically stored in the predefined global X,Y variables (Pt1X, Pt1Y, Pt2X, Pt2Y,
Pt3X, Pt3Y). These variables are used to draw the lines with the MoveToLineTo statement. NOTE: Click on any corner
of the triangle to reactivate the tool, and move the points to a different location.

procedure DrawTriangle; {Declares the 'DrawTriangle' subroutine
begin {Start of the sub-routine code}
 MoveToLineTo(Pt1X,Pt1Y,Pt2X,Pt2Y); {Draw 1st leg of the triangle}
 MoveToLineTo(Pt2X,Pt2Y,Pt3X,Pt3Y); {Draw 2nd leg of the triangle}
 MoveToLineTo(Pt3X,Pt3Y,Pt1X,Pt1Y); {Draw 3rd leg of the triangle}
end; {End of the sub-routine code}

{****Main Program****}
begin {Start of Main Programming code}
 if ESPL=11 then DrawTriangle; {Call the 'DrawTriangle' procedure}
end; {End of program}

164

PtX1, PtX2, PtX3, PtX4, PtX5, PtX6
PtY1, PtY2, PtY3, PtY4, PtY5, PtY6

SYNTAX: PtX1 through PtX6 : integer;
 PtY1 through PtY6 : integer;

DESCRIPTION: The above X,Y screen coordinate variables are automatically set when the mouse is clicked on any chart.
The variables contain the screen coordinates for the 6 most recent mouse clicks. The variables are global variables and do
not need to be declared. User-Defined Studies and Draw Tools can use these variables to draw lines or make calculations.
The most current mouse click is stored in the PtX1 and PtY1 variables. They are all shifted down to the next variable as
new mouse clicks are made. NOTE: The X,Y coordinate system starts in the top-left corner of the chart at pixel position
0,0. X-Coordinates increment horizontally across the screen. Y-Coordinates increment vertically down the screen. For
example, an X,Y coordinate of (100,200) is 100 pixels right and 200 pixels down from the top-left corner of the chart.
The values of each X and Y point can be used in ESPL programs.

EXAMPLE: The following program draws 5 lines on a chart. The lines connect the last 6 mouse clicks. First, use the
mouse to click on 6 chart points. Example, mark the high and low swings of a 5 wave Elliott wave series. Then click ESPL
button 1 in the Script editor to draw the lines on the chart. The X,Y coordinates are converted into 'Index' and 'Price' values
for the AddLine statement. NOTE: See also the Index1 through Index6 global variables.

procedure DrawWaves;
begin
FindWindow(eChart);
AddLine(eLine,0,XtoIndex(PtX1),YtoPrice(PtY1),XtoIndex(PtX2),YtoPrice(PtY2));
AddLine(eLine,0,XtoIndex(PtX2),YtoPrice(PtY2),XtoIndex(PtX3),YtoPrice(PtY3));
AddLine(eLine,0,XtoIndex(PtX3),YtoPrice(PtY3),XtoIndex(PtX4),YtoPrice(PtY4));
AddLine(eLine,0,XtoIndex(PtX4),YtoPrice(PtY4),XtoIndex(PtX5),YtoPrice(PtY5));
AddLine(eLine,0,XtoIndex(PtX5),YtoPrice(PtY5),XtoIndex(PtX6),YtoPrice(PtY6));
end;

{****Main Program****}
begin {Start of Main Programming code}
 if ESPL=1 then DrawWaves; {Call the 'DrawWaves' procedure}
end; {End of program}

Quote

SYNTAX: Quote(Feed: integer [, Symbol: string, Flag: boolean]): integer;
 Quote(eCustom [, PageName: string, Flag: boolean]): integer;

DESCRIPTION: The Quote function is used to open and display a quote window. A specific Feed quote page can be
specified. The quote page can be instructed to locate a specific Symbol at the top of the page (when the page opens). Use
Quote(eCustom, PageName) to display a custom quote page (where PageName is the name of the custom quote page). The
Quote function will return the window handle for the quote window that is opened. The global Window variable is also
internally set to the window number.

PARAMETERS:

Feed: Feed is one of these predefined constants.
eFXCM eIB eSignal eIQFeed eNinja eOpenECry
eTraderBytes eTransAct eGlobal eDBFX eATCBrokers eCustom

Symbol: Symbol specifies the symbol to display on the top row of a quote page.

165

Flag: The Flag parameter must have a True or False value. If Flag is True then the Quote function will
change the contents of a previously opened quote window. If Flag is False then a new quote window
will be opened. NOTE: Use the FindWindow command to locate previously opened Quote windows.

PageName: Use the PageName parameter is opening a Custom Quote page. Enter the name of the custom page.

EXAMPLE: The following program opens an eSignal quote page, with MSFT as the top symbol. The quote page is
displayed for 5 seconds. A Custom Quote page named CUSTOM is then opened (in the same quote window). The first 10
symbols from the page are printed in the output window. The quote page is closed after 5 seconds.

var {Start of Variable declarations}
 Row: integer; {Row is declared as an Integer}
 Symbol: string; {Symbol is declared as a String}
begin {Start of Main Programming code}
 Quote(eSignal,'MSFT'); {Open eSignal quote page}
 Pause(5); {Pause for 5 seconds}
 Quote(eCustom,'Custom',True); {Open Custom quote page}
 for Row:=1 to 10 do begin {Loop through first 10 rows}
 Symbol:= GetCell(Row,0); {Get symbol from quote row}
 writeln('Row ',Row,' ',Symbol); {Print symbol to output window}
 end; {end of loop code}
 Pause(5); {Pause for 5 seconds}
 mnuCloseWindow.Click; {Close the quote window}
end; {End of program}

Random
Randomize

SYNTAX: Random(Number: integer):integer;
 Randomize;

DESCRIPTION: The Random function returns a random number between 0 and Number-1. For example,
Random(10) will generate a random number from 0 to 9. The Randomize command initializes the random number
generator (using the system clock). Call the Randomize command before using the Random function to avoid possible
duplications in the random number generation.

EXAMPLE: The following program uses a FOR loop to generate and print 25 random numbers. The Randomize
command is used to initialize the random number generator before using the Random function.

begin {Start of Main Programming code}
 Randomize; {Initialize Random numbers}
 for i:= 1 to 25 do writeln(Random(100)); {Loop,Generate, and Print numbers}
end; {End of program}

Rectangle
RoundRect

SYNTAX: Rectangle(x1,y1,x2,y2: integer);
 RoundRect(x1,y1,x2,y2, Width, Height: integer);

166

DESCRIPTION: The Rectangle command is used to draw a rectangle on a chart. The X,Y coordinates should specify
the top-left and bottom-right corners of the rectangle. The rectangle will be drawn using the current brush and pen color
attributes. Use the SetPen and SetBrush commands to change the pen and brush attributes. NOTE: Screen pixel
coordinates start in the top-left corner of the chart window at 0,0. X-coordinates specify horizontal pixels moving to the
right. Y-coordinates specify vertical pixels moving down. The RoundRect command draws a rectangle with rounded
corners. The top-left corner of the rectangle is at point x1,y1, and the bottom-right corner is at point x2,y2. The rounded
corners are drawn as segments of an ellipse with a width of Width and a height of Height. NOTE: The rectangles drawn
by these commands are not remembered by the chart. The lines will disappear if the chart is redrawn or rescaled.

EXAMPLE: The following program opens an IBM daily chart. Two rectangles are drawn on the chart. The pen and brush
attributes are then changed. Two additional rectangles are drawn using the new attributes.

uses
 Graphics;
begin {Start of Main Programming code}
 Chart('IBM.D'); {Open an IBM daily chart}
 Rectangle(50,50,200,90); {Draw a rectangle on the chart}
 RoundRect(200,210,400,300,50,50); {Draw a round corner rectangle}
 SetPen(clWhite,1,eDot); {Change the Pen attributes}
 SetBrush(clWhite,eClear); {Change the Brush attributes}
 Rectangle(100,100,500,200); {Draw a rectangle}
 RoundRect(210,50,400,90,50,50); {Draw a round corner rectangle}
end; {End of program}

Register

SYNTAX: Register(List: integer; StudyName: string [; ESPL: integer]);

DESCRIPTION: This command is used to add custom studies to the Ensign lists. The custom StudyName will appear in
the same list as Ensign standard studies, color bars and draw tools. The registration process adds the StudyName to the
Study, ColorBar or Draw Tool lists, and remembers a ESPL value for when the custom study is selected from the list. A
previously registered StudyName can be removed from the drop-down list by omitting the ESPL parameter, or by passing
-1 as the value. If StudyName is already registered, its current ESPL value will be reassigned to the new ESPL
parameter value.

PARAMETERS:

List: List is one of these predefined constants: eStudy, eColorBars, eDrawTool

StudyName: StudyName is the text that will display in the ColorBar or Study drop-down list. StudyName will also be
used in the Study Data panel and the Chart Objects list for the registered study.

ESPL: This is the value that will be assigned to the ESPL variable for the indicated Study, ColorBar or Draw

Tool.

EXAMPLE: Click ESPL button 1 to Register the following programs. A new study named 'Average Range' is added to
the Ensign study list. When the study is activated, the ESPL program will be called with a ESPL value of 155. A study
named 'Average Volume' is added to the Ensign study list, with a ESPL value of 156. The 'Gap' ColorBar study is
removed from the Ensign ColorBar study list. The Ensign 'Relative Strength' study is reassigned with a ESPL value of
200. The sub-routine procedures for each of the new studies are shown below (with no code). However, programming code
could be added to each routine that would respond to the newly registered studies. See the SetUser statement for an
example of a user defined study.

procedure AveRange;

167

begin
end;

procedure AveVolume;
begin
end;

procedure NewRSI;
begin
end;

begin {Start of Main Programming code}
 if ESPL=1 then begin {Click button 1 to run this code}
 Register(eStudy,'Average Range',155); {add study to Study List}
 Register(eStudy,'Average Volume',156,2); {add study 2nd row of Study List}
 Register(eColorBars,'Gap'); {remove Gap ColorBar study}
 Register(eStudy,'Relative Strength',200); {reassign RSI to use ESPL=200}
 end; {end of block}
 if ESPL=155 then AveRange; {Run AveRange if ESPL=155}
 if ESPL=156 then AveVolume; {Run AveVolume if ESPL=156}
 if ESPL=200 then NewRSI; {Run NewRSI if ESPL=200}
end; {End of program}

Regression

SYNTAX: Regression(Type, Index, Period, DataSet: integer, var Slope, var StdError: real): real;

DESCRIPTION: The Regression command is used to calculate Linear Regression (Best Fit) values on a chart. A linear
regression value is calculated using chart data as input. The Regression function returns the linear regression value for the
chart bar referenced by Index. The Period parameter specifies how many bars to use in the calculation. The slope of the
linear regression line is returned in the Slope variable, and the Standard Error of Estimate is returned in the StdError
variable.

The Regression function can calculate a linear regression value based on a chart's study or overlay DataSet by passing
the study or overlay's object number as the DataSet parameter, or by passing a number 1, 2, 3 … for the 1st, 2nd, 3rd …
overlay. If necessary, the study or overlay object numbers can be obtained using the FindStudy function.

PARAMETERS:
Type: Type is one of the following predefined constants:
 eArray eClose eHigh eLast eLow eMidPoint

eMid3 eMid4 eNet eOpen eOpenInterest ePercent
eRange eTrueHigh eTrueLow eTrueRange eVolume
1 2 3 4

Refer to the Bar function for a complete description of these constants.

Index: Index is the bar array subscript between 1 and the number of bars on the chart. Both the host and the

overlay use the same indexing.

Period: Period is the number of bars to use in the calculation. The data points will include bars from Period -

Index + 1 through and including Index.

DataSet: DataSet is an optional object number for an overlay data set. The default is to use the chart's bar data

set by passing a value of zero.

168

Linear Regression Formula
Regression := Offset + Slope * x
n := Period
Slope := (n * Sum(x*y) - Sum(x) * Sum(y)) / (n * Sum(x^2) - Sum(x)*Sum(x))
Offset := (Sum(y) - Slope * Sum(x)) / n
StdError := sqrt(Sum(sqr(y - (Offset + Slope * x))) / (n-2))

EXAMPLE: A User-Defined Study named 'RegressionLine' is created in the following program. The study can be applied
to a chart by clicking ESPL button 100 on the Run ESPL panel. The study calculates and draws a moving linear regression
line on the chart.

procedure RegressionLine; {RegressionLine procedure is declared}
var {Start of Variable declarations}
 Slope, StdError: real; {Variables declared as Real}
 i:integer; {Variable declared as an Integer}
begin {Start of sub-routine code}
 SetUser(ePlot1,True); {Specifies that line is drawn and shown}
 SetUser(eShow1,True);
 SetUser(eName,'Regression'); {User-Defined study is given a name}
 for i:= BarBeginLeft to BarEnd do {Loop through visible bars on the chart}
 SetUser(1,Regression(eLast,i,10,0,Slope,StdError),i); {Calc Regression}
end; {End of RegressionLine procedure}

begin {Start of Main Programming code}
 if ESPL=100 then RegressionLine; {if ESPL=100 run RegressionLine}
end; {End of program}

Remove

SYNTAX: Remove(ObjectID: integer, [Recalc: boolean]): boolean;

 Remove(Type: integer): boolean;

DESCRIPTION: The Remove command is used to remove lines and studies from a chart. Each study or line object on a
chart has a unique ObjectID identification number (sometimes called a Handle). If you know the ObjectID, then the object
can be specifically removed by providing the ObjectID as the parameter. The FindStudy command can be used to obtain
an ObjectID. The ObjectID is also returned whenever the AddStudy, AddStudyOnStudy, AddLine, and AddNote
functions are used. The Remove function returns a True value if successful, and False if the object was not found.

PARAMETERS:

ObjectID: ObjectID is the object number returned by the AddStudy, AddStudyOnStudy, AddLine, AddNote, and

FindStudy functions. The number is used to specifically identify and remove an object from a chart.

Recalc: This optional parameter can be added with a True value if you want the ESPL program to be

recalculated after the object is removed from the chart.

Type: Type is one of the following predefined constants. These can be used to remove groups of objects.
 eAll eArrow eLine eNote eStudy eESPL

Remove(eAll) removes all Lines, Arrows, Notes, Labels, Studies, and User-Defined studies from a chart.
 Remove(eArrow) removes all Arrow (and Marker) objects from a chart.
 Remove(eCircle) removes all Circle objects from a chart.
 Remove(eNote) removes all Note objects from a chart.

169

 Remove(eLine) removes all Line objects (including Arrows, Notes, and Labels) from a chart.
 Remove(eStudy) removes all Studies from a chart (except User-Defined studies).
 Remove(eESPL) removes all ESPL studies from a chart.

EXAMPLE: The following program opens an IBM daily chart, adds an RSI and Stochastic study to a chart. The program
pauses for 10 seconds and then removes the Stochastic study from the chart. NOTE: The ObjectID for the Stochastic
study is saved in the Handle2 variable. This variable is used to help identify the study when removing it.

var {Start of Variable declarations}
 Handle1, Handle2: integer; {Variables declared as Integers}
begin {Start of Main Programming code}
 Chart('IBM.D'); {Open an IBM daily chart}
 Handle1 := AddStudy(eRSI); {Add RSI study, remember the study ID}
 Handle2 := AddStudy(eSto); {Add Stochastic, remember the study ID}
 Pause(10); {Pause for 10 seconds}
 Remove(Handle2); {Remove the Stochastic study}
end; {End of program}

Repeat…Until

SYNTAX: Repeat
 {block of statements}
 Until (ConditionalExpression);

DESCRIPTION: The Repeat…Until statements are used to create a loop that is executed until a expression becomes
True. The ConditionalExpression is evaluated at the end of each loop. If the expression is False, then the block of
statements is re-run. If the expression is True, then the loop is terminated and the ESPL program continues with the next
line of code. Since the ConditionalExpression is not tested until the bottom of the loop, each statement in the loop will get
executed at least once.

EXAMPLE: The following program uses a Repeat…Until loop to input numbers from the keyboard. The entered
numbers are printed in the output window. The loop continues until the user enters the number 5. The program beeps when
finished.

begin {Start of Main Programming code}
 repeat {Initiate Repeat loop}
 Value := InputBox('Hello','Enter a number. Enter 5 to Exit.','0');
 writeln('You entered ',Value); {Print number}
 until (Value='5'); {Loop Until Value=5}
 writeln('Done...'); {Print 'Done' message}
 beep; {Beep}
end; {End of program}

ResetTrades

SYNTAX: ResetTrades(Commission: real; BuyArrow, SellArrow, OutArrow: integer; Boxes: boolean);

DESCRIPTION: The ResetTrades statement is used to define specific Trading System values. The statement is used in
conjunction with the Trade, and TradeReport commands. ResetTrades is used to initialize a Trading System. The
statement prepares a file to receive the Buy and Sell trades specified by the Trade command. The Commission per
contract or per share is specified. The style of the Arrows (marking the trades on a chart) is also specified.

PARAMETERS:

170

Андрей
forex-warez.com

Commission: Commission is the per contract or per share commission rate (dollar amount) for a round-trip trade.

BuyArrow, SellArrow, OutArrow:

The Buy, Sell, and Out arrows mark trades on a chart. The arrows can be one of the following types.
 0 = eUpArrow 4 = eOut Add eOut to print the word 'Out' next to the arrow
 1 = eDownArrow 8 = eLong Add eLong to print the word 'Long' next to the arrow
 2 = eLeftArrow 12 = eShort Add eShort to print the word 'Short' next to the arrow
 3 = eRightArrow 255 = eNone eNone disables the arrows, no arrows will be displayed.

 Up Arrows will be positioned below the low of the referenced bar.
 Down Arrows will be positioned above the high of the referenced bar.
 Left Arrows will be positioned on the right side of the referenced bar, at the Trade Price level.
 Right Arrows will be positioned on the left side of the referenced bar, at the Trade Price level.
 The Price level and the bar Index are automatically supplied by the Trade command.

Boxes: Set the value of Boxes to True to display a small box at all entry and exit points. Set the value to False to

eliminate the boxes.

EXAMPLE: The following program opens an IBM daily chart and runs a Trading System based on the crossing of two
Simple Moving Average lines. The system will buy when the average lines cross up. The system will sell when the
average lines cross down. The ResetTrades command is used to initialize the trading system with no commissions and
specific trade arrows. A FOR loop and the GetStudy command are used to loop through the bars and determine when
the lines cross. The Trade command is used to create each trade. A TradeReport is printed in the output window when
the system is finished. Arrows will mark each trade on the chart.

var {Start of Variable declarations}
 i, Handle:integer; {Variables are declared as Integers}
begin {Start of Main Programming code}
 Chart('IBM.D'); {Open an IBM daily chart}
 Handle := AddStudy(eAve,1,5,20); {Add 2 Simple Moving Averages to chart}
 ResetTrades(0,0,1,3,True); {Initialize Trading System parameters}
 for i:= BarBeginLeft to BarEnd do {Loop through bars looking for trades}
 begin {start of loop code}
 if GetStudy(Handle, 9,i) then Trade(eBuy+eIf+eReverse,i); {Look for buys}
 if GetStudy(Handle,10,i) then Trade(eSell+eIf+eReverse,i);{Look sells}
 end; {end of loop code}
 Trade(eOut); {Close-out the last open trade}
 TradeReport(True); {Print the results in the output window}
end; {End of program}

SaveToAscii

SYNTAX: SaveToAscii(ExportFormat: integer [, FileName: string]);

DESCRIPTION: The SaveToAscii command is used to export Quote pages or Chart bar data to ASCII text files. The
files can be exported into a variety of ASCII (text) formats. The exported data can be used by other programs (like
spreadsheets or word processors). The SaveToAscii command performs the same function as the SaveToAscii menu
item for Charts and Quote pages. The exported file for a Quote page will save to the \ENSIGN sub-directory, and have a
file extension of .TXT. The exported ASCII file for Chart data can be saved to a specified path and FileName. If the
FileName parameter is not supplied, then the file will save to the \ENSIGN sub-directory, and have a file extension of
.TXT, .PRN, or .CSV.

PARAMETERS:

171

ExportFormat: To export the active Quote page, use one of the following predefined constants:
 eExcelColumns eExcelCommas eMetaStock5 eMetaStock7 eAIQ

 To export the active Chart, use one of the following predefined constants:
 eExcelColumns eExcelCommas eIDOHLC eCSV

 NOTE: The Excel Columns format has 10 character wide columns. The Excel Commas format separates

the price fields with commas. The IDOHLC format exports the Date, Time, Open, High, Low, Close,
Volume, and Open Interest (separated with commas). Select Set-Up | Computer from the menu to
specify the number of columns to save.

FileName: The FileName parameter is used for saving Chart files. Specify the path and filename for the ASCII file.

EXAMPLE: The following program opens a custom quote page and then saves the quote page data to an ASCII file. The
file is saved in a comma delimited format that is compatible with a MS-EXCEL spreadsheet. The quote page data is saved
to a file named \Ensign10\CUSTOM.TXT. The program then opens an IBM daily chart and exports the bar data to a file
named \Ensign10\IBM.TXT.

begin
 Quote(eCustom,'Custom');
 SaveToAscii(eExcelCommas);
 Chart('IBM.D');
 SaveToAscii(eIDOHLC, sPath + 'IBM.TXT');
end;

Scheduler

SYNTAX: SCRIPT = FileName
 SCRIPT = FileName ESPL
 SCRIPT = FileName TIMER Seconds

DESCRIPTION: The Ensign Scheduler can be used to load an ESPL program file and run a program at a specified time.
The Scheduler window is accessed by selecting Set-Up | System | Scheduler from the Ensign menu. The ESPL
FileName and ESPL variable should be specified in the Scheduler. The ESPL Timer may also be started if necessary.

PARAMETERS:

FileName: Specifies the ESPL file to load into the Script Editor.

ESPL: Specifies the value of the ESPL variable. The program that responds to the indicated ESPL value will

be run.

Seconds: Specifies the number of Seconds for the TIMER interval. Each time the TIMER concludes a time

interval, the ESPL program will be called with a ESPL value of 10. This allows you to program items
which will run every interval.

EXAMPLE: The following examples illustrate how to make entries in the Scheduler to open and run ESPL programs at the
specified times. NOTE: You can program and save ESPL program files with any FileName that you choose. The
following examples presume that REPORTS.PSC, SCANS.PSC, and STOCKS.PSC are available ESPL files on your
computer.

√ 15:15 SCRIPT = REPORTS The REPORTS.SPT file is loaded into the ESPL script editor

window at 15:15. The ESPL value defaults to a value of zero.

172

√ 12:30 SCRIPT = SCANS 5 The SCANS.SPT file is loaded into the ESPL script editor window

at 12:30. The program responding to ESPL=5 is run.

√ 08:30 SCRIPT = STOCKS TIMER 60 The STOCKS.SPT file is loaded into the ESPL script editor window

at 08:30. The ESPL Timer is started with a 60 second timer interval.
The ESPL program is called every 60 seconds with a ESPL value of
10.

NOTE: It is not necessary to add the .psc file extension to the FileName in the Scheduler. All ESPL files should be
stored in the \Ensign10\ESPL sub-directory. The ESPL variable is used to specify which program to run. If FileName
is already loaded into the Script Editor, the Scheduler will not reload the file. Instead, the Scheduler will set the ESPL
variable or Timer and run from the loaded ESPL file. This allows you to run different programs from the already loaded
ESPL file.

Screen

SYNTAX: Screen.Property

DESCRIPTION: A global variable named Screen allows you to get and set screen properties. The variable allows you to
change the Cursor type for a particular window. The variable allows you to get and set the Width and Height of a window.
The screen ActiveControl, ActiveForm, Font, FormCount, Forms, PixelsPerInch, and Tag can also be determined.

PROPERTIES:

ActiveControl: ActiveControl indicates which control currently has input focus.
ActiveForm: ActiveForm indicates which form currently has focus.
Cursor: Specifies the mouse pointer image.
Fonts: Fonts is a string list of names for all fonts supported.
FormCount: FormCount is the number of forms displayed on the screen.
Forms: Forms is a list of all the forms that are currently displayed.
PixelsPerInch: The number of screen pixels that make up a logical inch vertically.
Height: Height is the vertical size of the screen in pixels.
Width: Width is the horizontal size of the screen in pixels.
Tag: Tag can be used to store and retrieve an integer value associated with the screen.

CURSOR TYPES: The following cursor types are available.

 crArrow crCross crDefault crDrag crHourglass

crIBeam crSize

EXAMPLE: The following program is a mixture of commands which demonstrate different uses of the Screen variable.
Screen commands are often used in conjunction with TForm functions. A 'Form' is simply an open window on the
screen. Each form has a name and various properties that can be changed. The following code shows how to change the
cursor type, window colors, and WindowState. The program will Minimize any open Chart windows. Various Screen
values are printed in the output window. The Tag property is set and then read back.

var {Start of Variable declarations}
 xWindow: TForm; {xWindow is declared as a TForm}
begin {Start of Main Programming code}
 Screen.Cursor := crHourGlass; {Change the mouse cursor to an HourGlass}
 xWindow := Screen.ActiveForm; {xWindow is assigned the active form}
 xWindow.Color := clRed; {Set the background color to Red}
 Pause(5); {Pause for 5 seconds}

173

 xWindow.Color := clWhite; {Set the background color to White}
 for i := 0 to Screen.FormCount-1 do {Loop through all open forms}
 begin {start of loop}
 xWindow := Screen.Forms[i]; {xWindow is assigned to an open form}
 writeln(i,' ', xWindow.Name); {The name of the form is printed}
 {All charts are minimized}
 if pos('Chart', xWindow.Name) > 0 then xWindow.WindowState:=wsMinimized;
 end; {end of loop}
 writeln(); {Print a blank line}
 writeln('Pixels=',Screen.PixelsPerInch); {Print the Pixels per inch}
 writeln('Height=',Screen.Height); {Print the screen height in pixels}
 writeln('Width =',Screen.Width); {Print the screen width in pixels}
 writeln('Tag =',Screen.Tag); {Print the value of the screen Tag}
 Screen.Tag := 9; {Set the Tag value to 9}
 writeln('NewTag=',Screen.Tag); {Print the value, now equal to 9}
 Pause(5); {Pause for 5 seconds}
 Screen.Cursor := crDefault; {Change the mouse cursor back to default}
end; {End of program}

sCustom

SYNTAX: sCustom : string;

DESCRIPTION: The sCustom variable contains the FileName of the currently loaded custom quote page. The variable
is set by Ensign when a quote page is opened and a custom quote page selected. This variable can only be read; it cannot
be set by ESPL.

EXAMPLE: The following program loads and prints the symbols from an open custom quote page. Note that an extra
character appears in front of each symbol in the list. The character represents which Market Group the symbol belongs to.

begin {Start of Main Programming code}
 Output(eClear); {Clear the output window}
 Quote(eCustom); {Open a custom quote page}
 sList.LoadFromFile(sPath + 'QuoFile\'+sCustom); {Load current quote page file}
 writeln(sList.text); {Print the symbol list}
 mnuCloseWindow.Click; {Close the custom quote page}
end; {End of Program}

Select

SYNTAX: Select(ConditionalExpression: boolean, TrueValue: variant, FalseValue: variant): variant;
 Select(Index: integer, Value1, Value2: variant [….Value99: variant]): variant;

DESCRIPTION: The Select function is used to choose between some values based upon a ConditionalExpression or an
Index value. The first parameter is used to select which of the Values to return. If the ConditionalExpression is True,
then the TrueValue is returned. If the ConditionalExpression is False, then the FalseValue is returned. If the Index
value is between 1 and 99, then the value corresponding to the Index is returned.

PARAMETERS:

ConditionalExpression: This is a logical expression that can be evaluated to a Boolean value of True or False.
TrueValue: The value that will be returned if ConditionalExpression is True.
FalseValue: The value that will be returned if ConditionalExpression is False.

174

Index: Specifies the Index position of the value to be returned.
Value: The value that will be returned, based upon its position in the list of values.
 NOTE: The list of values may contain up to 100 parameters of any type.

EXAMPLE: The following program contains a User-Defined study named ChartLine. Open a chart and then click ESPL
button 100 on the Run ESPL panel to apply the study on the chart. A line is drawn on either the Open or Last price of each
bar (depending on which is higher). The Select statement is further illustrated by two additional examples. Click ESPL
button 1 on the Run ESPL panel to select the 5th Value from the list. Click ESPL button 2 on the Run ESPL panel to print
the Day of the week from the supplied list.

procedure ChartLine; {ChartLine is declared as a Procedure}
var {Start of Variable declarations}
 i: integer; {i is declared as an Integer}
 Value: real; {Value is declared as a Real}
begin {Start of Procedure code}
 SetUser(eName,'ChartLine'); {Name the study ChartLine}
 SetUser(eClose,'True'); {Calculate at close of bar only}
 SetUser(ePlot1,True); {Display the Line and its value}
 SetUser(eShow1,True);
 for i:= BarBegin to BarEnd do {Loop through all the bars}
 begin {start of loop}
 Value := Select(Open(i) > Last(i),Open(i),Last(i)); {which is higher}
 SetUser(1,Value,i); {Store value, causes line to Plot}
 end; {end of loop}
end; {End of Procedure}

begin {Start of Main Programming Code}
 if ESPL=100 then ChartLine; {If ESPL=100 then run ChartLine}
 if ESPL=1 then writeln(Select(5,'Hello',True,5,4.4,3*4)); {Print 5th item}
 if ESPL=2 then {Print Day of Week}
 writeln('Day=',Select(DayOfWeek(Now),'Su','M','Tu','W','Th','F','Sa'));
end; {End of program}

Section
SYNTAX: Section(SectionNumber: integer [, Text: string, BackColor, FontColor: integer]);

DESCRIPTION: The Section command allows you to print some text at the bottom of a chart window. There are 7
sections at the bottom of a chart window that can be used. Each section can have a unique Background color and
FontColor. The SectionNumber specifies which section to print the Text to. Place commas in the Text message to
break the message into multiple rows. If ' False' is entered as the SectionNumber, then all the sections will hide. The
BackColor and FontColor are used to specify colors for the section.

EXAMPLE: The following sample program prints several messages in the sections at the bottom of the chart. Click ESPL
button 1 on the Run ESPL form to display the sections. Click ESPL button 2 to hide the sections.

begin
 if ESPL=1 then begin
 FindWindow(eChart);
 Section(1,'Row 1,Row 2,Row 3,Row 4',clRed,clBlack);
 Section(2,'Stop at 23',clLime,clBlack);
 Section(3,'Call Broker',clAqua,clBlack);
 Section(4,'Signal at 22',clYellow,clBlack);
 Section(5,'Profit at 25',clGray,clWhite);
 Section(6,'Golf at 3PM',clGreen,clWhite);

175

 Section(7,'Hi',clBlue,clYellow);
 end;

 if ESPL=2 then begin
 FindWindow(eChart);
 Section(False);
 end;
end;

SendKeys

SYNTAX: SendKeys(Keys: string);

DESCRIPTION: The SendKeys command is used to imitate keystrokes from the keyboard. Key commands are sent to
the computer, as if you had actually typed them. SendKeys generates windows messages, which go to a message queue. It
may be necessary to have Application.ProcessMessages; following SendKeys if forms are being changed before the
intended form receives the keystrokes.

PARAMETERS:

Keys: Keys specifies the keyboard sequence to perform.
 The following characters send the Alt, Ctrl, and Shift keys.

 & Alt key down. Holds the Alt key down while the next character is sent. This is used to access menu hot-

keys. Menu hot-keys are not case sensitive. Example: &F is the same as pressing Alt-F. NOTE: Use
{Alt} if you want a full keystroke of the Alt key.

 ^ Ctrl key down. Holds the Ctrl key down while the next character is sent. Example: ^C is the same as
pressing Ctrl-C.

 ~ Shift key down. Holds the Shift key down while the next character is sent. Example: ~{Tab} is the same
as pressing Shift-Tab.

 The following items can be used to send the indicated keys.

{F1} {F5} {F9} {Alt} {Esc} {Left} {Return}

{F2} {F6} {F10} {Backspace} {End} {PgDn} {Right}

{F3} {F7} {F11} {Del} {Home} {PgUp} {Tab}

{F4} {F8} {F12} {Down} {Ins} {PrtSc} {Up}

EXAMPLE: The following program opens an IBM daily chart and uses SendKeys to place two studies on the chart. The
SendKeys command is then used to access the File menu and open a News window.

begin
 Chart('IBM.D'); {Open an IBM daily chart}
 SendKeys('NRS'); {N=clears all studies, R=adds RSI, S=adds Stochastics}
 Pause(5); {Pause 5 seconds}
 SendKeys('&FN'); {Alt-F=open File Menu, N=open News window}
end;

EXAMPLE: The following program will loop through all open charts and request a refresh for each. A chart pop-up menu
has hot keys for refreshing, and SendKeys is issuing a hot key sequence.

176

var
 xForm: Tform;
begin
 for i := 0 to Screen.FormCount-1 do {Loop through all open forms}
 begin {start of loop}
 xForm := Screen.Forms[i]; {xForm is assigned to an open form}
 xForm.BringToFront; {change the z-order position}
 if pos('Chart', xForm.Name) > 0 then {window found is a chart}
 begin {begin block}
 FindWindow(eChart); {set window variable to this chart}
 SetMyFocus; {chart needs focus for keyboard}
 SendKeys('&2'); {Alt-2 refresh menu, refresh 2 days}
 writeln(i,' ',GetVariable(eName)); {log some feedback}
 pause(3); {wait 3 seconds for refresh}
 end; {end of block}
 end; {end of loop}
end;

SetArray

SYNTAX: SetArray(Index: integer, Value1: variant [, Value2 …. , ValueN: variant]);

DESCRIPTION: The SetArray statement is used to store values into the vArray global array. vArray is a single
dimension variant array with a lower boundary of zero. vArray must be dimensioned before it is used. Use the DimArray
command to set the upper boundary of the array. vArray can hold values of any variable type. See the documentation on
vArray for more details on array usage. SetArray is used to store a value in vArray at position Index. When more than one
value is provided, they fill the array sequentially beginning at position Index.

EXAMPLE: The following example dimensions vArray with an UpperLimit of 10. The array is filled with random
numbers and then printed.

begin {Start of Main Programming code}
 DimArray(10); {Dimensions vArray for 10 elements}
 for n := 0 to 10 do SetArray(n, Random(100)); {Assigns random}
 for n := 0 to 10 do writeln(vArray(n)); {Prints the elements of the array}
end; {End of program}

SetBar

SYNTAX: SetBar(Field: string, Index: integer, Value: real): boolean;

DESCRIPTION: SetBar is used to set bar values and colors on a chart. The Field parameter is used to specify which bar
value will be modified. The Index parameter specifies which bar to modify. The Value parameter is used to specify the
new value. NOTE: Use the ColorBars(eNone) command to prevent Ensign layouts from clearing bar coloring applied
by the SetBar command.

PARAMETERS:

Field: The Field parameter can be one of the following predefined constants:

 eColor - Sets the Bars Color. SetBar(eColor, BarEnd, clBlue);
 eColorBars – Same as using eColor. SetBar(eColorBars, BarEnd, clBlue);
 eColorVolume - Sets the Volume Color. SetBar(eColorVolume, BarEnd, clBlue);

177

 eColorAsk - Sets the Ask/Bid Color. SetBar(eColorAsk, BarEnd, clBlue);
 eDate - Sets the Bars Date. SetBar(eDate, BarEnd, 1041225);
 eDateTime - Sets the Bars Time/Date. SetBar(eDateTime, BarEnd, Now);
 eHigh - Sets the Bars High. SetBar(eHigh, BarEnd, 125.33);
 eInterest - Sets the Bars Open Interest. SetBar(eInterest, BarEnd, 553232);
 eLast - Sets the Bars Last Price. SetBar(eLast, BarEnd, 55.43);
 eLow - Sets the Bars Low Price. SetBar(eLow, BarEnd, 45.00);
 eOpen - Sets the Bars Open Price. SetBar(eOpen, BarEnd, 50.00);
 eVolume - Sets the Bars Volume. SetBar(eVolume, BarEnd, 70000);

Index: An Each bar on a chart is stored in an array from 1 to the last bar on the chart. The Index parameter is

used to specify which bar to modify. If Index is less than or equal to zero, the function will use as an
offset from the last bar on the chart. If Index is out of range, the function will return zero. An Index
value of 100 will modify the 100th bar on the chart.

Value: The Value parameter specifies the new value for the bar Field.

 When Field is eColor, the Value parameter may be one of the following numbers (indicating a bar

color). These bar color values can be set on the chart's property form.
 0 = Normal

 1 = Bullish color
 2 = Bearish color
 3 = Big Cross color
 4 = Volume color
 5 = OpenInt color
 6 = Grid color
 254 = Background color. NOTE: Setting a bar's color to the background color hides a bar.

 A predefined color constant can be used. Example: clRed

 NOTE: clBlack has a value of 0. Using it would color the bar with the Normal color instead of black.

EXAMPLE: The following program demonstrates how to change the color of chart bars. An IBM daily chart is opened and
a 9 period Simple Moving Average study is applied to the chart. The program then loops through the bars and colors the
bars red or green. If the closing price of the bar is below the moving average, then the bar is colored red. If the closing
price of the bar is above the moving average, then the bar is colored green.

uses Graphics;
begin {Start of Main Programming code}
 Chart('IBM.D'); {Open an IBM daily chart}
 AveHandle := AddStudy(eAve,1,9,1); {Apply Moving Average to the chart}
 for I := BarBegin to BarEnd do {Loop through bars}
 begin {start of loop code}
 if Last(i) >= GetStudy(AveHandle,1,i) then {Test if Last>=Average value}
 SetBar(eColor,i,clLtGreen) {Color the bar green if greater}
 else
 SetBar(eColor,i,clRed); {Color the bar red is less than}
 end; {end of loop code}
 ChartRefresh(True); {Refresh the chart to show colors}
end; {End of program}

SetBrush
SetPen

178

SYNTAX: SetBrush(Color: integer, Style: integer);
 SetPen(Color: integer [, Thickness: integer, Style: integer, Mode: integer]);

DESCRIPTION: SetBrush is used to set the Color and Style of the Brush object. SetPen is used to set the Color,
Thickness, Style, and Mode of the Pen object. Both the Pen and Brush properties are used when drawing lines and objects
on a chart.

PARAMETERS:

Color: Color may be a predefined color constants or a hex BlueGreenRed number:

Style: The Pen Style can be eSolid, eDot, eThickness (Dashed Line) or eHidden.
 The Brush Style can be eSolid, eHorizontal, eVertical, or eClear. The default is eSolid. eClear will

cause the drawn object to be transparent and not fill with a color. eHorizontal and eVertical will fill-in the
object with horizontal or vertical lines.

Thickness: Thickness specifies the thickness of the line in pixels. The default is 1 pixel wide.

Mode: The Pen Mode can be set to pmXOR or pmCopy. Set the Pen Mode to determine how the color of the

pen interacts with colors and lines already on the chart. pmXOR draws a line using a combination of
colors in either pen or chart background, but not both. If two lines are drawn in the same place, they will
disappear. pmCopy draws a line using the Pen color specified in the Color parameter. The lines will
always show.

EXAMPLE: The following program changes the Pen and Brush settings to illustrate different effects when drawing objects
on a chart.

uses
 Graphics;
begin {Start of Main Programming Code}
 Chart('IBM.D'); {Open an IBM daily chart}
 Pause(2);
{Set Pen color to White, thickness to 1 pixel, Style to Dotted}
 SetPen(clWhite, 1, eDot);
{Brush color to White, style to Clear (affects the fill style)}
 SetBrush(clWhite, eClear);
{Draw a Rectangle (white, dotted lines, and transparent fill)}
 Rectangle(50,10,250,110);
{Set Pen color to Yellow, thickness to 10 pixels, style to Solid}
 SetPen(clYellow, 10, eSolid);
 Ellipse(50,110,250,210); {Draw an Ellipse (yellow, solid)}
{Set Pen color to White, thickness to 1 pixel, and style to Dashed}
 SetPen(clWhite, 1, eThickness);
 Ellipse(100,110,200,210); {Draws a Circle}
{Set Pen color to Blue, thickness to 2 pixels, style to Solid}
 SetPen(clBlue, 2, eSolid);
 Arc(50,10,250,110,50,60,250,10); {Draw an Arc (blue, solid lines)}
{Set Brush to Red with Horizontal line fill}
 SetBrush(clRed, eHorizontal);
 Pie(200,10,400,110,400,110,400,10); {Draw a Pie (red, horizontal line fill)}
{Set Pen color to Red, thickness to 3 pixel, and style to Dotted}
 SetPen(clRed, 3, eDot);
{Set Brush to White with Vertical line fill}
 SetBrush(clWhite, eVertical);
 Chord(300,100,600,200,500,100,400,200); {Draw a Chord with Vertical filling}
end; {End of program}

179

SetData

SYNTAX: SetData(Field: integer, Price: real): boolean;
 SetData(eName: constant, Text: string): boolean;

DESCRIPTION: The SetData function is used to change or edit values for a quote symbol. Use the Find command to
find and retrieve a quote record. SetData will change values in the last retrieved quote record.

PARAMETERS:

Field: The Field parameter can be one of the following predefined constants:
 eAsk eBid eClose eHigh eInterest

eLast eLow eName eOpen eVolume
eYesterday

Price: The Price parameter specifies the new value to store in the record.

Text: The Text parameter is used to set the Name field in a quote record. Up to 10 characters can be

assigned.

EXAMPLE: The following program resets the Volume for IBM to 50000 shares, and changes the Name field to 'I.B.M.'.

begin
 Find(eSignal, 'IBM');
 SetData(eVolume, 50000);
 SetData(eName, 'I.B.M.');
end;

SetDateTime

SYNTAX: SetDateTime(Year [, Month, Day, Hour, Minute, Second]: integer);

DESCRIPTION: The SetDateTime command will set the Date and Time values on the computer clock. Use this
command if you ever need to change the computer's date and time settings. NOTE: To set the Time but not the Date, pass
zero values for the Year, Month and Day parameters. To set the Date but not the Time, omit the Hour, Minute and
Second parameters.

PARAMETERS:

Year: Year is in the format of yyyy (example: 2002).
Month: Month is in the range of 1-12.
Day: Day is in the range of 1-31.
Hour: Hour is in the range of 0-23.
Minute: Minute is in the range of 0-59.
Second: Second is in the range of 0-59.

EXAMPLE: The following program sets the computer date and time to December 10th, 2010 at 3:00 pm.

begin
 SetDateTime(2010, 12, 10, 15, 0, 0);
end;

180

SetMyFocus

SYNTAX: SetMyFocus([ShowLayer: boolean]);

DESCRIPTION: The SetMyFocus command causes a window to receive the active focus. Once a window has the focus,
then the menus, features, and buttons associated with that window can be accessed. SetMyFocus will make the window
referenced by the global Window variable the active window with the focus. SetMyFocus will bring a window in a stack
to the surface of the stack. The optional ShowLayer flag passed as a True will change layers if the window is on a different
layer than the one being viewed. The default for ShowLayer is False.

EXAMPLE: The following program assumes that several charts and quote pages are open on the screen (including an IBM
daily chart). The program finds the IBM daily chart and sets the focus on the chart window. Once the window has the
focus, the window is printed using the btnPrint command.

begin {Start of Main Programming code}
 FindWindow(eChart,'IBM.D'); {Find the IBM daily chart window}
 SetMyFocus; {SetMyFocus on the chart window}
 btnPrint.click; {Print the chart}
end; {End of program}

SetLength

SYNTAX: SetLength(var StringVariable: string, NewLength: Integer);

DESCRIPTION: The SetLength command is used to resize a string variable. The NewLength parameter specifies the
new length of the string. Any existing characters in the string are preserved, but the contents of any newly allocated space
is undefined. If there is not enough memory available to reallocate the string, an EOutOfMemory error will occur.

PARAMETERS:

StringVariable: A string variable should be entered as the parameter. The variable should have been declared as a string.

NewLength: The NewLength parameter should be a number that specifies the length of the StringVariable. For

example, a value of 16 would cause the StringVariable to have a length of 16 characters.

EXAMPLE: The following program declares a string variable named Text. The variable is then filled with alphabet letters.
The SetLength command is used to resize the Text variable to 10 characters.

var
 Text: string;
begin
 Text:= 'ABCDEFGHIJKLMNOPQRSTUVWXYZ';
 writeln(Text);
 SetLength(Text,10);
 writeln(Text);
end;

SetLine

SYNTAX: SetLine(Handle, Row, CheckBox1, PercentLevel, Color, Style, LeftSide, RightSide, CheckBox2: integer);

181

DESCRIPTION: The SetLine command is used to change the color, style, and markers for a specified DrawTool line.
The command will only change the settings for the specified Row on the Properties window. Some Draw Tools have as
many as 11 Rows on their Properties window. The SetLine command allows you to change the color, style, and markers
after the Draw Tool has already been placed on a chart. The SetStudy command can also be used to change colors, styles,
and markers. The SetLine command changes just 1 Row at a time.

PARAMETERS:

Handle: Handle is the line Object ID number (Handle) returned by the FindStudy, AddStudy, and AddLine

functions. If the value of Handle is set to Zero, then the SetLine command will default to the first line
object it finds. Use the FindStudy command to find a Draw Tool on a chart, and then use the returned
Handle as the Study parameter when using the SetLine command.

 Example: Handle:= FindStudy(eFibonacci); {Find the Fib study on the chart. Handle identifies the
lines}

 SetLine(Handle,1,0,clRed,1,22,23); {Change the settings for Row 1 in the Fib Properties Window}

Row: Enter the Row of the Properties window that you want to change. Make sure to count blank rows. Some

properties windows do not have entry boxes on every Row.

CheckBox1:
CheckBox2: Enter a True value to place a check mark in the first CheckBox. Enter False to uncheck the box.
 The eGannSquare draw tool has 2 checkboxes on each Row.
 Example: SetLine(Handle, 3, True, 25, clRed, 1, 2, 3, True);

PercentLevel: Enter a percent level number for the line. Example: 50

Color: The Color parameter can be a predefined color constant. Example: clDkRed

Style: Enter a number from 0-9 based on the position in the Style drop-down list on the Properties window.
 Example: 7 is a dotted line style.

LeftSide:
RightSide: Enter a number from 0-96 based on the position in the LeftSide and RightSide markers drop-down lists.
 Example: 22 will select a 'Star' as the marker

EXAMPLE: The following program opens an IBM daily chart and then draws a line on the chart using the AddLine
command. The SetLine command is then used to change the line Color to Aqua, the line Style to dotted, and to place a
'Date' marker on the left, and a 'Price' marker on the right side of the line. The checkboxes for the 2nd and 3rd rows are
then unchecked to make sure that the line is not extended ahead, or extended back.

uses Graphics;
begin
 Chart('IBM.D');
 Handle := AddLine(eLine,1,BarEnd-15, Last(BarEnd-15), BarEnd, Last(BarEnd));
 SetLine(Handle,1,True,0,clAqua,7,5,2);
 SetLine(Handle,2,False);
 SetLine(Handle,3,False);
 ChartRefresh(True);
end;

SetStudyLine

SYNTAX: SetStudyLine(Study, Row, CheckBox, PercentLevel, Color, Style, Marker, MColor: integer);

182

DESCRIPTION: The SetStudyLine command is used to change the color, style, and markers for a specified Study. The
command will only change the settings for the specified Row on the Properties window. Some Studies have as many as 11
Rows on their Properties window. The SetStudyLine command allows you to change the color, style, and markers after
the Study has already been applied to a chart. The SetStudy command can also be used to change colors, styles, and
markers. The SetStudyLine command changes just 1 Row at a time.

PARAMETERS:

Study: Study is the line Object ID number (Handle) returned by the FindStudy, AddStudy, and AddLine

functions. If the value of Study is set to Zero, then the SetStudyLine command will default to the
calling study. Use the FindStudy command to find a Study on a chart, and then use the returned
Handle as the Study parameter when using the SetStudyLine command.

 Example: Handle:= FindStudy(eRSI);
 SetStudyLine(Handle, 1, True, 0, clRed,1,22,clWhite);

Row: Enter the Row of the Properties window that you want to change. Make sure to count blank rows. Some

properties windows do not have entry boxes on every Row.

CheckBox: Enter a True value to place a check mark in the CheckBox. Enter False to uncheck the box.
 Example: SetStudyLine(Handle, 3, True);

PercentLevel: Enter a percent level number for the Study. Example: 50

Mcolor,Color: The Color and MColor parameters can be a predefined color constants. Example: clRed.

Style: Enter a number from 0-9 based on the position in the Style drop-down list on the Properties window.
 Example: 7 is a dotted line style.

Marker: Enter a number from 0-96 based on the position in the LeftSide and RightSide markers drop-down lists.
 Example: 22 will select a 'Star' as the marker

EXAMPLE: The following program opens an IBM daily chart and then adds an RSI study to the chart. The SetStudyLine
command is then used to change the 1st RSI line Color to Aqua, the line Style to dotted, and to place a white 'Star' marker
on the on the line. The ChartRefresh command is used to recalculate and redraw the study after the line changes have
been made.

uses Graphics;
begin
 Chart('IBM.D');
 Handle := AddStudy(eRSI);
 SetStudyLine(Handle, 2, True, 0, clAqua, 7, 22, clWhite);
 ChartRefresh(True,GetStudy(Handle,13),Handle);
end;

ShellExecute
SYNTAX: ShellExecute(Operation, File, Parameters, Directory: string; ShowMessage: boolean): integer;

DESCRIPTION: Performs an operation on a specified file.

PARAMETERS:

Operation: Specify what you want to do to with the named file. Valid operation options are:

183

edit - Launches an editor and opens the document for editing. If File is not a document file, the function will fail.
explore - Explores the folder specified by File.
find - Initiates a search staring from the specified directory.
open - Opens the file specified by the File parameter. If the file is not a document file, the function will fail.
print - Prints the document file specified by File. If File is not a document file, the function will fail.

File: A string that specifies the file or object on which to execute the specified AOperation.

Parameters: If the File Specifies an executable file, Parameters specifies the parameters to be passed to the
application. The format of this string is determined by the Operation to be invoked. If File specifies a
document file, Parameters should be ''.

Directory: A string that specifies the default directory.

ShowMessage: Pass True if you want Ensign to show a message in the event of a run-time or exception error.

If the return value is greater than 32, then it is successful, otherwise it failed. The following table lists the possible errors:

ERROR_FILE_NOT_FOUND The specified file was not found.
ERROR_PATH_NOT_FOUND The specified path was not found.

ERROR_BAD_FORMAT The .exe file is invalid (non-Microsoft Win32 .exe or error in .exe
image).

SE_ERR_ACCESSDENIED The operating system denied access to the specified file.
SE_ERR_ASSOCINCOMPLETE The file name association is incomplete or invalid.

SE_ERR_DDEBUSY The Dynamic Data Exchange (DDE) transaction could not be
completed because other DDE transactions were being processed.

SE_ERR_DDEFAIL The DDE transaction failed.

SE_ERR_DDETIMEOUT The DDE transaction could not be completed because the request
timed out.

SE_ERR_DLLNOTFOUND The specified DLL was not found.

SE_ERR_NOASSOC
There is no application associated with the given file name
extension. This error will also be returned if you attempt to print a
file that is not printable.

SE_ERR_OOM There was not enough memory to complete the operation.
SE_ERR_SHARE A sharing violation occurred.

EXAMPLE: The following example uses the ShellCommand function to launch a PDF help file.

procedure btnHelpClick(Sender: TObject); { Button Click Event }
var sFile: string; { String Variable – Optional}
var iResult: integer; { Integer Variable – Optional}
begin
 sFile := sPath + 'Manuals\ESPL.pdf'; { Set the sFile variable }
 iResult := ShellExecute('open', sFile, '', '', false); {open the file}
end;

Show

SYNTAX: Show(Item: integer [, Visible: boolean]);

184

DESCRIPTION: The Show command is used to show or hide an Item on a chart. The Show command accomplishes
the same show or hide effect available on a chart's pop-up menu for many chart elements. This is equivalent to checking or
unchecking the Show menu items with the mouse.

PARAMETERS:

Item: The Item parameter can be one of the following predefined constants:
 eBar: Show or Hide the Bars on a chart.
 eBarData: Show or Hide the BarData panel on a chart.
 eGrid: Show or Hide the GridLines on a chart.
 eInterest: Show or Hide the Open Interest values on a chart.
 eStudyData: Show or Hide the StudyData panel on a chart.
 eVolume: Show or Hide the Volume bars on a chart.
 eVolumeGrid: Show or Hide the Volume grid lines on a chart.

 The numbers 1 through 9 can be entered as the Item parameter to control the display of study sub-

windows below a chart. If a study sub-window is not shown, then the study will overlay on the chart.

Visible: The Visible parameter specifies whether to Show or Hide an Item. A True value will Show the Item.

A False value will Hide the Item. The default is True.

EXAMPLE: The following program displays an IBM daily chart, adds a Stochastic study to the chart, hides the Volume
bars, and hides the Stochastics study panel (causing the Stochastics study to plot on the chart, instead of in its study panel).

begin
 Chart('IBM.D');
 AddStudy(eSto);
 Show(eVolume,False); {Hide the volume sub-window)
 Show(1,False); {Hides study sub-window 1}
end;

ShowMessage
ShowMessagePos

SYNTAX: ShowMessage(Message: string);
 ShowMessagePos(Message: string, Left, Top: integer);

DESCRIPTION: The ShowMessage and ShowMessagePos commands are used to display a MessageBox on the screen.
A message can be displayed in the box. Click the OK button in the box to close the box. The ShowMessage command
will open a MessageBox in the center of the screen. The ShowMessagePos can open the MessageBox at a specified
location on the screen. The Top and Left parameters specify the pixel positions for the top-left corner of the MessageBox.

PARAMETERS:

Message: The Message parameter is a text string message to display in the MessageBox.
Left: The Left parameter specifies the location of the left edge of the MessageBox in pixels (counting from the

left edge of the screen).
Top: The Top parameter specifies the location of the top edge of the MessageBox in pixels (counting down

from the top of the screen).

EXAMPLE: The following program uses the ShowMessage command to display a message. The ShowMessagePos
command is also used to display a message near the left edge of the screen.

185

begin
 ShowMessage('This is a Test Message');
 ShowMessagePos('Test Message', 10, 100);
end;

sList

SYNTAX: sList: TStringList;

DESCRIPTION: The sList string list is created when Ensign runs. Using this global string list variable can simplify
your programs because Ensign will automatically create, load, save and free the string list. If desired, the sList string list
can be automatically loaded with the contents of a file when Ensign runs. Create a file name SLIST.DAT and store it in
the \Ensign10 directory. If the file exists when Ensign runs, then the contents of the file will be automatically loaded into
sList. The contents of sList will also save to SLIST.DAT when Ensign is closed. See the documentation for 'String
Lists' for more details on how to use string lists.

EXAMPLE: The following program uses a FOR loop to fill sList with random text values. The values are sorted and
then printed in the output window.

begin
 sList.Clear;
 OutPut(eClear);
 writeln('UnSorted');
 for Count := 0 to 10 do begin
 sList.Add(IntToStr(Random(100)));
 writeln(sList.Strings[Count]);
 end;
 writeln('Sorted');
 sList.Sort;
 for Count := 0 to 10 do writeln(sList.strings[Count]);
end;

sLog
sStudyLog
sLineLog
sSoundLog

SYNTAX: sLog: TStringList;

sStudyLog: TStringList;
sLineLog: TStringList;
sSoundLog: TStringList;

DESCRIPTION: The sLog string list is created when Ensign runs. This string list holds the contents of the Ensign
Alerts log. Click the Alert button in Ensign to display the Alerts log. The Alerts log shows the symbols that have hit price
alerts. Use the sLog string list to examine or manipulate the contents of the Alerts log. See the documentation for 'String
Lists' for more details on how to use string lists.

The sStudyLog, sLineLog, and sSoundLog maintain logs for studies, lines, and alert sounds.

EXAMPLE: The following program prints the contents of the Alerts log to the output window.

186

begin
 writeln(sLog.Text);
end;

sPath

SYNTAX: sPath;

DESCRIPTION: The sPath variable is automatically assigned the Path for the Ensign program directory. For example, if
the Ensign program is installed in the C:\Ensign10 folder, then sPath will equal 'C:\Ensign10'. The path can be used
whenever accessing files in the program directory.

EXAMPLE: The following program loads a custom quote page file named CUSTOM.DAT into the global sList string
list. The sPath variable is used since custom quote page files are located in the Ensign program folder. The contents of
the sList are then printed to the output window. NOTE: Custom quote page files contain the symbols that appear on the
custom quote page. The first character of each line in the file represents the feed group for the symbol.

begin
 sList.LoadFromFile(sPath + 'QuoFile\Custom.dat');
 writeln(sList.Text);
end;

Speak
SYNTAX: Speak(Message: string);

DESCRIPTION: The Speak command sends the Message sting to the voice output thread which Speaks the phrase.

PARAMETER:

Message: The Message parameter specifies the message you want spoken.
EXAMPLE: The following example uses the Voice function speak the passed phrase.

begin { Start of program }
 Speak('Mike is cool and awesome'); { Have the computer say this }
end; { End of program }

Spreadsheet
SYNTAX: Spreadsheet(eClear): boolean;

Spreadsheet(eReset): boolean;
Spreadsheet(eRecalc): boolean;

 Spreadsheet(ePrint [, GridOnly: boolean]): boolean;
 Spreadsheet(eLoad, FileName: string): boolean;

DESCRIPTION: The ESPL editor may use the Spreadsheet window for posting results. The SetCell command is often
used to post text in a spreadsheet cell.

Spreadsheet(eClear) erases the contents of the spreadsheet form without prompting to proceed.

187

Spreadsheet(eReset) prompts for confirmation before erasing the contents of the spreadsheet form.

Spreadsheet(eRecalc) causes the spreadsheet to recalculate. This is the same as clicking the Recalculate toolbar button.

Spreadsheet(ePrint, GridOnly) prints the spreadsheet. The GridOnly parameter should be a True or False value. True
will print just the Grid sheet. False will print the entire spreadsheet form which includes the caption and toolbar.

Spreadsheet(eLoad, FileName) loads the specified spreadsheet. This is the same as selecting the specified spreadsheet
using the spreadsheet form's combo box.

EXAMPLE: The following program responds to 5 ESPL button clicks. Click ESPL button 1 to open a spreadsheet. Click
ESPL button 2 to load a sheet named 'Daily Report'. Click ESPL button 3 to put text and color in a spreadsheet cell. Click
ESPL button 4 to erase the spreadsheet. Click ESPL button 5 to print the spreadsheet form. These ESPL buttons are on
the Run ESPL form or on the toolbar on the ESPL editor.

begin {Start of Main Programming code}
 case ESPL of
 1: btnSpreadSheet.Click; {opens a spreadsheet}
 2: Spreadsheet(eLoad,'Daily Report'); {loads Daily Report sheet}
 3: begin
 FindWindow(eSpread); {finds a spreadsheet window}
 SetCell(3, 2, 'Hello', clRed); {column 3, row 2, text, cell color}
 end;
 4: Spreadsheet(eClear); {erases the spreadsheet}
 5: Spreadsheet(ePrint, false); {print entire form}
 end; {end of case statement}
end; {End of program}

Sqr
Sqrt

SYNTAX: Sqr(Number: real): real;
 Sqrt(Number: real): real;

DESCRIPTION: The Sqr function is used to Square the specified Number (example: Number * Number). The Sqrt
function is used to determine the Square Root of the specified Number (example: The square root of 16 is 4).

EXAMPLE: The following program prints the Square of 10 random numbers, and prints the Square Root of 10 random
numbers.

begin
 for Count := 1 to 10 do begin
 Number:= Random(100);
 writeln('The Square of ',Number,' is ',Sqr(Number));
 Number:= Random(1000);
 writeln('The Square Root of ',Number,' is ',Sqrt(Number));
 end;
end;

188

Std
StdDev

SYNTAX: Std(Number: real, var SumX2 , SumX: real, var Count: real, Flag: boolean): real;
 StdDev(Type: integer, Index: integer, Count: integer, Flag: boolean [, Dataset: integer]): real;

DESCRIPTION: The Std and StdDev functions are used to calculate the Standard Deviation for a set of data points.

The Std function returns the standard deviation with Number added to the data points sample. To calculate the standard
deviation for 20 Numbers, call the Std function 20 times and pass a new Number each time. Use the result of the 20th
call as the answer. NOTE: Count, SumX2, and SumX should be initialized to zero before the first call. Each call to the
function will automatically increment the Count value.

The StdDev function returns the standard deviation for a set of Chart Bar data points. Type specifies the data point to use.
Count specifies how many bars to use, ending at bar Index. The StdDev function calculates the answer with only one call.

PARAMETERS:

Number: Specifies the new Number to add to the data point sample.
SumX2: This variable contains the sum of all the Numbers squared.
SumX: This variable contains the sum of all the Numbers.
Count: This variable is a Count of how many Numbers or bars are in the data point sample.
Flag: True = use formula for a specific population. False = use formula for a sample population.

Type: Type is used to specify a Chart Bar data point. The following Types can be used:
 eArray eClose eHigh eLast eLow

eMidPoint eMid3 eMid4 eNet eOpen
eOpenInterest ePercent eRange eTrueHigh eTrueLow
eTrueRange eVolume 1 2 3 4

Refer to the Bar function for a complete description of these constants.

Index: Index is the bar array subscript between 1 and the number of bars on the chart.
DataSet: The default is to use the chart's bar data set.. DataSet is an optional object number for an overlay data

set..

Standard Deviation Formula
SumX2 := SumX2 + Sqr(x)
SumX := SumX + x
specific population: Result = sqrt((n * sumX2 - sqr(sumX)) / sqr(n))
sample population: Result = sqrt((n * sumX2 - sqr(sumX)) / n * (n -1))

EXAMPLE: The following program uses the Std function to calculate and draw a Standard Deviation line on a chart.
Click ESPL button 100 on the Run ESPL panel to apply the study to the active chart.

procedure StdExample;
var
 i,j,k: integer;
 dev,sx,sx2,n,scalelow: real;
begin
 k := GetUser(eParm1);
 Scalelow := GetVariable(eScaleLow);
 if BarBeginLeft>k then
 for i:=BarBegin to BarEnd do begin
 sx := 0;

189

Андрей
forex-warez.com

 sx2 := 0;
 n := 0;
 for j := i-k+1 to i do dev:=Std(Last(j),sx2,sx,n,True);
 SetUser(1,dev+scalelow,i);
 end;
end;

{****Main Program****}
begin
 if ESPL=100 then StdExample;
end;

EXAMPLE: The following program uses the StdDev function to calculate and draw a Standard Deviation line on a chart.
Click ESPL button 100 on the Run ESPL panel to apply the study to the active chart.

procedure StdDevExample;
var
 i,Period: integer;
 dev,scalelow: real;
begin
 Period := GetUser(eParm1); {Number of bars parameter}
 scalelow := GetVariable(eScaleLow); {Offset from bottom of chart}
 if BarBeginLeft>Period then {be sure you have enough bars}
 for i:= BarBegin to BarEnd do begin
 dev := StdDev(eLast,i,Period,true); {Calculate Standard Deviation}
 SetUser(1,dev+scalelow,i); {Plot line offset from bottom}
 end;
end;

{****Main Program****}
begin
 if ESPL=100 then StdDevExample;
end;

Str

SYNTAX: Str(Number: real, Width , DecimalPlaces: integer, var Text: string);

DESCRIPTION: The Str command is used to convert a number into a string value. The value of Number is returned in
the Text variable as a string. The Width of the string, and the NumberOfDecimalPlaces to include in the value can be
specified. Use a Zero value for Width to specify no padding or truncation of the Number.

PARAMETERS:

Number: Specifies a Number to convert to a string.
Width: Specifies the Width of the resulting string.
DecimalPlaces: Specifies how many decimal places to include in the string value.
Text: A string variable that will receive the string output from the Str command.

EXAMPLE: The following program converts the number 888.777 to a string value of '888.78'. The program then converts
the number 999.9 into a string value of ' 999.9'

var
 s: string;
begin

190

 Str(888.777,7,2,s);
 writeln(s);
 Str(999.9,10,1,s);
 writeln(s);
end;

String Lists
DESCRIPTION: A String List is used to store and manipulate a list of strings. A String is simply some ASCII text (like
Symbols, words, sentences, etc.). A String List could be used to store and manipulate a list of Symbols, Alert messages, or
Report values, etc. A String List must be declared as a TStringList variable type. The String List must created before
being used. After using the String List, it should be Freed. This releases the computer memory that the String List
occupied. The following program shows how to declare, create, use, and free a String List.

var {Start of Variable Declarations}
 MyQuotes: TStringList; {MyQuotes declared as a TStringList}
begin {Start of Main Programming code}
 MyQuotes := TStringList.Create; {MyQuotes String List is created}
 MyQuotes.LoadFromFile(sPath + 'QuoFile\Custom.dat'); {Quote page is loaded}
 writeln(MyQuotes.Text); {The list is printed}
 MyQuotes.Free; {The String List is freed}
end; {End of program}

In addition to storing strings, a String List has the following functions:

• Add or delete strings at specified positions in the list.
• Access the string at a particular location.
• Sort the strings in the list.
• Rearrange the strings in the list.
• Read the strings from or write the strings to a file
• Create comma delimited strings

STRING LIST METHODS AND PROPERTIES: The following methods and properties can be used with String Lists.
Add the method or property to the end of the String List variable (separated with a period) to get the desired effect.
Example: MyQuotes.Clear; will clear all entries in the example 'MyQuotes' String List.

METHODS
Add: Add inserts a string at the end of the list.
AddStrings: AddStrings adds a group of strings to the list.
Clear: Deletes all the strings in the list.
Create: Construct and initialize a String List before it is first used.
Delete: Deletes a specified string from the list.
Exchange: Exchange swaps the position of two strings in the list.
Find: Finds the Index for a string in a sorted list, indicates whether a string with that value exists.
Free: Destroys a String List and frees its associated memory.
IndexOf: Returns the position of a string in the list.
IndexOfName: Returns the position of the first string with the form Name=Value with the specified name part.
Insert: Inserts a string at a specified position in the list.
LoadFromFile: Loads a String List with the contents of the specified text file.
Move: Moves a string to a different position in the list.
SaveToFile: Saves the String List contents to the specified text file.
Sort: Sorts the strings in the list in ascending order.

PROPERTIES

191

CommaText: Returns the String List as a single comma-delimited string.
Count: Reports the number of strings in the list.
Duplicates: Specifies whether duplicate strings can be added to the list, or not.
Sorted: Specifies whether the strings in the list should be automatically sorted.
Strings: Provides access to individual Strings in the list (the list starts at position 0)
Text: Returns the String List as a single string (a Carriage Return/Line Feed separates each list entry).
Names: For strings in the list of the form Name=Value, Names returns the name part of the string.
Values Returns the Value portion of a string associated with a given Name.

The following documentation describes each Method and Property in greater detail.

METHODS:

Add: Add(S: string): Integer;
 Use Add to add a string to the end of the list. Add returns the index of the new string.
 Example: MyQuotes.Add('IBM');

AddStrings: AddStrings(Strings: TStrings);
 Use AddStrings to add the strings from another TStringlist.
 Example: MyQuotes.AddStrings(OtherQuotes);

Delete: Delete(Index: Integer);
 Delete removes a string from the list. Index specifies the position of the string, where 0 is the first string,

1 is the second string, and so on. Example: MyQuotes.Delete(5); deletes the string at position 5
in the list.

Exchange: Exchange(Index1, Index2: Integer);
 Use Exchange to swap two strings in the list. The strings are specified by their index values in the

Index1 and Index2 parameters. Indexes are zero-based, so the first string in the list has an index value of
0, the second has an index value of 1, and so on. Example: MyQuotes.Exchange(1,5); swaps
the strings in positions 1 and 5.

Find: Find(S: string; var Index: Integer): Boolean; virtual;
 Use Find to obtain the Index position in a sorted list where the string S should be added. If the string S

already exists in the list, Find returns True. If the list does not contain S, Find returns False. The index
where S should go is returned in the Index parameter. Only use Find with sorted lists. For unsorted lists,
use the IndexOf method instead. Example: MyQuotes.Find('IBM',Index); reports the position
where IBM should be inserted in a sorted list.

IndexOf: IndexOf(S: string): Integer;
 Use IndexOf to find the position of the first occurrence of the string S. IndexOf returns the 0-based

index of the string. If S is not found in the String List then -1 is returned. If the string appears in the
list more than once, the position of the first occurrence will be returned.

 Example: MyQuotes.IndexOf('IBM');

IndexOfName: IndexOfName(Name: string): Integer;
 Use IndexOfName to locate the first occurrence of a string with the form Name=Value where the name

part is equal to the Name parameter. If the indicated name is not found, then -1 is returned.
 Example: MyQuotes.IndexOfName('IBM'); returns the position of the 'IBM' name.

Insert: Insert(Index: Integer; S: string);
 Use Insert to add the string S at the specified Index. If Index is 0, the string is inserted at the

beginning of the list. Example: MyQuotes.Insert(0,'MSFT'); inserts 'MSFT' at the start of
the list.

192

LoadFromFile: LoadFromFile(FileName: string);
 Use LoadFromFile to load the contents of the specified text file into the list. Each line in the file is

appended as a string in the list.
 Example: MyQuotes.LoadFromFile(sPath + 'Custom.Quo');

Move: Move(CurrentIndex, NewIndex: Integer);
 Use Move to move the string at position CurrentIndex to the position of NewIndex.
 The following example moves the string in the beginning position to the last position.
 Example: MyQuotes.Move(0,MyQuotes.Count-1);

SaveToFile: SaveToFile(FileName: string);
 Use SaveToFile to save the String List to the specified text file. Each string in the list is written to a

separate line in the file. Example: MyQuotes.SaveToFile(sPath + 'MYFILE.TXT');

Sort: Sort;
 Use Sort to sort the strings in a list that has the Sorted property set to False. String lists with the Sorted

property set to True are automatically sorted in ascending order. Example: MyQuotes.Sort;

PROPERTIES:

CommaText: CommaText: string;
 Returns the String List as a single comma-delimited string.
 Example: writeln(MyList.CommaText);

Count: Count: integer;
 Reports the number of strings in the list. NOTE: Since the first item in the list starts at position 0, the last

item in the list will be at position Count-1.
 Example: writeln(MyQuotes.Count);

Duplicates: Duplicates: constant;
 Set Duplicates to enable or disable duplicate entries in a sorted string list. Set the value of Duplicates

before adding any strings to the list. The value of Duplicates is ignored if the String List is not sorted.
The value for Duplicates should be one of the following Constants:

 dupIgnore: Ignore attempts to add duplicate strings to a sorted list.
 dupError: An error occurs when an attempt is made to add duplicate strings to a sorted list.
 dupAccept: Permit duplicate strings in the sorted list.
 NOTE: Setting the value of Duplicates to dupIgnore or dupError does not correct duplicate

strings that are already in the list. Example: MyQuotes.Duplicates := dupError;

Sorted: Sorted: Boolean;
 Set Sorted to True to cause the strings in the list to be automatically sorted in ascending order. Set Sorted

to False to allow strings to remain where they are inserted. When Sorted is False, the strings in the list
can be put in ascending order at any time by calling the Sort method. When Sorted is True, do not use
Insert to add strings to the list. Instead, use Add, which will insert the new strings in the appropriate
position. When Sorted is False, use Insert to add strings to an arbitrary position in the list, or Add to add
strings to the end of the list. Example: MyQuotes.Sorted := True;

Strings: Strings[Index: Integer]: string;
 Use Strings to read or modify the string at a particular position. Index gives the position of the string,

where 0 is the position of the first string, 1 is the position of the second string, and so on. To locate a
particular string in the list, call the IndexOf method.

 Example: MyQuotes.Strings[4] := 'This message is stored in position 4';

Text: Text: string;

193

 Use Text to get or set all the strings in a single string delimited by carriage return, line feed pairs. When
reading Text, the strings in the list will be separated by carriage return, line feed pairs. If any of the
strings in the list contain a carriage return and line feed pair, the resulting value of Text will appear to
contain more strings than is indicated by the Count property. When setting Text, the value will be parsed
by separating into substrings whenever a carriage return or linefeed is encountered. (The two do not need
to form pairs). Example: writeln(MyQuotes.Text);

Names: Names[Index: Integer]: string;
 When the list of strings includes strings of the form Name=Value, read Names to access the name part of

a string. Names is the name part of the string at the position indicated by Index. If the string at the
specified position is not of the form Name=Value, Names returns an empty string. Strings of the form
Name=Value are commonly found in .INI files. The Name that identifies the string is to the left of the
equal sign (=), and the current Value of the Name identifier is on the right side. There should be no spaces
present before or after the equal sign. Example: MyQuotes.Add('IBM=400');

 IBM would be the Name, and 400 would be the Value.

Values: Values[Name: string]: string;
 When the list of strings includes strings of the form Name=Value, use Values to get or set the value part

of a string associated with a specific name part. If the list does not contain any strings of the proper
Name=Value form, or if none of those strings matches the Name index, Values returns an empty string.

 Example: writeln(MyQuotes.Values['IBM']); will print the Value of IBM (equals 400).

EXAMPLE: The following program demonstrates the use of a String List. A list is declared and created. Several uses of
the list are demonstrated. The list is freed before the program ends.

var {Start of Variable Declarations}
 j: integer; {J is declared as an Integer}
 MyList: TStringList; {MyList is declared as a String List}
begin {Start of Main Programming code}
 MyList := TStringlist.create; {MyList String List is created}
 MyList.Sorted := False; {Sorted property is set to False}
 MyList.Add('IBM=79'); {'IBM=79' is added to the list}
 MyList.Insert(0,'AAPL=42'); {'AAPL=42' is inserted at beginning}
 MyList.Add('MSFT=38'); {'MSFT=38' is added to end of list}
 writeln(MyList.Strings[0]); {The first list item is printed}
 ShowMessage(MyList.Text); {List is printed in a MessageBox}
 writeln(MyList.CommaText); {Prints a Comma delimited list}
 MyList.Strings[1]:='DELL=55'; {String 1 is replaced with 'DELL=55'}
 writeln('Number of Items ',MyList.Count); {Prints the items in list}
 writeln('First entry Name is ',MyList.Names[0]); {Prints Name of 1st item}
 writeln('Value for DELL is ',MyList.Values['DELL']); {Prints Value of DELL}
 for j := 0 to MyList.count-1 do {Loop and Print each item in list}
 writeln(MyList.Names[j],' ',MyList.Values[MyList.Names[j]]);
 MyList.Free; {Free the MyList String List}
end; {End of program}

StringToDate
StrToDate

SYNTAX: StringToDate(Text: string): integer;
 StrToDate(Text: string): TDateTime;

194

DESCRIPTION: The StringToDate and StrToDate functions are used to convert string values into Integer or
TDateTime values. For example, the StringToDate command will convert a string date of '12-31-01' into an integer
value of 20011231.

For StrToDate, the date in the string must be a valid date. The string must consist of two or three numbers, separated by a
'DateSeparator' character. For example, StrToDate('12/31/2001') returns a TDateTime value of 12/31/2001. If the
string contains only two numbers, it is interpreted as a date (m/d or d/m) in the current year. The order for month, day, and
year is determined by the 'ShortDateFormat' windows variable. Possible combinations are m/d/y, d/m/y, and y/m/d. To
change the 'DateSeparator' character or 'ShortDateFormat', open the Windows Control Panel and select the 'Regional'
settings window and view the 'Date' screen.

PARAMETERS:

Text: Specifies a string value to convert to either an Integer or TDateTime value.

EXAMPLE: The following program converts a string value of '10/31/2001' into a TDateTime value. The program then
converts the string value of '12-31-01' into an integer value of 20011231.

begin
 writeln(StrToDate('10/31/2001')); {Prints 10/31/2001}
 writeln(StringToDate('12-31-01')); {Prints 20011231}
end;

System

SYNTAX: System(Request:constant): string;

DESCRIPTION: The System function is used to retrieve various system values. These items can be used to help identify
a user or a computer. They can also be incorporated into security measures to help prevent users from using a Script
without your permission. For example, a script could be written that will only run on a specific computer. If necessary,
make use of the .LIB file extension to encrypt the programming code.

PARAMETERS:

Enter one of the following constants to Request a specific item.

eAccount: Reports the Ensign ID number found on the Security screen. This is unique on all computers.

eCustom: Reports the Computer ID number found on the Security screen. This is unique on all computers.

eProgramID: Reports the Program ID number found on the Security screen as the NID. This is unique for all
installations and is intended to replace the Ensign ID and the Computer ID. Use this NID to uniquely
identify a user.

eESPL: Reports the Log In UserName used by the eSignal Data Manager or DTN IQfeed data-feed software.

This command only works if you are using either of these data-feeds.

eTimeZone: Returns an integer value that represents the Time Zone setting on the Setup Computer screen:

0=Eastern, 1=Central, 2=Mountain, 3=Pacific, up to 23, etc.

eVolume: Reports the Volume ID of the hard disk. This can be used to specifically identify a computer for security.

Example: Click ESPL button 1 to retrieve and print the indicated system information.

195

begin
 if ESPL=1 then begin
 writeln(System(eAccount));
 writeln(System(eCustom));
 writeln(System(eProgramID));
 writeln(System(eESPL));
 writeln(System(eTimeZone));
 writeln(System(eVolume));
 end;
end;

Template

SYNTAX: Template(Action: constant, Name: string, [Tab: integer]): boolean;

DESCRIPTION: The Template command is used to apply a Study Template to a chart. The Action parameter can be
eLoad or eSave. The Name parameter specifies which Template to load or save.

PARAMETERS:
Action: Enter either eLoad or eSave.
Name: Enter the name of the Template that you want loaded or saved.
Tab: Enter the template tab (folder) for the Template. The default is to use the currently selected tab.

EXAMPLE: The following program opens an IBM daily chart, applies two studies to the chart, and then saves those
studies as a Template named 'MyStudies'.

begin
 Chart('IBM.D');
 AddStudy(eRSI); AddStudy(eSto);
 Template(eSave,'MyStudies',2); {Saves the studies as a Template in folder 2}
end;

TCP Connections
SYNTAX: tcpConnect(Port, Remotehost : string);

tcpConnected : boolean;
tcpDisconnect;
tcpSend(Text : string);
tcpReceive;

DESCRIPTION:

The TCP commands allow Ensign to communicate with other application via a TCP connection. Use the tcpConnected
command to see if a connection already exists. Use the tcpConnect command to create a connection on the specified
Port number, and to the specified Remotehost IP address. Use the tcpSend command to send text data to the remotehost.
Use the tcpReceive command to access data that is sent back from the remotehost. The data is retrieved from a receive
buffer and the buffer is cleared. If the Remotehost sends continuous data to the TCP connection, then ESPL code would
need to be written to retrieve the data from the receive buffer in a timely manner for processing. A TIMER is suggested.

EXAMPLE: The following sample program makes a TCP connection, then sends and receives data on the connection.
Then the connection is closed.

begin
 if tcpConnected = False then begin

196

 tcpConnect('1000', '127.0.0.1');
 Pause(2); {wait 2 seconds for connection}
 tcpSend('Hello');
 Pause(1); {wait for a response}
 writeln(tcpReceive); {print the response}
 tcpDisconnect;
 end;
end;

TextAdd
TextBox
TextCaption
TextClear

SYNTAX: TextAdd(Text: string [, Centered: boolean]): boolean;
 TextBox([Caption: string, Left, Top, Width, Height: integer]): integer;
 TextCaption(Caption: string): boolean;
 TextClear: boolean;

DESCRIPTION: The TextBox command is used to display a message window. The caption, size, and position of the
window can be specified. Multi-line messages can be displayed in the TextBox by using the TextAdd command.
TextBoxes can be used to output custom reports, Symbol lists, Alert Messages, or any text message that you wish to view.
The TextBox function returns a value of 1 if the window was displayed properly, otherwise a 0 value is returned.

TextCaption changes the caption of the last opened TextBox window. The function returns True if successful, and False
otherwise.

TextAdd is used to add a line of text to the last opened TextBox window. The text will be centered in the window, unless
the optional Centered parameter is False. The function will return True if successful, and False otherwise.

TextClear erases the text in the last opened TextBox window. The function will return True if successful, and False
otherwise.

NOTE: The font, font color, font size and font style of the TextBox can be changed by using a TFont variable. The
background color of the TextBox can be changed by using a TForm variable.

PARAMETERS:

Text: Specifies the text string to add to the TextBox.

Centered: Specifies the center justification. Set to True to Center the text. Set to False to Left justify the text.

Caption: Specifies the caption of the TextBox window.

Left,Top: The Left and Top parameters specify the top-left corner of the TextBox.
 Top indicates how many pixels down from the top of the screen.
 Left indicates how many pixels from the left edge of the screen.

Width,Height: The Width and Height parameters specify the width and height of the TextBox in pixels.

197

EXAMPLE: The following program opens a TextBox. The caption is set to 'Alert'. The background color of the TextBox
is changed to Aqua. The font color for the TextBox is changed to Black. Two lines of text are added in the window. After
8 seconds the text is cleared.

var
 Form: TForm;
 Font: TFont;
begin
 TextBox('Alert',1,1,300,200); {Open TextBox}
 Form := Activechild; {Point to active window}
 Form.color := clAqua; {Change background color}
 Font := Form.Font; {Load font settings}
 Font.color := clBlack; {Change font color}
 Font.size := 18;
 TextAdd('First line of Text',False); {Add text to the box, not centered}
 TextAdd('Second line of Text');
 Pause(8);
 TextClear; {Clear all the text in the box}
end;

TextOut

SYNTAX: TextOut(X, Y: integer, Text: string);

DESCRIPTION: The TextOut command is used to print text in a chart window. The location of the Text is specified by
the X,Y parameters. The font and font color of the chart scale is used. NOTE: The printed text is not saved nor
remembered by the chart. Any movement or redraw of the chart will erase the text. Use the AddNote command to add
permanent notes to a chart.

PARAMETERS:

Text: Specifies the Text to print on the chart.
X: Specifies the horizontal position (in pixels), starting from the left edge of the chart window.
Y: Specifies the vertical position (in pixels), counting down from the top of the chart window.

EXAMPLE: The following program uses the TextOut command to print the Bid and Ask prices in the top left corner of
the chart on a continual basis. The program contains a subroutine procedure named 'PrintBidAsk'. The program is applied
to a chart by clicking ESPL button 100 on the Run ESPL panel.

procedure PrintBidAsk; {Declares PrintBidAsk as a procedure}
var {Start of Variable declarations}
 Bid,Ask:string; {Bid and Ask are declared as Strings}
begin {Start of procedure code}
 SetUser(eName,'BidAsk'); {Names the Study}
 SetUser(eClose,False); {Calculates on every tick}
 Find(eChart); {Finds the charts quote data}
 SetBrush(GetVariable(eColorChart),eSolid); {Erase the Background}
 Bid := FormatPrice(GetData(eBid)); {Get the current Bid price}
 Ask := FormatPrice(GetData(eAsk)); {Get the current Ask price}
 TextOut(0,5,' Bid= ' + Bid); {Print the Bid on the chart}
 TextOut(0,25,' Ask= ' + Ask); {Print the Ask on the chart}
end; {End of the procedure}

{*****Main Program*****}
begin {Start of Main Programming code}

198

 if ESPL=100 then PrintBidAsk; {Call PrintBidAsk if ESPL=100}
end; {End of program}

TextWidth

SYNTAX: TextWidth(Text: string): integer;

DESCRIPTION: The TextWidth function is used to determine the width of a string (in pixels) for a chart. The chart's
Font and FontSize are used to determine the number of pixels. This command can be used on a chart to align Text strings
that have varying widths.

PARAMETERS:

Text: The Text is measured to determine the width of the text in pixels. Pass the Text as the parameter. The result

will equal how wide the text is on the chart in pixels.

EXAMPLE: The following program measures the pixel width of three text strings. The TextWidth command allows the
text to be right-justified on the chart since the width of the text can be determined in pixels. The starting horizontal print
position is adjusted so that the right edges of the text strings are all aligned.

var {Start of Variable Declarations}
 Pixels1, Pixels2, Pixels3: integer; {Variables are declared as Integers}
begin {Start of Main Programming code}
 Chart('EUR/USD.D'); {Open a daily chart}
 Pixels1 := TextWidth('Ensign Software'); {Measure pixel width of the text}
 Pixels2 := TextWidth('Programming'); {Measure pixel width of the text}
 Pixels3 := TextWidth('Power!'); {Measure pixel width of the text}
 TextOut(400,10,'Ensign Software'); {Print text on the chart}
 TextOut(400+Pixels1-Pixels2,30,'Programming'); {Print right edges align}
 TextOut(400+Pixels1-Pixels3,50,'Power!'); {Print right edges align}
end; {End of program}

TFont
DESCRIPTION: TFont is the variable type for all fonts. A Font represents the style, size, and color of text that is used in
the program. For example, the Font used for this sentence is 'Times New Roman'. The FontSize is '10'. The FontColor is
'Black'. The FontStyle is 'Regular'. Use TFont to change Font properties.

PROPERTIES:

Color: Specifies the Color of the text. Example: clBlack, clRed, clWhite, clYellow, etc.
Name: Specifies the Name of the font (typeface). Example: 'Courier New', 'Times New Roman', etc.
Size: Specifies the pixel Size of the font (the height of the characters).
Style: Specifies the Style of the font. Example: 0=Regular, 1 = fsBold, 2 = fsItalic, 4 = fsUnderline

EXAMPLE: The following program changes several Font properties in the ESPL Script Editor Window. The program
pauses for 5 seconds and then changes the Font properties again.

var {Start of Variable Declarations}
 Font: TFont; {Font declared as a TFont}
 Form: TForm; {Form declared as a TForm}
begin {Start of Main Programming code}
 btnOutputWindow.click; {Open the output window}

199

 Form := Activechild; {Script Window points to Form}
 Font := Form.Font; {Font is assigned Font properties}
 Font.Name := 'Times New Roman'; {Font Name is changed}
 Font.Color:= clBlue; {Font Color is changed to Blue}
 Font.Size := 18; {Font Size is changed to 18 pixels}
 Font.Style:= fsItalic; {Font Style is changed to Italics}
 writeln('This is a Font Test'); {Print some text}
 Pause(5); {Pause 5 seconds}
 Font.Name := 'Courier New'; {Font is changed to Courier New}
 Font.Color:= clBlack; {Font Color is changed to Black}
 Font.Size := 10; {Font Size is changed to 10 pixels}
 Font.Style:= 0; {Font Style is changed to Regular}
end; {End of program}

TForm
DESCRIPTION: TForm is the variable type that controls window properties. Declare a variable of type TForm and then
change the window properties. Use the Self variable to change properties in the Main Ensign form. The following
Properties and Methods are available for all forms.

PROPERTIES:
Active: Active is True when the form has focus.
Caption: Caption is the window's title text.
ClientHeight: ClientHeight is the height (in pixels) of the form's client area.
ClientWidth: ClientWidth is the width (in pixels) of the form's client area.
Color: Color is the background color of the form.
Cursor: Specifies the mouse pointer image when cursor is on the form.
Enabled: If Enabled is False, the form ignores mouse and keyboard events.
Font: Font controls the attributes of text written on or in the form.
Height: Height is the vertical size of the form in pixels.
Hint: The text string that can appear when the mouse is on the form.
Left: The horizontal coordinate of the left edge of a form.
Name: The Name of the form as referenced in the application's code.
ShowHint: When True, the form will display a Help Hint.
Tag: Tag stores an integer value. Can be used for miscellaneous variable storage.
Top: The vertical coordinate of the top edge of a form.
Width: Width is the horizontal size of the form in pixels.
WindowState: Specifies the current State of the window (either Minimized, Maximized, or Normal).
 WindowState can be changed to one of the following: wsMinimized wsMaximized wsNormal

METHODS:
Close: Close closes a form.
Hide: Hide sets the form's Visible property to False.
Print: Print prints the form.
Show: Sets the form's Visible property to True, brings the form to front of other forms on the screen.
SetBounds: Changes the Size and Position of the window using the following format:
 SetBounds(Left, Top, Width, Height: Integer);
 Use SetBounds to change all of the form's boundary properties at one time. The same effect can be

achieved by setting the Left, Top, Width, and Height properties separately, but SetBounds changes all
four properties at once.

EXAMPLE: The following program illustrates several of the TForm properties. A News window and Quote page are
opened. The names of the form windows are printed. The size of a window is changed. The windows are then closed.
Several Pause commands are included in the program so that you can see the effect of the TForm commands.

200

begin
 btnOutputWindow.Click; {Open the output Window}
 Output(eClear);
 btnNews.click; {Open a News window}
 btnQuote.click; {Open a Quote Page window}
 for j := 0 to ChildCount-1 do begin {Loop through the open windows}
 t := Child(j);
 writeln(t.Name); {Print the name of the window}
 end;
 t := Screen.ActiveForm; {Find the active window}
 t.SetBounds(5,15,500,400); {Resize the window}
 Pause(3); {Pause 3 seconds to see the change}
 t.Close; {Close the window}
end;

Time

SYNTAX: Time: TDateTime;

DESCRIPTION: The Time function returns the current computer time.

EXAMPLE: The following program prints the current time.

begin
 writeln(Time); {Example: 11:22:41 AM}
end;

Timer

SYNTAX: Timer(eStart or eStop [, Interval, Timer, ESPL: integer]);

DESCRIPTION: The Timer command is used to Start or Stop a Timer clock. The ESPL program can respond to the
Timer at the end of each time Interval. The Interval parameter specifies the number of seconds for each time interval. A
default of 60 seconds is used if the Interval parameter is not specified. The ESPL program will be called at the end of each
time interval with the ESPL value set to the ESPL parameter.

Timer(eStart, Interval) - Starts the Timer
Timer(eStop) - Stops the Timer

NOTE: The Timer clock can be started manually by checking the Enabled check box on
the Run ESPL form. A Timer can be stopped manually by unchecking the Enabled check
box on the Run ESPL form.

PARAMETERS:
 Interval: Specifies the number of seconds between each call to the ESPL program.

This parameter sets the interval shown on the Run ESPL form.
Timer: Select timer 1 or timer 2. If the timer parameter is not specified, then timer 1 is used.
ESPL: Set the ESPL variable value. The parameter sets the ESPL selection shown on the Run ESPL form.

EXAMPLE: Click ESPL button 0 (RUN) to start a Timer that will call the ESPL program once per minute. Click ESPL
button 1 to stop the Timer. When the Timer is running, a user-defined symbol named 'BASKET' is updated in the eSignal

201

group. The 'BASKET' symbol is the average of three stocks. The symbol will only update during market hours. The
ESPL value is set to 10 by the Timer when the program is called. This allows the program to determine that the Timer
called the program.

begin
 if ESPL=0 then Timer(eStart,60,1,10); {if ESPL=0 then Start Timer}
 if ESPL=1 then Timer(eStop); {if ESPL=1 then Stop Timer
 if ESPL=10 then begin {if ESPL=10 then update Symbol}
 if (TimeStr > '08:30') and (TimeStr < '15:00') then begin
 Feed := eSignal;
 Price := (Get('MSFT') + Get('INTC') + Get('DELL')) / 3 ;
 Update('BASKET',Price,1,2);
 end;
 end;
end;

EXAMPLE: This example simulates a playback by stepping the chart leftward at the timer interval by sending a period
character to the chart.

begin
 if ESPL=0 then Timer(eStart,5,1,10); {if ESPL=0 then Start Timer}
 if ESPL=1 then Timer(eStop); {if ESPL=1 then Stop Timer
 if (ESPL=10) and (not Drawing) and (ActiveChart=ActiveChild) then begin
 SetMyFocus; {Active form gets the keyboard}
 SendKeys('.'); {this steps chart bars leftward}
 end;
end;

TimeStr

SYNTAX: TimeStr: string;

DESCRIPTION: TimeStr returns the current time as a string in the format 'hh:mm'.

EXAMPLE: See the programming example for the Timer command. The TimeStr command is used to limit the
updating of the user-defined symbol to market hours.

Top100

SYNTAX: Top100(SearchType: integer [, HighPrice, LowPrice: real, VHigh, VLow: integer]): boolean;

DESCRIPTION: The Top100 command causes a Top100 scan to run on the currently selected feed group. The scan can
be filtered by price and volume. Omit the price and volume parameters to include all symbols in the scan. Enter a zero
value in the parameters to ignore the minimum and maximum tests. NOTE: The Top100 scan can only be run on a feed
group (example: eSignal). It cannot be run on a custom quote page. Make sure that the quote page is displaying a feed
group before running the scan.

PARAMETERS:

SearchType: The SearchType specifies one of the following Top100 scan choices:
 eAlphabet eBetaHigh eBetaLow eDailyHigh

eDailyLow eDividend eDividendPercent eDownNet
eDownNetOpen eDownPercent eDownPercentOpen eEPS

202

eEPSPercent ePEHighePELow eTickVolume eUpNet
eUpNetOpen eUpPercent eUpPercentOpen eVolume
eYearlyHigh eYearlyLow

HighPrice: Symbol prices must be lower than this price to be included in the Top100 scan.
LowPrice: Symbol prices must be higher than this price to be included in the Top100 scan.

VHigh: Specifies that symbol volumes must be lower than this volume amount to be included in the scan.
VLow: Specifies that symbol volumes must be higher than this volume amount to be included in the scan.

EXAMPLE: The following program opens an eSignal quote page and runs a Top100 scan looking for symbols that have
the greatest percentage gain for the day. Only symbols between 10 and 80 dollars are included in the scan. Only symbols
that have at least 50,000 volume are included in the scan. The top 10 symbols are printed in the output window.

begin {Start of Main Programming code}
 btnOutputWindow.Click; {Opens the output window}
 Output(eClear); {Clear the output window}
 Quote(eSignal); {Open the eSignal feed group}
 Top100(eUpPercent,80,10,0,50000); {Run Top100 scan for UpPercent stocks}
 for Row:= 1 to 10 do begin {Loop through first 10 scan symbols}
 Symbol:= GetCell(1,Row); {Get the symbol in column 1}
 writeln(Row,' ',Symbol); {Print the symbol}
 end; {end of for loop block}
// mnuCloseWindow.Click; {remove comment to Close the Quote page}
end; {End of program}

Trade

SYNTAX: Trade(Signal: integer [, Index: integer, Price: real, Quantity: integer]): boolean;

DESCRIPTION: The Trade command is used to back-test trading systems on a chart. Buy, Sell, Reverse, and Out trade
signals can be generated. As trades are generated, the chart will be marked with bullets at the trade prices. The trade prices
can also be marked with arrows. Click the Results button (in the ESPL Script Editor window) when the trading system is
finished to view a detailed listing of the trades (you can also select Chart | Trade Detail from the menu to view the list).

The Trade function returns a True value when an open trade is closed out or reversed.
The Trade function returns a False value when a new position is established (no current open positions).

PARAMETERS:

Signal: The Signal parameter is used to specify the trade type.
 A Signal Modifier may also be added to the Signal.
 Use one of the following Signal constants.
 eBuy: A Buy trade will be generated, regardless of the current position.
 eSell: A Sell trade will be generated, regardless of the current position.
 eOut: A trade position will be closed out.

Signal Modifiers: The following modifiers can be added to the Signal parameter to create specific trades:

 eIf: A Buy trade will be generated if the trade position is not already Long.
 A Sell trade will be generated if the trade position is not already Short.

 eReverse: A Buy trade position will be closed out, and then a Sell trade (short) generated.
 A Sell trade position (short) will be closed out, and a Buy trade will be generated.

203

 eStop: If the bar's Open price is above the Buy Price, then the Open price will be used.
 If the bar's Open price is below the Sell Price, then the Open price will be used.

 Example:

 eBuy+eIf+eReverse If the position is Out, establish a long position.
 If the position is Short, close out, and establish a long position.
 If the position is Long, don't do anything.

 eBuy+eIf+eReverse+eStop Same as 1st example, except check the Open price. Use Open price
 if the market gaps above (Buy) or below (Sell) the trade price.

Index: Index is the array index for the bars. If Index is zero, or omitted, then Ensign will use the index of the last

bar as the default. The EntryDate for the trade will be set to the date of the bar at the index position. The
bullets and arrows that mark the chart will be positioned on the indexed bar.

Price: Price is the price to execute the trade at. Price does not have to be in the range of the bar. If Price is

zero, or omitted, then Ensign will use the Close price of the indexed bar as the default.

Quantity: Quantity specifies the number of contracts or shares to trade. If the trade Signal indicates a Reverse,

then the current position will be closed out, and the new trade position will have a size of Quantity. If
Quantity is omitted, a default of 1 is used.

EXAMPLE: The following program opens an IBM daily chart and runs a Trading System based on the crossing of two
Stochastics lines. The system will buy when the Stochastics lines cross up. The system will sell when the Stochastics lines
cross down. The ResetTrades command is used to initialize the trading system with no commissions and specific trade
arrows. A FOR loop and the GetStudy command are used to loop through the bars and determine when the lines cross.
The Trade command is used to create each trade. A TradeReport is printed in the output window when the system is
finished. Arrows will mark each trade on the chart.

var {Start of Variable declarations}
 i, Handle:integer; {Variables are declared as Integers}
begin {Start of Main Programming code}
 Chart('IBM.D'); {Open an IBM daily chart}
 Handle := AddStudy(eSto); {Add the Stochastics study to the chart}
 ResetTrades(0,0,1,3); {Initialize Trading System parameters}
 for i:= BarBeginLeft to BarEnd do {Loop through looking for trades}
 begin {start of loop code}
 if GetStudy(Handle,5,i)=1 then Trade(eBuy+eIf+eReverse,i); {buys}
 if GetStudy(Handle,5,i)=2 then Trade(eSell+eIf+eReverse,i); {sells}
 end; {end of loop code}
 Trade(eOut); {Close-out the last open trade}
 TradeReport(True); {Print the results in the output window}
end; {End of program}

TradeReport

SYNTAX: TradeReport(Enabled: boolean): real;

DESCRIPTION: The TradeReport command will print a trading system summary report in the output window. The
function will return the value of the Total Profit. Set the value of Enabled to True to generate the printed TradeReport.

204

Set the value of Enabled to False to disable the TradeReport (but the Total Profit will still be returned by the function).
Sample Report:

SP1Z Profit Trades Average Ratio

Wins 95500.00 7 13642.86 46.67
Loss 28650.00 8 3581.25 53.33
Total 66850.00 15 4456.67 3.33

The Profit column displays the Win, Loss, and Total totals. The Trades columns display how many winning and losing
trades were generated. The Average column divides the Profit column with the Trades column. The Ratio column divides
the number of winning or losing trades with the Total trades. See the Trade function to view a sample program that
includes the TradeReport command.

Trim
TrimLeft
TrimRight
SYNTAX: Trim(Text: string): string;
 TrimLeft(Text: string): string;
 TrimRight(Text: string): string;

DESCRIPTION: The Trim function trims leading and trailing spaces and control characters from the Text string. The
TrimLeft function trims leading spaces and control characters from the Text string. The TrimRight function trims
trailing spaces and control characters from the Text string.

EXAMPLE: The following program trims spaces from some sample text.

var
 Text: string;
begin
 Text:= ' This string has leading spaces.' ;
 writeln(TrimLeft(Text));
 Text:= 'This string has trailing spaces. ' ;
 writeln(TrimRight(Text));
 Text:= ' This string has spaces on both ends. ' ;
 writeln(Trim(Text));
end;

UDP Connections
SYNTAX: UdpConnect(Port, Remotehost : string);

UdpConnected : boolean;
UdpDisconnect;
UdpSend(Text : string);
UdpReceive;

DESCRIPTION: The UDP commands allow Ensign to communicate with other application via a UDP connection. Use
the UdpConnected command to see if a connection already exists. Use the UdpConnect command to create a
connection on the specified Port number, and to the specified Remotehost IP address. Use the UdpSend command to
send text data to the remotehost. Use the UdpReceive command to access data that is sent back from the remotehost. The

205

data is retrieved from a receive buffer and the buffer is cleared. If the Remotehost sends continuous data to the UDP
connection, then ESPL code would need to be written to retrieve the data from the receive buffer in a timely manner for
processing. A TIMER is suggested.

EXAMPLE: The following sample program makes a UDP connection, then sends and receives data on the connection.
Then the connection is closed.

begin
 if UdpConnected = False then begin
 UdpConnect('1000', '127.0.0.1');
 Pause(2); {wait 2 seconds for connection}
 UdpSend('Hello');
 Pause(1); {wait for a response}
 writeln(UdpReceive); {print the response}
 UdpDisconnect;
 end;
end;

Put
Update
SYNTAX: Put(Symbol: string , Price: real [,Volume, Scale, Feed: integer, TimeStamp: TDateTime]): boolean;

Update(Symbol: string , Price: real [,Volume, Scale, Feed: integer, TimeStamp: TDateTime]): boolean;

DESCRIPTION: Put and Update are the same function. The function is used to create and update a User-Defined symbol.
This function can be used to manually update and simulate price ticks for a Symbol. If the symbol does not already exist,
then the first tick will insert the specified symbol into a feed group and initialize the record. If the symbol already exists,
then the existing record will be updated with a tick from the supplied Price. The quote record is also retrieved and decoded,
ready for use by the GetData function.

PARAMETERS:

Symbol: Specifies the Symbol to update. Example: 'AABB'

Price: The Price will update the Last price for the symbol, and post a tick to the tick pool used by intraday

charting. This allows the User-Defined symbol to be charted in real-time. Charts, quote tables, and alerts
will be updated, as if the symbol and tick had been provided by a data feed. The Symbol's Open, High,
and Low prices will also be updated.

Volume: Specifies the tick Volume. If no Volume is specified then the default will be 1.

Scale: Scale is the scale factor for decimal placement. Use 4 for 10,000ths, 2 for 100ths, -1 for grains in 8ths,

and -3 for bonds in 32nds. The default is 2.

Feed: Specifies the feed group to save the quote to. This parameter can be eFXCM, eIB, eSignal, eIQFeed,

eNinja, eOpenECry, eTraderBytes, eTransAct, eGlobal, eDBFX, or eATCBrokers. The default is the
value assigned to the FEED global variable.

TimeStamp: If a TimeStamp is included, then the tick pool can be stocked with imported or simulated historical ticks

for whatever Date and Time that you want. The TimeStamp should always be Eastern Time Zone. The
tick will be timestamped with the TdateTime that you specify.

EXAMPLE: The following sample program adds 2 stock symbols together and creates a new symbol named DEAP9.

206

begin
 Feed := eSignal; {Assign a vendor feed as the default}
 Price:= Get('DELL') + Get('AAPL');
 Put('DEAP9', Price, 1, 2);
end;

EXAMPLE: The following program inserts a specific Price into the tick pool with a June, 30th, 2010, at 9:45 AM (Eastern
time) Timestamp for the symbol named ABCD. The symbol and price tick will be saved in the eSignal feed group

begin
 Price := 123.55;
 TimeStamp := EncodeDate(2010, 06, 30) + EncodeTime(9, 45, 0, 0);
 Update('ABCD', Price, 1, 2, eSignal, TimeStamp);
end;

Val

SYNTAX: Val(TextValue: string, var Number: real, var Index: integer);

DESCRIPTION: The Val statement is used to convert a numeric Text string into a Real number. The numeric value
represented by TextValue is returned in the Number variable. If Index returns as 0 then the conversion was successful,
otherwise Index will point to the character in TextValue where the conversion failed.

EXAMPLE: The following program converts a Text string number into a Real number.

var {Start of Variable Declarations}
 Text: string;
 Number: real;
 xIndex: integer;
begin {Start of Main Programming code}
 Text:= '99.567'; {Assign a string number to Text}
 writeln('The value of TEXT is ', Text); {Print the text}
 Val(Text, Number, xIndex); {Convert the value to a Real number}
 writeln(Number); {Print the number}
end; {End of program}

Var

SYNTAX: Var VariableName [, VariableName [,…]]: VariableType; [VarName ...]

The Var statement is used to define and declare variables for use in a program. Declaring variables before they are used is
optional. If the Var statement is part of a procedure or function, then the declared variables are Local to the procedure or
function. A Local variable cannot be accessed from other procedures or functions in the program. If the Var statement is
ahead of all functions and procedures, then the declared variables are Global in scope. A global variable can be accessed
from any procedure or function in the program.

PARAMETERS:

VariableName: Specifies the name of the declared variable.

VariableType: Specifies the variable type. One of the following types can be specified.
 Boolean Integer Real String Variant

TDateTime TstringList Tform TScreen TArray

207

Tfont THandle

NOTE: Numeric variables are initialized to zero. String variables are not initialized. Boolean variables are not initialized.
Multiple VariableNames can be declared on the same line. VariableNames cannot be reserved words used for statements,
procedures, functions and predefined constants.

EXAMPLE: The following program declares several Integer and String variables for use in a simple math calculation.

var {Start of Variable Declarations}
 a, x, y, z : integer; {Variables declared as Integers}
 s1, s2, s3 : string; {Variables declared as Strings}
begin {Start of Main Programming code}
 x := 5; y := 6; z := 24;
 a := x + y + z;
 s1 := IntToStr(x); {Converts Integer to a String}
 s2 := IntToStr(y);
 s3 := IntToStr(z);
 writeln('x =',x,' y=', y,' z=', z);
 writeln(s1 + ' ' + s2 + ' ' + s3);
end; {End of program}

VarToStr

SYNTAX: VarToStr(Value: variant): string;

DESCRIPTION: The VarToStr function returns the String representation of any variable type passed in the Value
parameter. This function can be used to obtain the string equivalent of any variable.

EXAMPLE: The following program converts an Integer value into a string.

var
 j: integer;
 s: string;
begin
 j := 15;
 s := 'The string value of j is ' + VarToStr(j);
 writeln(s);
end;

vArray

DESCRIPTION: vArray is a predefined global variable that is an array of variant. The array can be used to store values
needed in the program. Using vArray has four advantages over TArray variables (see Array documentation):

1. Ensign automatically creates and frees the array.
2. vArray can be redimensioned for any size.
3. vArray is variant, and can hold any mix of variable types.
4. vArray will be persistent while Ensign is running (the values are always remembered).

Use the DimArray and SetArray commands to dimension and fill the vArray. vArray is a single dimension variant
array with a lower index boundary of zero. DimArray redimensions vArray and sets the upper index boundary. vArray
must be dimensioned before it is used. New elements added by redimensioning will be initialized to a value of zero.

208

SetArray is used to store a value in vArray. When more than one value is provided, they fill the array sequentially.
vArray can be used in an expression by referencing vArray with an Index in parenthesis (example: vArray(20) will
reference the 20th item in the array). Index values outside the range of 0 to the upper index boundary will cause an error.

The following Math functions can be used on the vArray values: Average, Summation, ExpAverage, Highest, Lowest,
Regression, and StdDev. See the documentation for these function for more details. NOTE: Pass the constant eArray as
the 1st parameter in the functions.

EXAMPLE: The following program uses the DimArray function to dimension vArray for 6 items. The SetArray
command is used to fill the vArray with various values. A loop is then used to print the contents of the array.

begin
 DimArray(6);
 SetArray(1, 'Hello',True,57.89,False,92,0);
 for Count := 1 to 6 do writeln(vArray(Count));
end;

VarType

SYNTAX: VarType(Variable: Variant): integer;

DESCRIPTION: The VarType function is used to determine the variable Type for a given Variable. The result will
report one of the following values.

 Integer = 3 - Numeric types: byte, integer.
 Real = 5 - Floating-point type.
 Date = 7 - Date and time (type TDateTime).
 Boolean = 11 - 16-bit boolean
 String = 258 - Dynamically allocated string.

EXAMPLE: The following program determines the variable Type for some supplied values.

begin
 writeln(VarType('Hello')); {Prints 258 since 'Hello' is a String}
 writeln(VarType(555)); {Prints 3 since 555 is an Integer}
 writeln(VarType(True)); {Prints 11 since True is a Boolean value}
end;

Volatility
SYNTAX: Volatility(Index, Period, [Annual] : integer): real;

DESCRIPTION: The Volatility function is used to calculate the Historical Volatility of Period number of data points
which end at Index. The data points are Close prices for the bars on the referenced chart.

PARAMETERS:

Index: Index is the bar array subscript between 1 and the number of bars on the chart.

Period: Period is the number of data points to use. The data points are obtained from the chart bars with indexes

from (Index - Period + 1) through and including (Index).

209

Annual: The Annual value is used to annualize the Volatility calculation. The default is 255 (trading days). You
can optionally enter a different value to annualize the Volatility calculation. Another commonly used
value is 365 (calendar days). The Options model page in Ensign uses 365.

 Historical Volatility Calculation:
 a:=0; b:=0;
 for j:= Index-Period+1 to Index do a:=a + ln(close(j) / close(j-1));
 a:= a / Period;
 for j:= Index-Period+1 to Index do b:=b + sqr(ln(close(j) / close(j-1)) - a);
 Volatility:= 100 * sqrt(255 / (Period - 1) * b);

EXAMPLE: The following program opens a daily chart and prints the Historical Volatility for the last 20 bars on the chart
(annualized with 365 calendar days). The Historical Volatility is often used in Options analysis. The value indicates how
volatile the given market has been during the specified time period.

begin
 Chart('EUR/USD.D);
 writeln(Volatility(BarEnd, 20, 365)); {Calc Volatility for last 20 bars}
end;

WWW

SYNTAX: WWW(WebAddress: string);

DESCRIPTION: The WWW command is used to open your default web browser and display the specified WebAddress.
This command might be useful to open the browser to an on-line Trading web site, when a trade is triggered.

PARAMETERS:

WebAddress: Specifies the web page to display in the browser.

EXAMPLE: The example opens various web pages when ESPL buttons 1, 2, and 3 are clicked on the Run ESPL form.

begin
 if ESPL=1 then www('www.ensignsoftware.com');
 if ESPL=2 then www('http://www.yahoo.com');
 if ESPL=3 then www('www.google.com');
end;

While…Do

SYNTAX: While ConditionalExpression Do {statements to do if ConditionalExpression is True}

DESCRIPTION: The While statement is used to loop through some code. The loop is executed until the
ConditionalExpression is False. The ConditionalExpression is reevaluated at the beginning of the loop. A block of code
can be executed by encasing the code with Begin and End statements. Each statement in the Begin…End block should
end with a semicolon.

PARAMETERS:

ConditionalExpression is a logical expression that can be evaluated to a Boolean value of True or False.

210

EXAMPLE: The following program increments and prints the value of j until j >= 7.

begin {Start of Main Programming code}
 j:=0; {Initialize j with a value of zero}
 while j<7 do begin {Loop while j is less than 7}
 inc(j); {Increment the value of j by 1}
 writeln(j); {Print j}
 end; {end of while loop block}
end; {End of program}

Window

SYNTAX: Window: integer;

DESCRIPTION: The Window variable specifies which Window to work with. The Window variable must be set before
an ESPL function (which uses the Window) is called. The Window variable is automatically set by the FindWindow,
Chart, and Quote functions. The Window variable can be assigned or read. Window is set to zero to default to the
window which called the script.

EXAMPLE: The following program opens a chart (which automatically sets the Window variable so that it points to the
chart). The TextOut command prints some text on the chart (since the Window variable has been set). The TextOut
command know which chart to print on based on the Window variable. The FindWindow command is used to set the
Window variable so that it points to a specific window.

begin
 Chart('EUR/USD.D'); {The Window variable points to the Chart}
 Pause(1); {wait one second for chart to load and draw}
 TextOut(5,10,'Ensign Software'); {TextOut uses Window to print on Chart}
end;

 WinExec

SYNTAX: WinExec(Program: string): integer;

DESCRIPTION: The WinExec function is used to RUN another windows program. This allows you to start a completely
different application using the ESPL programming language. For example, the ESPL language could be used to start a
Spreadsheet program, Word Processor, Analysis program, etc. If the function succeeds, the return value will be a number
greater than 31. If the function fails, the return value will be one of the following error values:

0 - The system is out of memory or resources.
2 - The specified file was not found.

PARAMETERS:

Program: The Program parameter is a text string containing the path and FileName of the program to run. If the

parameter does not include a directory path, Windows searches for the executable file in this sequence:
 1. The directory from which the application loaded.
 2. The current directory.
 3. The Windows system directory.
 4. The Windows directory.
 5. The directories listed in the PATH environment variable.

211

EXAMPLE: The following program runs the eSignal Turbo Data Manager program.

begin
 WinExec('C:\ESIGNAL\DATA MANAGER\WINROS.EXE');
end;

WinExist

SYNTAX: WinExist(WindowCaption: string): integer;

DESCRIPTION: The WinExist function returns True or False if a particular window is open (or program is running).
The function will search all open programs and return True if there is a window caption that matches the WindowCaption
specified in the parameter.:

PARAMETERS:

WindowCaption: This text string contains the window caption for a program..

EXAMPLE: The following code will return True if the SnagIt program is running.

begin
 if WinExist('SnagIt') then
 writeln('SnagIt is running')
 else
 writeln('SnagIt is not running');
end;

Write
Writeln

SYNTAX: Write(Expr1 [, Expr2 …, ExprX]);
 Writeln([Expr1 …, ExprX]);

DESCRIPTION: The Write and Writeln statements are used to print text to the output window. Write prints on a
row and does not move to the next row. Writeln terminates a line after printing its text, and starts print on a new row.

PARAMETERS:

Expr1,Expr2: Write and Writeln can print any numeric, string, or boolean value.
 Integer expressions/variables are printed as integers.
 Real expressions/variables are printed using decimals.
 Boolean expressions/variables print the string 'True' or the string 'False'.

NOTE: Use the Str, Format, and Align functions to format numbers with decimal places, and print the string. Use the tab
character, #9, to tab to the next column. Columns are eight characters wide in the output window. Use writeln; to
print a blank line in the output window.

EXAMPLE: The following program uses the Write and Writeln commands to print text in the output window.

var
 i,j,k: integer;
begin

212

 write('Sample Text: ');
 writeln('Same line, but ends with linefeed.');
 i := 56;
 j := 17;
 k := 5;
 writeln(i, #9, j, #9, k); {Align the values with Tab columns}
end;

213

ESPL Sample Programs
The following ESPL programs can be used as example programming for Ensign.

Plotting Study Lines on a Chart
The following code will plot 2 lines on a chart. Click the RUN ESPL 100 button to apply the study to a chart.

procedure PlotLine;
var
 i:integer;
 MyValue,MyValue2: real;
begin
 for i:= BarBegin to BarEnd do
 begin
 MyValue := (Low(i) + High(i) + Open(i))/3;
 MyValue2:= Low(i) ;
 SetUser(1,MyValue,i);
 SetUser(2,MyValue2,i);
 end;
end;

begin
 if ESPL = 100 then PlotLine;
end;

214

ToolBar and ToolButton
This example shows a form using TToolBar, TToolButton and imgMarker.

At design time, a TToolBar object was added to the form and aligned for alTop. Then four TToolButtons were added to to
the ToolBar.

At run time, the imgMarker list of images from Ensign 10 is assigned to the ToolBar images property, and the ImageIndex
properties assigned for the ToolButtons.

Five predefined TImageLists used by Ensign 10 have been exposed. They have these names: imgList16, imgList24,
imgList32, imgMarker, and imgLine. See the Appendix for the imgMarker indexes and the imgList16 indexes.

Of course, a TImageList can be added to the form, and one’s own images can be added to the component. At design time,
the TToolBar images property can be set to the TImageList on the form, and the ToolButton imageindex property set.

The click event for each of the toolbuttons can be written to perform a desired action.

215

TStringGrid Example
ESPL supports a variety of arrays, each with different characteristics. Let me summarize the choices.

• Multi-diminsional arrays are declared with the [] construct at compile time. See the Arrays topic.
• TArrays are single dimensional and semi-automatic in their dimension.
• Variant arrays can be dimensioned and redimensioned, but they also are single dimensional.
• TLists and TStringLists are single dimension. They dynamically grow as elements are added.
• The TStringGrid object is 2-dimensional with RowCount and ColCount properties. And these properties can be set

at run time. The values are written and read in the string grid cells. See this example.

216

Study Rising Falling Flag
The following ESPL example will plot GREEN circles when the Study Average is rising, and RED circles when the Study
Average is falling. This chart has an Ergodic study and the ESPL study applied.

GetStudy

The GetStudy statement references for 1st line, 2nd line, 3rd line, and 4th line refer to the various Lines that can be plotted
by a Study.

• The 1st line is the main study line.
• The 2nd line is most often the Average of the main study line.
• Sometimes there isn’t a 3rd line for a study….sometimes there is.
• The 4th line is most often the Spread line values.

The example below is testing the GetStudy 15 value…. (Is the 2nd line Rising?)

217

uses
 Classes, Graphics, Controls, Forms, Dialogs;
procedure CheckErg;
var
 i, iHandle:integer;
begin
 iHandle := FindStudy(eERG);
 for i := BarBegin to BarEnd do
 begin
 if GetStudy(iHandle,15,i) then
 Plot(1,Last(i),i,0,0,21,clLime)
 else
 Plot(1,Last(i),i,0,0,21,clRed);
 end;
end;
begin
 if ESPL=100 then CheckErg;
end;

Click ESPL button 100 to apply and run the ESPL study on the chart.

218

Creating ESPL DLLs
The Delphi used in this article is Embarcadero Delphi 2010. Any compiler and language can be used to make a DLL as
long as the output is in flat “C”-type format (eg. No Objects, Classes or Strings, being passed as parameters or returned).

Step 1: Make the DLL in Delphi

Click File | New | Other | Dynamic Link Library. This is the code for a DLL named ESPL_DLL.

library ESPL_DLL;
const ESPL_NAME = ‘ESPL_DLL.DLL’;

{$R *.res}

function ESPL_Sum(AValue1: real; AValue2: real): real; stdcall;
begin
 result := AValue1 + AValue2;
end;

function ESPL_Max(AValue1: real; AValue2: real): real; stdcall;
begin
 if (AValue1 >= AValue2) then
 result := AValue1
 else
 result := AValue2;
end;

exports
ESPL_Sum,
ESPL_Max;

begin
end.

Step 2: Make the ESPL Form

Here is the form in Ensign 10′s ESPL IDE, with 2 buttons and a memo component.

219

Step 3: Add the source code

{$FORM TfrmMain, Main.sfm}

uses Classes, Graphics, Controls, Forms, Dialogs, StdCtrls;

function ESPL_Sum(AValue1: real; AValue2: real): real; stdcall; external
‘ESPL_DLL.dll’;

function ESPL_Max(AValue1: real; AValue2: real): real; stdcall; external
‘ESPL_DLL.dll’;

procedure btnSumClick(Sender: TObject);
var rValue: real;
begin
 rValue := ESPL_Sum(3.5, 7.2);
 Memo1.Lines.Add(rValue);
end;

procedure btnMaxClick(Sender: TObject);
var rValue: real;
begin
 rValue := ESPL_Max(8.7, 10.1);
 Memo1.Lines.Add(rValue);
end;

220

procedure frmMainShow(Sender: TObject);
begin
 Memo1.Clear();
end;

begin
end;

Step 4: Run the program script

1. Click the ESPL Run button
2. Click the Sum button
3. Click the Max button

221

Appendix

USES Clause Libraries

Buttons
Classes
ComCtrls
CommDlg
Controls
Dialogs
ExtCtrls

Forms
Graphics
Grids
ImgList
Inifiles
Menus
Messages

StdCtrls
StrUtils
System
SysUtils
Types
Windows

StrUtils Library Statements

AnsiReplaceStr
AnsiResemblesText
AnsiReverseString
AnsiContainsStr
AnsiContainsText
AnsiLeftStr
AnsiMidStr
AnsiRightStr
AnsiStartsStr
AnsiStartsText
AnsiEndsStr
AnsiEndsText
AnsiReplaceText

ContainsStr
ContainsText
DecodeSoundexInt
DecodeSoundexWord
DupeString
EndsStr
EndsText
IfThen
LeftStr
LeftBStr
MidStr
MidBStr
PosEx
ReplaceStr
ReplaceText

ResemblesText
ReverseString
RightStr
RightBStr
SearchBuf
Soundex
SoundexCompare
SoundexInt
SoundexProc
SoundexWord
SoundexSimilar
StartsStr
StartsText
StuffString

Additional ESPL Statements

Append
Assigned
AssignFile
CreateOleObject
FilePos
FileSize

GetActiveOleObject
Int
Interpret
Machine
Odd
Raise
ReadLn

Reset
Rewrite
Scripter
SetOf
VarArrayCreate
VarArrayHighBound
VarArrayLowBound
VarIsNull

222

SysUtils Library Statements

Abort
AdjustLineBreaks
AnsiCompareFileName
AnsiCompareStr
AnsiCompareText
AnsiDequotedStr
AnsiExtractQuotedStr
AnsiLastChar
AnsiLowerCase
AnsiPos
AnsiQuotedStr
AnsiSameStr
AnsiStrAlloc
AnsiStrComp
AnsiStrIComp
AnsiStrLComp
AnsiStrLastChar
AnsiStrLIComp
AnsiStrLower
AnsiStrUpper
AnsiUpperCase
AppendStr
BoolToStr
ByteToCharIndex
ByteToCharLen
ByteType
ChangeFileExt
ChangeFilePath
CharInSet
CharLength
CharToByteIndex
CharToByteLen
CharToElementIndex
CharToElementLen
CheckWin32Version
CompareStr
CompareText
CreateDir
CurrentYear
CurrToStr
CurrToStrF
DateTimeToFileDate
DateTimeToStr
DateTimeToString
DateTimeToSystemTime
DateTimeToTimeStamp
DateToStr
DecodeDateFully
DeleteFile
DirectoryExists
DiskFree
DiskSize

ElementToCharIndex
ElementToCharLen
EncodeDate
EncodeTime
ExcludeTrailingBackslash
ExcludeTrailingPathDelimiter
ExtractFileDir
ExtractFileDrive
ExtractFileName
ExpandFileNameCase
ExpandUNCFileName
ExtractFilePath
ExtractRelativePath
ExtractShortPathName
FileAge
FileClose
FileCreate
FileDateToDateTime
FileExists
FileGetAttr
FileGetDate
FileIsReadOnly
FileOpen
FileRead
FileSearch
FileSeek
FileSetAttr
FileSetDate
FileSetReadOnly
FileWrite
FindClose
FindFirst
FindNext
FloatToCurr
FloatToDateTime
FloatToStr
FloatToStrF
FloatToText
FormatCurr
FormatDateTime
FormatFloat
FloatToDecimal
FloatToTextFmt
GetCurrentDir
GetFileVersion
GetFormatSettings
GetLocaleChar
GetLocaleFormatSettings
GetLocaleStr
GetModuleName
GetTime

HashName
IncAMonth
IncludeTrailingBackslash
IncludeTrailingPathDelimiter
IncMonth
IsAssembly
IsDelimiter
IsLeadChar
IsLeapYear
IsPathDelimiter
IsValidIdent
Languages
LastDelimiter
LoadStr
MsecsToTimeStamp
NextCharIndex
OutOfMemoryError
QuotedStr
RemoveDir
RenameFile
ReplaceDate
ReplaceTime
SameFileName
SameStr
SameText
SetCurrentDir
Sleep
StrAlloc
StrBufSize
StrByteType
StrCat
StrCharLength
StrComp
StrCopy
StrDispose
StrECopy
StrIComp
StrLCat
StrLComp
StrLIComp
StrLCopy
StrNextChar
StrPCopy
StrPLCopy
StrEnd
StrLen
StrLower
StrMove
StrNew

StrPas
StrPos
StrRScan
StrScan
StrToBool
StrToBoolDef
StrToCurr
StrToCurrDef
StrToDate
StrToDateDef
StrToDateTime
StrToDateTimeDef
StrToFloat
StrToFloatDef
StrToInt64
StrToInt64Def
StrToIntDef
StrToTime
StrToTimeDef
StrUpper
SysErrorMessage
SystemTimeToDateTime
TextPos
TextToFloat
TimeStampToDateTime
TimeStampToMSecs
TimeToStr
TryEncodeDate
TryEncodeTime
TryFloatToCurr
TryFloatToDateTime
TryStrToBool
TryStrToCurr
TryStrToDate
TryStrToDateTime
TryStrToFloat
TryStrToInt
TryStrToInt64
TryStrToTime
UIntToStr
WideCompareStr
WideCompareText
WideLowerCase
WideSameStr
WideSameText
WideStrAlloc
WideUpperCase

223

Study Constants
eAcc Accumulation Distribution eMom Momentum

eAdx Directional Movement Index eMrg Mid Range

eArn Aroon Study eMacd MACD Oscillator

eAsh Heikin-Ashi eOvr Overlay

eAsi Accumulation Swing Index ePac Price Action

eAtr Average True Range ePaf Point & Figure

eAve Moving Average ePar Parabolic Stop

eBal On Balance Volume ePda Predictive Average

eBol Bollinger Bands ePvi Price Volume Indicator

eBow Rainbow Histogram ePvp Pesavento Patterns (Swing Lines)

eBnd Color Band eReg Regression Channel

eCci Commodity Channel Index eRoc Rate of Change

eChi Chaikin Indicator eRsi Relative Strength Index

eCyc Cycle Forecast eSmi Stochastic Momentum

eDon Donchian Channel eSto Stochastics

eDvg Divergence eSwg Swing Lines (Pesavento Patterns)

eDyo Design Your Own eTex Triple Average

eGrid Study Grid Object eTnd Auto Trend Lines

eErg Ergotic Indicator eTrl Trailing Stop

eEspl ESPL Study eTrx Trix Oscillator

eEsplTool ESPL Draw Tool eUlt Ultimate Oscillator

eHlo High Low Stop eUni Uniform Channel

eHst Price Histogram eUsr User defined symbol

eHull Hull Moving Average eVlt Volatility Stop

eKel Keltner Channel eVwap Volume Weighted Average Price

eMap Ensign Map eWlm William's %R

eMfi Money Flow Index e3pb 3 Point Break

Data Point Constants
0 eLast, eClose Close 18 eTrueRange True Range

1 eHigh High 19 eTrueHigh True Range High

2 eLow Low 20 eTrueLow True Range Low

3 eOpen Open 21 eMidPoint (H+L)/2

4 eNet Net 22 eMid3 (H+L+C)/3

5 Abs(Net) 23 eMid4 (H+L+C+O)/4

6 eVolume Volume 24 (H+L+C+C)/4

224

7 eTickCount Tick Count 25 (C-O)

8 eInterest Open Interest 26 Abs(C-O)

9 eAskVol Ask Volume 27 (C+O)/2

10 eBidVol Bid Volume 28 (C-O)/(H-L)

11 eAskRatio Ask Ratio 29 Abs(C-O)/(H-L)

12 eBidRatio Bid Ratio 30 (C-L)/(H-L)

13 eBuyPress Buy Pressure 31 (O-L)/(H-L)

14 eSellPress Sell Pressure 32 ePercent 100*(C-L)/(H-L)

15 eBuyRatio Buy Ratio 33 100*(O-L)/(H-L)

16 eSellRatio Sell Ratio 34 (C-(H+L)/2)/(H-L)

17 eRange Range

Bar Constants
eColor Colorbar color eMonth MonthOf(timestamp)

eDate Date as long integer eSecond Seconds portion of timestamp

eDateTime Adjusted for local timezone eTime Timestamp in minutes format

eDay DayOf(timestamp) eYear YearOf(timestamp)

Feed Constants
e1stInternet Refresh source eIQFeed IQFeed

e2ndInternet Refresh source eNinja Ninja Trader

eATCBrokers ATC Brokers eOpenECry OpenECry

eBarChart Bar Chart eSignal eSignal

eEnsign Ensign Internet eTraderBytes Trader Bytes

eFXCM FXCM eTransAct TransAct Futures

eIB Interactive Brokers

225

Markers

226

Image List

227

	Introduction
	ESPL Language Features
	Documentation Format

	ESPL Programming Window
	Projects
	Suggestions for Designing an ESPL Program
	Creating a new Project
	Opening an Existing Project

	Editing your ESPL Program
	Designing Forms
	Tool Palette and Components
	Object Inspector
	Adding some Programming Code
	Running a Program
	Saving the project
	Adding more Features
	Changing Component Properties
	Writing Code - Events and Event Handlers
	Code completion

	Debugging scripts

	ESPL Programming
	Variable Types
	Colors
	Constants
	Playback

	Program Structure
	Variable, Function, and Procedure Names
	Assign Statements
	Strings
	Comments
	Variables
	Indexes
	Arrays
	Case statements
	Function and Procedure declaration
	Calling a subroutine
	Passing parameters

	Accessing objects
	Calling DLL functions
	Supported Types

	Include Libraries
	Secure Library Files

	Declaring Forms in ESPL
	Event Redirection

	ESPL Statements
	Abs
	Account
	ActiveChild
ActiveChart
	AddLine
	AddNote
	AddOverlay
	AddStudy
AddStudyOnStudy
	Alert
GetAlert
	AlertEvent
	Align
	And
	Application
	Arc
Chord
Ellipse
Pie
	ArcCos
ArcSin
ArcTan
Cos
CoTan
Sin
Tan
	Arrays
	AutoESPL
	AutoRefresh
	Ave
ExpAve
Sum
	Average
ExpAverage
Summation
	Bar
ChartBar
	BarBegin
BarEnd
BarLeft
BarRight
BarBeginLeft
	Beep
	Begin...End
	Bullet
	Buttons
	CallBack
	Chart
	ChartLoad
	ChartRefresh
	ChartReplace
	ChartSave
	Chat
ChatRoom
	ChDir
MkDir
RmDir
	ChildCount
	Child
	Choose
	Chr
Ord
	Clipboard
	AssignFile
Append
Reset
Rewrite
CloseFile
ReadLn
WriteFile
WritelnFile
EOF
DeleteFile
FileExists
DirectoryExists
RenameFile
	ColorBars
	ConvertPrice
FormatPrice
	Copy
	CopyFile
	CreateProcess
	Date
DateStr
	DateToLong
LongToDate
LongToTime
TimeToLong
TimeToString
DwordToTDate
TDateToDword
	DateToStr
	DateToString
	DayOfWeek
	Dec
Inc
	DecodeDate
	DecodeTime
	Delete
	DeleteBar
	DeleteData
	DimArray
	Div
	dlgColor
dlgColor2
	dlgFont
	dlgOpen
dlgSave
	dlgPrint
dlgPrinterSetup
	Download
	DownloadData
	DrawPhase
	Drawing
	Email
	EmailForm
	EmailFormTab
	EncodeDate
	EncodeTime
	Encrypt
Decrypt
Hash
	Exp
Ln
Log2
Log10
	ExtractFileDrive
ExtractFileExt
ExtractFileName
ExtractFilePath
	Filter
	Find
FindMarket
	FindClose
FindFirst
FindNext
	FindStudy
FindStudyName
	FindWindow
	Finished
	Flash
	FloatToStr
StrToFloat
	FloodFill
	For
	ForceDirectories
	Format
	FormatDateTime
	Formation
	Frac
Round
Trunc
	FTPdownload
FTPupload
	Function
	Get
	GetBar
	GetCell
SetCell
SelectedCell
RowColor
	GetData
	GetLevels
	GetStudy
SetStudy
	GetToken
SetToken
	GetUser
SetUser or Plot
	GetVariable
SetVariable
	GV Global Variables
	Highest
Lowest
	Holiday
	HTTP
	IF..Then..Else
	Import
	ImageToFile
	Index1
Index2
Index3
Index4
Index5
Index6
	IndexToX
XToIndex
	Initialize
	InputBox
InputQuery
	Insert	
	InsertBar
	IntToHex
IntToStr
StrToInt
StrToPrice
	IsNumeric
	IsSelected
	IT
	KeyDown
	LeftStr
RightStr
ReverseString
	Length
	LineTo
MoveTo
MoveToLineTo
	Layout
LayoutName
LayoutOpen
	LowerCase
UpperCase
UpCase
	Manager
	Max
Min
	Menu Commands
	Merge
	MessageDlg
MessageDlgPos
	Mod
	Mouse
	NewsFind
NewsStory
NewsText
NewsTitle
NewsSymbol
	Now
	Output
	Pause
	Pi
	Play
	Pos
	Power
	Pred
Succ
	PriceToY
YToPrice
	Pt1X, Pt2X, Pt3X, Pt1Y, Pt2Y, Pt3Y
	PtX1, PtX2, PtX3, PtX4, PtX5, PtX6
PtY1, PtY2, PtY3, PtY4, PtY5, PtY6
	Quote
	Random
Randomize
	Rectangle
RoundRect
	Register
	Regression
	Remove
	Repeat…Until
	ResetTrades
	SaveToAscii
	Scheduler
	Screen
	sCustom
	Select
	Section
	SendKeys
	SetArray
	SetBar
	SetBrush
SetPen
	SetData
	SetDateTime
	SetMyFocus
	SetLength
	SetLine
	SetStudyLine
	ShellExecute
	Show
	ShowMessage
ShowMessagePos
	sList
	sLog
sStudyLog
sLineLog
sSoundLog
	sPath
	Speak
	Spreadsheet
	Sqr
Sqrt
	Std
StdDev
	Str
	String Lists
	StringToDate
StrToDate
	System
	Template
	TCP Connections
	TextAdd
TextBox
TextCaption
TextClear
	TextOut
	TextWidth
	TFont
	TForm
	Time
	Timer
	TimeStr
	Top100
	Trade
	TradeReport
	Trim
TrimLeft
TrimRight
	UDP Connections
	Put
Update
	Val
	Var
	VarToStr
	vArray
	VarType
	Volatility
	WWW
	While…Do
	Window
	 WinExec
	WinExist
	Write
Writeln

	ESPL Sample Programs
	Plotting Study Lines on a Chart
	ToolBar and ToolButton
	TStringGrid Example
	Study Rising Falling Flag
	Creating ESPL DLLs

	Appendix
	USES Clause Libraries
	StrUtils Library Statements
	Additional ESPL Statements
	SysUtils Library Statements
	Study Constants
	Data Point Constants
	Bar Constants
	Feed Constants
	Markers
	Image List

